直接证明与间接证明2(理)
直接证明和间接证明
直接证明和间接证明例如,我们要证明一个分数小于1的正数与其倒数相乘的结果一定小于1、我们可以直接证明如下:设分数为a/b,其中a和b均为正整数。
则有a<b,因此,a/b<b/b,即a/b<1又因为倒数的定义为1/a,即倒数为1除以该数,所以可知a/b *1/a = a/ba = 1/b,而1/b小于1因此,我们可以得出结论:一个小于1的正数与其倒数相乘的结果一定小于1间接证明是通过反证法(或称间接推理)推导出结论的证明方法。
它包括以下步骤:首先,假设要证明的结论不成立;其次,根据该假设推导出与已知事实矛盾的结论;最后,得出假设的结论非真,因此原结论为真。
间接证明的特点是通过推理和推导推翻假设,从而得到结论。
例如,我们要证明根号2是无理数。
假设根号2是有理数,即可表示为a/b的形式,其中a和b是整数,且a和b没有公因数。
则根号2=a/b,即2=(a/b)^2,即2b^2=a^2根据等式两边平方数的性质可知,a^2必为偶数。
那么,根据整数的性质可知,a也必为偶数,即a=2c,其中c为整数。
将a=2c代入等式2b^2=a^2中,得到2b^2=(2c)^2,化简得到b^2=2c^2依据同样的推理,b也是偶数,与假设a和b之间没有公因数相矛盾。
因此,假设根号2是有理数的假设不成立,根号2是无理数。
总结来说,直接证明是通过逻辑推理和数学定义直接得出结论,而间接证明是通过反证法推导出结论。
这两种证明方法在数学中应用广泛,可以灵活运用于各类数学问题的证明中。
无论是选择直接证明还是间接证明,重要的是要严谨、清晰地阐述证明的过程和推理的逻辑,以确保结论的正确性。
第二节直接证明与间接证明
第二节直接证明与间接证明直接证明与间接证明是数学推理中常用的两种证明方法。
直接证明是通过逻辑推理直接得出结论,而间接证明是通过反证法或归谬法得出结论。
以下将详细介绍这两种证明方法,并进行比较。
直接证明是最常见的证明方法之一、它的基本思路是根据已知条件和数学定义,逐步演绎出所要证明的结论。
直接证明需要使用与所要证明的结论相关的定理、性质、定义等来推导,使之成立。
这种方法是一个逐步推进的过程,每一步都必须经过严格的逻辑推理,从已知到结论的推导链条必须清晰、合理。
直接证明通常比较直观,逻辑性较为明显,容易理解。
例如,我们可以通过直接证明来证明“两个相等的数相加,结果仍然相等”。
间接证明是与直接证明相对的一种证明方式。
它的基本思路是假设所要证明的结论不成立,通过逻辑推理得出矛盾或不合理的结论,从而排除了假设的情况,证明了原来的结论是成立的。
间接证明常常采用反证法或归谬法。
反证法是一种最常用的间接证明方法,其基本思路是通过假设结论不成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。
归谬法是一种较少使用的间接证明方法,它的基本思路是假设结论成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。
例如,我们可以通过反证法来证明“根号2是无理数”。
直接证明与间接证明各有其优点和适用范围。
直接证明较为直观和直接,逻辑性更明显,适用于证明一些简单且直接的结论,或是一些简单的数学性质和定理。
间接证明更具有一般性和普遍性,适用于证明复杂的结论,或是一些需要反证或归谬的情况。
通过间接证明,我们可以深入分析和推理,挖掘结论的内在逻辑关系。
间接证明常常需要对结论进行反向思考,找到对立面、矛盾面,通过推导和推理得到最终的结论。
总的来说,直接证明和间接证明是数学推理中常用的两种证明方法。
直接证明通过逻辑推理直接得出结论,适用于一些简单直接的结论。
间接证明通过反证或归谬得出结论,适用于一些复杂或需要反向思考的结论。
数学证明中的直接证明与间接证明
数学是一门严谨的学科,其核心在于推理与证明。
在进行数学证明时,有直接证明和间接证明两种方法。
直接证明是通过逻辑推理直接得出结论,而间接证明则是通过反证法或者归谬法,通过推翻事实的否定来得出结论。
本文将分别介绍直接证明和间接证明,并分析它们在数学证明中的应用。
首先,我们来讨论直接证明。
直接证明是最常见、最直接的证明方法。
其核心思想是根据已知条件和数学定理,一步一步地推导出结论。
直接证明通常包括假设、推理和结论三个步骤。
首先,我们根据题目给出的条件假设一些前提条件,然后利用已知的定理和公理进行推理,最后根据这些推理得出结论。
直接证明的优点是逻辑性强、直观明了,容易让读者明白推理的过程。
此外,对于一些简单的数学问题,直接证明能够很快得出结论,省去了许多繁琐的步骤。
然而,直接证明的弊端是有时难以找到合适的定理进行推理,或者推导过程中的中间步骤比较复杂。
在遇到这种情况时,我们就需要采用间接证明的方法。
其次,我们来讨论间接证明。
间接证明有两种形式,一种是反证法,另一种是归谬法。
反证法的基本思想是通过假设反命题的真假进行推导,如果得出一个恒真的结论,则原命题成立。
归谬法则是通过假设原命题为真进行推导,最后得出一个恒假的结论,从而推翻了原命题。
间接证明的优点是可以处理一些复杂的数学问题,特别是那些直接证明困难的问题。
间接证明可以通过假设反命题的真假或者假设原命题的真假,利用反证法或归谬法的推导过程将问题的复杂性降低,从而得出结论。
然而,间接证明的过程通常较为繁琐,需要较高的抽象思维能力和逻辑推理能力。
在实际的数学证明中,常常需要根据题目的要求和限制条件选择合适的证明方法。
有时,我们可以通过观察和归纳总结出一些数量关系或性质,然后用直接证明进行推导。
而对于一些性质复杂的数学问题,我们可能需要采用间接证明的方法。
因此,掌握直接证明和间接证明的技巧对于解决数学问题至关重要。
总之,数学证明中的直接证明和间接证明是两种常用的推理方法。
直接证明与间接证明
直接证明与间接证明直接证明和间接证明是数学中常用的两种证明方法。
直接证明是通过逻辑推理和已知的真实前提,以直接的方式推出所要证明的结论。
间接证明则是采用反证法或者假设推理的方式,通过说明对立假设或者逻辑矛盾来推出所要证明的结论。
直接证明的思路是从已知条件出发,逐步运用数学定义、性质、定理等等,直接推导到所要证明的结论。
这种证明方法通常比较直观,步骤清晰,容易理解。
下面来看一个简单的例子。
假设我们要证明:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
直接证明的思路是从正整数是3的倍数这个已知条件出发,即假设正整数n可以写为3k,其中k为整数。
那么正整数n的平方可以写为(3k)^2=9k^2,即n^2=9k^2、由此可知,正整数n^2也可以写为3的倍数,因为9k^2可以写为3的倍数。
因此,根据直接证明的逻辑推理,我们得出结论:如果一个正整数是3的倍数,则这个正整数的平方也是3的倍数。
间接证明的思路是通过反证法或者假设推理的方式,假设所要证明的结论不成立,然后通过推理说明这个假设是不可能的或者导致矛盾的。
下面来看一个简单的例子。
假设我们要证明:不存在两个整数的和等于3的倍数,且差等于5的倍数。
间接证明的思路是先假设存在这样的两个整数,分别为a和b。
那么根据条件,我们可以得到以下两个等式:a+b=3k,其中k为整数;a-b=5m,其中m为整数。
然后我们将这两个等式相加,得到:2a=3k+5m。
由于3k+5m是整数,所以2a也是整数。
但是,由于2是偶数,所以2a是偶数,而3k+5m是奇数。
因此,2a和3k+5m不能同时成立,即假设不成立。
因此,不存在两个整数的和等于3的倍数,且差等于5的倍数。
以上是直接证明和间接证明的简单例子,实际的证明可能需要更多的推理和步骤。
两种证明方法各有优点和适用范围。
直接证明通常通过展示清晰的推理过程来达到证明目的,适合于结论的证明比较明显和直观的情况。
而间接证明则通过反证法或者假设推理来达到证明目的,适合于结论的证明比较困难或者复杂的情况。
数学证明方法
数学证明方法数学是一门以推理、证明为核心的学科,证明是数学中非常重要的一部分。
在数学中,证明是用来验证数学命题是否成立的过程,通过严密的逻辑推理和数学方法,我们可以得出正确的结论。
本文将介绍数学证明的一些常用方法。
一、直接证明法直接证明法是最常用的证明方法之一。
它的基本思路是通过列出假设和前提条件,然后逐步推导出结论。
在证明过程中,每一步的推导必须是合法的,且每一步的结果必须是已知的或者是由已知结论推导得出的。
最终,通过一系列合法的推导步骤,我们可以得出我们需要证明的结论。
例如,要证明一个数的平方大于等于零,可以采用直接证明法。
首先,我们假设这个数为x,那么我们有x^2 ≥ 0。
由数学性质可知,任何数的平方都大于等于零,因此结论成立。
二、间接证明法间接证明法也称为反证法。
它的基本思路是,通过假设结论不成立,然后推导出与已知信息矛盾的结论,从而推翻原始的假设。
如果我们的推导过程是合法的,那么我们可以确定原始的假设是错误的,也就证明了我们的结论是正确的。
例如,要证明某个数是素数,可以采用间接证明法。
我们假设这个数不是素数,那么它一定可以被分解为两个较小的整数的乘积。
然而,通过进一步分解,我们最终可以得出这两个整数也可以被分解为更小的整数的乘积。
这将导致一个无限的分解过程,与素数定义相矛盾。
因此,我们的假设是错误的,该数是素数。
三、数学归纳法数学归纳法常用于证明满足递归定义的数列、集合或结构的性质。
它包括两个步骤:基础步骤和归纳步骤。
首先,我们证明当n取某个特定的值时,命题成立,这称为基础步骤。
然后,我们假设当n为k时,命题成立,然后证明当n为k+1时,命题也成立,这称为归纳步骤。
通过这种递推的方式,我们可以证明对所有自然数n,命题都成立。
例如,要证明所有正整数的和公式,可以使用数学归纳法。
首先,当n=1时,根据公式,1的和为1,结论成立。
然后,假设当n=k时,公式成立。
那么当n=k+1时,根据公式,我们可以得到1+2+...+k+(k+1) = (k(k+1))/2 + (k+1) = (k+1)(k+2))/2。
2014届高考江苏专用(理)一轮复习第十四章第4讲直接证明与间接证明
(3)分析法定义: 保证前一个结论成立 从求证的结论出发,一步一步地探索__________________ 的充分条件 ___________,直到归结为这个命题的条件,或者归结为
定义、公理、定理等.这样的思维方法称为分析法.
(4)框图表示: Q⇐P1 → P1⇐P2 → P2⇐P3 →…→ 得到一个明显成立的条件 .
考向二
分析法的应用
【例2】 (2011· 湖北卷)已知数列{an}的前n项和为Sn,且满足: a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠-1,r≠0).
(1)求数列{an}的通项公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差数列,试判断: 对于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差 数列,并证明你的结论.
数列”?若是,指出它对应的实常数p、q,若不是,请说明
理由; (2)已知数列{an}满足a1=2,an+an+1=3·n(n∈N*).若数列 2 {an}是“优美数列”,求数列{an}的通项公式. 解 (1)∵an=2n,则有an+1=an+2,n∈N*.
∴数列{an}是“优美数列”,对应的p、q值分别为1、2;
而an+an+1=3·n(n∈N*), 2 且an+1+an+2=3·n+1(n∈N*), 2 则有3·n+1=3·np+2q对于任意n∈N*都成立, 2 2 即3·n(2-p)=2q对于任意n∈N*都成立, 2
∴p-2=0,即p=2,q=0.此时,an+1=2an,
又∵a1=2,∴an=2n(n∈N*).
(2)证明
4 3 用反证法证明.
4 3
4 3
假设数列{bn}存在三项 br, s, t(r<s<t)按某种顺序成等差数列, b b 1 2 由于数列{bn}是首项为 , 公比为 的等比数列, 于是有 br>bs>bt, 4 3 则只可能有 2bs=br+bt 成立. 12 s- 1 12 r-1 12 t-1 ∴2· = + , 43 43 43 两边同乘 3t- 121- r,化简得 3t- r+2t- r=2·s- r3t- s. 2 由于 r<s<t,所以上式左边为奇数,右边为偶数,故上式不可 能成立,导致矛盾. 故数列{bn}中任意三项不可能成等差数列.
证明的格式 (2)
证明的格式证明是数学推理的基础,它用于表达和验证某种数学命题的正确性。
在证明中,我们通过逻辑推理和数学知识来展示一个命题为真的理由。
在数学领域中,有许多不同的证明方法和格式,本文将介绍一些常见的证明格式和如何使用Markdown 文本格式来书写证明。
1. 直接证明直接证明是最常见的证明方法,它直接展示了一个命题的证据。
在直接证明中,我们通常假设前提条件为真,并通过一系列逻辑推理的步骤来得出结论。
以下是一个简单的直接证明的例子:定理:若a和b都是偶数,则ab也是偶数。
证明:假设a和b都是偶数,则可以写成a=2m和b=2n 的形式,其中m和n是整数。
那么ab = (2m)(2n) = 4mn,由于4、m和n都是整数,所以mn也是整数。
因此,ab是偶数。
证毕。
在Markdown文本中,我们可以使用以下格式来书写直接证明:**定理:** 若a和b都是偶数,则ab也是偶数。
**证明:** 假设a和b都是偶数,则可以写成a=2m和b=2n的形式,其中m和n是整数。
那么ab = (2m)(2n) = 4mn,由于4、m和n都是整数,所以mn也是整数。
因此,ab是偶数。
证毕。
2. 间接证明间接证明是一种常见的证明方法,它通过推导出一个矛盾或错误的结论来证明一个命题的真实性。
在间接证明中,我们通常假设反命题为真,并使用逻辑推理的步骤来推出矛盾的结论。
以下是一个简单的间接证明的例子:定理:开方2是无理数。
证明:假设开方2是有理数,可以写成开方2 = p/q 的形式,其中p和q是互质的整数。
那么2 = (p/q)^2 = p2/q2。
将等式两边乘以q2,得到2q2 = p2。
因此,p2是偶数。
由于整数的平方只能是偶数或奇数,因此p也是偶数,即p = 2k(其中k是整数)。
将这个结果代入等式中,得到2q^2 = (2k)^2 = 4k2。
因此,将等式两边除以2,得到q2 = 2k2。
这意味着q2也是偶数,从而q也是偶数。
数学证明方法和技巧
数学证明方法和技巧数学是一门理性而抽象的学科,其中最重要的一部分就是证明。
数学证明是通过严密的逻辑推导来验证数学命题的正确性。
在数学中,有许多不同的证明方法和技巧,本文将针对这些方法和技巧进行详细的讨论。
一、直接证明法直接证明法是最常见和最基本的证明方法之一。
它的思路是通过一系列推理步骤,从已知的条件出发,逐步推导出所要证明的结论。
例如,对于求证一个数是偶数的命题,我们可以通过直接证明法来进行推导。
首先,我们将该数表示为2的倍数(即n=2k,其中k是任意整数),然后可以得出结论n为偶数。
二、间接证明法间接证明法,也称为反证法,是一种常用的证明方法。
它的思路是假设所要证明的结论是错误的,然后通过逻辑推理推导出矛盾的结论,从而证明原命题的正确性。
例如,可以通过反证法来证明平方根2是一个无理数。
我们假设根号2是一个有理数,即4可以整除2的平方根。
然而,通过推理可以发现这样的假设将导致矛盾,因此我们可以得出结论根号2是一个无理数。
三、数学归纳法数学归纳法是一种证明自然数性质的强有力的方法。
它的基本思想是通过证明当n=k时某个结论成立,然后证明当n=k+1时该结论也成立,从而推导出对所有自然数n均成立的结论。
首先我们验证当n=1时该结论成立,接着假设n=k时该结论成立,然后通过这个假设和逻辑推理证明n=k+1时该结论也成立。
因此我们可以得出结论对所有自然数n该结论成立。
数学归纳法在证明数列、不等式和等式等方面非常有用。
四、反证法反证法是一种基于逻辑推理的证明方法。
与间接证明法类似,反证法也是假设所要证明的结论是错误的。
但与间接证明法不同的是,反证法通过逻辑推理证明这样的假设将导致一种矛盾的结论。
这种矛盾说明了原来的假设是错误的,因此原命题是正确的。
反证法常用于证明存在性命题和唯一性命题。
五、等价命题证明等价命题证明是一种证明方法,它将所要证明的命题转化为与之等价的其他命题,然后通过证明这些等价命题来推导出原命题的正确性。
直接证明与间接证明_知识讲解
直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。
直接证明与间接证明_分析法
直接证明与间接证明_分析法直接证明和间接证明是逻辑学中的两种证明方法。
直接证明是通过事实和逻辑推理直接得出结论的方法,而间接证明则是通过反证法来达到证明的目的。
下面将从分析法的角度来探讨直接证明和间接证明的特点和应用。
首先,直接证明是一种简洁明确的证明方法。
它通过逐步展示事实和推理过程,直接地得出结论。
直接证明要求每一步的推理都是严谨和合乎逻辑的,不允许出现漏洞和错误。
直接证明的优点在于它的证明过程清晰明了,逻辑性强,容易理解和接受。
对于一些简单的问题,直接证明是最常见和最有效的证明方法。
其次,直接证明适用于一些直观的、已知的情况。
例如,要证明一个三角形的三个内角之和等于180度,可以通过直接证明来达到目的。
我们可以利用平行线和同位角的性质,逐步推导出对应角相等,从而得出结论。
这种情况下,我们有直观的几何图形和一些已知的性质,通过推理和演绎可以直接得出结论。
然而,直接证明也有一定的局限性。
对于一些复杂的问题,直接证明可能会变得更加困难和繁琐。
有时候,问题本身的复杂性以及需要证明的结论的复杂性会导致直接证明的推理过程变得更加难以理解和掌握。
在这种情况下,间接证明就可以派上用场。
间接证明是一种通过反证法推导出结论的方法。
它假设待证命题的否定是成立的,然后通过推理和推导得出矛盾的结论,从而证明了原命题的正确性。
间接证明的优点在于它能够化复杂的问题为简单的矛盾,通过推理和演绎来证明原命题的正确性。
它可以避免直接证明中的复杂推理和繁琐的计算。
间接证明适用于一些复杂、难以直接证明的问题。
例如,欧几里得几何中的数学定理费马大定理就是一个典型的间接证明的例子。
费马大定理认为不存在任何正整数n大于2的整数解(x,y,z),使得x^n+y^n=z^n成立。
然而,这个定理的直接证明非常困难。
数学家费马通过间接证明的方法证明了该定理的正确性,从而为数学界做出了重大贡献。
总结起来,直接证明和间接证明是逻辑学中两种常见的证明方法。
直接证明、间接证明与数学归纳法
2
2
2
由于三个不等式中的等号不能同时成立,故 a 1 + b 1 + c 1
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
<4.
ab
a2 b2
(法二)由( 2 )2≤ 2
⇒a+b≤
2(a2 b2 )
,
于是 a 1 + b 1≤ 2(a 1 b 1) ,同理: c 1 +1≤ 2(c 11) ,
a1 b1 a2 b2
an bn 12
【分析】(1)利用等差中项与等比中项得出an与bn的关系式,
求出a2,a3,a4及b2,b3,b4的值归纳出其通项公式,然后利用数学
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
归纳法给予证明;(2)利用裂项法证明.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
§12.2 直接证明、间接证明与数学归纳法
知识诠释 思维发散
一、直接证明与间接证明 1.两类基本的证明方法:直接证明与间接证明.综合法和分析 法是直接证明中最基本的两种证明方法,也是解决数学问题 时常用的思维方式.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
这与f(1)+f(3)-2f(2)=2矛盾.
故假设不成立,原命题成立.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
题型3 分析法的运用
例3
已知a>0,求证:
a2
1 a2
-
2
直接证明与间接证明 知识点+例题+练习
教
学
过
程
1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。
39直接证明与间接证明
x1+x2 x1+x2 1 1 证明要证 [f(x1)+f(x2)]>f ,即证明2(tan x1+tan x2)>tan 2 , 2 2
x1+x2 1 sin x1 sin x2 >tan 只需证明 cos x +cos x , 2 2 1 2 sinx1+x2 sinx1+x2 只需证明 > . 2cos x1cos x2 1+cosx1+x2
b S,
b a c, 即证 因为,在三角形中,b<a+c 显然成立,
所以原不等式成立.
2.△ABC三边长a, b, c的倒数成等差数列.
求证: B 90.
证明: 2 1 1 , 2ac b(a c ).
b a
c a 2 c 2 b2 2ac b2 cos B ≥ 2ac 2ac
直接证明与间接证明
要点梳理
1.直接证明 (1)综合法
忆一忆知识要点
①定义:利用已知条件和某些数学定义、公理、定理等, 经过一系列的推理论证,最后推导出所要证明的结论成 立,这种证明方法叫做综合法. ②框图表示: P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (其中 P 表示已知条件、已有的定义、公理、定理等,Q 表示要证明的结论).
综合法
2 7 在 x∈(a,+∞)上恒 例 1.(1)已知关于 x 的不等式 2x+ x-a 成立,求实数 a 的取值范围; (2)已知|x|<1,|y|<1,求证:|1-xy|>|x-y|.
2 2 3 7,∴2(x-a)+ 7-2a⇒7-2a 4,∴a 2 (1)∵2x+ x-a x-a (2)因为|1-xy|2-|x-y|2=(xy)2+1-x2-y2=(x2-1)(y2-1)>0 所以|1-xy|>|x-y|
高中数学第二章推理与证明22直接证明与间接证明222反证法课件新人教版选修12
5.用反证法证明命题“如果 a>b,则3 a>3 b时,
假设的内容是________.”
3
3
3
33
3
解析: a与 b的关系有三种情况: a> b, a= b,
3
3
3
3
a< b.所以假设的内容应为 a≤ b.
3
3
答案: a≤ b
类型 1 用反证法证明否(肯)定性命题(自主研析) [典例 1] 设函数 f(x)=ax2+bx+c(a≠0)中,a,b, c 均为整数,且 f(0),f(1)均为奇数.求证:f(x)=0 无整 数根. [自主解答]假设 f(x)=0 有整数根 n,则 an2+bn+c =0 又 f(0),f(1)均为奇数,
解得-2<a<-1,则要使两方程至少有一个方程有
实数,则 a 的取值范围应为 a≤-2 或 a≥-1.
答案:A
归纳升华
1.用反证法证明“至少”“至多”型命题,可减少讨
论情况,目标明确.否定结论时需弄清楚结论的否定是什
么,避免出现错误.
2.用反证法证明“至多、至少”问题时常见的“结
论词”与“反设词”如下:
1.思考判断(正确的打“√”,错误的打“×”) (1)反证法属于间接证明问题的方法.( ) (2)反证法的证明过程既可以是合情推理也可以是一 种演绎推理.( ) (3)反证法的实质是否定结论导出矛盾.( ) 解析:(1)对,反证法是间接证明问题的方法. (2)错,反证法是演绎推理,不是合情推理. (3)对,根据反证法的概念知说法正确. 答案:(1)√ (2)× (3)√
所以(1-2a)+b≥ (1-a)b> 14=12. 同理(1-2b)+c>12,(1-2c)+a>12. 三式相加得 (1-2a)+b+(1-2b)+c+(1-2c)+a>32. 则32>32,矛盾,故假设不成立. 所以(1-a)b,(1-b)c,(1-c)a 不能都大于14.
第二章直接证明与间接证明章末总结
章末总结知识点一合情推理归纳和类比是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理,从推理形式上看,归纳是由部分到整体,个别到一般的推理,类比是由特殊到特殊的推理.例1在平面上有n条直线,任何两条都不平行,并且任何三条都不交于同一点,问这些直线把平面分成多少部分?例2如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c 分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.知识点二 演绎推理合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确.从二者在认识事物的过程中所发挥作用的角度考虑,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得,合情推理可以为演绎推理提供方向和思路.演绎推理的一般模式是“三段论”.例3 已知函数f (x )=a x+bx ,其中a >0,b >0,x ∈(0,+∞),确定f (x )的单调区间,并证明在每个单调区间上的增减性.知识点三 综合法与分析法综合法和分析法是直接证明中的两种最基本的证明方法,但两种证明方法思路截然相反,分析法既可用于寻找解题思路,也可以是完整的证明过程,分析法和综合法可相互转换,相互渗透,充分利用这一辩证关系,在解题中综合法和分析法联合运用,转换解题思路,增加解题途径.例4 已知a ,b ,c ∈R +,且a +b +c =1,求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.知识点四 反证法反证法是间接证明的一种基本方法,它不去直接证明结论,而是先否定结论,在否定结论的基础上,运用正确的推理,导出矛盾,从而肯定结论的真实性.在证明一些否定性命题、唯一性命题或含有“至多”、“至少”等字句的命题时,正面证明较难,可考虑反证法,即“正难则反”.例5 已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不可能都大于14.例6 如图所示,已知两直线l ∩m =O ,l ⊂α,m ⊂α,l ⊄β,m ⊄β,α∩β=a .求证:l 与m 中至少有一条与β相交.第二章 章末总结答案重点解读例1 解 设n 与S nn n -1这是因为在n -1条直线后添加第n 条直线被原(n -1)条直线截得的n 段中的任何一段都将它所在的原平面一分为二,相应地增加n 部分,所以S n =S n -1+n ,即S n -S n -1=n .从而S 2-S 1=2,S 3-S 2=3,S 4-S 3=4,…,S n -S n -1=n .将上面各式相加有S n -S 1=2+3+…+n ,∴S n =S 1+2+3+…+n =2+2+3+…+n=1+n (n +1)2. ∴这些直线把平面分成1+n (n +1)2部分. 例2 解如图所示,在四面体P —ABC 中,设S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面P AB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为:S =S 1·cos α+S 2·cos β+S 3·cos γ.例3 解 f (x )的单调区间为⎝⎛⎦⎤0,a b 和⎣⎡⎭⎫a b ,+∞, 证明如下:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫a x 1+bx 1-⎝⎛⎭⎫a x 2+bx 2 =(x 2-x 1)⎝⎛⎭⎫a x 1x 2-b . 当0<x 1<x 2≤a b时, 则x 2-x 1>0,0<x 1x 2<a b ,a x 1x 2>b , ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在⎝⎛⎦⎤0,a b 上是减函数. 当x 2>x 1≥a b时, 则x 2-x 1>0,x 1x 2>a b ,a x 1x 2<b , ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在⎣⎡⎭⎫a b ,+∞上是增函数. 例4 证明 方法一 (综合法)⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 =⎝⎛⎭⎫a +b +c a -1·⎝⎛⎭⎫a +b +c b -1·⎝⎛⎭⎫a +b +c c -1=b +c a ·a +c b ·a +b c=(b +c )(a +c )(a +b )abc≥2bc ·2ac ·2ab abc=8, 当且仅当a =b =c 时等号成立,所以不等式成立.方法二 (分析法)要证⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8成立,只需证1-a a ·1-b b ·1-c c≥8成立. 因为a +b +c =1,所以只需证(a +b +c )-a a ·(a +b +c )-b b ·(a +b +c )-c c≥8成立. 即b +c a ·a +c b ·a +b c≥8. 只需证b +c a ·a +c b ·a +b c ≥2bc a ·2ac b ·2ab c≥8成立, 而2bc a ·2ac b ·2ab c≥8显然成立,故⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8成立.例5 证明 假设三个式子同时大于14, 即(1-a )b >14,(1-b )c >14,(1-c )a >14, 三式相乘得:(1-a )·a ·(1-b )·b ·(1-c )·c >143, ① 又因为0<a <1,∴0<a (1-a )≤⎝⎛⎭⎫a +1-a 22=14,同理0<b (1-b )≤14,0<c (1-c )≤14, 所以(1-a )a ·(1-b )b ·(1-c )c ≤143, ② ①与②矛盾,所以假设不成立,故原命题成立. 例6 证明 假设l ,m 都不与β相交, ∵l ⊄β,m ⊄β,∴l ∥β且m ∥β.又∵l ⊂α,m ⊂α,α∩β=a ,∴l ∥a ,m ∥a ,∴l ∥m .这与已知l 、m 是相交直线矛盾.因此l 和m 至少有一条与β相交.。
222直接证明与间接证明讲解
例4 已知a≠0, 证明:关于x的方程ax=b有且只有一个根。
证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
不妨设其中的两根分别为x1,x2且x1 ≠ x2 则ax1 = b,ax2 = b ∴ ax1 = ax2
∴ ax1 - ax2 = 0 ∴ a(x1 - x2)= 0 x1 x2 x1 x2 0 ∴a = 0 与已知a ≠ 0矛盾,
否定词 原词语
不等于 任意的
不是 至少有一个
不都是 至多有一个
不大于 至少有n个
不小于 至多有n个
存在某个x,对任何x,
不成立
不成立
否定词
某个
一个也没有 至少有两个 至多有(n-1)个 至少有(n+1)个 存在某个x, 成立
二、典例剖析---类型二:
例3.证明: 2, 3, 5 不可能成等差数列
证明: 假设 2, 3, 5 能成等差数列,则
2 3 2 5
两边平方得: (2 3)2 ( 2 5)2 化简得: 5 2 10
两边平方得: 25 40
此式显然不成立,所以假设错误
注:否定所型以 命题2(,命题3,的5结不论可是能“成不等可差数能列……”,
所以∠ A < 60°,∠B < 60°, ∠C < 60° ∴ ∠A+∠B+∠C<180°
这与 三角形内角和等于180° 相矛盾.
∴ 假设 不能成立,所求证的结论成立.
先假设结论的反面是正确的,然后通过逻辑推理, 推出与公理、已证的定理、定义或已知条件相矛盾, 说明假设不成立,从而得到原结论正确。
反证法的思维方法:正难则反
三、典例剖析---类型一: 例1. 证明:如果a b 0,则 a b
数学证明中的直接证明与间接证明
数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。
数学证明通常可以分为直接证明和间接证明两种形式。
本文将介绍直接证明和间接证明的含义、特点以及应用。
一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。
直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 列出已知条件和前提条件。
3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。
4. 分析并验证证明过程中的每一步是否严谨、正确。
5. 结束证明,得出所要证明的命题。
直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。
因此,直接证明在数学证明中广泛应用于各个领域。
例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。
定理:若a和b为偶数,则a+b为偶数。
证明:设a=2m,b=2n,其中m和n为整数。
则a+b=2m+2n=2(m+n)。
由于m和n为整数,所以m+n也是整数。
因此,a+b=2(m+n)为偶数。
证毕。
二、间接证明间接证明是一种通过反证法推导出结论的证明方法。
它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。
间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。
2. 假设所要证明的命题为假。
3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。
4. 推断出所要证明的命题为真。
5. 结束证明,得出所要证明的命题。
间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。
它常常用于证明一些与质数、无理数、等级等有关的命题。
例如,我们来证明一个著名的数学定理:根号2是一个无理数。
定理:根号2是一个无理数。
证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。
直接证明与间接证明(2)分析法
B >C AC > AB 因为 BD =DC , AD =AD EDC >EDB 因为 BD =DC , ED =ED EC > BE EBC >ECB
【分析法】
从结论出发,寻找结论成立的充分条件 直至最后,把要证明的结论归结为判定一 个明显成立的条件。 要证: 要证:
C
D
目标:EBC >ECB 因为 BD =DC , ED =ED 因为 BD =DC , AD =AD
EC > BE EDC >EDB AC > AB B >C
【分析法】
目标:EBC >ECB
因为 BD =DC , ED =ED 因为 BD =DC , AD =AD
EC > BE
EDC >EDB AC > AB B >C
【课本】 P54 习题 A组 3 B组 2
补充题: 已 知a 4 , 求 证 : a 1 a 3 a 2 a 4
http://xml400.site http://xml400.space http://xml400.store 「 yrk085utb 」
只是习惯不是喜欢,也并非意味着融入。 她已经习惯此间种种,而不是在一眼便可以看到街道尽头的故乡逡巡,在陈旧的低矮楼房间出入,生活所有的重心只在于菜米 油盐、一日三餐。平淡无奇,渡此余生。 出走太久的人,已经失去回到过去的途径。 安安,一个人在外面要照顾好自己,注意天气变化穿衣服,你是女孩子不要给自己太大的压力。如果遇到心怡的人,可以早点 安定下来,我和你爸爸才会放心。母亲并不知道她辞职的事,她很少谈论工作,电话里也只是问候身体与天气。经常无话可说。 一旦谈论到父亲,母亲的眼眶总是会湿润。 母亲送她坐上旧式的巴车,车身的油漆斑斑落落。把行李放好,迟迟不下车,只是看着她。直到司机准备发车,她才下车。她 从车窗里看到母亲一直凝望着她,俯身趴在车窗上,你要好好照顾自己,我走了。 母亲点头,让她不要担心。母亲鬓角的银丝和眼角的纹路让她惊悸,她总觉得母亲依旧是年轻时的样子,可是她已经开始老了。 皱纹从心脏顺着血液流遍全身,然后扎破皮肤肆意生长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2.1 综合法和分析法(2)
【学情分析】:
前两节课分别学习了综合法与分析法的思考过程、特点。
本节是在前两节课的基础上继续运用综合法与分析法证明数学问题。
在解决问题时,往往会将这两种直接证明的方法结合起来使用,本节课的例4就是运用这种证明方式。
【教学目标】:
(1)知识与技能:进一步了解直接证明的两种基本方法——综合法与分析法的思考过程、特点
(2)过程与方法:进一步运用综合法、分析法证明数学问题
(3)情感态度与价值观:通过本节课的学习,感受逻辑证明在数学以及日常生活中的作用,养成言之有理,论证有据的习惯
【教学重点】:
运用综合法、分析法证明数学问题。
【教学难点】:
根据问题特点,选择适当的证明方法证明数学问题或将两种方法结合使用;分析法证明问题的正确格式
【教学过程设计】:
cos sin θ=22
1tan 2(1tan ββ-+,首先应从
【练习与测试】:
1
. 用分析法证明:欲使①A>B ,只需②C<D ,这里①是②的 ()
A .充分条件 B. 必要条件 C. 充要条件
D. 即不充分也不必要条件 答案:B
解:由分析法的证题思路知:②⇒①,但①不一定推出②,故选B 。
2
.2,M N =
=则
( )
A .M ≥N B. M>N C. M ≤N D. M<N 答案:B
解:M>N ⇐22
2)>⇐88->-⇐<∵15<24显然成立,∴选B
3. 若b
a b a R b a +≥
+∈+
2
2121:
,,证明 证明:要证原式成立,只需证b
a a
b b a +≥
+22,因为+
∈R b a , 所以只需证ab b ab a ab b a 424)(2
22≥++≥+即证
要证上式成立,只需证0)(,022
22≥-≥+-b a b ab a 即
显然成立,所以原不等式成立。
4. 若,,a b R +
∈112
23
32
3
求证:(a +b )>(a +b ) 证明: ∵,a b R +
∈
∴6
(
)⇐⇐11112
23
32
26
3
3223332
2
3
23
(a +b )>(a
+b )(a +b ))
>((a +b )(a +b
)>(a +b ) 22223()2a b a
b ⇐+⇐+
>6422
46633
633a +3a b +3a b +b >a +2a b b a
b 223(
)2a b ⇐+>ab ,显然成立, 所以原式成立。
5
.若3,a ≥求证
要证此不等式成立,只要证
a +成立
即
要证上式成立,只要证 2
2
332a a a a
-<-+
即证 0<2 显然成立,所以不等式成立。
1
1
成立
6.若,,2,:||a b R c a b a c +∈>+-<且求证
证明:要证||a c -< 只需证:222
2a c ac c ab +-<- 只需证:2
20 a(a+b-2c)<0a ac ab -+<即证 因为a>0
所以因需证a+b-2c<0 即证:a+b<2c 显然成立,所以求证式成立。
7. 若b
a b a R b a +≥
+∈+
2
2121:,,证明 证明:要证原式成立,只需证b
a a
b b a +≥
+22,因为+
∈R b a , 所以只需证ab b ab a ab b a 424)(2
22≥++≥+即证
要证上式成立,只需证0)(,022
22≥-≥+-b a b ab a 即
显然成立,所以原不等式成立。