函数的单调性—人教高中数学B版必修一

合集下载

《3.1.2函数的单调性》作业设计方案-高中数学人教B版19必修第一册

《3.1.2函数的单调性》作业设计方案-高中数学人教B版19必修第一册

《3.1.2 函数的单调性》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《函数的单调性》第一课时的学习,使学生能够:1. 理解函数单调性的概念,掌握判断函数单调性的方法。

2. 能够通过实例分析,加深对函数单调性在实际问题中应用的理解。

3. 培养学生的数学逻辑思维和问题解决能力。

二、作业内容本课时的作业内容主要包括以下几个方面:1. 理论学习:复习函数单调性的定义,理解增函数和减函数的含义,掌握判断函数单调性的基本方法。

2. 练习题:设计一系列练习题,包括选择题、填空题和解答题,涵盖函数单调性的基本概念、判断方法和应用。

(1)选择题:挑选出几个典型的函数图像,让学生判断其单调性。

(2)填空题:提供未完成的问题,要求学生根据函数单调性的定义完成填空。

(3)解答题:设计实际问题的情境,要求学生运用函数单调性的知识解答。

3. 拓展应用:设计一些涉及函数单调性的实际问题,如经济学中的成本函数、市场营销中的价格与销售量关系等,以提高学生运用知识解决实际问题的能力。

三、作业要求1. 学生需在规定时间内独立完成作业,并保证答案的准确性。

2. 学生在完成练习题时,应注重理解题目背后的数学原理和解题思路。

3. 对于拓展应用部分,学生需结合实际情境,运用所学知识进行分析和解答。

4. 作业需字迹工整,步骤清晰,答案完整。

四、作业评价1. 教师将根据学生作业的准确性和解题思路进行评价,对正确答案进行批改和点评。

2. 对于解题思路有创新或独特见解的学生,给予鼓励和表扬。

3. 对于作业中出现的错误,教师需进行详细指导,帮助学生找出错误原因并改正。

五、作业反馈1. 教师将根据学生作业的完成情况,进行针对性的教学调整,以提高教学效果。

2. 对于普遍存在的问题,将在课堂上进行讲解和答疑。

3. 对于个别学生的问题,可通过课后辅导或线上交流的方式进行个别指导。

4. 定期收集学生对于作业设计的反馈意见,以便不断优化作业设计,提高学生的学习效果。

《3.1.2函数的单调性》作业设计方案-高中数学人教B版19必修第一册

《3.1.2函数的单调性》作业设计方案-高中数学人教B版19必修第一册

《3.1.2 函数的单调性》作业设计方案(第一课时)一、作业目标本作业设计旨在帮助学生巩固和深化对“函数的单调性”的理解,通过实际操作和练习,掌握判断函数单调性的方法和技巧,为后续学习打下坚实的基础。

二、作业内容1. 基础知识巩固- 要求学生复习函数单调性的定义,理解增函数和减函数的概念,并能够正确使用数学语言描述函数的单调性。

- 布置相关练习题,如填空题和选择题,考察学生对基本概念的掌握情况。

2. 函数单调性判断- 指导学生通过图像、导数、差分等方法判断函数的单调性。

- 设计一定数量的应用题,让学生在具体情境中应用单调性的概念。

3. 函数单调性与实际生活的联系- 通过实例分析,如气温变化、商品销售量与价格的关系等,让学生理解函数单调性在实际生活中的意义。

- 要求学生分析生活中的一些现象,用数学语言表达其单调性,并给出简要的解释。

4. 综合练习- 设计一组综合题目,涵盖函数单调性的判断、计算和实际应用等内容。

- 要求学生独立完成综合练习,并在课堂上进行讨论和交流。

三、作业要求1. 学生需在规定时间内独立完成作业,并保证答案的准确性和规范性。

2. 对于每个题目,学生需写出详细的解题步骤和思路,以便于教师了解学生的掌握情况。

3. 学生在完成作业过程中,应注重理解题目的意图和解题方法,而不仅仅是追求答案的正确性。

4. 对于涉及图像的题目,学生需使用数学软件绘制准确的函数图像,并标注关键点。

5. 学生在完成作业后,需进行自我检查和修正,确保答案的准确性。

四、作业评价1. 教师将根据学生的答案,对学生的理解和应用能力进行评估。

2. 教师将对解题步骤和思路的规范性、准确性和完整性进行评价。

3. 对于有创意的解题思路和方法,教师将给予额外的加分和表扬。

4. 对于存在的问题和不足,教师将给出具体的指导和建议。

五、作业反馈1. 教师将在课堂上对作业进行讲解和点评,帮助学生纠正错误并加深理解。

2. 学生需根据教师的反馈和建议,对作业进行修正和完善。

第三章-3.1.2-函数的单调性高中数学必修第一册人教B版

第三章-3.1.2-函数的单调性高中数学必修第一册人教B版

(2) =
2 2 −3
.

【解析】因为 =
2 2 −3

3

= 2 − ,且函数的定义域为 −∞, 0 ∪ 0, +∞ ,
(切勿认为定义域为)
3

3

又函数 = 2和 = − 在区间 −∞, 0 上均单调递增,所以 = 2 − 在区间
−∞, 0 上单调递增.
同理可得 = 2
3
[ , 4),
2
4, +∞ .1源自又 = 在 ∈ −∞, 0 和(0,
=
25
]上单调递减,所以由复合函数的单调性可知函数
4
1
3
的单调递增区间为[ , 4)和
4+3− 2
2
4, +∞ .
例13 设 是定义在上的函数,对, ∈ ,恒有
( + ) = ⋅ ≠ 0, ≠ 0 ,且当 > 0时,0 < < 1.

2 +
2 +
→2.作差.
∵ > > 0,2 > 1 > −,
∴ − > 0,2 − 1 > 0,2 + > 0,1 + > 0,

− 2 −1
1 + 2 +
> 0,→4.定号.
即 1 > 2 ,∴ 函数 在 −, +∞ 上单调递减.→5.下结论.
递增
【解析】A是假命题,“无穷多个”不能代表“所有”“任意”;
以 =
1
为例,

在 −∞, 0 和 0, +∞ 上均单调递减,但在整个区间上并不是减

人教高中数学必修一B版《函数的单调性》函数的概念与性质说课复习(函数的单调性及函数的平均变化率)

人教高中数学必修一B版《函数的单调性》函数的概念与性质说课复习(函数的单调性及函数的平均变化率)

3.y=f(x)在 I 上是增函数(减函数)的充要条件
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX XX
XX XX
XX XX
XX XX
XX
XX
一般地,若 I 是函数 y=f(x)的定义域的子集,对任意 x1,x2∈I

x1 ≠ x2 , 记
y1

f(x1)

y2

f(x2)

Δy Δx

y2-y1 x2-x1
栏目 导引
因为 x2>x1>-1, 所以 x2-x1>0,(x1+1)(x2+1)>0, 因此 f(x1)-f(x2)>0, 即 f(x1)>f(x2), 所以 f(x)在(-1,+∞)上为减函数.
第三章 函 数
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX XX
XX XX
XX XX
XX XX
XX XX
XX
XX
的所有单调递减区间为( )
A.[-4,-2]
B.[1,4]
C.[-4,-2]和[1,4]
D.[-4,-2]∪[1,4] 解析:选 C.由题干图可得,f(x)在[-4,-2]上递减,在[-2,
栏目 导引
第三章 函 数
=(x1-x2)+4(xx21-x2x1)
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX XX
XX XX

新教材高中数学第三章函数的单调性课件新人教B版必修第一册ppt

新教材高中数学第三章函数的单调性课件新人教B版必修第一册ppt

【解析】选 C.对于 A,y=-2x 在定义域上无单调性,在区间(-∞,0)和(0,+∞)上 是增函数,所以 A 错误; 对于 B,y=x2+1 1 在(-∞,0)上是增函数,在(0,+∞)上是减函数,所以 B 错误; 对于 C,y=-3x2-6x 图像是抛物线,对称轴是 x=-1,所以函数在[-1,+∞)上是 减函数,所以 C 正确; 对于 D,a>0 时,y=ax+3 在(-∞,+∞)上为增函数,a<0 时,y=ax+3 在(-∞, +∞)上是减函数,所以 D 错误.
A.[1,2]
B.12,2
C.(1,2]
D.21,2
【思路导引】分别考虑 x>0,x<0,分界点三个方面的因素求范围.
【解析】选 A.因为函数 f(x)=( -2x2b+-(1)2-x+b)b-x,1,x≤x0>,0, 2b-1>0,
在 R 上为增函数,所以 2-2 b≥0, 解得 1≤b≤2. b-1≥0,
3.函数 y=|x-1|的单调增区间是____________. 【解析】作出函数的图像,如图所示,所以函数的单调递增区间为[1,+∞).
答案:[1,+∞)
图像法求函数单调区间的步骤 (1)作图:作出函数的图像; (2)结论:上升图像对应单调递增区间,下降图像对应单调递减区间.
【补偿训练】 画出函数 y=|x|(x-2)的图像,并指出函数的单调区间. 【解析】y=|x|(x-2)=x-2-x22+x=2x( =x--(1)x-2-1)1,2+x≥1,0,x<0, 函数的图像如图所示. 由函数的图像知:函数的单调递增区间为(-∞,0]和[1,+∞), 单调递减区间为(0,1).
类型三 函数单调性的应用(数学运算、逻辑推理) 利用单调性解函数不等式 【典例】已知函数 f(x)的定义域为[-2,2],且 f(x)在区间[-2,2]上是增函数, f(1-m)<f(m),则实数 m 的取值范围为________. 【思路导引】从定义域,单调性两个方面列不等式求范围.

高中数学(人教B版)必修第一册:函数的单调性【精品课件】

高中数学(人教B版)必修第一册:函数的单调性【精品课件】

x
则称 y f (x) 在 I 上是增函数(也称在 I 上单调递增),
(1) y
如图(1)所示;
f (x1)
(2)
如果对任意 x1, x2 I ,当 x1
x2 时,都有
f (x1)
f ( x ) , f (x2) 2
O
x1
x2
x
则称 y f (x) 在 I 上是减函数(也称在 I 上单调递减),
(1)当 a
0 时,
f
x

,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值________________;
(2)当 a
0 时,
f
x

,
b 2a
上单调递_____,在
b 2a
,
上单调递
_____,函数没有最_____值,但有最____值_________________.
f
x2
x2
f x1
x1
,
则:
(1) y f x 在 I 上是增函数的充要条件是 y 0 在 I 上恒成立;
x
(2) y f x 在 I 上是减函数的充要条件是 y 0 在 I 上恒成立.
x
定义:
一般地,当 x1 x2 时,称
f f x2 f x1
x
x2 x1
为函数 y f (x) 在区间x1, x2 x1 x2时或x2, x1 x2 x1时 上的平均变化率.
x
想一想:能否说 f x 2 在定义域内是增函数?为什么?
x
新知提炼:
(1)单调区间是定义域的子区间,对于单调性,首先要考虑函数的 定义域。因此,单调性是函数的局部性质.

高中数学 2.1.3 函数的单调性教学设计 新人教B版必修1

高中数学 2.1.3 函数的单调性教学设计 新人教B版必修1

函数的单调性教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示X作用。

二、学情分析根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点三、教学目标1.知识与技能:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;2.过程与方法:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.3.情感、态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.四、教学重点、难点教学重点:函数单调性的概念;判断、证明函数的单调性教学难点:归纳并抽象函数单调性定义;用定义判断单调性的基本步骤五、学法与教法学法:〔1〕合作学习:引导学生分组讨论,合作交流,共同探讨问题〔2〕自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动〔3〕探究学习:引导学生发挥主观能动性,主动探索新知〔如例题的处理〕。

教学用具:电脑、多媒体。

教法:整堂课围绕“一切为了学生发展〞的教学原那么突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。

〔1〕新课引入——提出问题, 激发学生的求知欲。

〔2〕理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得函数单调性的定义。

新教材人教版高中数学必修第一册 3-2-1-1 单调性与最大(小)值——函数的单调性 教学课件

新教材人教版高中数学必修第一册 3-2-1-1  单调性与最大(小)值——函数的单调性 教学课件
第五页,共四十一页。
2.单调性与单调区间 如果函数 y=f(x)在区间 D 上单调递增或单调递减,那么就说函数 y =f(x)在这一区间具有(严格的)单调性,区间 D 叫做 y=f(x)的_单__调__区__间__. [ 思考] 若函数 f(x)是其定义域上的增函数且 f(a)>f(b),则 a,b 满足什么关 系,如果函数 f(x)是减函数呢? 提示:若函数 f(x)是其定义域上的增函数,那么当 f(a)>f(b)时,a> b;若函数 f(x)是其定义域上的减函数,那么当 f(a)>f(b)时,a<b.
第二十八页,共四十一页。
(3)由题知--11<<12-a-a<1<1,1, 1-a>2a-1,
解得 0<a<23,即所求 a 的取值范围是
0,23.
[答案] (1)①(-∞,-4] ②-4
(2)(-4,-2) (3)0,23
第二十九页,共四十一页。
[方法技巧] (1)区间 D 是函数 f(x)的定义域的子集,x1,x2 是区间 D 中的任意两 个自变量,且 x1<x2, ①f(x)在区间 D 上单调递增,则 x1<x2⇔f(x1)<f(x2). ②f(x)在区间 D 上单调递减,则 x1<x2⇔f(x1)>f(x2).
第十八页,共四十一页。
题型二 求函数的单调区间 [学透用活]
(1)如果函数 f(x)在其定义域内的两个区间 A,B 上都是增(减)函数, 则两个区间用“,”或“和”连接,不能用“∪”连接.
(2)书写单调区间时,若函数在区间的端点处有定义,则写成闭区间、 开区间均可,但若函数在区间的端点处无定义,则必须写成开区间.
C.a+b>0
D.a>0,b>0
第三十二页,共四十一页。

人教B版高中数学必修一 《函数的单调性》函数的概念与性质PPT课件(第1课时单调性的定义与证明)

人教B版高中数学必修一 《函数的单调性》函数的概念与性质PPT课件(第1课时单调性的定义与证明)
12
2.下列函数中,在区间(0,+∞)上是减函数的是( )
A.y=-1x
B.y=x
C.y=x2
D.y=1-x
D [函数y=1-x在区间(0,+∞)上是减函数,其余函数在(0, +∞)上均为增函数,故选D.]
13
3.函数 y=f(x)在[-2,2]上的图像如图所示,则此函数的最小值、
最大值分别是( )
[解] 函数在[-1,0],[2,4]上是减函数,在[0,2],[4,5]上是增函 数.
27
3.写出y=|x2-2x-3|的单调区间. [解] 先画出 f(x)=x-2-x22-x-2x3-,3x<,--1或1≤x>x3≤,3 的图像,如图.
28
所以y=|x2-2x-3|的单调减区间为(-∞,-1],[1,3];单调增 区间为[-1,1],[3,+∞).
19
提醒:作差变形是证明单调性的关键,且变形的结果是几个因式 乘积的形式.
20
1.证明:函数y=x+x 1在(-1,+∞)上是增函数. [证明] 设x1>x2>-1,则 y1-y2=x1x+1 1-x2x+2 1=x1+x11-xx22+1.
21
∵x1>x2>-1,∴x1-x2>0,x1+1>0,x2+1>0, ∴x1+x11-xx22+1>0,即y1-y2>0,y1>y2, ∴y=x+x 1在(-1,+∞)上是增函数.
45
3.求函数的最值与求函数的值域类似,常用的方法是: (1)图像法,即画出函数的图像,根据图像的最高点或最低点写出 最值; (2)单调性法,一般需要先确定函数的单调性,然后根据单调性的 意义求出最值; 4.通过函数最值的学习,渗透数形结合思想,树立以形识数的解 题意识.

高中数学人教版B必修一练习题及详解

高中数学人教版B必修一练习题及详解

练习四函数的单调性一、选择题1.若是的单调增区间,,且,则有()A.B.C.D.2.函数的单调递减区间为()A.B.C.D.3.下列函数中,在区间上递增的是()B.C.D.A.4. 若函数在上单调递增,则的取值范围是()A.B.C.D.5. 设函数在上是减函数,则有()A.B.C.D.6. 如果函数在区间上是减函数,那么实数的取值范围是()A.B.C.D.二、填空题7.函数的单调递增区间是____________.8.已知函数在是增函数,则,,的大小关系是__________________________.9.函数的单调递增区间是_______.10.若二次函数在区间是减函数,在区间上是增函数,则________.三、解答题11. 证明函数在上是增函数.12.判断函数在区间上的单调性,并给出证明.13.已知函数在上是减函数,且,求的取值范围.能力题14.若函数在上是单调递增函数,求的取值范围.15.讨论函数在内的单调性.练习四一、选择题二、填空题7.8.9.10.三、解答题11.设,且,则,则.,∴∴.∴在上是增函数.12.函数在区间上单调递增.证明如下:设,且,则,则.,∴,,,∴,∴在区间上的单调递增.13.函数在上是减函数,且,∴解得. ∴的取值范围是.能力题14.在上是单调增函数,∴ ,解得∴.15.,对称轴.∴若,则在上是增函数;若,则在上是减函数,在上是增函数;若,则在上是减函数.练习五函数的奇偶性一、选择题1.若是奇函数,则其图象关于()A.轴对称B.轴对称C.原点对称D.直线对称2.若函数是奇函数,则下列坐标表示的点一定在函数图象上的是()A.B.C.D.3.下列函数中为偶函数的是()B.C.D.A.4. 如果奇函数在上是增函数,且最小值是5,那么在上是()A.增函数,最小值是-5 B.增函数,最大值是-5C.减函数,最小值是-5 D.减函数,最大值是-55. 已知函数是奇函数,则的值为()A.B.C.D.6.已知偶函数在上单调递增,则下列关系式成立的是( )A.B.C.D.二、填空题7.若函数是奇函数,,则的值为____________ .8.若函数是偶函数,且,则与的大小关系为__________________________.9.已知是定义在上的奇函数,当时,的图象如右图所示,那么f (x) 的值域是 .10.已知分段函数是奇函数,当时的解析式为,则这个函数在区间上的解析式为.三、解答题11. 判断下列函数是否具有奇偶性:(1); (2) ;(3); (4); (5).12.判断函数的奇偶性,并指出它的单调区间.13.已知二次函数的图象关于轴对称,写出函数的解析表达式,并求出函数的单调递增区间. 能力题14.设是定义在上的偶函数,且在上是增函数,则与()的大小关系是( )A .B .C .D .与的取值无关若函数15.已知是奇函数,是偶函数,且在公共定义域上有,求的解析式. 练习五一、选择题二、填空题 7. 8. 9.10. 三、解答题11.(1)奇函数,(2)非奇非偶,(3)偶函数,(4) 非奇非偶函数,(5)偶函数12.偶函数. ∴函数的减区间是和,增区间是和.13.二次函数的图象关于轴对称,∴,则,函数的单调递增区间为.能力题14.B (提示: 是定义在上的偶函数,且在上是增函数,∴在上是减函数,.,∴,因此. )15.得 .练习六一次函数与二次函数一、选择题1.已知一次函数,满足,,则()D.A.B.C.2.下列关于函数,的结论正确的是()A.递增函数B.递减函数C.最小值是2 D.最大值是53.函数的值域为()A.B.C.D.4. 若二次函数在区间是减函数,在区间上是增函数,则()A.B.C.D.5. 若二次函数图象关于轴对称,则函数的单调增区间为 ( )A.B.C.D.6.函数上是单调递增的奇函数,则( )A.B.C.D.二、填空题7.二次函数的图象的顶点坐标为________,对称轴方程是_________ .8.已知定义域为,则实数的区值范围是 .9.已知,则直线一定不经过第象限.10.已知是一次函数的图象与轴交点的横坐标,又二次函数的图象与轴有交点则.三、解答题11. 已知二次函数:(1)求它的图象顶点坐标和与轴交点的坐标;(2)作出它的图象;(3)求点关于图象对称轴的对称点的坐标.12.已知函数判断该函数的奇偶性,并求该函数的最小值及单调区间.13.写出二次函数在区间上的最大值和最小值.能力题14.设函数,已知且,求实数的取值范围.15.已知,为常数,且,,且,方程有相等实根.(1)求函数的解析式,函数的最大值,并比较与的大小.若,判断的奇偶性,并证明你的结论.练习六一、选择题二、填空题7.,8.9.三10.三、解答题11.(1)顶点坐标,与轴交点的坐标,;(2)略;(3)二次函数图象对称轴为,∴点关于图象对称轴的对称点为,即.12.偶函数,,单减区间和;单增区间和. 13.当时,;当时,;当时,;当时,.能力题14.,即由于,,代入上式又有可解得的取值范围是.15.(1)由,得;由方程有相等实根,得,并且,即,由得,∴,,∴,故是奇函数.练习七函数的应用一、选择题t01.某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较符合该学生走法的图是()2.某商店卖、两种价格不同的商品,由于商品连续两次提价%,同时商品连续两次降价%,结果都以每件元售出,若商店同时售出这两种商品各一件,则与价格不升、不降的情况相比较,商店盈利的情况是( ) A .多赚元 B . 少赚元 C .多赚元 D .利益相同3.拟定从甲地到乙地通话分钟的电话费由给出,其中,是大于或等于的最小整数,(如,,),则从甲地到乙地通话时间为分钟的话费为( )A .B .C .D .4.有一批材料可以建成长为的围墙,如果用材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图),则围成的矩形的最大面积是( )A .B .C .D .5.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元, 销售量就减少个,为了获得最大利润,则此商品的最佳售价应为( )A .元B .元C .元D .元6.抛物线型拱桥的跨度是米,拱高是米,建桥时每隔米用一根支柱支撑,其中最长的支柱是( )A .米B .米C .米D .米二、填空题7.某乡镇现在人均一年占有粮食千克,如果该乡镇人口平均每年增长%,粮食总产量平均每年增长%,那么年后若人均一年占有千克粮食,则函数关于的解析式是______________________.8.某客运公司定客票的方法是:如果行程不超过,票价是元,如果超过,超过部分按元定价,则客运票价元与行程公里数之间的函数关系式是.9.一个高中研究性学习小组对本地区年至年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭万盒.10.某商人将彩电先按原价提高%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了元,则每台彩电原价是元.三、解答题11.把长为的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若求此框架围成平面图形的面积与之间的函数关系式,并求其定义域.12.经市场调查,某商品在过去天内的销售量和价格均为时间()的函数,且销售量近似地满足(,);前天价格为(,),后天的价格为(,),试写出该种商品的日销售额与时间的函数关系.13.某商场购进一批单价为元的日用品,销售一段时间后,为了获得更多利润,商场决定提高销售价格.经试验发现,若按每件元的价格销售时,每月能卖件,若按元的价格销售时,每月能卖件,假定每月销售件数(件)是价格(元/件)的一次函数.(1)试求与之间的关系式;(2)在商品不积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能时每月获得最大利润?每月的最大利润是多少?能力题14.某宾馆有相同标准的床位张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过元时,床位可以全部租出,当床位高于元时,每提高元,将有张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为元的整数倍;②该宾馆每日的费用支出为元,床位出租的收入必须高于支出,而且高出得越多越好.若用表示床价,用表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)(1)把表示成的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?15.经研究发现,学生的接受能力依赖于老师引入概念和描述总量所用的时间,开始讲题时,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用表示学生掌握和接受概念的能力,表示提出和讲授概念的时间(单位:分),有以下的公式:(1)开讲后分钟与开讲后分钟比较,学生的接受能力何时强呢?(2)开讲后多少分钟,学生的接受能力最强?能维持多长的时间?(3)若讲解这道数学题需要的接受能力以及分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲完这道题?练习七一、选择题二、填空题7.8.9.10.三、解答题11..,由,有.12.13.设(),由解得所以.设利润为,则有所以,当时有最大值为元.能力题14.(1)由已知有,令解得且.所以函数的定义域为.(2)当时,显然当时,取得最大值为(元);当时,,仅当时,取最大值.又因为,所以当时,取得最大值,最大值为元.比较两种情况的最大值,所以当床位定价为元时净收入最多.15.,,所以.所以开讲后分钟学生的接受能力比开讲后分钟强.当时,,所以是增函数,.当时,是递减的函数,所以,故开讲后钟学生达到最强的接受能力,并维持分钟.当时,令,解得.当时,令,解得则.因此,学生达到或超过的接受能力的时间分钟,小于分钟,故这位老师不能在学生所需状态下讲完这道题.练习九指数与指数函数一、选择题1.计算的结果是()A.B.C.D.2.将根式化成分数指数幂为()C.D.A.B.3.某林场计划第一年造林亩,以后每年比前一年多造林%,则第四年造林()A.亩B.亩C.亩D.亩4.曲线分别是指数函数的图象,则与的大小关系是 ( )A.B.C.D.5.若,则下列不等式中成立的是( )A.B.C.D.6.要得到函数的图象,只需将函数的图象( )A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位二、填空题7.函数是指数函数,则的取值为 . 8.比较下列各组数的大小:(1)______ ; (2) ______;(3)______9.函数的定义域是.10.若,则 .三、解答题11.化简12.已知函数的定义域是,求的取值范围.13.设,是上的偶函数.求的值;证明在上是增函数.能力题14. 已知,当该函数的值域为时,求的取值范围.15. 已知,判断的奇偶性;证明.练习九一、选择题二、填空题7.8.> > >9.10.三、解答题11..12.由,得,因为定义域为,所以. 13.因为是上的偶函数,所以,即,解得,因为所以.在上任取,且,则,因为且,所以,即,且,所以式,即.所以在上是增函数.能力题14.设,则,即.因为,所以,所以.15.任取且,则.因为所以是偶函数.当时,,即,所以.所以,所以.因为是偶函数,所以当时,.所以当且时,都有.练习十对数与对数函数一、选择题1.若,那么用表示是()A.B.C.D.2.若等于()C.D.A.B.3.下列函数中,在区间(0,+∞)上是减函数的是()A.B.C.D.4.下列函数与有相同图象的一个函数是()A.B.C.D.5.函数()A.是偶函数,在区间上单调递增B.是偶函数,在区间上单调递减C.是奇函数,在区间上单调递增D.是奇函数,在区间上单调递减6.已知,为不等于1的正数,则下列关系中正确的是()A.B.C.D.二、填空题7.使对数式有意义的的取值范围是.8.比较大小; 1;0;0;;.9.函数与的图像关于对称.10.函数的值域是__________.三、解答题11.已知函数的定义域是,函数的定义域是,确定集合、的关系?12.已知函数在区间上的最大值是最小值的倍,求的值.13.已知函数且.(1)求函数的定义域;(2)求使的的取值范围.能力题14.(1)若函数的定义域为,求的取值范围;(2)若函数的值域为,求的取值范围.15.已知函数.(1)求函数的定义域;(2)讨论函数的奇偶性和单调性.练习十一、选择题二、填空题7.且8.9.轴10.三、解答题11.∵或,,∴.12.∵函数在区间上是减函数,∴.13.(1)函数的定义域是;(2)当时,;当时,.能力题14.(1)恒成立,则,得.(2)须取遍所有的正实数,当时,符合条件;当时,则,得,即.15.(1)函数的定义域为;(2)∵,∴为奇函数;在上为减函数.练习十一幂函数一、选择题1.下列所给出的函数中,是幂函数的是()A.B.C.D.2.所有幂函数的图象都通过点()A.B.C.D.3.函数在区间上的最大值是()B.A.C.D.4.下列函数中为偶函数的是()A.y =B.y = xC.y = x2 D.y = x3+15.当时,函数与函数的图象()A.关于原点对称B.关于轴对称C.关于轴对称D.关于直线对称6.若函数在上为增函数,则的取值范围是()A.B.C.R D.二、填空题7.函数的定义域是.8.比较大小;;.9.已知幂函数的图象经过点,这个函数的解析式为.10.已知幂函数,若,则幂函数在区间上是增函数;若,则幂函数在区间上是减函数.三、解答题11.比较下列两个代数式值的大小:(1),;(2),12.已知函数f (x) =-2.(1)求f (x) 的定义域;(2)证明函数f (x) =-2在 (0,+∞)上是减函数.13.已知幂函数轴对称,试确定的解析式.能力题14.如图所示,曲线是幂函数在第一象限内的图象,已知分别取四个值,写出图象,,,相应的解析式.15.求证:函数在R上为奇函数且为增函数.练习十一一、选择题二、填空题7.8.9.10.,三、解答题11.;≤12.(1)f (x) 的定义域是{x∈R| x≠0};(2)设x1,x2是(0,+∞)上的两个任意实数,且x1 < x2,则x = x1-x2 < 0,y = f (x1) - f (x2) =-2- (-2) =-=.因为x2- x1 = -x >0,x1x2 >0 , 所以y >0.因此 f (x) =-2是 (0,+∞)上的减函数.13.由能力题14.:;:;:;:15.∵,∴在R上为奇函数.设x1,x2是R上的两个任意实数,且x1 < x2,则x = x1- x2 < 0,y = f (x1) - f (x2) =, 因为,=,由于,,且不能同时为0,否则,故.所以y<0.因此函数在R上为增函数.。

人教版高中数学必修一 1.3.1 函数的单调性 教学设计(一等奖)

人教版高中数学必修一 1.3.1 函数的单调性 教学设计(一等奖)

教学设计中学数学教学设计:§1.3.《函数的单调性》教学设计一【教材分析】《函数单调性》是高中数学新教材必修一第二章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力.二【学生分析】从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,接下来的任务是对函数应该继续研究什么,从各种函数关系中研究它们的共同属性,应该是顺理成章的。

从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

三【教学目标】1、知识与技能:(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。

(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。

2、过程与方法(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断与证明函数在某区间上的单调性.3、情态与价值,使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感.四【教学重点与难点】重点:函数的单调性及其几何意义.难点:利用函数的单调性定义判断、证明函数的单调性.五【学法与教学用具】1、从观察具体函数图象引入,直观认识增减函数,利用这定义证明函数单调性。

人教B版高中数学必修第一册精品课件 第3章 函数 3.1.2 第1课时 单调性的定义与证明

人教B版高中数学必修第一册精品课件 第3章 函数 3.1.2 第1课时 单调性的定义与证明

【典例】 已知函数f(x)是定义在区间[-1,1]上的增函数,且f(x-2)<f(1-x),则x
的取值范围为
.
错解:因为f(x)是定义在区间[-1,1]上的增函数,且f(x-2)<f(1-x),
3
所以x-2<1-x,解得x< 2
3
答案:x< 2
.
以上解答过程中都有哪些错误?出错的原因是什么?你如何改正?你如何防
由图象确定函数单调性的方法及注意事项
(1)若图象从左向右上升,则函数单调递增;若图象从左向右下降,则函数单
调递减.
(2)单调区间必须是函数定义域的子集,单调区间之间不能用“∪”,而应用“,”
将它们隔开或用“和”字连接.
【变式训练1】 画出函数y=-x2+2|x|+1的图象,并写出该函数的单调区间.
函数(也称在区间I上单调递增);
(2)如果对任意x1,x2∈I,当x1<x2时,都有 f(x1)>f(x2),则称y=f(x)在区间I上是减
函数(也称在区间I上单调递减).
两种情况下,都称函数在区间I上具有单调性(区间I为函数的单调区间,也可
分别称为单调递增区间或单调递减区间).
3.(1)若函数y=f(x)在区间[1,+∞)内是减函数,则f(3)和f(5)的大小关系
-a≥2(其中当-a≤1时,函数f(x)在区间[1,2]上单调递减;
当-a≥2时,函数f(x)在区间[1,2]上单调递增),从而a∈
(-∞,-2]∪[-1,+∞).
已知函数的单调性或单调区间求参数的取值范围,要将参数视为已知数,依
据函数的图象或函数单调性的定义,确定函数的单调区间,与已知的单调区

人教B版高中数学必修一学第二章函数的单调性讲解与例题

人教B版高中数学必修一学第二章函数的单调性讲解与例题

2.1.3 函数的单调性1.函数单调性的概念一般地,设函数y =f (x )的定义域为A ,区间M ⊆A . 如果取区间M 中的任意两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称函数y =f (x )在区间M 上是增函数,如下图所示.当Δy =f (x 2)-f (x 1)<0时,就称函数y =f (x )在区间M 上是减函数,如下图所示.如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).谈重点 对函数单调性的理解1.函数的单调性是对定义域内某个区间而言的,即单调区间是定义域的子集.如函数y =x 2的定义域为R ,当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数.2.函数单调性定义中的x 1,x 2有三个特征:一是任意性,即“任意取x 1,x 2”,“任意”二字决不能丢掉;二是有大小,即x 1<x 2(x 1>x 2);三是同属一个单调区间,三者缺一不可.3.单调性是一个“区间”概念,如果一个函数在定义域的几个区间上都是增(减)函数,但不能说这个函数在其定义域上是增(减)函数.如函数f (x )=1x在(-∞,0)上是减函数,在(0,+∞)上也是减函数,但不能说f (x )=1x在(-∞,0)∪(0,+∞)上是减函数.因为当x 1=-1,x 2=1时有f (x 1)=-1<f (x 2)=1,不满足减函数的定义.4.单调区间端点的写法:对于单独的一个点,由于它的函数值是唯一确定的常数,没有增减性变化,所以不存在单调问题,因此在写此单调区间时,包括端点可以,不包括端点也可以,但对于某些无意义的点,单调区间就一定不包括这些点.【例1-1】下列说法不正确的有( )①函数y =x 2在(-∞,+∞)上具有单调性,且在(-∞,0)上是减函数;②函数1=y x的定义域为(-∞,0)∪(0,+∞),且在其上是减函数; ③函数y =kx +b (k ∈R )在(-∞,+∞)上一定具有单调性;④若x 1,x 2是f (x )的定义域A 上的两个值,当x 1>x 2时,有f (x 1)<f (x 2),则y =f (x )在A 上是增函数.A .1个B .2个C .3个D .4个解析:①函数y =x 2在(-∞,0]上是减函数,在[0,+∞)上是增函数,故其在(-∞,+∞)上不具有单调性;②(-∞,0)和(0,+∞)都是函数1=yx的单调区间,在这两个区间上都是减函数,但1=yx在整个定义域上不是减函数;③当k=0时,y=b,此时函数是一个常数函数,不具有单调性;④因为x1,x2是定义域上的两个定值,不具有任意性,所以不能由此判定函数的单调性.答案:D【例1-2】若对于任意实数x总有f(-x)=f(x),且f(x)在区间(-∞,-1]上是增函数,则( )A.32f⎛⎫-⎪⎝⎭<f(-1)<f(2)B.f(-1)<32f⎛⎫-⎪⎝⎭<f(2)C.f(2)<f(-1)<32 f⎛⎫-⎪⎝⎭D.f(2)<32f⎛⎫-⎪⎝⎭<f(-1)解析:∵函数f(x)对于任意实数x总有f(-x)=f(x),∴f(-2)=f(2).∵f(x)在区间(-∞,-1]上是增函数,且-2<32-<-1,∴f(-2)<32f⎛⎫-⎪⎝⎭<f(-1),即f(2)<32f⎛⎫-⎪⎝⎭<f(-1).答案:D【例1-3】定义在R上的函数f(x)是增函数,A(0,-1),B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集为( )A.(-1,2) B.[3,+∞)C.[2,+∞) D.(-∞,-1]∪(2,+∞)解析:∵A(0,-1),B(3,1)是函数f(x)图象上的两点,∴f(0)=-1,f(3)=1.由|f(x+1)|<1,得-1<f(x+1)<1,即f(0)<f(x+1)<f(3).∵f(x)是定义在R上的增函数,∴由单调函数的定义,可知0<x+1<3.∴-1<x<2.答案:A2.函数单调性的判断方法(1)图象法对于简单函数或可化为简单函数的函数,由于其图象较容易画出,因此,可利用图象的直观性来判断函数的单调性,写出函数的单调区间.【例2-1】写出下列函数的单调区间: (1)y =|2x -1|;(2)y =|x 2-3x +2|;(3)2=3xy x -+. 分析:本题画出各个函数的图象后,就可以得出相应的单调递增或单调递减区间了.图1解:(1)y =|2x -1|=121,,2121,<.2x x x x ⎧-≥⎪⎪⎨⎪-+⎪⎩ 如图1所示,函数的单调递增区间是1,2⎡⎫+∞⎪⎢⎣⎭;单调递减区间是1,2⎛⎤-∞ ⎥⎝⎦.(2)y =|x 2-3x +2|=2232,12321<<2.x x x x x x x ⎧-+≤≥⎨-(-+)⎩或,, 如图2所示,函数的单调递增区间是31,2⎡⎤⎢⎥⎣⎦和[2,+∞);单调递减区间是(-∞,1]和3,22⎡⎤⎢⎥⎣⎦.图2图3(3)255==1=1333xyx x x-⎛⎫---+⎪+++⎝⎭.如图3所示,函数的单调递减区间是(-∞,-3)和(-3,+∞).谈重点由图象得出函数的单调区间对于函数求单调区间,可以根据图象及结合基本函数的单调性来寻找的.对于有些函数,如果能够画出函数的图象,那么寻找单调区间就比较容易了,此类题目通常是与基本函数(如一次函数、二次函数、反比例函数以及后面学的指数函数与对数函数等)有关的函数.【例2-2】已知四个函数的图象如下图所示,其中在定义域内具有单调性的函数是( )解析:已知函数的图象判断其在定义域内的单调性,应从它的图象是上升的还是下降的来考虑.根据函数单调性的定义可知选项B中的函数在定义域内为增函数.答案:B谈重点单调函数的图象特征函数的单调性反映在图象上是在指定的区间(也可以是定义域)从左到右图象越来越高或越来越低(注意一个点也不能例外,如本例C中的函数只有一个点例外,受此点影响,该函数在整个定义域上不具有单调性),这是函数单调性在函数图象上的直观表现.【例2-3】画出函数f(x)=-x2+2|x|+3的图象,说出函数的单调区间,并指明在该区间上的单调性.分析:含有绝对值符号的函数解析式,可根据绝对值的意义,将其转化为分段函数,画出函数图象后,观察曲线在哪些区间上是上升的,在哪些区间上是下降的,即可确定函数的单调区间及单调性.解:2223,0, ()=23,<0.x x xf xx x x⎧-++≥⎨--+⎩当x≥0时,f(x)=-(x-1)2+4,其开口向下,对称轴为x=1,顶点坐标为(1,4),且f(3)=0,f(0)=3;当x<0时,f(x)=-(x+1)2+4,其开口向下,对称轴为x=-1,顶点坐标为(-1,4),且f(-3)=0.作出函数的图象(如图),由图看出,函数在(-∞,-1],[0,1]上是增函数,在[-1,0],[1,+∞)上是减函数.辨误区写函数的单调区间易忽略的问题1.如果一个函数有多个单调增(减)区间,这些增(减)区间应该用逗号隔开(即“局部”)或用“和”来表示,而不能用并集的符号“∪”连接;2.确定已知函数的单调区间要有整体观念,本着宁大勿小的原则,即求单调区间则应求“极大”区间.如虽然函数y=x2在区间[2,3],[5,9],[1,+∞)上都是递增的,但在写这个函数的递增区间时应写成[0,+∞),而不能写区间[0,+∞)的任一子区间;3.书写函数的单调区间时,区间端点的开或闭没有严格规定,若函数在区间端点处有定义且图象在该点处连续,则书写函数的单调区间时,既可以写成闭区间,也可以写成开区间;若函数在区间端点处没有定义,则书写函数的单调区间时必须写成开区间.(2)定义法如果要证明一个函数的单调性,目前只能严格按照定义进行,步骤如下:①取值:设x1,x2为给定区间内任意的两个值,且x1<x2(在证明函数的单调性时,由于x1,x2的取值具有任意性,它代表区间内的每一个数,所以,在证题时不能用特殊值来代替它们);②作差变形:作差Δy=f(x2)-f(x1),并通过因式分解、配方、有理化等方法,向有利于判断差值的符号的方向变形(作差后,尽量把差化成几个简单因式的乘积或几个完全平方式的和的形式,这是值得学习的解题技巧,在判断因式的正负号时,经常采用这种变形方法);③定号:确定差值Δy的符号,当符号不确定时,可考虑分类讨论(判断符号的依据是自变量的范围、假定的大小关系及符号的运算法则);④判断:根据定义作出结论(若Δx=x2-x1与Δy=f(x2)-f(x1)同号,则给定函数是增函数;异号,就是减函数).【例2-4】(1)证明函数()=f x在定义域上是减函数;(2)证明函数f(x)=x3+x在R上是增函数;(3)证明函数f(x)=x+1x在(0,1)上为减函数.分析:证明函数的单调性,关键是对函数在某一区间上任意两个函数值f(x1),f(x2)的差Δy=f(x2)-f(x1)进行合理的变形,尽量变为几个最简单的因式的乘积或几个完全平方式的和的形式.证明:(1)()=f x的定义域为[0,+∞),任取x1,x2∈[0,+∞),且x1<x2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=((--=<0,由单调函数的定义可知,函数()=f x在定义域[0,+∞)上是减函数.(2)设x1,x2∈R,且x1<x2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=(x23+x2)-(x13+x1)=(x23-x13)+(x2-x1)=(x 2-x 1)(x 22+x 1x 2+x 12)+(x 2-x 1)=(x 2-x 1)(x 22+x 1x 2+x 12+1)=222121113()1024x x x x x ⎡⎤⎛⎫-+++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由单调函数的定义可知,函数f (x )=x 3+x 在R 上是增函数.(3)设x 1,x 2∈(0,1),且x 1<x 2,则Δx =x 2-x 1>0,Δy =f (x 2)-f (x 1)=212111x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭ =(x 2-x 1)+1212x x x x -=(x 2-x 1)1211x x ⎛⎫- ⎪⎝⎭=2112121x x x x x x (-)(-).∵0<x 1<x 2<1,∴x 1x 2-1<0,x 1x 2>0.∴Δy =f (x 2)-f (x 1)<0.∴由单调函数的定义可知,函数1()=f x x x+在(0,1)上为减函数.辨误区 利用定义证明函数的单调性需谨慎在第(1)题中,有的同学认为由0≤x 1<x 2,可得0≤x 1<x 2,这种证明实际上利用了函数y =x 的单调性,而y =x 的单调性我们没作证明,因此不能使用;在第(1)题中还使用了“分子有理化”的变形技巧,要注意观察这类题目的结构特点.3.利用函数的单调性比较两个函数值的大小若函数y =f (x )在给定的区间A 上是增函数,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)<f (x 2);若函数y =f (x )在给定的区间A 上是减函数,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)>f (x 2).所以,当给定的两个自变量在同一单调区间上时,可直接比较相应的两个函数值的大小.否则,可以先把它们转化到同一单调区间上,再利用单调性比较大小.【例3】设函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与34f ⎛⎫⎪⎝⎭的大小关系为________.解析:∵a 2-a +1=2133244a ⎛⎫-+≥ ⎪⎝⎭>0,又∵f (x )在(0,+∞)上是减函数,∴当12a ≠时,a 2-a +1>34,有f (a 2-a +1)<34f ⎛⎫ ⎪⎝⎭;当1=2a 时,a 2-a +1=34,有f (a 2-a +1)=34f ⎛⎫ ⎪⎝⎭.综上可知,f (a 2-a +1)≤34f ⎛⎫ ⎪⎝⎭.答案:f (a 2-a +1)≤34f ⎛⎫ ⎪⎝⎭4.利用函数的单调性确定参数范围已知函数的单调性,求函数解析式中参数的取值范围时,要注意利用数形结合的思想,运用函数单调性的逆向思维思考问题.这类问题能够加深对概念、性质的理解.例如:已知函数f (x )=x 2-2(1-a )x +2在(-∞,4]上是减函数,求实数a 的取值范围.由于二次函数是我们最熟悉的函数,遇到二次函数就画图象,会给我们研究问题带来很大方便.要使f (x )在(-∞,4]上是减函数,由二次函数的图象可知,只要对称轴x =1-a ≥4即可,解得a ≤-3.谈重点 对分段函数的单调性的理解求分段函数在定义域上的单调性问题时,不但要考虑各段上函数的类型及其单调性,而且还要考虑各段图象之间的上下关系.【例4】已知函数(3)4,<1,()=,1a x a x f x a x x-+⎧⎪⎨≥⎪⎩是(-∞,+∞)上的减函数,求实数a 的取值范围.分析:函数f (x )是一个分段函数,其图象由两部分组成.当x <1时,f (x )=(3-a )x +4a ,其图象是一条射线(不包括端点);当x ≥1时,()=af x x,其图象由a 的取值确定,若a =0,则为一条与x 轴重合的射线,若a ≠0,则为反比例函数图象的一部分(曲线).已知函数f (x )是(-∞,+∞)上的减函数,则在两段上必须都是递减的,且要保证x <1时的图象位于x ≥1时的图象的上方.解:由题意知,函数f (x )=(3-a )x +4a (x <1)与()=af x x(x ≥1)都是递减的,且前者图象位于后者图象的上方(如图所示).∴3<0,>0,34,a a a a a -⎧⎪⎨⎪(-)+≥⎩即>3,>0,3.2a a a ⎧⎪⎪⎨⎪⎪≥-⎩ ∴a >3.∴实数a 的取值范围是{a |a >3}. 5.利用函数的单调性求函数的最值若函数在给定的区间上是单调函数,可利用函数的单调性求最值.若给定的单调区间是闭区间,函数的最值在区间的两个端点处取得,也就是说,若函数f (x )在某一闭区间[a ,b ]上是增函数,则最大值在右端点b 处取得,最小值在左端点a 处取得;若函数f (x )在某一闭区间[a ,b ]上是减函数,则最大值在左端点a 处取得,最小值在右端点b 处取得.解题时也可结合函数的图象,得出问题的答案.【例5-1】求()=f x x +的最小值.分析:求函数()=f x x +的最小值,可先利用单调函数的定义判断其在定义域上的单调性,再利用单调性求出最值.解:()=f x x +的定义域为[1,+∞),任取x 1,x 2∈[1,+∞),且x 1<x 2,Δx =x 2-x 1>0,则Δy =f (x 2)-f (x 1)=(x 2)-(x 1=(x 2-x 1)+(-=(x 2-x 1)=(x 2-x 1)·1⎛ ⎝.∵Δx =x 2-x 1>0,1>0,∴f (x 2)-f (x 1)>0.∴f (x )在[1,+∞)上为增函数,∴f (x )min =f (1)=1.【例5-2】已知函数2=1xy x +(x ∈[-3,-2]),求函数的最大值和最小值. 解:设-3≤x 1<x 2≤-2,则f (x 1)-f (x 2)=12122211x x x x -++=122112212111x x x x x x (+)-(+)(+)(+)=1212211x x x x (-)(+)(+).由于-3≤x 1<x 2≤-2,则x 1-x 2<0,x 1+1<0,x 2+1<0. 所以f (x 1)<f (x 2). 所以函数2=1xy x +在[-3,-2]上是增函数. 又因为f (-2)=4,f (-3)=3,所以函数的最大值是4,最小值是3. 6.利用函数的单调性解不等式函数的单调性具有可逆性,即f (x )在区间D 上是递增的,则当x 1,x 2∈D 且f (x 1)>f (x 2)时,有x 1>x 2〔事实上,若x 1≤x 2,则f (x 1)≤f (x 2),这与f (x 1)>f (x 2)矛盾〕.类似地,若f (x )在区间D 上是递减的,则当x 1,x 2∈D 且f (x 1)>f (x 2)时,有x 1<x 2.利用函数单调性的可逆性,可以脱去某些函数符号,把抽象的不等式化为具体的不等式.此时要特别注意处在自变量位置的代数式必须满足定义域要求,最后取几个不等式的解的交集即可.利用函数的单调性可以比较函数值或自变量值的大小,在解决比较函数值的大小问题时,要注意将对应的自变量放在同一个单调区间上.【例6】已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (a 2-1),求a 的取值范围.分析:由于函数y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (a 2-1),所以由单调函数的定义可知1-a ∈(-1,1),a 2-1∈(-1,1),且1-a >a 2-1,解此关于a 的不等式组,即可求出a 的取值范围.解:由题意可得221<1<1,1<1<1,1>1,a a a a --⎧⎪--⎨⎪--⎩①②③由①得0<a <2,由②得0<a 2<2,∴0<|a |,∴a ,且a ≠0.由③得a 2+a -2<0,即(a -1)(a +2)<0, ∴1>0,2<0a a -⎧⎨+⎩或1<0,2>0,a a -⎧⎨+⎩∴-2<a <1.综上可知0<a <1, ∴a 的取值范围是0<a <1.7.复合函数单调性的判断方法一般地,如果f(x),g (x)在给定区间上具有单调性,则可以得到如下结论:(1)f(x),g(x)的单调性相同时,f(x)+g(x)的单调性与f(x),g(x)的单调性相同.(2)f(x),g(x)的单调性相反时,f(x)-g(x)的单调性与f(x)的单调性相同.(3)y=f(x)在区间I上是递增(减)的,c,d都是常数,则y=cf(x)+d在I上是单调函数.若c>0,y=cf(x)+d在I上是递增(减)的;若c<0,y=cf(x)+d在I上是递减(增)的.(4)f(x)恒为正或恒为负时,y=1f x与y=f(x)单调性相反.(5)若f(x)>0,则函数y=f(x)与y=f x具有相同的单调性.(6)复合函数y=f[g(x)]的单调区间求解步骤:①将复合函数分解成基本初等函数y=f(u),u=g(x);②分别确定各个函数的定义域;③分别确定分解成的两个函数的单调区间;④若两个函数在对应区间上的单调性相同,则y=f[g(x)]为增函数;若不同,则y=f[g(x)]为减函数.该法可简记为“同增异减”.值得注意的是:在解选择题、填空题时我们可直接运用此法,但在解答题中不能利用它作为论证的依据,必须利用定义证明.【例7】求y的单调区间,并指明在该区间上的单调性.分析:这是一个复合函数,应先求出函数的定义域,再利用复合函数单调性的判断法则确定其单调性.解:要使函数y需满足x2+2x-3≥0,即(x-1)(x+3)≥0.∴10,30xx-≥⎧⎨+≥⎩或10,30.xx-≤⎧⎨+≤⎩∴x≥1,或x≤-3.∴函数y的定义域为{x|x≥1,或x≤-3}.令u=x2+2x-3,则=y u=(x+1)2-4,其开口向上,对称轴为x=-1.∴当x≥1时,u是x的增函数,y是u的增函数,从而y是x的增函数;当x≤-3时,u是x的减函数,y是u的增函数,从而y是x的减函数.∴y的递增区间是[1,+∞),递减区间是(-∞,-3].辨误区求函数的单调区间易忽略的问题由于函数的单调区间一定是函数定义域的子集,所以我们在求函数的单调区间时,一定要先求函数的定义域,在函数的定义域内讨论函数的单调区间;在处理函数的相关问题时,往往会把函数问题转化成方程问题或简单不等式问题来处理,但要注意转化时应确保转化前后式子的等价性.8.抽象函数的单调性问题没有具体的函数解析式的函数,我们称为抽象函数,关于抽象函数的单调性,常见的有以下题型:(1)抽象函数单调性的证明.证明抽象函数的单调性,必须用单调函数的定义作出严格证明,而不能用几个特殊值的大小来检验,证明时要同时注意特殊值的应用.(2)抽象函数单调性的应用.如,利用抽象函数的单调性求函数的最值、解不等式等.解决抽象函数的有关问题,常采用赋值法.在解不等式时关键是将已知不等式转化为f(x1)≥f(x2)的形式,然后利用单调性结合定义域求解.【例8】已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,2 (1)=3f .求证:f(x)在R上是减函数;证明:令x=y=0,得f(0)+f(0)=f(0),∴f(0)=0. 令y=-x,得f(x)+f(-x)=f(0),∴f(-x)=-f(x).任取x1,x2∈R,且x1<x2,Δx=x2-x1>0,则Δy=f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).∵x1<x2,∴x2-x1>0.又∵当x>0时,f(x)<0,∴f(x2-x1)<0,即Δy<0.∴f(x)在R上是减函数.。

人教版高中数学必修一《函数的单调性和奇偶性》教学设计

人教版高中数学必修一《函数的单调性和奇偶性》教学设计

函数的单调性与奇偶性(教学设计)《函数的单调性与奇偶性》教材分析《函数的单调性与奇偶性》系人教版高中数学必修一的内容,该内容包括函数的单调性与奇偶性的定义与判断及其证明。

在初中学习函数时,借助图像的y直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

《函数的单调性与奇偶性》课标分析在初中学习函数时,借助图像的y直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档