初三数学第28章《锐角三角函数》习题(含答案)
人教版九年级下数学第二十八章锐角三角函数单元练习题(含答案)
《锐角三角函数》单元练习题一.选择题1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.2.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.3.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米4.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m,则树的高度BD为()A.8m B.9.6m C.(4)m D.(8+1.6)m5.如图,P是∠α的边OA上一点,且点P的横坐标为3,sinα=,则tanα=()A.B.C.D.6.如图,网格中小正方形的边长都为1,点A,B,C在正方形的顶点处,则cos∠ACB的值为()A.B.C.D.7.如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14m到达D,在D处测得A的仰角为45°,塔高AB为()A.m B.m C.m D.m8.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD 的值为()A.B.C.D.9.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.千米B.千米C.千米D.千米10.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.1811.已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是()A.18米B.4.5米C.米D.米.12.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.cm B.cm C.64 cm D.54cm二.填空题13.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,若3a=4b,则sin B的值是.14.已知∠A是锐角,且cos A=,则tan A=.15.如图,在点A处测得点B处的仰角是.(用“∠1,∠2,∠3或∠4”表示)16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为米(结果保留根号).18.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.三.解答题19.计算:2cos60°+4sin60°•tan30°﹣6cos245°.20.如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距海里.(本题参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)21.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.22.如图,已知:R t△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A 作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡AF上的D处测得大树顶端B的仰角是30°,在地面上A处测得大树顶端B的仰角是45°.若坡角∠F AE=30°,AD=6m,求大树的高度.(结果保留整数,参考数据:≈1.73)24.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)25.被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大王米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量.测量项目及结果如下表:项目内容课题测量郑州会展宾馆的高度的仰角是α,前进一段距离到达C点用测倾器CF测得楼β,且点A、B、C、D、E、F均在同一竖直平测量数据∠α的度数∠β的度数EC的长度,40°45°53米……请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)参考答案一.选择题1.【解答】解:∵∠A=α,AB=3,∴cosα=,∴AC=AB•cosα=3cosα,故选:B.2.【解答】解:∵AC=4,BC=3,∴tan A==,故选:A.3.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.4.【解答】解:在Rt△CBH中,∠HCB=45°,CH=8m,∴,∴HB=CH•tan∠HAB=8×tan45°=8m,∴HD=HB+AC=8+1.6=9.6.答:树的高度为9.6m.故选:B.5.【解答】解:如图,由sinα==可设PQ=4a,OP=5a,∵OQ=3,∴由OQ2+PQ2=OP2可得32+(4a)2=(5a)2,解得:a=1(负值舍去),∴PQ=4,OP=5,则tanα==,故选:C.6.【解答】解:如右图所示,∵网格中小正方形的边长都为1,∴CE==2,AC==,AE=3,CD=4,作AH⊥CE于点H,∵,∴,解得,AH=,∵AC=,AH=,∠AHC=90°,∴CH==,∴cos∠ACH=,即cos∠ACB=,故选:D.7.【解答】解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=14,∴BC=x+14.∴x+14=x∴x=7(+1).即铁塔AB的高为7(+1)米.故选:B.8.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=24,AB=25,∴BC=7,∵CD是斜边AB上的高,,∴CD==,∵CD⊥AB,∴∠CDB=90°,∴cos∠BCD===,故选:B.9.【解答】解:作PC⊥AB交AB于点C,如右图所示,AC=,BC=,∵m=AC﹣BC,∴m=﹣,∴PC==,故选:A.10.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.11.【解答】解:如图:由题意得:斜坡AB的坡度:i=1:2,AE=9米,AE⊥BD,∵i==,∴BE=18米,∴在Rt△ABE中,AB==9(米).故选:D.12.【解答】解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.二.填空题(共6小题)13.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,令b=3x,则a=4x,由勾股定理可得c=5x,所以sin B===,故答案为:.14.【解答】解:∵∠A为锐角,且cos A=,以∠A为锐角作直角三角形△ABC,∠C=90°.∴cos A==.设AC=5k,则AB=13k.根据勾股定理可得:BC=12k.∴tan A==.故答案为:.15.【解答】解:在点A处测得点B处的仰角是∠4,故答案为:∠4.16.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.【解答】解:过点E作EG⊥AB于G,过点F作FH⊥AB于H,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD,∵B为CD的中点,∴EG=CB=BD=HF,由已知得:∠EAG=90°﹣60°=30°,∠AFH=45°.在Rt△AEG中,AG=AB﹣GB=50﹣20=30米,∴EG=AG•tan30°=30×=10米,在Rt△AHP中,AH=HF•t an45°=10米,∴FD=HB=AB﹣AH=50﹣10(米).答:2号楼的高度为(50﹣10)米.故答案为:(50﹣10).18.【解答】解:如图所示:过点D作DM⊥AB于点M,作CN⊥AB于点N,设DM=CN=x,∵背水坡AD和迎水坡BC的坡度都为1:2.5,∴AM=BN=2.5x,故AB=AM+BN+MN=5x+10=90,解得:x=16,即这个水库大坝的坝高是16米.故答案为:16.三.解答题(共7小题)19.【解答】解:原式=2×+4××﹣6×()2=1+2﹣3=0.20.【解答】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC==,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC=PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.21.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则P A=3k,∵PD⊥AB,D是边AB的中点,∴P A=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD=.22.【解答】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tan D=tan∠ECH==.23.【解答】解:延长BD交AE于点G,作DH⊥AE于H,设BC=xm,由题意得,∠DGA=∠DAG=30°,∴DG=AD=6,∴DH=3,GH==3,∴GA=6,在Rt△BGC中,tan∠BGC=,∴CG==x,在Rt△BAC中,∠BAC=45°,∴AC=BC=x,由题意得,x﹣x=6,解得,x=≈14,答:大树的高度约为14m.24.【解答】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG=AC=10,CG=AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴=,∴=,∴DH=≈23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS==10,∴A′B=10+10,∵BG==10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.25.【解答】解:由题意可得:设BN=FN=x,则tan40°==≈0.84,解得:x=278.25,故AB=278.25+1.5≈280(m),答:郑州会展宾馆的高度为280m.。
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为A.15tan37︒B.15sin37︒C.15tan 37°D.15sin 37°【答案】C【解析】如图,在Rt△ABC中,∠B=90°,∠C=37°,BC=15,∴tan C=ABBC,则AB=BC•tan C=15tan37°.故选C.【名师点睛】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.2.如图,在海拔200米的小山顶A处,观察M,N两地,俯角分别为30°,45°,则M,N两地的距离为A.200米B.2003米C.400米D.200(3+1)米【答案】D【解析】过A作AB⊥MN于B,在Rt △ABM 中, 90,200,30ABM AB M ∠==∠=,tan AB M BM∴∠=, 2003BM ∴=,在Rt △ABN 中, 90,45ABN N BAN ∠=∠=∠=,∴BN =AB =200,()200320020031MN ∴=+=+米.故选D.3.如图是一张简易活动餐桌,测得30cm OA OB ==,50cm OC OD ==,B 点和O 点是固定的.为了调节餐桌高矮,A 点有3处固定点,分别使OAB ∠为30,45,60,问这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)A .402cmB .40cmC .403cmD .30cm【答案】B【解析】过点D 作DE ⊥AB 于点E ,∵∠OAB =30时,桌面离地面最低, ∴DE 的长即为最低长度, ∵OA =OB =30cm ,OC =OD =50cm , ∴AD =OA +OD =80cm , 在Rt △ADE 中,∵∠OAB =30,AD =80cm , ∴140cm.2DE AD ==故选:B.4.如图,某水库堤坝横截面迎水坡AB的坡度是1:3,堤坝高为40m,则迎水坡面AB的长度是A.80m B.803mC.40m D.403m【答案】A5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.409秒B.16秒C.403秒D.24秒【答案】B【解析】如图,以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时开始对A处产生噪音影响,到点D时结束影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得: BC=160米∴BD=2BC=320米,∵72千米/小时=20米/秒,∴影响时间应是320÷20=16 (秒),故选B.6.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是A.6千米B.8千米C.10千米D.14千米【答案】B【解析】∵∠ABG=48°,∠CBE=42°,∴∠ABC=180°-48°-42°=90°,∴A到BC的距离就是线段AB的长度,∴AB=8千米.BE=,她7.如图,小颖利用有一锐角是30的三角板测量一棵树的高度,已知她与树之间的水平距离6mAB=,那么这棵树高的眼睛距地面的距离 1.5m23 1.5mA.23m B.()32 1.5m D.4.5mC.()【答案】B【解析】在直角三角形ACD中,∠CAD=30°,AD=6m,∴CD=AD tan30°=6×33=23,∴CE=CD+DE=23+1.5(m).故选B.8.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B 两点间的距离为多少米.A.7502B.3752C.3756D.7506【答案】A二、填空题:请将答案填在题中横线上.9.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后楼梯AC长为_____m.【答案】26【解析】在Rt△ABD中,∵sin∠ABD=AD AB,∴AD=4sin60°=23(m),在Rt△ACD中,∵sin∠ACD=AD AC,∴AC=23sin45=26(m).故答案是:26.10.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A 的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+3)nmile处,则海岛A,C之间的距离为______nmile.【答案】2【解析】作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=22x,则CD=22x,在Rt△ABD中,BD=6 tan2ADABD=∠x,则22x+62x=18(1+3),解得,x=182,答:A,C之间的距离为182海里.故答案为:182.11.如图,一轮船由南向北航行到O处时,发现与轮船相距40海里的A岛在北偏东33方向.已知A岛周围20海里水域有暗礁,如果不改变航向,轮船________(填“有”或“没有”)触暗礁的危险.(可使用科学记算器)【答案】没有【解析】已知OA=40,∠O=33°,则AB=40•sin33°≈21.79>20.所以轮船没有触暗礁的危险.故答案为: 没有.12.数学组活动,老师带领学生去测塔高,如图,从B点测得塔顶A的仰角为60,测得塔基D的仰角为45,已知塔基高出测量仪20m,(即20mDC=),则塔身AD的高为________米.【答案】()2031-【解析】在Rt △ABC 中,AC =3BC .在Rt △BDC 中有DC =BC =20,∴AD =AC−DC =3BC−BC =20(3−1)米. 故答案为:20(3−1).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45,再往建筑物的方向前进6米到达D 处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈【解析】设AB x =米, ∵∠C =45°,∴在Rt ABC △中,BC AB x ==米,60ADB ∠=, 6CD =米,∴在Rt ADB △中tan ∠ADB =ABBD, tan60°=6xx -, 解得)333114.2x =≈米答,建筑物的高度为14.2米.14.如图,一个热气球悬停在空中,从热气球上的P点测得直立于地面的旗杆AB的顶端A与底端B的俯角分别为34°和45°,此时P点距地面高度PC为75米,求旗杆AB的高度(结果精确到0.1米).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67)15.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)【解析】如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H.由题意知,AB=300cm,BE=AC=50cm,AH=50cm,∠AGH=30°.在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=12CG=75cm.∵EG=AB﹣BE+AG=300﹣50+100=350(cm).在Rt△EFG中,EF=EG tan∠EGF=350tan30°=350×33503(cm).答:支撑角钢CD的长为75cm,EF 3503.。
人教版初3数学9年级下册 第28章(锐角三角函数)单元测试题 (含答案)
初中数学人教版九年级锐角三角函数单元测试题学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 在Rt△ABC中,∠C=90∘,若AC=3,BC=2,则tan A的值是()A.12B.23C.52D.2552. 已知在Rt△ABC中,∠C=90∘,sin A=12,AC=23,那么BC的值为( )A.2B.4C.43D.63. 海中有一个小岛P,该岛四周12海里范围内(含12海里)是一个暗礁区.今有货轮由西向东航行,开始在A点观测P在北偏东60∘.若行驶10海里后到达B点观测P在北偏东α(0<α<90∘)处,若货船不改变航向,则当tanα为何值时,货轮会有触礁的危险,则根据以上数据可计算得tanα的值为()A.tanα=63−56B.tanα≥63−56C.0<tanα≤63−56D.56<tanα<34. 兰州是古丝绸之路上的重镇,以下准确表示兰州市的地理位置的是( )A.北纬34∘03′B.在中国的西北方向C.甘肃省中部D.北纬34∘03′,东经103∘49′5. 如图,①以点A为圆心,5cm长为半径画弧分别交∠MAN的两边AM,AN于点B,D;②以点B为圆心,AD长为半径画弧,再以点D为圆心,AB长为半径画弧,两弧交于点C;③分别连接BC,CD,AC.若tan∠BAC=12,点C到射线AN的距离是( )A.3B.4C.5D.256. 如图,小明从点A沿坡度i=1:2的斜坡走到点B,若AB=10米,则上升高度是()米.A.5B.2C.25D.237. 如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15∘到AC′的位置,此时露在水面上的鱼线B′C′长度是( )A.3mB.33mC.23mD.4m8. 你认为tan15∘的值可能是()A.36B.2+3 C.2−3 D.329. 如图是深圳市少年宫到中心书城地下通道的手扶电梯示意图,其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135∘,BC的长约是5,则乘电梯从点B到点C上升的高度ℎ是()A.mB.5mC.mD.10m10. 如图,在△ABC中,∠C=90∘,AB=5,AC=2,则sin B的值是()A.35B.25C.23D.32.11. 如图,在Rt△ABC中,∠ACB=90∘,CD⊥AB于D,下列式子正确的是( )A.sin A=BDBC B.cos A=ACADC.AC2=AD⋅BDD.tan A=CDAB12. 如图,△ABC的顶点在正方形网格的格点上,则tan A的值是( )A.12B.22C.2D.2213. 如果某飞机的飞行高度为m千米,从飞机上看到地面控制点的俯角为α,那么此时飞机与地面控制点之间的距离是()A.m⋅tanαB.mcosαC.msinαD.m⋅cotα14. 在Rt△ABC中,∠C=90∘,下列式子不一定成立的是()A.tan A=cot BB.sin2A+cos2A=1C.sin2A+sin2B=1D.tan A⋅cot B=115. 中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76∘(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27∘.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为()(参考数据:tan76∘≈4.0,tan27∘≈0.5,sin 76∘≈0.97,sin 27∘≈0.45.A.262B.212C.244D.27616. 西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角∠ABC 约为26.5∘,则立柱根部与圭表的冬至线的距离(即BC 的长)约为( )A.a sin 26.5∘B.atan 26.5C.a cos 26.5∘D.acos 26.517. 已知,菱形的一个内角为60∘,边长为2,用六个这样完全一样的菱形拼成如图所示的图形,则tan ∠ABC 的值是( )A.12 B.33C.233D.3218. 如图是一张简易活动餐桌,现测得OA =OB =40cm ,OC =OD =60cm ,现要求桌面离地面的高度为50cm ,那么两条桌腿的张角∠COD 的大小应为( )A.150∘B.135∘C.120∘D.100∘19. 在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70∘方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A.北偏东20∘方向上B.北偏西20∘方向上C.北偏西30∘方向上D.北偏西40∘方向上20. 轮船航行到C处观测小岛A的方向是北偏西48∘,那么从A同时观测轮船在C处的方向是()A.南偏东48∘B.东偏北48∘C.东偏南48∘D.南偏东42∘21. 若tanα⋅tan36∘=1,则α=________度.22. 若1−tanα=0,则锐角α=________度.23. 已知∠α=36∘,若∠β是∠α的余角,则∠β=________度,sinβ=________.(结果保留四个有效数字)24. 如图,已知△ABC三个顶点的坐标分别为A(−2, −4),B(0, −4),C(1, −1).(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(−3, −3),连接PC,则tan∠BCP=________.25. 如图,某学校灯光球场的大功率照明灯发出的光线与灯杆成30∘角,照射在地面上的大距离为AB=60m,现在准备调整它的照明角度,使它发出的光线与灯杆AC成45∘角,请你通过计算回答:调整后,这个大功率照明灯是否影响距离灯杆100m的D处的居民休息?(参考数据:3≈1.73)26. 2019年10月1日李明和他的爸爸、妈妈一同驾车到云南石林风景区旅游.如图,他利用自己带的测角仪站在一处高大的石林AB的前方C点处测得∠ACB=60∘,再沿BC方向走20m到达D处,测得∠ADC=30∘.(1)求点C到AD的距离;(2)求出石林AB的高度.(测角仪高度忽略不计,结果精确到1m)27. 已知以直线x=1为对称轴的抛物线y1与x轴交于点A1(d,0)和A2,顶点为B1,以直线x=2为对称轴的抛物线y2与x轴交于点A2和A3,顶点为B2,…,以直线x=n为对称轴的抛物线y n与x轴交于点A n和A n+1,顶点为B n,我们把这样的抛物线y1, y2 ,…,y n对应的二次函数称为“整对称轴”二次函数.(1)当0<d<1时,①填空:A1A2=_______,A2A3=_______,A3A4=________;(用含d的代数式表示)②若d=0.4,“整对称轴”二次函数y1,y2,…,y n的图象的顶点B1,B2,…,B n都在直线y=15 x上,当n的值为多少时,△A n A n+1B n是直角三角形?(2)当0<d<1时,已知“整对称轴”二次函数y1,y2,…,y n的图象的开口方向都向下,且△A1A2B1,△A2A3B2,⋯,△A n A n+1B n均为直角三角形.①请求出“整对称轴”二次函数y1,y2的解析式,并猜想出y2019的解析式(可以含d);②请通过画草图分析直线y=1与抛物线y1,y2,…,y2019的公共点个数.228. 如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC,AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60∘,AB=10,求线段CF的长.参考答案与试题解析一、选择题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】B2.【答案】A3.【答案】C4.【答案】D5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】B11.【答案】A12.【答案】A13.【答案】C14.【答案】D15.【答案】B16.【答案】B17.【答案】D18.【答案】C19.【答案】B20.【答案】A二、填空题(本题共计 3 小题,每题 3 分,共计9分)21.【答案】5422.【答案】4523.【答案】54,0.8090三、解答题(本题共计 5 小题,每题 10 分,共计50分)24.【答案】解:(1)作出点B1,C1连接即可;(2)因为直线CD 将△ABC 分成面积相等的两部分,且与线段AB 相交于点D ,故点D 为线段AB 的中点,画出直线CD ,可知点D 坐标为(−1, −4);125.【答案】解:在直角△ABC 中,∠C =30∘,AB =60,tan ∠ACB =ABAC ,∴ AC =AB tan ∠ACB=603,在直角△ACD 中,∠ACD =45∘,AC =603,AD =AC =603≈103.8(m ),∴ 照明灯会影响距离灯杆100m 的D 处的居民休息.26.【答案】解:(1)如图,过点C 作CE ⊥AD 于点E ,在Rt △CDE 中,CD =20m ,∠ADC =30∘,所以CE =12CD =12×20=10(m )即点C 到AD 的距离是10m .(2)∵ ∠ACB =60∘,∠ADC =30∘,∴ ∠CAD =30∘,∴ ∠CAD =∠ADC ,∴ AC =DC =20,在Rt △ABC 中,AB =AC sin 60∘=20×sin 60∘=20×32=103≈17(m).∴ 石林AB 的高度约为17m .27.【答案】解:(1)① 2−2d ;2d ; 2−2d ;②∵ 顶点 B 1,B 2,⋯B n 都在直线 y =15x 上,∴ 当x =n 时, y =15n ,由(1)可知,当n 为奇数时, A n A n +1=2−2d ,当n 为偶数时, A n A n +1=2d ,∴ 当d =0.4 时,只要 15n =12A n A n +1=12(2−2d)=0.6,或15n =12A n A n +1=12×2d =0.4时,△A n A n +1B n 是直角三角形,解得n =3或n =2.(2)①∵ △A 1A 2B 1 是直角三角形, A 1A 2=2−2d ,∴ y 1 的顶点 B 1 的坐标为 (1,1−d),设y 1 的解析式为 y 1=a 1(x−1)2+1−d ,∵ y 1 过点 A 1(d,0) ,将A 1 的坐标代入得 a 1=1d−1,∴ y 1 的解析式为 y 1=1d−1(x−1)2+1−d ,同理,∵ △A 2A 3B 2 是直角三角形, A 2A 3=2d ,∴ y 2 的顶点 B 2 的坐标为 (2,d),设y 2 的解析式为 y 2=a 2(x−2)2+d ,∵ y 2 过点 A 2(2−d,0),将A 2的坐标代入得 a 2=−1d ,∴ y 2 的解析式为 y 2=−1d (x−2)2+d .猜想 y 2019 的解析式为 y 2019=1d−1(x−2019)2+1−d.②通过以上探究,画出草图,可知:当0<d <12 时,直线 y =12 与y 1,y 2,…,y 2019 的公共点个数为2020个;当d =12 时,直线 y =12 与y 1,y 2,…,y 2019 的公共点个数为2019个; 当12<d <1 时,直线 y =12与 y 1,y 2,…,y 2019 的公共点个数为2018个 .28.【答案】(1)证明:如图,连接OC ,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵OA=OC, PA=PC, OP=OP,∴△OAP≅△OCP(SSS),∴∠OCP=∠OAP,∵PA是⊙O的切线,∴∠OAP=90∘,∴∠OCP=90∘,即OC⊥PC,∴PC是⊙O的切线.(2)解:∵OB=OC,∠OBC=60∘,∴△OBC是等边三角形,∴∠COB=60∘,∵AB=10,∴OC=5,由(1)可知,∠OCF=90∘,∴CF=OC⋅tan∠COB=53.。
【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)
一、选择题1.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒C .75︒D .105︒C解析:C 【分析】根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解. 【详解】解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭,1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =,解得:60A ∠=︒,45B ∠=︒, 则180604575C ∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键.2.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .(5352mD .()535m D解析:D 【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°, ∴BD=BC=5,设AC=x m ,则AB=(x +5)m , 在Rt △ABD 中,tan60°=AB BD, 则535x +=, 解得:535x =-, 即AC 的长度是()535m -; 故选:D . 【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ) 题目测量铁塔顶端到地面的高度测量目标示意图相关数据10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒A解析:A 【分析】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,根据矩形的性质得到HE =CD =10,CE =DH ,求得FH =x−10,得到CE =x−10,根据三角函数的定义列方程即可得到结论. 【详解】过D 作DH ⊥EF 于H , 则四边形DCEH 是矩形, ∴HE =CD =10,CE =DH , ∴FH =x−10,∵∠FDH =α=45°, ∴DH =FH =x−10, ∴CE =x−10,∵tanβ=tan50°=EF CE =-10x x , ∴x =(x−10)tan 50°, 故选:A . 【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒ B .22sin 45 cos 451︒+︒= C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒A解析:A 【分析】根据特殊角的三角函数值、二次根式的运算即可得. 【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 45122︒+︒=+=+=⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A . 【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.如图,河坝横断面迎水坡AB 的坡比为1BC =3m ,则AB 的长度为( )A .6mB .33mC .9mD .63m A解析:A 【分析】根据坡比的概念求出AC ,根据勾股定理求出AB . 【详解】解:∵迎水坡AB 的坡比为1:3, ∴13BC AC =,即313AC =, 解得,AC =33, 由勾股定理得,AB 22BC AC =+=6(m ),故选:A . 【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 6.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B 3米C .2米D .1米B解析:B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可. 【详解】解:设点P 到直线AB 距离PC 为x 米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B . 【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.7.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1--D解析:D 【分析】根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论. 【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 2∴2,BD ⊥x 轴,AE=BE ,∠BAE=45° ∴AE=BE=AB·sin ∠BAE=1 ∴OE=OA +AE=2 ∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1) 故选D . 【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键. 8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .1313B 解析:B 【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解. 【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABCSAC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B . 【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A 21B 2﹣1C 2D .12B 解析:B 【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值. 【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x ,()22.5==211+2AC xC tan taD xn D =∠=-︒故选:B. 【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.二、填空题11.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC解析:3或3 【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可. 【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒, ∴C ,A ,P 共线,BC BP AC AP ===, ∴△BPC 是等边三角形,当D′是PB 中点时,AD′=12BP=AC=3,此时ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒=3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件, ∴CD″=3,∴满足条件的CD 的长为3或3. 故答案为:3或3. 【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题.12.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。
人教版九年级下册数学第二十八章 锐角三角函数含答案解析
人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.2、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA 的是( )A. B. C. D.3、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.404、如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.5、已知Rt△ABC中,∠A=90°,则是∠B的()A.正切;B.余切;C.正弦;D.余弦6、如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.7、如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.8、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A.1B.C.D.10、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.311、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°12、如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )A.1B.2C.3D.413、如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+ b)米B.(a+ b)米C.(a+ b)米D.(a+ b)米14、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)15、如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D 等于()A. B. C. D.二、填空题(共10题,共计30分)16、图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为________cm(结果保留根号).17、在三角形ABC中,AB=2,AC= ,∠B=45°,则BC的长________.18、如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置,若点G恰好在抛物线y=x2(x>0)上,则点A 的坐标为________.19、如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC 上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF 的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=4 ,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为________.21、小华从斜坡底端沿斜坡走了100米后,他的垂直高度升高了50米,那么该斜坡的坡角为________度22、在Rt△ABC中,∠C=90°,sinA=,则cosA=________.23、如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.24、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.25、已知:正方形ABCD的边长为3,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.三、解答题(共5题,共计25分)26、计算:+(tan60﹣1)0+| ﹣1|﹣2cos30°.27、教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)28、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向. 轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向.这时,E 处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)29、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)30、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、A6、D7、A8、C9、B10、A11、B12、B13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)
第二十八章 锐角三角函数一、单选题1.在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值为( )A .B .C .D . 2.(2016甘肃省兰州市)在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( ) A .4 B .6 C .8 D .103.在Rt △ABC 中,∠C=90°,sinB=513,则tanA 的值为( ) A .513 B .1213 C .512 D .1254.Rt ABC 中,C 90∠=,若BC 2=,AC 3=,下列各式中正确的是 ( ) A .2sinA 3= B .2cosA 3= C .2tanA 3= D .2cotA 3= 5.如图,过点C (﹣2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB=( )A .25B .23C .52D .326.如图,某超市自动扶梯的倾斜角 为 ,扶梯长 为 米,则扶梯高 的长为( )A.米B.米C.米D.米7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早期,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米8.若某人沿坡角为α的斜坡前进100m,则他上升的最大高度是()A.100 αm B.100sinαm C.100cosαm D.100 αm9.某水坝的坡度i=1,坡长AB=20米,则坝的高度为()A.10米B.20米C.40米D.2010.如图,两建筑物的水平距离为32 m,从点A测得点C的俯角为30°,点D的俯角为45°,则建筑物CD的高约为()A.14 m B.17 m C.20 m D.22 m二、填空题11.2sin45°+2sin60°﹣=_____. 12.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则sin A = .13.某同学沿坡比为1: 的斜坡前进了90米,那么他上升的高度是______米14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.三、解答题15.计算:|﹣2|﹣2cos60°+(16)﹣1﹣(π0. 16.如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60°.求该建筑物的高度AB .(结果保留根号)17.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.18.如图,为了测量出楼房AC的高度,从距离楼底C处D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据: 53°≈0.8, 53°≈0.6, 53°≈43,计算结果用根号表示,不取近似值).答案1.D2.D3.D4.C5.B6.A7.A8.A9.A10.A1112.3513.4514.215.|﹣2|﹣2cos60°+(16)﹣1﹣(π﹣ )0 =2﹣2×12+6﹣1 =6.16.解:设AM x =米,在Rt AFM ∆中,45AFM ︒∠=,∴FM AM x ==,在Rt AEM ∆中,AM tan EMAEM ∠=,则tan AM EM x AEM ==∠, 由题意得,FM EM EF -=,即40x x -=,解得,60x =+,∴61AB AM MB =+=+答:该建筑物的高度AB为(61+米.17.解:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°。
人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案
第二十八章锐角三角函数一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A. 4B. 2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A. 30°B. 45°C. 60°D. 90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A. 5米B. 6米C. 6.5米D. 12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A 测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A. 2 kmB. (2+)kmC. (4-2) kmD. (4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A. 100tanα米B. 100cotα米C. 100sinα米D. 100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE 即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·co s 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN=,故 cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.。
人教版数学九年级下册第28章测试题(含答案)
人教版数学九年级下册第28章测试题(含答案)28.1《锐角三角函数》一、选择题1.2cos60°=()A.1B.C.D.2.在菱形ABCD中,BD为对角线,AB=BD,则sin∠BAD=()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,下列线段的比值等于cosA的值的有()个(1)(2)(3)(4).A.1B.2C.3D.44.tan45°sin45°﹣2sin30°cos45°+tan30°=()A. B. C. D.5.计算的值是()A. B. C. D.6.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.7.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.8.计算sin60°+cos45°的值等于()A. B. C. D.9.sin60°的值等于()A. B. C. D.10.在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则sinA的值是( )A. B. C. D.11.tan30°的值为()A. B. C. D.12.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定二、填空题13.计算;sin30°•tan30°+cos60°•tan60°= .14.已知在△ABC中,AB=AC=4,BC=6,那么cosB=____________.15.△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C= .16.在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17.计算:=18.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.三、计算题19.计算:20.计算:四、解答题21.先化简,再求值,其中a=1+2cos45°;b=1-2sin45°22.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.例如sin 90°=sin(60°+30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.类似地,可以求得sin 15°的值是___________________.23.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.24.如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,(1)求证:CD是⊙O的切线.(2)若⊙O的半径为3,AE=5,求∠ADE的正弦值.参考答案1.答案为:A;.2.答案为:C3.答案为:C4.答案为:D.5.答案为:A;6.答案为:C.7.答案为:A;8.答案为:B;9.答案为:C10.答案为:C11.答案为:B;.12.答案为:C13.答案为:14.答案为:0.75;15.答案为:60°.16.答案为:75°17.答案为:18.答案为:直角.19.原式=120.原式=721.原式=22.原式=.23.解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.28.2解直角三角形及其应用一.选择题1.如图,在Rt△ABC中,∠C=90°,BC=,AB=2,则∠B等于()A.15°B.20°C.30°D.60°2.在△ABC中,∠ACB=90°,若AC=8,BC=6,则sin A的值为()3.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.4.如图,传送带和地面所成斜坡的坡度为1:3,若它把物体从地面点A处送到离地面1米高的点B处,则物体从A到B所经过的路程为()A.3米B.米C.2米D.3米5.如图,在国旗台DF上有一根旗杆AF,国庆节当天小明参加升旗仪式,在B处测得旗杆顶端的仰角为37°,小明向前走4米到达点E,经过坡度为1的坡面DE,坡面的水平距离是1米,到达点D,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.6.29B.4.71C.4D.5.336.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1m到A′时,梯脚B 滑到B′,A'B'与地面的夹角为β,若tanα=,BB'=1m,则cosβ=()7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为()米(结果精确到1米)(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.27B.28C.29D.308.数学兴趣小组的同学们要测量某大桥主架顶端离水面的高CD.在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为45°,测得与大桥主架的水平距离AB为100米.则大桥主架顶端离水面的高CD为()A.(100+100•sinα)米B.(100+100•tanα)米C.(100+)米D.(100+)米9.某兴趣小组想测量一座大楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测量仪测得大楼顶端A的仰角为37°,测角仪DE的高度为1.5米,求大楼AB的高度约为多少米?()(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)A.39.3B.37.8C.33.3D.25.710.在数学综合实践课上,老师和同学们一起测量学校旗杆的高度,他们首先在旗杆底部C地测得旗杆顶部A的仰角为45°,然后沿着斜坡CD到斜坡顶部D点处再测得旗杆顶部A的仰角为37°(身高忽略不计),已知斜坡CD的坡度i=1:2.4,坡面CD长2.6米,旗杆AB所在旗台高度为1.4米,旗杆、旗台底部、斜坡在同一平面,则旗杆AB的高度为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.9.5米B.9.6米C.9.7米D.9.8米二.填空题11.如图,在正方形网格中,小正方形的边长为1,点A,B,C,D都在格点上,AB与CD相交于点O,则∠AOC的正切值是.12.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.13.一座建于若干年前的水库大坝,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了平方米.14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.15.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)三.解答题16.如图,在△ABC中,AD是BC边上的高,BC=4,AD=12,sin B=.求:(1)线段CD的长;(2)sin∠BAC的值.17.石室联合中学金沙校区位于三环跨线桥旁边,为了不影响学生上课,市政在桥旁安装了隔音墙,交通局也对此路段设置了限速,九年级学生为了测量汽车速度做了如下实验:在桥上依次取B、C、D三点,再在桥外确定一点A,使得AB⊥BD,测得AB之间15米,使得∠ADC =30°,∠ACB=60°.(1)求CD的长(精确到0.01,≈1.73,≈1.41).(2)交通局对该路段限速30千米/小时,汽车从C到D用时2秒,汽车是否超速?说明理由.18.如图,一艘渔船沿南偏东42°方向航行,在A处测得一个小岛P在其南偏东64°方向.又继续航行(40﹣16)海里到达B处,测得小岛P位于渔船的南偏东72°方向,已知以小岛P为圆心,半径16海里的圆形海域内有暗礁.如果渔船不改变航向有没有触礁的危险,请通过计算加以说明.如果有危险,渔船自B处开始,沿南偏东多少度的方向航行,能够安全通过这一海域?(参考数据:sin22°=,cos22°=,tan22°=)参考答案一.选择题1.解:∵∠C=90°,BC=,AB=2,∴cos B==,∴∠B=30°,故选:C.2.解:在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10,∴sin A===.故选:A.3.解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,故选:B.4.解:过B作BC⊥地面于C,如图所示:∵BC:AC=1:3,即1:AC=1:3,∴AC=3(米),∴AB===(米),即物体从A到B所经过的路程为米,故选:B.5.解:过点D作DM⊥BC,垂足为M,由题意得,∠B=37°,∠ADF=53°,BE=4,EM=1,∵坡面DE的坡度为1,∴=1,∴DM=EM=1=FC,在Rt△ADF中,∠DAF=90°﹣∠ADF=90°﹣53°=37°,∵tan∠DAF=≈0.75,设AF=x,则DF=0.75x=MC,在Rt△ABC中,∵tan∠B=,∴tan37°=≈0.75,解得x=≈6.29(米),故选:A.6.解:如图.∵在直角△ABC中,∠ACB=90°,tanα=,∴可设AC=4x,那么BC=3x,∴AB===5x,∴A′B′=AB=5x.∵在直角△A′B′C中,∠A′CB′=90°,A′C=4x﹣1,B′C=3x+1,∴(4x﹣1)2+(3x+1)2=(5x)2,解得x=1,∴A′C=3,B′C=4,A′B′=5,∴cosβ=.故选:A.7.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=20米,DE=40米,BF=CG,在Rt△CDG中,i=1:2.4,CD=26米,∴BF=CG=10米,GD=24米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=84米,∠E=24°,∴AF=FE•tan24°≈84×0.45=37.8(米),∴AB=AF﹣BF=37.8﹣10≈28(米);即建筑物AB的高度为28米;故选:B.8.解:在Rt△ABC中,,∴BC=AB•tanα,在Rt△ABD中,tan45°=,∴BD=AB•tan45°=AB,∴CD=a=BC+BD=AB•tanα+AB=(100+100•tanα)米,故选:B.9.解:如图,延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,BF:CF=1:,∴设BF=k,则CF=k,∴BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=6,∵DF=DC+CF,∴DF=40+6在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.785(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.785﹣4.5≈33.3.答:大楼AB的高度约为33.3米.故选:C.10.解:作DH⊥FC交FC的延长线于点H,延长AB交CF的延长线于点T,作DJ⊥AT于点J,如图所示:则四边形EFTB与四边形DHTJ都是矩形,∴BT=EF=1.4米,JT=DH,在Rt△DCH中,CD=2.6米,=,∴DH=1(米),CH=2.4(米),∵∠ACT=45°,∠T=90°,∴AT=TC,设AT=TC=x.则DJ=TH=(x+2.4)米,AJ=(x﹣1)米,在Rt△ADJ中,tan∠ADJ==0.75,∴=0.75,解得:x=11.2,∴AB=AT﹣BT=11.2﹣1.4=9.8(米),故选:D.二.填空题11.解:如图取格点K,连接BK,过点K作KH⊥AB于H,如图所示:∵DB=CK=2,DB∥CK,∴四边形CDBK是平行四边形,∴CD∥BK,∴∠AOC=∠ABK,过点K作KH⊥AB于H.∵AB==,S△ABK=•AK•4=•AB•KH=20,∴HK==,∵BK==2,∴BH===,∴tan∠AOC=tan∠ABK===,故答案为:.12.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.13.解:∵背水坡AB的坡度为1:0.75,AC=4,∴=0.75,解得,BC=3,∵坡AD的坡度为1:2,AC=4,∴CD=8,∴BD=DC﹣BC=5,∴△ADB的面积=×5×4=10(平方米),故答案为:10.14.解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.15.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30,∵AB=57,∴BE=AB﹣AE=57﹣30,∵四边形BCFE是矩形,∴CF=BE=57﹣30.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=57﹣30,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.三.解答题16.解:(1)∵AD是BC边上的高,∴∠D=90°,在Rt△ABD中,∵sin B=.∴=,又∵AD=12,∴AB=15,∴BD==9,又∵BC=4,∴CD=BD﹣BC=9﹣4=5;答:线段CD的长为5;(2)如图,过点C作CE⊥AB,垂足为E,∵S△ABC=BC•AD=AB•CE∴×4×12=×15×CE,∴CE=,在Rt△AEC中,∴sin∠BAC===,答:sin∠BAC的值为.17.解:(1)在Rt△ABC中,∠ABC=90°,∠ACB=60°,AB=15米,∴BC===5米,在Rt△ABD中,∠ABD=90°,∠ADB=30°,∴BD=AB=15米,∴CD=BD﹣BC=10≈17.32米,∴CD的长为17.32米;(2)∵30千米/小时=30000÷3600=米/秒,而10÷2≈8.66>,∴汽车超速.18.解:如图1,过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=64°﹣42°=22°,∠PBC=72°﹣42°=30°,AB=40﹣16,设PC=x,在Rt△PBC中,∵∠PBC=30°,∴BC=PC=x,∴AC=AB+BC=40﹣16+x,在Rt△P AC中,∵∠P AC=22°,∴tan∠P AC=,即=,解得,x=16,即PC=16,BP=2PC=32,∵16<16,∴有危险.如图2,渔船沿着BD方向航行,过点P作PD⊥BD,垂足为D,在Rt△PBD中,∵sin∠PBD===,∴∠PBD=45°,∴∠QBD=∠QBP﹣∠DBP=72°﹣45°=27°,即渔船自B处开始,沿南偏东27°的方向航行,能够安全通过这一海域.。
人教版九年级下册数学第二十八章 锐角三角函数 含答案
人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、在直角坐标平面内有一点P(3,4),OP与x轴正半轴的夹角为,则的值()A. B. C. D.2、sin58°、cos58°、cos28°的大小关系是()A.cos28°<cos58°<sin58°B.sin58°<cos28°<cos58° C.cos58°<sin58°<cos28° D.sin58°<cos58°<cos28°3、如图,矩形中,.以点为圆心,以任意长为半径作弧分别交、于点、,再分别以点、为圆心,以大于的长为半径作弧交于点,作射线交于点,若,则矩形的面积等于()A. B. C. D.4、如图,在等腰中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为()A.3B.C.D.25、如图,在等腰 Rt△ABC 中,∠C=90°,AC=6,D 是 AC 上一点,若 tan ∠DBA=,则 AD 的长为( )A.2B.C.D.16、如图,在菱形ABCD中,DE⊥AB,,AE=3,则tan∠DBE的值是( )A. B.2 C. D.7、在平面直角坐标系中,已知点A(3,0),点B(0,-4),则tan∠OAB的值为().A. B. C. D.8、已知β为锐角,且tan β=3.387,则β约等于( )A.73°33'B.73°27'C.16°27'D.16°21'9、如图,小明在骑行过程中发现山上有一建筑物.他测得仰角为15°;沿水平笔直的公路向山的方向行驶4千米后,测得该建筑物的仰角为30°,若小明的眼睛与地面的距离忽略不计,则该建筑物离地面的高度为()A.2 千米B.2 千米C.2千米D. 千米10、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30C.30D.4011、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则cos∠ODA= ( )A. B. C. D.12、等腰梯形中,上底:腰:下底=1:2:3,则下底角的度数是()A.30°B.45°C.60°D.90°13、比较tan20°,tan50°,tan70°的大小,下列不等式正确的是()A.tan70°<tan50°<tan20°B.tan50°<tan20°<tan70° C.tan20°<tan50°<tan70° D.tan20°<tan70°<tan50°14、在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA的值为()A. B. C. D.15、若关于x的方程x2﹣x+sina=0有两个相等的实数根,则锐角a为()A.75°B.60°C.45°D.30°二、填空题(共10题,共计30分)16、计算:2﹣1×+2cos30°=________.17、如图,,点是射线上的点,,以点为圆心,为半径作圆.若绕点按逆时针方向旋转,当和相切时,旋转的角度是________.18、在△ABC中,AB=,BC=6,∠B=45°,D为BC边上一点将△ABC沿着过D点的直线折叠,使得点C落在AB边上,记CD=m,则AC=________,m 的取值范围是________19、若一个正多边形的一个外角等于36°,则这个正多边形有________条对角线;用科学计算器计算:135×sin13°≈________.(精确到0.1)20、请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个正n边形(n>4)的内角和是外角和的3倍,则n=________;B.小明站在教学楼前50米处,测得教学楼顶部的仰角为20°,测角仪的高度为1.5米,则此教学楼的高度为________米.(用科学计算器计算,结果精确到0.1米)21、如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tan∠COA= ,若函数的图象经过顶点B,则k的值为________.22、如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°..则AD2=________ ,依此类推这样做的第n个菱形ABn CnDn的边ADn的长是 ________ .23、如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角∠A=________°.24、在Rt△ABC中,∠C=90°,若AC=2BC,则cosA=________.25、在锐角三角形ABC中.BC=,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是________.三、解答题(共5题,共计25分)26、计算:27、一艘救生船在码头A接到小岛C处一艘渔船的求救信号,立即出发,沿北偏东67°方向航行10海里到达小岛C处,将人员撤离到位于码头A正东方向的码头B,测得小岛C位于码头B的北偏西53°方向,求码头A与码头B的距离.【参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】28、九(1)数学兴趣小组为了测量河对岸的古塔A、B的距离,他们在河这边沿着与AB平行的直线l上取相距20m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°,如图所示,求古塔A、B的距离.29、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).30、 4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、D5、A6、B7、C8、A9、C10、B11、A12、C13、C14、C15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。
人教版九年级下册数学第二十八章 锐角三角函数 含答案
人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、在△ABC中,∠C=90°,sinA=,则cosB的值为( )A.1B.C.D.2、如图,在△ABC中,∠A=30°,tanB= ,AC=2 ,则AB的长是()A.4B.3+C.5D.2+23、使有意义的锐角x的取值范围是()A.x=45°B.x≠45°C.45°<x<90°D.0°<x<45°4、如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△,则点的坐标是()A.(,4)B.(4,)C.(,3)D.(+2,)5、如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2 ,AC=3 ,BC=6,则⊙O的半径是()A.3B.2C.2D.6、如图,AB切⊙O于点B,OA=2 、,AB=3,弦BC∥OA,则劣弧BC 的弧长为()A. B. C.π D.7、已知β为锐角,cos β≤,则β的取值范围为( )A.30°≤β<90°B.0°<β≤60°C.60°≤β<90°D.30°≤β<60°8、如图,一块直角三角板和一张光盘竖放在桌面上,其中A是光盘与桌面的切点,∠BAC=60°,光盘的直径是80cm,则斜边AB被光盘截得的线段AD长为()A.20 cmB.40 cmC.80cmD.80 cm9、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.10、轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()A.25 海里B.25 海里C.50海里D.25海里11、在△ABC中,,则△ABC为()A.直角三角形B.等边三角形C.含60°的任意三角形D.是顶角为钝角的等腰三角形12、小蓉从格致楼底楼点A处沿立人大礼堂旁的台阶AB拾阶而上,步行20米后到达万象楼楼底点B,再从点B直线行进15米到达直通博雅楼的台阶底端C,然后沿台阶CD步行至博雅楼底楼的小平台D.在D点处测得竖立于百汇园旁的万象楼BE的楼顶点E的仰角为30°.如图所示,已知台阶AB与水平地面夹角为45°,台阶CD与水平地面夹角为60°,CD=12米,点A,B,C,D,E在同一平面.则格致楼楼底点A到万象楼楼顶点E的垂直高度约为()(参考数据:≈1.7,≈1.4)A.22.1米B.35.2米C.27.3米D.36.1米13、河堤横断面如图所示,堤高=6米,迎水坡的坡比为1:,则迎水坡的长为()A.12B.4 米C.5 米D.6 米14、如图,在中,.边在x轴上,顶点的坐标分别为和.将正方形沿x轴向右平移当点E落在边上时,点D的坐标为()A. B. C. D.15、△ABC中,∠C=90°,sinA=,则tanB的值为( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=________.17、一座拦河大坝的横截面是梯形ABCD,AD∥BC,∠B = 90°,AD = 6米,坡面CD的坡度,且BC = CD,那么拦河大坝的高是________米.18、河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比是1:,则AC 的长是________米.19、计算:=________20、如图所示,一副篮架由配重、支架、篮板与篮筐组成,在立柱的C点观察篮板上沿D点的仰角为45°,在支架底端的A点观察篮板上沿D点的仰角为54°,点C与篮板下沿点E在同一水平线,若AB=1.91米,篮板高度DE为1.05米,那么篮板下沿E点与地面的距离为________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学 班级 姓名
第28章 《锐角三角函数》测试题
一、选择题(30)分
1. 4sin tan 5
ααα=若为锐角,且,则为 ( ) 933425543
A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )
A .sinA = sin
B B .cosA=sinB
C .sinA=cosB
D .∠A+∠B=90°
3.直角三角形的两边长分别是6,8,则第三边的长为( )
A .10
B ..10或 D .无法确定
4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )
A .c =sin a A
B .c =cos a A
C .c = a ·tanA
D .c = tan a A
5、 45cos 45sin +的值等于( ) A. 2 B. 213+ C. 3 D. 1
6.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( )
A. 3
B. 300
C. 503
D. 15 7.当锐角α>30°时,则cos α的值是( )
A .大于12
B .小于12
C 8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )
A .1米
B
C ..3
9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )
(A )4 (B )5 (C )(D
10.已知Rt △ABC 中,∠C=90°,tanA=
43,BC=8,则AC 等于( ) A .6 B .323
C .10
D .12 二、填空题(21分)
11.计算2sin30°+2cos60°+3tan45°=_______.
12.若sin28°=cos α,则α=________.
13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.
14.某坡面的坡度为1
_______度.
15.在△ABC 中,∠C =90°,AB =10cm ,sinA =5
4,则BC 的长为_______cm . 16.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为
A.82米
B.163米
C.52米
D.70米
17.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)
(16题) (17题)
三、解答题
18.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:
(1)已知a=4,b=8, (2)已知b=10,∠B=60°.
(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°
(。