第5讲指数与指数函数(学生版)

合集下载

2022版高考数学一轮复习第3章函数第5讲指数与指数函数课件

2022版高考数学一轮复习第3章函数第5讲指数与指数函数课件

(2)指数函数的图象与性质:
a>1
0<a<1
图象
第七页,编辑于星期六:四点 六分。
定义域 值域
性质
a>1
0<a<1
①___R_____ ②_(_0_,__+__∞_)
③过定点___(0_,_1_) __,即x=0时,y=1
④当x>0时,__y_>__1__;
⑤当x<0时,___y>__1__;
当x<0时,_0_<__y_<_1_
×-25
×23
-32313
-1=52-32-1=0.
(2)原式=
1
a3
1
a3
1
a3
3-2b31
3
2+a31
1
·2b3
+2b13
1
a3 ÷
2
1
-2b3 a
2 1
·a·a3
1
1
2
1
a2
·a3
5
5
1
=a3
1
a3
1
-2b3
·1 a3
a
1
-2b3
·a61
1
=a3
a6
2
·a·a3
=a2.
第二十二页,编辑于星期六:四点 六分。
当x>0时,_0_<__y<__1_
⑥在(-∞,+∞)内是 __增_____函数
⑦在(-∞,+∞)内是 ___减____函数
第八页,编辑于星期六:四点 六分。
【特别提醒】 1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且 结果不能同时含有根号和分数指数幂,也不能既含有分母又含有负指 数. 2.指数函数y=ax(a>0,a≠1)的图像和性质跟a的取值有关,要特 别注意区分a>1或0<a<1.

第三章 第五节 指数函数 课件(共53张PPT)

第三章 第五节 指数函数 课件(共53张PPT)
解析: 函数 y=|3x-1|的图象是由函数 y=3x 的图象向下平移一个单位 后,再把位于 x 轴下方的图象沿 x 轴翻折到 x 轴 上方得到的,函数图象如图所示.
由图象知,其在(-∞,0]上单调递减,所以 k 的取值范围为(-∞,0].
答案: (-∞,0]
指数函数的性质及应用
角度一 比较指数幂的大小
解析: (1)由函数 y=kx+a 的图象可得 k<0,0<a<1.因为函数的图象与 x 轴交点的横坐标大于 1,所以 k>-1,所以-1<k<0.函数 y=ax+k 的图象可以 看成把 y=ax 的图象向右平移-k 个单位长度得到的,且函数 y=ax+k 是减函 数,故此函数与 y 轴交点的纵坐标大于 1,结合所给的选项,选 B.
1.判断下列结论是否正确(请在括号中打“√”或“×”)
n (1)
an
=(n
a
)n=a(n∈N+).(
)
m
(2)分数指数幂 an
可以理解为mn
个 a 相乘.(
)
(3)函数 y=3·2x 与 y=2x+1 都不是指数函数.( )
(4)若 am<an(a>0,且 a≠1),则 m<n.( )
答案: (1)× (2)× (3)√ (4)×
角度二 解简单的指数方程或不等式
(1)若
,则函数 y=2x 的值域是( )
1 A.8,2
1 B.8,2
C.-∞,18
D.[2,+∞)
4x,x≥0, (2)已知实数 a≠1,函数 f(x)=2a-x,x<0, 若 f(1-a)=f(a-1),则 a 的
值为________.
解析: (1)因为

2023年高考数学总复习第二章 函数概念与基本初等函数第5节:指数与指数函数(学生版)

2023年高考数学总复习第二章 函数概念与基本初等函数第5节:指数与指数函数(学生版)

2023年高考数学总复习第二章函数概念与基本初等函数第5节指数与指数函数考试要求1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,12,13的指数函数的图像;4.体会指数函数是一类重要的函数模型.1.根式的概念及性质(1)概念:式子na 叫作根式,其中n 叫作根指数,a 叫作被开方数.(2)性质:(na )n =a (a 使na 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.3.指数幂的运算性质实数指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈R .4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫作指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图像与性质a >10<a <1图像定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.画指数函数y =a x (a >0,且a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),12.指数函数y =a x (a >0,且a ≠1)的图像和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.3.在第一象限内,指数函数y =a x (a >0,且a ≠1)的图像越高,底数越大.1.思考辨析(在括号内打“√”或“×”)(1)4(-4)4=-4.()(2)分数指数幂a mn 可以理解为mn 个a 相乘.()(3)函数y =2x -1是指数函数.()(4)函数y =a x2+1(a >1)的值域是(0,+∞).()2.(易错题)若函数f (x )=(a 2-3)·a x 为指数函数,则a =________.3.(易错题)函数y =21x -1的值域是________.4.函数f (x )=a x -1+2(a >0且a ≠1)的图像恒过定点________.5.(2021·贵阳一中月考)3213-76+814×42--2323________.6.已知a 35-13,b 35-14,c =3234,则a ,b ,c 的大小关系是________.考点一指数幂的运算1.计算:823--780+4(3-π)4+[(-2)6]12=________.2.[(0.06415)-2.5]23-3338-π0=________.3.(2021·沧州七校联考1412·(4ab -1)3(0.1)-1·(a 3·b -3)12(a >0,b >0)=________.4.已知f (x )=3x +3-x ,f (b )=4,则f (2b )=________.考点二指数函数的图像及应用例1(1)已知实数a ,b 满足等式2022a =2023b ,下列等式一定不成立的是()A.a =b =0B.a <b <0C.0<a <bD.0<b <a(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.训练1(1)函数f (x )=a x -b 的图像如图所示,其中a ,b 为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0(2)如果函数y =|3x -1|+m 的图像不经过第二象限,则实数m 的取值范围是________.考点三解决与指数函数性质有关的问题角度1比较指数式的大小例2(1)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<cD.b<c<a(2)若e a+πb≥e-b+π-a,下列结论一定成立的是()A.a+b≤0B.a-b≥0C.a-b≤0D.a+b≥0角度2解简单的指数方程或不等式例3(1)已知实数a≠1,函数f(x)4x,x≥0,2a-x,x<0,若f(1-a)=f(a-1),则a的值为________.(2)若2x2+114x-2,则函数y=2x的值域是()A.18,2 B.18,2C.-∞,18 D.[2,+∞)角度3指数函数性质的综合应用例4(1)不等式4x-2x+1+a>0,对任意x∈R都成立,则实数a的取值范围是________.(2)已知定义域为R的函数f(x)=-12+12x+1,则关于t的不等式f(t2-2t)+f(2t2-1)<0的解集为________.训练2(1)(2021·郑州调研)已知函数f(x)=4x-12x,a=f(20.3),b=f(0.20.3),c=f(log0.32),则a,b,c的大小关系为()A.c<b<aB.b<a<cC.b<c<aD.c<a<b(2)若函数f (x )2+2x +3,19,则f (x )的单调递增区间是______.(3)函数y +1在区间[-3,2]上的值域是________.1.若函数f (x )=a x (a >0,且a ≠1)f (-1)=()A.1B.2C.3D.32.(2021·成都诊断)不论a 为何值,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是()113.(2022·哈尔滨质检)函数y =a x -1a(a >0,且a ≠1)的图像可能是()4.(2020·天津卷)设a =30.7,b 0.8,c =log 0.70.8,则a ,b ,c 的大小关系为()A.a <b <cB.b <a <cC.b <c <aD.c <a <b5.(2021·衡水中学检测)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是()A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)6.(2020·新高考山东卷)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.化简:(a23·b-1)-12·a-12·b136a·b5(a>0,b>0)=________.8.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是____________.9.已知函数f(x),a≤x<0,x2+2x,0≤x≤4的值域是[-8,1],则实数a的取值范围是________.10.已知定义域为R的函数f(x)=-2x+b2x+1+2为奇函数.(1)求b的值;(2)任意t∈R,f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.11.已知函数f(x)=4x+m2x是奇函数.(1)求实数m的值;(2)设g(x)=2x+1-a,若函数f(x)与g(x)的图像有公共点,求实数a的取值范围.12.若关于x的方程|a x-1|=2a(a>0,且a≠1)有两个不相等的实根,则a的取值范围是()A.0,12(1,+∞) B.0,12C.12,1 D.(1,+∞)13.(2022·邯郸模拟)设f(x)|2x-1|,x≤2,-x+5,x>2,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)14.已知定义在R上的函数f(x)=2x-12|x|.(1)若f(x)=32,求x的值;(2)若2t f(2t)+mf(t)≥0对任意t∈[1,2]恒成立,求实数m的取值范围.。

《指数函数》经典讲义(完整版)

《指数函数》经典讲义(完整版)

指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则01c d a b <<<<<,在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大在第一象限内,“底大图高”知识点4:指数式、指数函数的理解① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像1223,,21xx y y x y y =⋅===- 等函数均不符合形式()01x y a a a =>≠且,因此,它们都不是指数函数⑤ 画指数函数x y a =的图像,应抓住三个关键点:()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析:(1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为,所以,所以m=1.(2)因为f (x )的定义域为{x|x≠0},又,所以f (x )是奇函数. (3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f (x1)>f (x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n为奇数时,=×1=;n为偶数时,=+f()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a(﹣)+b(﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b(﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n ﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.11。

第05讲 指数与指数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第05讲 指数与指数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第05讲指数与指数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:指数与指数幂的运算高频考点二:指数函数的概念高频考点三:指数函数的图象①判断指数型函数的图象;②根据指数型函数图象求参数③指数型函数图象过定点问题;④指数函数图象应用高频考点四:指数(型)函数定义域高频考点五:指数(型)函数的值域m n上的值域;②指数型复合函数值域①指数函数在区间[,]③根据指数函数值域(最值)求参数高频考点六:指数函数单调性①判断指数函数单调性;②由指数(型)函数单调性求参数③判断指数型复合函数单调性;④比较大小⑤根据指数函数单调性解不等式高频考点七:指数函数的最值①求已知指数型函数的值域②根据指数函数最值求参数③含参指数(型)函数最值第四部分:高考真题感悟第五部分:第05讲指数与指数函数(精练)1、根式的概念及性质(1)概念:叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:①n a =(n N *∈且1n >);②当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩ 2、分数指数幂①正数的正分数指数幂的意义是mna =0a >,,m n N *∈,且1n >);②正数的负分数指数幂的意义是m na-=(0a >,,m n N *∈,且1n >);③0的正分数指数幂等于0;0的负分数指数幂没有意义.3、指数幂的运算性质①(0,,)rsr sa a aa r s +=>∈R ;②()(0,,)r s rsa a a r s =>∈R ; ③()(0,0,)rr rab a b a b r =>>∈R .4、指数函数及其性质(1)指数函数的概念函数()xf x a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,函数的定义域是R .(2)指数函数()xf x a =的图象和性质定义域为R ,值域为(0,)+∞一、判断题1.(2021·江西·贵溪市实验中学高二阶段练习)函数()11x f x a -=+(0a >且1a ≠)的图象必过定点()1,2( )2.(2021·江西·贵溪市实验中学高二阶段练习)11121321a ba( ) 二、单选题1.(2022·宁夏·银川一中高二期末(文))函数()e 1x f x =+在[1,1]-的最大值是( ) A .eB .e 1-+C .e 1+D .e 1-2.(2022·江苏南通·高一期末)已知指数函数()x f x a -=(0a >,且1a ≠),且()()23f f ->-,则a 的取值范围( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0∞-3.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)-B .(1,0)C .(0,0)D .(0,1)-4.(2022·河北廊坊·高一期末)指数函数()()1xf x a =-在R 上单调递减,则实数a 的取值范围是( ) A .()2,1--B .()2,+∞C .(),2-∞-D .()1,25.(2022·北京·高三专题练习)若函数()21x y m m m =--⋅是指数函数,则m 等于( )A .1-或2B .1-C .2D .12高频考点一:指数与指数幂的运算1.(2022·广东肇庆·高一期末)设62m =,63n =,则222m n mn ++=( ) A .12B .1C .2D .32.(2022·上海杨浦·高一期末)设0a >,下列计算中正确的是( ) A .4334a a a ⋅= B .4334a a a ÷= C .4334a a ⎛⎫= ⎪⎝⎭D .4 334a a -⎛⎫= ⎪⎝⎭3.(2022·广东深圳·高一期末)下列根式与分数指数幂的互化正确的是( ) A .()12x -B .)340xx ->C 13y =D .()31420x x ⎤=<4.(2022·全国·高三专题练习)化简2112333324()3a b a b --⋅÷-的结果为( )A .-23ab B .-8a bC .-6a bD .-6ab高频考点二:指数函数的概念1.(2022·浙江·高三专题练习)函数()(0x f x a a =>,且a ≠1)的图象经过点13,27P ⎛⎫⎪⎝⎭,则f (-2)= ( )A .19B C .13D .92.(2022·黑龙江·嫩江市第一中学校高一期末)已知指数函数()2()253xf x a a a =-+在R 上单调递增,则a的值为( ) A .3B .2C .12D .323.(2022·全国·高一课时练习)函数()2xy a a =-是指数函数,则( ) A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠4.(2022·浙江·高三专题练习)若指数函数x y a =在[-1,1]上的最大值与最小值的差是1,则底数a 等于A B CD 高频考点三:指数函数的图象①判断指数型函数的图象1.(2022·上海市复兴高级中学高一阶段练习)函数3x y -=的大致图像是( )A .B .C .D .2.(2022·上海市进才中学高二阶段练习)函数(01)||xxa y a x =<<的图像的大致形状是( ) A . B .C .D .3.(2022·全国·高三专题练习)已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( ).A .B .C .D .4.(2022·全国·高三专题练习(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .②根据指数型函数图象求参数1.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >2.(2022·全国·高三专题练习)函数(0,1)x y a a a =>≠与b y x =的图象如图,则下列不等式一定成立的是( )A .0a b >B .0a b +>C .log 2a b >D .1b a >3.(2021·全国·高一专题练习)函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <4.(2021·全国·高一专题练习)若函数()x f x a b =-的图象如图所示,则( )A .1a >,1b >B .1a >,01b <<C .01a <<,1b >D .01a <<,01b <<③指数型函数图象过定点问题1.(2022·吉林·长春市第二中学高一期末)函数()21(0x f x a a +=->且1)a ≠的图象恒过定点( )A .(-2,0)B .(-1,0)C .(0,-1)D .(-1,-2)2.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+ B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =-3.(2022·河南焦作·高一期末)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-4.(2022·全国·高三专题练习)已知函数5()4x f x a +=+(0a >,1a ≠)恒过定点(,)M m n ,则函数()x g x m n =+的图像不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限④指数函数图象应用1.(2021·重庆市涪陵第二中学校高一阶段练习)函数1()(0,1)x f x a a a a=->≠的图象可能是( )A .B .C .D .2.(2021·全国·高一课时练习)函数()(0x f x a a =>,且1a ≠)与()g x x a =-+的图像大致是A .B .C .D .3.(2021·全国·高一课时练习)若1a >,10b -<<,则函数x y a b =+的图像一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限D .第一、二、四象限高频考点四:指数(型)函数定义域1.(2022·全国·高三专题练习)函数()f x = ) A .[)1,+∞B .1,2⎡⎫+∞⎪⎢⎣⎭C .(),1-∞-D .(),2-∞-2.(2022·全国·高三专题练习)函数()22f x x =-的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞3.(2021·江苏·高一专题练习)函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1D .a ≠14.(2021·广西河池·高一阶段练习)设函数()f x 2x f ⎛⎫ ⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,1高频考点五:指数(型)函数的值域①指数函数在区间[,]m n 上的值域1.(2022·全国·高一)当x ∈[-1,1]时,函数f (x )=3x -2的值域为________2.(2022·全国·高三专题练习)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.3.(2022·全国·高三专题练习)已知函数()2421x x f x a =⋅--.当1a =时,求函数()f x 在[]3,0x ∈-的值域;4.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax x g x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围.②指数型复合函数值域1.(2022·山西·临汾第一中学校高一期末)函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,22.(2022·湖南邵阳·高一期末)函数2212x y -⎛⎫= ⎪⎝⎭的值域为______.3.(2022·全国·高三专题练习)函数1()41(0)2xxf x x -⎛⎫=++≥ ⎪⎝⎭的值域是___________.4.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值.5.(2022·全国·高三专题练习)已知函数()24x x f x =-.(1)求()y f x =在[]1,1-上的值域;③根据指数函数值域(最值)求参数1.(2022·广东湛江·高一期末)已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=( ) A .32-B .1-C .1D .322.(2022·辽宁鞍山·高一期末)若函数()f x =的值域为[0,)+∞,则实数a 的取值范围是( )A .12⎧⎫⎨⎬⎩⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .[0,)+∞3.(2022·全国·高一)已知函数()(0xf x a a =>且1)a ≠在区间[]1,2上的最大值比最小值大2a ,求a 的值.4.(2022·湖南·高一期末)已知函数()245x xf x a a =+-.(1)求()f x 的值域;(2)当[]1,2x ∈-时,()f x 的最大值为7,求a 的值.5.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.高频考点六: 指数函数单调性①判断指数函数单调性1.(2022·广西南宁·高一期末)设函数()122xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在()0,+∞单调递增B .是偶函数,且在()0,+∞单调递减C .是奇函数,且在()0,+∞单调递增D .是奇函数,且在()0,+∞单调递减2.(2022·福建宁德·高一期末)已知()21x b f x a =-+是R 上的奇函数,且()113f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并根据定义证明.3.(2021·贵州·六盘水红桥学校高一阶段练习)若函数()(3)3(1)x f x k a b a =++->是指数函数 (1)求k ,b 的值;(2)求解不等式(27)(43)f x f x ->-4.(2021·全国·高一期末)设函数2()12xx f x a =++,(1)判断()f x 的单调性,并证明你的结论;②由指数(型)函数单调性求参数1.(2022·辽宁朝阳·高一开学考试)若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫ ⎪⎝⎭2.(2022·内蒙古·赤峰二中高一期末(文))若函数()33,0,0xx a x f x a x -+-<⎧=⎨⎩是R 上的减函数,则实数a 的取值范围是___.3.(2022·河北张家口·高一期末)已知函数()()2,1,32,1x a x x f x a x -⎧-<=⎨⋅-≥⎩在R 上单调递减,则实数a 的取值范围是______.4.(2022·湖南·高一课时练习)若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.5.(2022·安徽·歙县教研室高一期末)若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.6.(2022·湖南·高一课时练习)若函数()()28xf x a =-是区间(),-∞+∞上的减函数,求实数a 的取值范围.③判断指数型复合函数单调性1.(2022·安徽省蚌埠第三中学高一开学考试)函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭2.(2022·河南·商丘市第一高级中学高一开学考试)已知函数()24,18,1x x ax x f x a x ⎧-+≤=⎨+>⎩,且对于任意的12,x x ,都有()()()1212120f x f x x x x x ->≠-,则实数a 的取值范围是( )A .(]1,2B .(]1,3C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭3.(2022·宁夏·吴忠中学高一期末)已知函数2251()2x x f x -+⎛⎫= ⎪⎝⎭在(),a +∞上单调递减,则实数a 的取值范围是______.4.(2022·河南·林州一中高一开学考试)已知函数2()21x x af x +=+是奇函数.(1)求a 的值;(2)判断并证明函数()f x 的单调性.④比较大小1.(2022·广东汕尾·高一期末)若1312a ⎛⎫= ⎪⎝⎭,1314b ⎛⎫= ⎪⎝⎭,1412c ⎛⎫= ⎪⎝⎭,则( )A .c a b >>B .c b a >>C .b c a >>D .a b c >>2.(2022·陕西·略阳县天津高级中学高三阶段练习(文))设233a =,1413b ⎛⎫= ⎪⎝⎭,133c =,则a ,b ,c 的大小关系是( ) A .b c a >>B .a b c >>C .c a b >>D .a c b >>3.(2022·福建三明·高一期末)已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<4.(2022·海南·模拟预测)设0.22e a -=,0.2e b =, 1.2c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c b a <<⑤根据指数函数单调性解不等式1.(2022·全国·高一)若1()273x >,则x 的取值范围是______.2.(2022·海南鑫源高级中学高一期末)已知不等式124x ->的解集是__________.3.(2022·福建·莆田一中高一开学考试)已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数a 满足()(212a f f ->,则a 的取值范围是______.4.(2022·福建福州·高一期末)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()23x f x =+.(1)求()f x 的解析式; (2)解不等式()()22f x f x ≥.高频考点七:指数函数的最值①求已知指数型函数的值域1.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞2.(2022·北京·高三学业考试)已知函数()2x f x =,[0,)x ∈+∞,则()f x ( ) A .有最大值,有最小值 B .有最大值,无最小值 C .无最大值,有最小值D .无最大值,无最小值3.(2022·全国·高三专题练习(文))设函数1()422x x f x +=-+,则(1)f =________;函数()f x 在区间[1,2]-的最大值为_________.4.(2022·贵州贵阳·高一期末)已知函数2()35,()2x f x x x g x a =-++=+,若12[0,2],[2,3]x x ∀∈∃∈,使得()()12f x g x <,则实数a 的取值范围是___________.5.(2022·甘肃·兰州一中高一期末)已知02x ≤≤,则函数124325x x y -=-⨯+的最大值为__________.②根据指数函数最值求参数1.(2022·辽宁·渤海大学附属高级中学高一期末)若函数()213ax a f x +⎛⎫= ⎪⎝⎭在[)1,+∞上有最大值19,则实数a的值为( ) A .1B .2-C .1或2-D .1或1-2.(多选)(2022·江苏常州·高一期末)若函数()xf x a =(0a >且1a ≠)在区间[]22-,上的最大值和最小值的和为103,则a 的值可能是( )A .13B CD .33.(2022·上海虹口·高一期末)已知函数x y a =(0a >且1a ≠)在[]1,2的最大值与最小值之差等于2a,则实数a 的值为______.4.(2022·青海·海南藏族自治州高级中学高一期末)已知指数函数()x f x a =(0a >且1a ≠)在区间[]2,3上的最大值是最小值的2倍,则=a ______.5.(2022·全国·高三专题练习)若函数()0,1xy a a a =>≠在区间[]1,2上的最大值和最小值之和为6,则实数=a ______.6.(2022·湖南·高一课时练习)若函数()22x x f x a a =+-(0a >且1a ≠)在区间[]1,0-上的最小值为54-,求a 的值.③含参指数(型)函数最值1.(2022·全国·高三专题练习)如果函数y =a 2x +2ax -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.2.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知函数()1423x x f x a +=⋅--.(1)当1a =时,求函数()f x 的零点;(2)若0a >,求()f x 在区间[]1,2上的最大值()g a .3.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+. (1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值; (2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.4.(2022·全国·高一课时练习)求函数2()2x x f x e e =-的最值.1.(2020·山东·高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .2.(2021·湖南·高考真题)已知函数()2,0282,24x x f x x x ⎧≤≤=⎨-<≤⎩(1)画出函数()f x 的图象; (2)若()2f m ≥,求m 的取值范围.一、单选题1.(2022·江苏江苏·一模)设全集U =R ,集合{}21A x x =-≤,{}240x B x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,22.(2022·河南·模拟预测(文))已知58a =,45b =,则ab =( ) A .2B .32C .43D .13.(2022·辽宁朝阳·高二开学考试)已知函数()x x f x ππ-=-,若32(2)2a fb fc f ===,则a ,b ,c 的大小关系为( ) A .a b c >>B .a b c >>C .c b a >>D .b c a >>4.(2022·四川宜宾·二模(文))物理学家和数学家牛顿(IssacNewton )提出了物体在常温下温度变化的冷却模型:设物体的初始温度是1T (单位:℃),环境温度是0T (单位:℃),且经过一定时间t (单位:min )后物体的温度T (单位:℃)满足10e kt T T T T -=-(k 为正常数).现有一杯100℃热水,环境温度20℃,冷却到40℃需要16min ,那么这杯热水要从40℃继续冷却到30℃,还需要的时间为( ) A .6minB .7minC .8minD .9min5.(2022·湖北·石首市第一中学高一阶段练习)已知函数211()3x f x -⎛⎫= ⎪⎝⎭,则不等式()f x ≥( ) A .1,6⎡⎫+∞⎪⎢⎣⎭B .1,6∞⎛⎤- ⎥⎝⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞- ⎥⎝⎦6.(2022·河南·模拟预测(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞7.(2022·云南玉溪·高一期末)函数||()2x f x =,4()g x x =,则函数()()y f x g x =+的图象大致是( )A .B .C .D .8.(2022·全国·高三专题练习)已知432a =,254b =,1325c =,则( ) A .b a c << B .a b c << C .b c a << D .c a b <<二、填空题9.(2022·江苏连云港·二模)函数()1293x x f x -=+的最小值是___________.10.(2022·全国·高一)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是________. (填序号)①()12f x x =;②()3f x x =;③()12xf x ⎛⎫= ⎪⎝⎭;④f (x )=3x11.(2022·江西宜春·高三期末(文))高斯是德国著名的数学家,近代数学莫基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设R x ∈,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74 2.32-=-=,.已知()112x x e f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域为_________.12.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x的取值范围是________ 三、解答题13.(2022·湖南·高一课时练习)已知1x >,且13x x -+=,求下列各式的值: (1)1122x x -+; (2)1122x x --; (3)3322x x -+.14.(2022·贵州·凯里一中高一开学考试)已知函数()f x 是定义在[2,2]-上的奇函数,且(]0,2x ∈时,()21x f x =-,()22g x x x m =-+.(1)求()f x 在区间[)2,0-上的解析式;(2)若对[]12,2x ∀∈-,则[]22,2x ∃∈-,使得()()12f x g x =成立,求m 的取值范围.15.(2022·河南·高一阶段练习)已知函数()24x m x f x +=-.(1)当0m =时,求关于x 的不等式()2f x >-的解集;(2)若对[]0,1x ∀∈,不等式()22xf x m >-⋅恒成立,求实数m 的取值范围.16.(2022·辽宁丹东·高一期末)已知函数()22x x af x a-=+是奇函数.(1)求实数a 的值; (2)求()f x 的值域.。

2020年上海新高一新教材数学讲义-专题12 指数函数(学生版)

2020年上海新高一新教材数学讲义-专题12 指数函数(学生版)

专题12 指数函数(指数函数的定义与图像,指数函数的性质)知识梳理1.根式的运算性质:(1)当n 为任意正整数时,()n=a(2)当n 为奇数时,n n a =a ;当n 为偶数时,n na =|a |=⎩⎨⎧<-≥)0()0(a a a a(3)根式的基本性质:n m npmp a a =,(a≥0) 2.分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m aa Q n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+3.指数函数 n a热身练习1、3a a a ⋅⋅的分数指数幂表示为2、函数xy 2=的值域是3、函数21(0,1)x y a a a -=+>≠且的图像必经过点4、下列函数中值域是+R 的是( )A 、125xy -= B 、113xy -⎛⎫= ⎪⎝⎭ C 、y = D 、y =5、已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,比较()x f b 与()x f c 的大小关系例题解析考点一、指数函数的概念和性质【例1】在下列函数中,是指数函数的有_________________①1()2x y =①11()2x y -=①23x y =•①(0,0,1)x y a x a a =≥>≠①1xy =①21()2x y =①12y x =【例2】函数2(33)xy a a a =-+是指数函数,求a 的值【例3】函数12(0.58)xy -=-的定义域是【例4】函数()xa a x f ⎪⎭⎫ ⎝⎛-=1在()+∞∞-∈,x 上是减函数,求a 的取值范围【巩固训练】1.指出下列函数哪些是指数函数?(1)4x y =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2x y a a a =->≠且;(6)4x y -=.2.作出函数12x y -=与12x y -=的图像.3.已知x>0, 函数2(8)xy a =-的值恒大于1,则实数a 的取值范围是_____________4.函数(0,1)xy a a a =>≠在区间[1,2]上的最大值比最小值大2a,则实数a 的值是_____ 5.函数2xy =的图像与函数12xy ⎛⎫= ⎪⎝⎭的图像关于_________对称,它们的交点坐标是______考点二、指数函数的图像及其应用【例5】指数函数①()x f x m =②()x g x n =满足不等式01m n <<<,则它们的图象是 ( )【例6】(1)函数2xy -=-的图象一定过____________象限.(2)函数1()3x f x a -=+的图象一定过定点P ,则P 点的坐标是_________.(3)函数3x y -=与___________的图象关于y 轴对称.【例7】方程22x x +=的实根的个数为_______________. 【例8】.比较下列各组数的大小:(1)0.1和0.2;(2) 163()4和154()3-;(3) 20.8-和125()3-;(4) 13a 和12a (0a >,1a ≠);(5) 1.71.1;(6)2306.-和340.6-。

2018年高考数学文一轮复习文档:第二章 基本初等函数

2018年高考数学文一轮复习文档:第二章 基本初等函数

第5讲 指数与指数函数, )1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a mn=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编 化简12-(-1)0的结果为( ) A .-9 B .7 C .-10 D .9B2.教材习题改编 设x +x -1=3,则x 2+x -2的值为( ) A .9 B .7 C .5D .3B 因为x +x -1=3.所以(x +x -1)2=9,即x 2+x -2+2=9, 所以x 2+x -2=7. 3.函数f (x )=ax -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y =1-x 的图象上.4.教材习题改编 若a >1且a3x +1>a-2x,则x 的取值范围为________.因为a >1,所以y =a x为增函数, 又a3x +1>a-2x,所以3x +1>-2x ,即x >-15.⎝ ⎛⎭⎪⎫-15,+∞ 5.若指数函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝ ⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312. 【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab 3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100. (2)原式=2(4ab -1)3210a 32b -32=16a 32b-3210a 32b -32=85.指数函数的图象及应用(1)函数f (x )=ax -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)若方程|3x-1|=k 有一解,则k 的取值范围为________. 【解析】 (1)由f (x )=a x -b的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=ax -b的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点, 所以方程有一解.【答案】 (1)D (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=1-e |x |的图象大致是( )A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x-1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即 0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.⎝⎛⎭⎪⎫0,12指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下四个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质;(4)求解指数型函数中参数的取值范围.(1)(2016·高考全国卷丙)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b(2)(2017·福州模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.(3)若偶函数f (x )满足f (x )=2x-4(x ≥0),则不等式f (x -2)>0的解集为________. 【解析】 (1)因为a =243=1613,b =425=1615,c =2513,且幂函数y =x 13在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .(2)当a <1时,41-a=21,所以a =12;当a >1时,代入不成立. (3)f (x )为偶函数,当x <0时,f (x )=f (-x )=2-x-4.所以f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x -4,x <0,当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0 或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0.所以不等式的解集为{x |x >4或x <0}. 【答案】 (1)A (2)12(3){x |x >4或x <0}有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小1.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <cD .b <c <aC 因为指数函数y =0.6x在(-∞,+∞)上为减函数, 所以0.60.6>0.61.5,即a >b ,又0<0.60.6<1,1.50.6>1,所以a <c ,故选C.角度二 解简单的指数方程或不等式 2.(2015·高考江苏卷)不等式2x 2-x<4的解集为________.因为2x 2-x<4,所以2x 2-x<22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质3.(2017·太原模拟)函数y =2x -2-x是( ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减A 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 、D.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数.角度四 求解指数型函数中参数的取值范围4.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a<1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b=-32.-32, )——利用换元法求解指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x 与a 2x (log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数f (x )=2a ·4x-2x-1.(1)当a =1时,求函数f (x )在x ∈上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. (1)当a =1时,f (x )=2·4x-2x-1=2(2x )2-2x-1, 令t =2x,x ∈,则t ∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1,故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解.记g (m )=2am 2-m -1, 当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立,当a >0时,开口向上, 对称轴m =14a >0,过点(0,-1)必有一个根为正, 所以a >0.综上所述,a 的取值范围是(0,+∞)., )1.化简(a 23·b -1)-12·a -12·b 136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD .1aD 解析] 原式=a -13b 12·a -12b 13a 16b 56=a-13-12-16·b 12+13-56=1a. 2.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .B .C .D . 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9,可知C 正确.3.函数y =a x-1a(a >0,a ≠1)的图象可能是()D 当a >1时函数单调递增,且函数图象过点⎝ ⎛⎭⎪⎫0,1-1a ,因为0<1-1a<1,故A ,B均不正确;当0<a <1时,函数单调递减,且函数图象恒过点⎝ ⎛⎭⎪⎫0,1-1a ,因为1-1a<0,所以选D.4.(2017·德州模拟)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <aD 因为y =⎝ ⎛⎭⎪⎫25x为减函数,所以b <c ,又因为y =x 25在(0,+∞)上为增函数,所以a >c , 所以b <c <a ,故选D.5.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1). 6.若函数f (x )=a |2x -4|(a >0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19,所以a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在上递增,在,则实数a =________. 当a >1时,f (x )=a x-1在上为增函数,则a 2-1=2,所以a =±3,又因为a >1,所以a = 3. 当0<a <1时,f (x )=a x-1在上为减函数, 又因为f (0)=0≠2,所以0<a <1不成立. 综上可知,a = 3.38.已知函数f (x )=e x-e -xe x +e -x ,若f (a )=-12,则f (-a )=________.因为f (x )=e x -e -xe x +e -x ,f (a )=-12,所以e a -e -ae a +e -a =-12.所以f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12.129.(2017·济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).(0,1)∪(2,+∞)10.(2017·安徽江淮十校第一次联考)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.由于f (x )=max{e |x |,e|x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x ,x <1. 当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ; 当x <1时,f (x )>e. 故f (x )的最小值为f (1)=e. e11.已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.把A (1,6),B (3,24)代入f (x )=b ·a x,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3, 结合a >0,且a ≠1,解得⎩⎪⎨⎪⎧a =2,b =3.所以f (x )=3·2x.要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在x ∈(-∞,1]上恒成立,只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上的最小值不小于m 即可.因为函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上为减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x有最小值56. 所以只需m ≤56即可.即m 的取值范围为⎝⎛⎦⎥⎤-∞,56.12.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个B 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得,a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立. 13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值为1. 14.已知定义在R 上的函数f (x )=2x-12|x |,(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈恒成立,求实数m 的取值范围. (1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x =-12,因为2x>0,所以x =1.(2)当t ∈时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),因为22t-1>0, 所以m ≥-(22t+1), 因为t ∈,所以-(22t+1)∈, 故实数m 的取值范围是[-5,+∞).。

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。

(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a 叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。

(3)()()*∈>==N n n a a nnn ,1,00。

,||,a n a n ⎧=⎨⎩为奇数为偶数其中1>n ,且*∈N n 。

2.分数指数幂(1)正分数指数幂的定义: n m n m a a =()1,,,0>∈>*n N n m a (2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。

(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。

4.指数函数的概念:一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。

5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数;3. 1(0,,,)n mnmn a a m n N ma-+=>∈且为既约分数,=a a αβαβ(). 【例1】计算下列各式的值.(1(2(3;(4)a b >.【变式1】 求下列各式的值:(1*1,n n N >∈且);(2【例2】计算)21313410.027256317--⎛⎫--+-+⎪⎝⎭【变式2】化简34的结果为( )A .5B .C .﹣D .﹣5【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________.题型二 根式、指数幂的条件求值 1. 0a >时,0;b a > 2. 0a ≠时, 01a =; 3. 若,r s a a =则r s =;4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5. 11112222()()(0,0)a b a b a b a b +-=->>. 【例3】已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【变式1】已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【变式2】已知12,9,x y xy +==且x y <,求11221122x y x y-+的值.【变式3】已知11223a a -+=,求33221122a aa a----的值.【变式4】(1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-;(2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】化简或计算出下列各式:(1)121316324(1243)27162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是()A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是() A.()()()273336263=-=-=- B.32213421313a a a a a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ()A.3232-+aa B.4 C. 3232--aa D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛-B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33x f x a a a =-+是指数函数,求实数a 的值。

第5讲 指数与指数函数(教案)

第5讲  指数与指数函数(教案)

指数与指数函数教学目标:掌握指数运算(高考要求A )及指数函数的有关概念(高考要求B ). 教学重难点:熟悉指数运算,掌握指数函数图像性质及其应用。

教学过程: 一.知识要点: 1.指数运算(1) 根式的定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。

即若a x n =,则x 称a 的n 次方根()1*∈>N n n 且, ① 当n 为奇数时,n a 的次方根记作n a ;②当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n 。

(2)根式性质:①a a n n =)(;②当n 为奇数时,a a n n =;③当n(0)||(0)a a a a a ≥⎧==⎨-<⎩。

(3)幂运算法则:①∈⋅⋅⋅=n a a a a n ( N *) ②)0(10≠=a a ;n 个 ③∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N *且)1>n 。

(4)幂运算性质: ①r a a a a sr s r ,0(>=⋅+、∈s Q );②r a a a s r s r ,0()(>=⋅、∈s Q ); ③∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。

(注)上述性质对r 、∈s R 均适用。

2.指数函数:(1) 指数函数定义:函数)1,0(≠>=a a a y x 且称指数函数,函数的定义域为R ;函数的值域为),0(+∞; (2)函数图像及性质:①指数函数的图象都经过点(0,1),且图象都在第一、二象限;②当10<<a 时函数为减函数,当1>a 时函数为增函数。

③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于y 轴对称。

第3章+第5讲+指数与指数函数2024高考数学一轮复习+PPT(新教材)

第3章+第5讲+指数与指数函数2024高考数学一轮复习+PPT(新教材)

5.函数y=ax-a-1(a>0,且a≠)的图象可能是( )
解析 函数 y=ax-1a是由函数 y=ax 的图象向下平移1a个单位长度得到 的,A 显然错误;当 a>1 时,0<1a<1,平移距离小于 1,所以 B 错误;当 0<a<1 时,1a>1,平移距离大于 1,所以 C 错误.故选 D.
1. 3
6
4 6 a9
3 a94=________.
答案 a4
解析 原式=[(a96)13]4[(a93)16]4=a2·a2=a4.
解析 答案
2.已知 3a+2b=1,则9a·33ab=________.
答案 3
解析
因为
3a

2b

1



3 2
a

b

1 2






= 3.
解析 答案
3.化简: 解
解析 答案
6 . 若 曲 线 |y| = 2x + 1 与 直 线 y = b 没 有 公 共 点 , 则 b 的 取 值 范 围 是 ________.
答案 [-1,1] 解析 曲线|y|=2x+1与直线y=b如图所示,由图象可得,如果曲线|y| =2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].
解析 答案
8.若0<a<b<1,x=ab,y=ba,z=bb,则x,y,z的大小关系为( )
A.x<z<y
B.y<x<z
C.y<z<x
D.z<y<x
解析 因为0<a<b<1,所以f(x)=bx单调递减,故y=ba>z=bb;又幂函 数g(x)=xb单调递增,故x=ab<z=bb,则x,y,z的大小关系为x<z<y.

浙江专用2022高考数学一轮复习第二章函数概念与基本初等函数第5讲指数与指数函数学案(含答案)

浙江专用2022高考数学一轮复习第二章函数概念与基本初等函数第5讲指数与指数函数学案(含答案)

高考数学一轮复习学案:第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mn n a m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②a r as =a r -s(a >0,r ,s ∈Q ); ③(a r )s=a rs(a >0,r ,s ∈Q ); ④(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a x (a >0且a ≠1) a >1 0<a <1图象定义域 R 值域(0,+∞) 性质过定点(0,1)当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数常用结论指数函数图象的特点(1)指数函数的图象恒过点(0,1),(1,a ),⎝ ⎛⎭⎪⎫-1,1a ,依据这三点的坐标可得到指数函数的大致图象.(2)函数y =a x与y =⎝ ⎛⎭⎪⎫1a x(a >0,且a ≠1)的图象关于y 轴对称.(3)指数函数y =a x 与y =b x的图象特征,在第一象限内,图象越高,底数越大;在第二象限内,图象越高,底数越小.[思考辨析]判断正误(正确的打“√”,错误的打“×”) (1)na n=(na )n=a .( ) (2)(-1)24=(-1)12=-1.( ) (3)函数y =a -x是R 上的增函数.( )(4)函数y =a x 2+1(a >1)的值域是(0,+∞).( )(5)函数y =2x -1是指数函数.( )(6)若a m<a n(a >0,且a ≠1),则m <n .( )答案:(1)× (2)× (3)× (4)× (5)× (6)× [诊断自测]1.化简416x 8y 4(x <0,y <0)得( ) A .2x 2yB .2xyC .4x 2yD .-2x 2y解析:选D .因为x <0,y <0,所以416x 8y 4=(16x 8·y 4)14=(16)14·(x 8)14·(y 4)14=2x 2|y |=-2x 2y .2.已知当x >0时,函数f (x )=(3a -2)x的值总大于1,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫23,1 B .(-∞,1)C .(1,+∞)D .⎝ ⎛⎭⎪⎫0,23 解析:选C .根据指数函数性质知3a -2>1,解得a >1.故选C .3.若函数f (x )=a x(a >0,且a ≠1)的图象经过点P ⎝ ⎛⎭⎪⎫2,12,则f (-1)=________.解析:由题意知12=a 2,所以a =22,所以f (x )=⎝ ⎛⎭⎪⎫22x ,所以f (-1)=⎝ ⎛⎭⎪⎫22-1= 2.答案: 24.已知函数f (x )=a x(a >0,a ≠1)在[1,2]上的最大值比最小值大a2,则实数a 的值为________.解析:当0<a <1时,a -a 2=a2,所以a =12或a =0(舍去).当a >1时,a 2-a =a2,所以a =32或a =0(舍去).综上所述,a =12或32.答案:12或32指数幂的化简与求值(自主练透)1.若实数a >0,则下列等式成立的是( )A .(-2)-2=4B .2a -3=12a 3C .(-2)0=-1D .(a -14)4=1a解析:选D .对于A ,(-2)-2=14,故A 错误;对于B ,2a -3=2a 3,故B 错误;对于C ,(-2)0=1,故C 错误;对于D ,(a -14)4=1a.2.计算:-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫-278-23+(0.002)-12=________.解析:原式=-⎝ ⎛⎭⎪⎫232+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-323-23+⎝ ⎛⎭⎪⎫1500-12=-49+49+105=10 5.答案:10 53.已知f (x )=2x +2-x,若f (a )=3,则f (2a )=________. 解析:由f (a )=3得2a +2-a=3, 所以(2a +2-a )2=9,即22a +2-2a+2=9.所以22a+2-2a=7,故f (2a )=22a+2-2a=7.答案:74.化简:a 43-8a 13b 4b 23+23ab +a 23÷⎝⎛⎭⎪⎪⎫a -23-23b a ×a ·3a 25a ·3a =________(a >0).解析:原式=a 13[(a 13)3-(2b 13)3](a 13)2+a 13·(2b 13)+(2b 13)2÷a 13-2b 13a ×(a ·a 23)12(a 12·a 13)15=a 13(a 13-2b 13)×aa 13-2b 13×a 56a 16=a 2. 答案:a2[提醒] 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.指数函数的图象及应用(典例迁移)(1)已知y 1=⎝ ⎛⎭⎪⎫13x,y 2=3x ,y 3=10-x ,y 4=10x,则在同一平面直角坐标系内,它们的图象为( )(2)若函数y =|3x-1|在(-∞,k ]上单调递减,则k 的取值范围为________.【解析】 (1)y 2=3x与y 4=10x在R 上单调递增;y 1=⎝ ⎛⎭⎪⎫13x 与y 3=10-x=⎝ ⎛⎭⎪⎫110x在R 上单调递减,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标对应各底数,易知选A .(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.由图象知,其在(-∞,0]上单调递减,所以k 的取值范围为(-∞,0]. 【答案】 (1)A (2)(-∞,0] 【迁移探究】1.(变条件)本例(2)变为:若函数f (x )=|3x-1|-k 有一个零点,则k 的取值范围为________.解析:函数f(x)有一个零点,即y=|3x-1|与y=k有一个交点.由本例(2)得y=|3x -1|的图象如图所示,故当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点,所以函数f(x)有一个零点.答案:{0}∪[1,+∞)2.(变条件)若本例(2)的条件变为:函数y=|3x-1|+m的图象不经过第二象限,则实数m的取值范围是________.解析:作出函数y=|3x-1|+m的图象如图所示.由图象知m≤-1,即m∈(-∞,-1].答案:(-∞,-1]指数函数图象问题的求解策略变换作图对指数型函数的图象与性质问题(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解数形结合一些指数型方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解1.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0解析:选D .由f (x )=a x -b的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=ax -b的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.2.若关于x 的方程|a x-1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是________.解析:方程|a x-1|=2a (a >0且a ≠1)有两个不等实根转化为函数y =|a x-1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.答案:⎝ ⎛⎭⎪⎫0,12指数函数的性质及应用(多维探究) 角度一 比较指数幂的大小(2021·福建质量检测)已知a =0.30.6,b =0.30.5,c =0.40.5,则( ) A .a >b >c B .a >c >b C .b >c >aD .c >b >a【解析】 方法一:由指数函数y =0.3x 在定义域内单调递减,得a <b ,由幂函数y =x 0.5在定义域内单调递增,得c >b ,故选D .方法二:因为a b =0.365<1,且b c =⎝ ⎛⎭⎪⎫340.5<1,又a ,b ,c 都为正数,所以c >b >a ,故选D .【答案】 D比较指数幂大小的常用方法一是单调性法,不同底的指数函数化同底后就可以应用指数函数的单调性比较大小,所以能够化同底的尽可能化同底.二是取中间值法,不同底、不同指数的指数函数比较大小时,先与中间值(特别是0,1)比较大小,然后得出大小关系.三是图解法,根据指数函数的特征,在同一平面直角坐标系中作出它们的函数图象,借助图象比较大小.角度二 解指数方程或不等式若2x 2+1≤⎝ ⎛⎭⎪⎫14x -2,则函数y =2x的值域是( )A .⎣⎢⎡⎭⎪⎫18,2 B .⎣⎢⎡⎦⎥⎤18,2C .⎝⎛⎭⎪⎫-∞,18 D .[2,+∞)【解析】 因为2x 2+1≤⎝ ⎛⎭⎪⎫14x -2=24-2x,则x 2+1≤4-2x ,即x 2+2x -3≤0, 所以-3≤x ≤1,所以18≤y ≤2.【答案】 B解简单的指数方程或不等式问题时,应利用指数函数的单调性转化为一般方程或不等式求解.要特别注意底数a 的取值范围,并在必要时进行分类讨论.角度三 研究指数型函数的性质(1)函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调递减区间为________. (2)已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.【解析】 (1)设u =-x 2+2x +1,因为y =⎝ ⎛⎭⎪⎫12u在R 上为减函数,所以函数f (x )=⎝ ⎛⎭⎪⎫12-x 2+2x +1的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], 所以函数f (x )的减区间为(-∞,1].(2)令t =|2x -m |,则t =|2x -m |在区间⎣⎢⎡⎭⎪⎫m 2,+∞上单调递增,在区间⎝ ⎛⎦⎥⎤-∞,m 2上单调递减.而y =2t为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].【答案】 (1)(-∞,1] (2)(-∞,4]求指数型复合函数的单调区间和值域的方法(1)形如y =af (x )(a >0,且a ≠1)的函数求值域时,要借助换元法:令u =f (x ),先求出u =f (x )的值域,再利用y =a u 的单调性求出y =a f (x )的值域.(2)形如y =a f (x )(a >0,且a ≠1)的函数单调性的判断,首先确定定义域D ,再分两种情况讨论:当a >1时,若f (x )在区间(m ,n )上(其中(m ,n )⊆D )具有单调性,则函数y =a f (x )在区间(m ,n )上的单调性与f (x )在区间(m ,n )上的单调性相同;当0<a <1时,若f (x )在区间(m ,n )上(其中(m ,n )⊆D )具有单调性,则函数y =a f (x )在区间(m ,n )上的单调性与f (x )在区间(m ,n )上的单调性相反.1.若函数f (x )=a |x +1|(a >0且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定解析:选A .由题意知a >1,所以f (-4)=a 3,f (1)=a 2,由指数函数的单调性知a 3>a 2,所以f (-4)>f (1).2.若函数f (x )=⎝ ⎛⎭⎪⎫13|x -2|,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B .将原函数看成复合函数f (x )=⎝ ⎛⎭⎪⎫13u,u =|x -2|,f (x )是关于u 的减函数,u 在[2,+∞)为增函数,在(-∞,2]为减函数,由复合函数的性质知,f (x )的单调递减区间是[2,+∞).3.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为( )A .12B .1C .32D .2解析:选B .如图是函数y =2|x |值域为[1,2]上的图象,使函数y =2|x |的值域为[1,2]的区间长度最小的区间为[-1,0],[0,1],区间长度最大的区间为[-1,1],从而由定义可知区间[a ,b ]的长度的最大值与最小值的差为2-1=1.。

高考数学总复习 第二篇 函数与导数 第5讲 指数与指数函数课件 理

高考数学总复习 第二篇 函数与导数 第5讲 指数与指数函数课件 理
所以函数y的值域为34,57.故填34,57. 答案 34,57
②当a>1时,x∈[-1,1],t=ax∈1a,a ,此时f(t)在1a,a 上是增函数.所以f(t)max=f(a)=(a+1)2-2=14,解得a= 3(a=-5舍去).综上得a=13或3.
热点突破5 高考中有关指数函数的最值问题 【命题研究】 通过对近三年高考试题分析,对本讲考查的题
目源于教材,略高于教材,是教材中问题的延伸与组合, 指数函数作为中学阶段的基本函数,其图象和性质是重要 的考查热点.题型有:解简单的指数方程、不等式,利用 数形结合思想判断方程解的个数、与不等式相结合考查代 数式的最值或参数的取值范围等.多以选择题、填空题出 现,难度以中档题为主.
xn=a⇒x=n a(当n为奇数且n∈N*时), x=±n a(当n为偶数且n∈N*时).
②(n a)n=_a__ (n∈N*且 a 必须使n a有意义).
③当 n 为奇数时,n an=a ; a(a≥0),
当 n 为偶数时,n an=|a|=-a(a<0).
(3)分数指数幂的含义
m
①正分数指数幂an

n am
(a>0,m,n∈N*,n>1).
②负分数指数幂
= = 1 (a>0,m,n∈N*,n>1). n am
③0 的正分数指数幂等于 0 ,0 的负分数指数幂 没有意义.
(4)有理数指数幂的运算性质 ①ar·as= ar+s (a>0,r,s∈Q). ②(ar)s= ars (a>0,r,s∈Q). ③(ab)r= arbr (a>0,b>0,r∈Q). 上述有理数指数幂的运算性质,对于无理数指数幂也适
解析
(1)f(x)=1

2024届新高考一轮总复习人教版 第二章 第5节 指数与指数函数 课件(40张)

2024届新高考一轮总复习人教版 第二章 第5节 指数与指数函数 课件(40张)

分数指数幂 负分数指数幂
1 规定 a-mn= 1m=__n_a_m__(a>0,m,n∈N*,n>1)
an
0 的分数指数幂 0 的正分数指数幂等于_0__,0 的负分数指数幂没有意义
4.有理数指数幂的运算性质 (1)aras=__a_r+__s __(a>0,r,s∈Q). (2)(ar)s=__a_r_s _(a>0,r,s∈Q). (3)(ab)r=__a_rb_r__(a>0,b>0,r∈Q). 5.指数函数定义 一般地,函数 y=ax(a>0,且 a≠1)叫做指数函数,其中指数 x 是自变量,定义域是 _R___.
在(-∞,+∞)上是_减__函__数___
[必记结论] 指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
第二章 函 数
[课标解读] 1.了解指数幂的拓展过程,掌握指数幂的运算性质. 2.了解指数函数 的实际意义,理解指数函数的概念. 3.能画具体指数函数的图象,探索并理解指数函 数的单调性与特殊点.
备考第 1 步——梳理教材基础,落实必备知识 1.根式及相关概念 (1)a 的 n 次方根定义 如果_x_n_=__a__,那么 x 叫做 a 的 n 次方根,其中 n>1,且 n∈N*. (2)根式:式子n a叫做根式,这里 n 叫做_根__指__数___,a 叫做_被__开__方__数___.
备考第 2 步——突破核心考点,提升关键能力 考点 1 指数幂的运算 【考点集训】

最新人教版高一数学《指数函数》教案15篇

最新人教版高一数学《指数函数》教案15篇

人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案(1)课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?到2050年我国的人口将达到多少?你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的定义是一个形式定义,要引导学生辨析;注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)(2)(3)(4)(5)2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;(三)典型例题例1.(教材P56例6).解:(略)例2.(教材P57例7)解:(略)巩固练习:(教材P59习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P59习题2.1(A组)第5、6、8、12题.2.选做题:教材P60习题2.1(B组)第1题.人教版高一数学《指数函数》教案(2)3.1.2指数函数的概念教学设计一、教学目标:知识与技能:理解指数函数的概念,能够判断指数函数。

2021高三统考北师大版数学一轮学案:第2章第5讲指数与指数函数含解析

2021高三统考北师大版数学一轮学案:第2章第5讲指数与指数函数含解析

2021高三统考北师大版数学一轮学案:第2章第5讲指数与指数函数含解析第5讲指数与指数函数基础知识整合一、指数及指数运算1.根式的概念根式的概念符号表示备注如果错误!x n=a,那么x叫做a的n次方根—n>1且n∈N*当n为奇数时,正数的n次方根是一个错误!正数,负数的n次方根是一个错误!负数错误!零的n次方根是零当n为偶数时,正数的n次方根有错误!两个,它们互为错误!相反数±n,a(a>0)负数没有偶次方根2.分数指数幂(1)a错误!=错误!错误!(a>0,m,n∈N*,n>1);(2)a-错误!=错误!错误!=错误!错误!(a>0,m,n∈N*,n>1);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.3.有理数指数幂的运算性质(1)a r·a s=a r+s(a〉0,r,s∈Q);(2)(a r)s=a rs(a〉0,r,s∈Q);(3)(ab)r=a r b r(a>0,b>0,r∈Q).二、指数函数及其性质1.指数函数的概念函数错误!y=a x(a>0且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.说明:形如y=ka x,y=a x+k(k∈R且k≠0,a〉0且a≠1)的函数叫做指数型函数.2.指数函数的图象和性质底数a〉10〈a〈1图象性质函数的定义域为R,值域为(0,+∞)函数图象过定点(0,1),即x=0时,y=1当x>0时,恒有y〉1;当x〈0时,恒有0〈y〈1当x>0时,恒有0〈y<1;当x<0时,恒有y>1函数在定义域R上为增函数函数在定义域R上为减函数1.(n,a)n=a(n∈N*且n〉1).2.n,a n=错误!n为偶数且n>1.3.底数对函数y=a x(a〉0,且a≠1)的函数值的影响如图(a1〉a2〉a3〉a4),不论是a>1,还是0〈a〈1,在第一象限内底数越大,函数图象越高.4.当a〉0,且a≠1时,函数y=a x与函数y=错误!x的图象关于y 轴对称.1.化简[(-2)6]错误!-(-1)0的结果为()A.-9 B.7C.-10 D.9答案B解析[(-2)6]错误!-(-1)0=(26)错误!-1=7.2.函数f(x)=错误!x+1(x≥0)的值域为()A.(-∞,2]B.(2,+∞)C.(0,2]D.(1,2]答案D解析∵当x≥0时,错误!x∈(0,1],∴错误!x+1∈(1,2],即f(x)的值域为(1,2].3.(a2-a+2)-x-1<(a2-a+2)2x+5的解集为()A.(-∞,-4) B.(-4,+∞)C.(-∞,-2) D.(-2,+∞)答案D解析∵a2-a+2>1,∴-x-1〈2x+5,∴x>-2,选D.4.(2019·德州模拟)已知a=错误!错误!,b=错误!错误!,c=错误!错误!,则()A.a〈b<c B.c<b<aC.c<a〈b D.b〈c〈a答案D解析因为y=错误!x在R上为减函数,错误!>错误!,所以b<c.又y =x错误!在(0,+∞)上为增函数,错误!〉错误!,所以a〉c,所以b 〈c<a.故选D.5.(2020·蒙城月考)已知0<a〈1,b<-1,则函数y=a x+b的图象必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案A解析y=a x+b的图象如图.由图象可知,y=a x+b的图象必定不经过第一象限.6.若x+x-1=3,则x错误!+x-错误!=________;x2+x-2=________.答案错误!7解析∵(x错误!+x-错误!)2=x+x-1+2=5,且x错误!+x-错误!>0,∴x错误!+x-错误!=错误!。

高三数学(文)一轮教学案:第二章第5讲 指数与指数函数 Word版含解析

高三数学(文)一轮教学案:第二章第5讲 指数与指数函数 Word版含解析

第5讲指数与指数函数考纲展示命题探究考点指数与指数函数1根式的概念根式符号表示备注若x n=a,则x叫做a的n次方根—n>1且n∈N*当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数na0的n次方根是0当n为偶数时,正数的n次方根有两个,它们互为相反数±na负数没有偶次方根(1)na n=⎩⎪⎨⎪⎧a,n=2k-1(k∈Z),|a|,n=2k(k∈Z).(2)(na)n=a(a必须使na有意义).2分数指数幂的意义(1)a mn=na m(a>0,m、n∈N*,n>1);(2)a - m n =1a m n =1n a m (a >0,m 、n ∈N *,n >1).3 有理数指数幂的运算性质 (1)a r ·a s =a r +s (a >0,r ,s ∈Q ); (2)(a r )s =a rs (a >0,r ,s ∈Q ); (3)(ab )r =a r b r (a >0,b >0,r ∈Q ).4 指数函数概念及性质 (1)指数函数的概念函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.说明:形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数.(2)指数函数的图象和性质底数a >10<a <1图 象性 质函数的定义域为R ,值域为(0,+∞)函数图象过定点(0,1),即x =0时,y =1 当x >0时,恒有y >1; 当x <0时,恒有0<y <1 当x >0时,恒有0<y <1; 当x <0时,恒有y >1 函数在定义域R 上为增函数函数在定义域R 上为减函数(1)当指数函数的底数大于1时,底数越大,图象上升越快;当底数大于0且小于1时,底数越小,图象下降越快.(2)指数函数的单调性是由底数a 决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论.1.思维辨析(1)na n与(na)n都等于a(n∈N*).()(2)2a·2b=2ab.()(3)函数y=3·2x与y=2x+1都不是指数函数.()(4)若a m<a n(a>0且a≠1),则m<n.()(5)函数y=2-x在R上为单调减函数.()(6)函数y=ax2+1(a>1)的值域是(0,+∞).()答案(1)×(2)×(3)√(4)×(5)√(6)×2.已知a=5-12,函数f(x)=a x,若实数m,n满足f(m)>f(n),则m,n的关系为()A.m+n<0 B.m+n>0 C.m>n D.m<n答案D解析∵0<5-12<1,∴f(x)=a x=⎝⎛⎭⎪⎫5-12x,且f(x)在R上单调递减,又∵f(m)>f(n),∴m<n,故选D.3.函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0答案D解析由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1,函数f(x)=a x-b的图象是在y=a x的基础上向左平移得到的,所以b<0,故选D.[考法综述]高考中考查内容多以指数函数的图象和性质为主,往往与其他函数相结合考查,如:图象的识别与应用,利用单调性比较大小,解不等式,求参数的取值范围等.主要以选择题、填空题形式出现.命题法指数的运算性质,指数函数的图象及性质典例(1)设a=20.3,b=0.32,c=log x(x2+0.3)(x>1),则a,b,c的大小关系是()A.a<b<c B.b<a<cC.c<b<a D.b<c<a(2)已知函数y=kx+a的图象如图所示,则函数y=a x+k的图象可能是()(3)若方程|3x -1|=k 有两个解,则实数k 的取值范围是________. [解析] (1)∵x >1,∴c >log x x 2=2,又1<a =20.3<2,0<b =0.32<1,则b <a <c .故选B.(2)由函数y =kx +a 的图象可得k <0,0<a <1,又因为与x 轴交点的横坐标大于1,所以k >-1,所以-1<k <0.函数y =a x +k 的图象可以看成把y =a x 的图象向右平移-k 个单位得到的,且函数y =a x +k 是减函数,故此函数与y 轴交点的纵坐标大于1,结合所给的选项,应该选B.(3)曲线y =|3x -1|与直线y =k 的图象如图所示,由图象可知,如果y =|3x -1|与直线y =k 有两个公共点,则实数k 应满足0<k <1.[答案] (1)B (2)B (3)(0,1)【解题法】 与指数函数有关问题的解题思路(1)利用指数函数性质时,一般应画出指数函数y =a x (a >0且a ≠1)的图象,抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a . (2)指数函数的单调性是由底数a 决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论.(3)求解与指数函数有关的复合函数问题时,首先,要熟知指数函数的定义域、值域、单调性等相关性质,其次,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.1.已知a =2-13 ,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a答案 C解析 由指数函数及对数函数的单调性易知0<2-13 <1,log 213<log 21=0,log 12 13>log 1212=1, 故选C. 2.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)答案 C解析 原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x,∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.3.函数f (x )=2|x -1|的图象是( )答案 B解析 f (x )=⎩⎨⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,故选B.4.已知4a =2,lg x =a ,则x =________. 答案10解析 ∵4a=2,∴a =log 42=12. 由lg x =12,得x =10 12=10.5.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 由题意得⎩⎪⎨⎪⎧e b=192e 22k +b =48,即⎩⎨⎧e b=192e 11k =12,所以该食品在33 ℃的保鲜时间是y =e33k +b=(e11k )3·e b=⎝ ⎛⎭⎪⎫123×192=24(小时).已知函数y =b +a x (a ,b 是常数且a >0,a ≠1)在区间[-1,0]上有y max =3,y min =52.试求a ,b 的值.[错解][错因分析] 错误地认为函数在区间上的最大(小)值就是区间端点的值.[正解] 当a >1时,函数y =b +a x 在区间[-1,0]上递增,则⎩⎨⎧b +a -1=52,b +a 0=3,解得⎩⎪⎨⎪⎧a =2,b =2.当0<a <1时,函数y =b +a x 在区间[-1,0]上递减,则⎩⎨⎧b +a -1=3,b +a 0=52,解得⎩⎪⎨⎪⎧a =23,b =32.所以⎩⎪⎨⎪⎧a =2,b =2,或⎩⎪⎨⎪⎧a =23,b =32.[心得体会]………………………………………………………………………………………………时间:45分钟基础组1.[·冀州中学热身]下列函数中值域为正实数的是( ) A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2x答案 B解析 ∵1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x 的值域是正实数,∴y =⎝ ⎛⎭⎪⎫131-x的值域是正实数.故选B.2. [·枣强中学热身]已知a =⎝ ⎛⎭⎪⎫12 23 ,b =2-43 ,c =⎝ ⎛⎭⎪⎫12 13,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c答案 B解析 把b 化简为b =⎝ ⎛⎭⎪⎫12 43 ,而函数y =⎝ ⎛⎭⎪⎫12x 在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫12 43 <⎝ ⎛⎭⎪⎫12 23 <⎝ ⎛⎭⎪⎫12 13 ,即b <a <c .3.[·冀州中学周测]设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( ) A .(-∞,-3) B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)答案 C解析 若a <0,则由f (a )<1得⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8=⎝ ⎛⎭⎪⎫12-3,所以-3<a <0,若a ≥0,则由f (a )<1得a <1,所以0≤a <1.综上,a 的取值范围是-3<a <1,即(-3,1).4.[·衡水二中一轮检测]已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( )A .5B .7C .9D .11答案 B解析 ∵f (x )=2x +2-x ,f (a )=3,∴2a +2-a =3.∴f (2a )=22a +2-2a =(2a +2-a )2-2=9-2=7. 5.[·衡水二中猜题]若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]答案 B解析 f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.因为g (x )=|2x -4|在[2,+∞)上单调递增,所以f (x )的单调递减区间是[2,+∞).6.[·枣强中学月考]函数y =⎝ ⎛⎭⎪⎫12-x 2+x +2 的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-1,12 B .(-∞,-1]C .[2,+∞) D.⎣⎢⎡⎦⎥⎤12,2 答案 D解析 由-x 2+x +2≥0知,函数定义域为[-1,2],-x 2+x +2=-⎝⎛⎭⎪⎫x -122+94.当x ≥12时,u (x )=-x 2+x +2递减,又y =⎝ ⎛⎭⎪⎫12x 在定义域上递减,故函数y =⎝ ⎛⎭⎪⎫12-x 2+x +2 的单调递增区间为⎣⎢⎡⎦⎥⎤12,2.7.[·衡水二中预测]不等式2-x 2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案 {x |-1<x <4} 解析 不等式2-x 2+2x>⎝ ⎛⎭⎪⎫12x +4可化为⎝ ⎛⎭⎪⎫12x 2-2x >⎝ ⎛⎭⎪⎫12x +4,等价于不等式x 2-2x <x +4,即x 2-3x -4<0,解得-1<x <4,所以解集为{x |-1<x <4}.8.[·武邑中学期末]已知偶函数f (x )在[0,+∞)上单调递减,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-13,43解析 由题可知f (x )在区间(-∞,0]上单调递增,若f (2x -1)>f ⎝ ⎛⎭⎪⎫53成立,则-53<2x -1<53,即-13<x <43.9.[·衡水二中热身]已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.答案 52解析 令t =2x ,∵0≤x ≤2,∴1≤t ≤4, 又y =22x -1-3·2x +5,∴y =12t 2-3t +5 =12(t -3)2+12,∵1≤t ≤4,∴t =1时,y max =52.10.[·衡水中学热身]函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.解 当a >1时,f (x )=a x 为增函数,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a .∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时, f (x )=a x 为减函数,在x ∈[1,2]上, f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2.∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12. 综上可知,a =12或a =32.11.[·武邑中学月考]已知函数f (x )=2x ,g (x )=12|x |+2. (1)求函数g (x )的值域;(2)求满足方程f (x )-g (x )=0的x 的值.解 (1)g (x )=12|x |+2=⎝ ⎛⎭⎪⎫12|x |+2,因为|x |≥0,所以0<⎝ ⎛⎭⎪⎫12|x |≤1,即2<g (x )≤3,故g (x )的值域是(2,3]. (2)由f (x )-g (x )=0,得2x -12|x |-2=0, 当x ≤0时,显然不满足方程, 即只有x >0时满足2x-12x -2=0,整理得(2x )2-2·2x -1=0,(2x -1)2=2,故2x =1±2, 因为2x >0,所以2x =1+2, 即x =log 2(1+2).12.[·武邑中学一轮检测]已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)求f (x )的表达式;(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x-m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解 (1)因为f (x )的图象过点A (1,6),B (3,24),则⎩⎪⎨⎪⎧b ·a =6,b ·a 3=24.所以a 2=4,又a >0,所以a =2,则b =3.所以f (x )=3·2x .(2)由(1)知a =2,b =3,则x ∈(-∞,1]时,⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x-m ≥0恒成立,即m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 在x ∈(-∞,1]时恒成立.又因为y =⎝ ⎛⎭⎪⎫12x 与y =⎝ ⎛⎭⎪⎫13x 均为减函数,所以y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 也是减函数,所以当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 有最小值56.所以m ≤56,即m 的取值范围是⎝ ⎛⎦⎥⎤-∞,56.能力组13. [·冀州中学一轮检测]已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0; ②a <0,b ≥0,c >0; ③2-a <2c ; ④2a +2c <2. 答案 ④解析 由图示可知a <0时,b 的符号不确定,1>c >0,故①②错; ∵f (a )=|2a -1|,f (c )=|2c -1|, ∴|2a -1|>|2c -1|, 即1-2a >2c -1, 故2a +2c <2,④成立. 又2a +2c >22a +c ,∴2a +c <1, ∴a +c <0,∴-a >c ,∴2-a >2c ,③不成立.14.[·枣强中学预测]设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则方程f (x )=12的解集为________.答案 ⎩⎨⎧⎭⎬⎫-1,22,2解析 当x ≤0时,解2x =12得x =-1;当x >0时,解|log 2x |=12得x =22或x = 2.所以方程f (x )=12的解集为⎩⎨⎧⎭⎬⎫-1,22,2.15. [·衡水中学仿真]已知函数f (x )=⎩⎨⎧x +1,0≤x <1,2x -12,x ≥1,若a >b ≥0,且f (a )=f (b ),则bf (a )的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫34,2解析 如图,f (x )在[0,1),[1,+∞)上均单调递增,由a >b ≥0及f (a )=f (b )知a ≥1>b ≥12.bf (a )=bf (b )=b (b +1)=b 2+b ,∵12≤b <1,∴34≤bf (a )<2.16.[·冀州中学期中]求函数f (x )=3x 2-5x +4的定义域、值域及单调区间.解 依题意知x 2-5x +4≥0,解得x ≥4或x ≤1, ∴f (x )的定义域是(-∞,1]∪[4,+∞).∵x 2-5x +4≥0,∴f (x )=3x 2-5x +4≥30=1, ∴函数f (x )的值域是[1,+∞). 令u =x 2-5x +4=⎝⎛⎭⎪⎫x -522-94,x ∈(-∞,1]∪[4,+∞), ∴当x ∈(-∞,1]时,u 是减函数, 当x ∈[4,+∞)时,u 是增函数. 而3>1,∴由复合函数的单调性可知,f (x )=3x 2-5x +4在(-∞,1]上是减函数,在[4,+∞)上是增函数.。

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第5讲指数与指数函数课件

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第5讲指数与指数函数课件

3.若方程3|x|-1=m有两个不同实根,则m的取值范围为_(_0_,__+__∞_). [解析] 作出函数y=3|x|-1与y=m的图象如图所示,数形结合可得 m>0.
考向2 指数函数的性质及其应用——多维探究 角度1 比较指数幂的大小
(2024·福建质量检测)已知a=0.30.6,b=0.30.5,c=0.40.5,则( D ) A.a>b>c B.a>c>b C.b>c>a D.c>b>a
[解析] (1)当x=1时,y=4,因此函数y=a1-x+3过定点(1,4). (2)曲线y=|2x-1|与直线y=b的图象如图所示,由图象 可得,如果曲线y=|2x-1|与直线y=b有两个公共点,则b 的取值范围是(0,1). (3)因为函数y=|2x-1|的单调递减区间为(-∞,0],所以k≤0,即k 的取值范围为(-∞,0].
函数在定义域R上为 增函数
函数在定义域R上为 减函数
归纳拓展 1.画指数函数 y=ax(a>0 且 a≠1)的图象时注意两个关键点:(1,a), (0,1). 2.底数 a 的大小决定了图象相对位置的高低,不论是 a>1,还是 0<a<1, 在第一象限内底数越大,函数图象越高,即“底大图高”.
3.f(x)=ax 与 g(x)=1ax(a>0 且 a≠1)的图象关于 y 轴对称.
第五讲 指数与指数函数
知识梳理 · 双基自测
知识梳理 知识点一 指数与指数运算 1.根式 (1)根式的概念
根式的概念
符号表示
如果__x_n=___a__,那么 x 叫做 a 的 n 次方根
备注 n>1 且 n∈N*
当 n 为奇数时,正数的 n 次方根是一个 __正__数____,负数的 n 次方根是一个__负__数___

指数函数教案

指数函数教案

第5讲指数与指数函数[考纲解读] 1.理解有理指数幂的含义,掌握指数幂的运算,并能通过具体实例了解实数指数幂的意义.2.理解指数函数的概念,理解指数函数的单调性并掌握指数函数的图象及其通过的特殊点.(重点、难点)3.通过具体实例,了解指数函数模型的实际背景,并体会指数函数是一类重要的函数模型.[考向预测]从近三年高考情况来看,本讲是高考中的命题热点.预测2020年高考主要与函数的图象、最值、比较大小、指数函数图象过定点为命题方向;也有可能与其他知识相结合进行考查.1.根式2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:a mn=na m(a>0,m,n∈N*且n>1).②正数的负分数指数幂:a-mn=1amn=1na m(a>0,m,n∈N*且n>1).③0的正分数指数幂等于□010;0的负分数指数幂□02没有意义.(2)有理数指数幂的性质①a r a s=□03a+(a>0,r,s∈Q);②(a r)s=□04a(a>0,r,s∈Q);③(ab)r=□05a b(a>0,b>0,r∈Q).3.指数函数的图象与性质题型一指数幂的化简与求值1.求值:(0.064)-13-⎝⎛⎭⎪⎫-590+[(-2)3]-43+16-0.75+(0.01)12=________.3.若x12+x-12=3,则x32+x-32+2x2+x-2+3的值为________.题型 二 指数函数的图象及应用1.(2018·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x -1D .y =log 2(2x )2.(2018·青岛模拟)函数f (x )=21-x 的大致图象为()条件探究1 举例说明2中函数改为f (x )=2|x -1|,其图象是()条件探究2 举例说明2中函数改为y =21-x +m ,若此函数的图象不经过第一象限,则m 的取值范围如何?题型 三 指数函数的性质及其应用角度1 比较指数幂的大小 1.设a =40.8,b =80.46,c =⎝ ⎛⎭⎪⎫12-1.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a 角度2 解指数方程或不等式2.(2018·福州模拟)已知实数a ≠1,函数f (x )=⎩⎨⎧4x,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.角度3 探究指数型函数的性质4.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.1.比较幂值大小的常见类型及解决方法2.利用指数函数的性质解简单的指数方程或不等式的方法先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.如举例说明3. 3.两类复合函数的最值(或值域)问题(1)形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.(2)形如y =a f (x )(a >0,且a ≠1)型函数最值问题,可令t =f (x ),则y =a t ,先由x 的取值范围求t 的取值范围,再求y =a t 的最值.如举例说明4.4.对于形如y =a f (x )的函数的单调性(1)若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间; (2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间.如举例说明4(1).课后反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 指数与指数函数
1. 化简[(-2)6]12
-(-1)0的结果为( )
A .-9
B .7
C .-10
D .9
2. 设x +x -1=3,则x 2+x -
2的值为( )
A .9
B .7
C .5
D .3
3.函数f (x )=a x -
1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )
A .y =1-x
B .y =|x -2|
C .y =2x -1
D .y =log 2(2x )
4. 若a >1且a 3x +1>a -
2x ,则x 的取值范围为________.
5.若指数函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________.
指数函数的图象及应用
(1)函数f (x )=a x -b
的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A .a >1,b <0 B .a >1,b >0 C .0<a <1,b >0 D .0<a <1,b <0
(2)若方程|3x -1|=k 有一解,则k 的取值范围为________.
若将本例(2)变为函数y =|3x
-1|在(-∞,k ]上单调递减,则k 的取值范围如何?
指数函数的图象及应用
(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.
(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.
[通关练习]
1.函数f (x )=1-e |x |
的图象大致是( )
2.若关于x 的方程|a x -1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.
指数函数的性质及应用(高频考点)
(1)已知a =243
,b =425
,c =2513
,则( )
A .b <a <c
B .a <b <c
C .b <c <a
D .c <a <b
(2)已知实数a ≠1,函数f (x )=⎩
⎪⎨⎪⎧4x ,x ≥0,
2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.
(3)若偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为________.
有关指数函数性质的问题类型及解题思路
(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).
(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.
(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.
[注意] 在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.
[题点通关]
角度一 比较指数幂的大小
1.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )
A .a <b <c
B .a <c <b
C .b <a <c
D .b <c <a
角度二 解简单的指数方程或不等式
2.不等式2x 2-
x <4的解集为________.
角度三 研究指数型函数的性质
3.函数y =2x -2-
x 是( )
A .奇函数,在区间(0,+∞)上单调递增
B .奇函数,在区间(0,+∞)上单调递减
C .偶函数,在区间(-∞,0)上单调递增
D .偶函数,在区间(-∞,0)上单调递减
角度四 求解指数型函数中参数的取值范围
4.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.
——利用换元法求解指数型函数的值域问题
函数f (x )=⎝⎛⎭⎫14x
-⎝⎛⎭⎫
12x
+1在x ∈[-3,2]上的值域是________.
已知函数f (x )=2a ·4x -2x -1.
(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围.
1.已知f (x )=3x -b
(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )
A .[9,81]
B .[3,9]
C .[1,9]
D .[1,+∞)
2.函数y =a x -1
a
(a >0,a ≠1)的图象可能是( )
3.已知a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525
,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <a
4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x
-7,x <0,
x ,x ≥0,
若f (a )<1,则实数a 的取值范围是( )
A .(-∞,-3)
B .(1,+∞)
C .(-3,1)
D .(-∞,-3)∪(1,+∞)
5.若函数f (x )=a |2x -
4|(a >0,a ≠1),满足f (1)=19
,则f (x )的单调递减区间是( )
A .(-∞,2]
B .[2,+∞)
C .[-2,+∞)
D .(-∞,-2]
6.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.
7.已知函数f (x )=e x -e -
x e x +e
-x ,若f (a )=-1
2,则f (-a )=________.
8.已知函数f (x )=(a -2)a x (a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)
x 1-x 2
>0,则a 的取值范围
是________.
9.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -
2|},则f (x )的最小值为________.
10.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).若不等式 ⎝⎛⎭⎫1a x +⎝⎛⎭
⎫1b x
-m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.
11.已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫
13b
,下列五个关系式:
①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式有( )
A .1个
B .2个
C .3个
D .4个
12.已知函数f (x )=⎝⎛⎭⎫13ax 2
-4x +3.
(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.
13.已知定义在R 上的函数f (x )=2x -1
2
|x |,
(1)若f (x )=3
2
,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.。

相关文档
最新文档