现代飞机制造技术以及未来飞机制造技术的发展趋势
航空航天技术的发展趋势与前景

航空航天技术的发展趋势与前景近年来,随着科技的不断发展,航空航天技术的发展趋势日益明显。
从最初的飞行,到如今的太空探索,人类对航空航天的探索之路从未停歇。
如今,我们已经看到了很多关于航空航天技术的突破,这意味着我们将来的生活将会有更多的机会和变化。
那么,航空航天技术的发展趋势和前景是什么呢?一、先进制造技术随着先进制造技术的不断发展,一些新的材料和制造技术被纳入航空航天行业中。
例如,3D打印技术、纳米材料和生物材料等。
这使得执行某些任务的航天器能够更轻、更耐用、更精准。
据新闻报道,全球研发机构和商家已经在使用3D打印技术制造航空航天部件,这样可以高效制造及减轻航天器和发动机的重量。
新材料的发现也为航空航天行业做出了重要的贡献。
例如,新型碳纤维材料的使用可以使飞机更加耐用,且在飞机制造过程中可以减轻重量。
这些技术在未来的日子里将进一步实现。
二、自主驾驶技术未来的航空航天系统将是高效的,安全的和自主的。
在未来,飞机和宇宙船将不再需要观察员和飞行员的控制。
而是通过自主驾驶技术来进行航行。
目前,这方面的技术已经得到了不断地完善和提升,并赢得了广泛的认可。
在很多地方,无人机已经代替了人类,成为了空中巡逻的主要工具。
未来可能还会开发出一种新型的无人机,可以在更高的天空高度和复杂的天气条件下做出反应。
自主驾驶技术的出现对于航空航天技术的未来发展将会起到很大的促进作用。
三、火箭技术的发展火箭技术已经被广泛应用于人类在太空探索中,未来这方面的技术仍然将得到不断的提升和改进。
近年来,研究新型火箭技术的热潮已经兴起,在这方面已经出现了许多新的技术,例如再进化型空间推进器和核反应堆火箭技术等。
未来的发展将会使火箭技术更加可靠和安全,这是人类能够发现和了解太空的关键手段。
因此未来将致力于发展该技术。
四、可重复使用的火箭技术目前使用的火箭技术大多是一次性的,只能用于一次任务。
为了节约开支并提高航天器及火箭的可靠性,重复使用的火箭技术将是航天技术未来的一个发展方向。
航空制造产业未来发展趋势

航空制造产业未来发展趋势航空制造产业是一个关键的现代工业部门,它涵盖了飞机、飞行器、航天器、无人机等各种航空设备和技术。
随着人口的增长、城市化的加速和全球经济的增长,航空制造业也在不断发展壮大。
未来几十年,航空制造产业的发展趋势将会受到以下几个关键因素的影响:1. 高新技术的应用:航空制造业将会越来越依赖于高新技术的应用。
例如,三维打印技术、机器人技术和人工智能等将会在设计、制造和装配过程中发挥重要作用。
这些技术的应用将能够提高生产效率、降低生产成本,并且能够更好地满足客户需求。
2. 绿色制造:环保意识在全球范围内不断增强,航空制造业也将不可避免地面临着减少温室气体排放、降低能源消耗的压力。
因此,航空制造业将致力于开发更加环保和能源高效的航空设备和技术。
例如,研发和应用更加燃油经济的发动机,使用更轻、更强的材料,以及提高飞机设计的气动效率等。
3. 无人机的发展:无人机技术在航空制造业中的应用将会越来越广泛。
随着技术的不断进步,无人机已经从军事应用逐渐延伸到商业和民用领域。
无人机有望应用于航空侦察、货物运输、农业、环保等领域。
未来,随着技术的发展,无人机将会越来越智能化、自主化。
4. 航空电子技术的进步:航空电子技术的进步将会对航空制造业产生重大影响。
例如,先进的航空电子设备和系统可以提高飞机的性能、安全性和可靠性。
未来将会有更多的航空电子设备和系统应用于飞机和飞行器,例如自动驾驶系统、机载通信系统等。
5. 国际合作和市场竞争:航空制造业是一个国际化的行业,国际合作和市场竞争将会是未来的发展趋势。
航空制造业将会继续加强国际合作与交流,共同推动创新和技术进步。
同时,航空制造业也将会面临来自全球范围内的竞争。
因此,航空制造企业需要不断提高自身的竞争力,提供更好的产品和服务,以及开拓新的市场。
6. 人工智能的应用:人工智能技术的应用将会在航空制造业中发挥重要作用。
例如,人工智能可以应用于飞机设计、生产过程的自动化、飞机性能的优化等。
飞行器制造行业发展现状与未来趋势

飞行器制造行业发展现状与未来趋势1. 引言飞行器制造行业作为现代航空技术的重要组成部分,在经历多年的发展后,已经成为国家经济的重要支柱产业之一。
本文将探讨飞行器制造行业的发展现状以及未来的发展趋势。
2. 发展现状2.1 国内飞行器制造行业的发展近年来,中国在飞行器制造领域取得了显著的成就。
中国的民用飞机制造能力不断提高,已经实现了从飞机零部件制造到整机制造的转变。
例如,中国自主研发的C919大型客机成功完成了首飞,标志着中国进入了大型客机制造行业。
此外,中国的军用飞机制造也取得了突破性进展,如歼-20等战斗机的研制成功。
2.2 全球飞行器制造行业的发展全球范围内,飞行器制造行业也呈现出快速发展的趋势。
美国、欧洲和俄罗斯等国家是世界上主要的制造飞机的国家,它们在技术和市场上占据着重要地位。
此外,亚洲地区的一些国家也在飞行器制造领域不断发展,如日本、韩国和印度等国。
3. 未来趋势3.1 新材料应用的推动未来飞行器制造行业将更加注重新材料的应用。
新材料具有重量轻、强度高、耐高温等特点,可以提高飞行器的性能和效能。
特种合金、碳纤维复合材料等新材料将在飞行器制造领域得到更广泛的应用。
3.2 智能制造的发展智能制造是未来飞行器制造的重要方向。
通过引入先进的自动化设备、机器人技术和人工智能等技术,可以实现飞行器制造流程的自动化和智能化。
这将提高生产效率、降低生产成本,并提高飞行器的质量和可靠性。
3.3 绿色制造的追求未来飞行器制造行业将更加关注环境保护和可持续发展。
绿色制造将成为一种趋势,通过减少废弃物排放、节约能源等措施,实现环境友好型的飞行器制造。
同时,发展清洁能源技术也将是未来的一个重要方向。
3.4 无人机的快速发展无人机作为飞行器制造行业的一个新兴领域,将会快速发展。
无人机具有应用广泛、成本低、飞行灵活等优势,可以用于航拍、物流、农业等方面。
未来,无人机制造技术的发展将会推动整个飞行器制造行业的创新和变革。
现代航空制造技术及发展趋势分析

现代航空制造技术及发展趋势分析航空工业作为高科技领域之一,对国家的经济和军事发展起着重要的推动作用。
现代航空制造技术的发展,不仅关系到飞机的性能和寿命,而且涉及到航空力学、材料学、工艺学等领域的进步。
本文将从制造技术的细节和航空制造技术的发展趋势两个方面来进行分析。
一、现代航空制造技术的细节1.先进的材料技术材料技术对于飞机的性能和寿命具有决定性影响。
随着材料科学的发展,航空制造材料得以多样化和精细化。
如钛合金薄壁零件、非金属材质航空结构件、高温复合材料等。
目前,航空制造材料的开发重点是研究新型材料在较低的温度下达到高介电性、高压电性、高热稳定性等方面的性能提升。
新型材料实现了轻量化和高强度化,使飞机的性能和经济效益得到明显提高。
2.数字化制造数字化制造是指将设计和制造各个环节实现信息化和数字化。
这种方法使生产效率提高,减少了产品生产周期,从而提高了产品市场竞争能力。
数字化制造技术还可以进行的过程优化,减少了生产成本和浪费。
如联集翼结构、桁架结构等,数字化逆向设计与制造等方面的技术在航空制造中得到广泛应用。
3.先进的加工技术先进的加工技术能够生产高品质、高效率和多功能的组件。
由于航空制造涉及到大量的复杂零部件的生产和加工,因此需要高端和精密的加工设备。
如CNC数控开、锻压技术、激光成型等。
4.先进的工艺技术先进的工艺技术是实现产品质量稳定的关键技术。
如超声波工艺、注塑工艺、金属材料加工工艺、表面处理技术等,都可以使产品的质量得到有效保证。
5.智能制造智能制造技术可以使制造过程实现自动、计算和集成化,从而提高了生产效率和降低了制造成本。
目前,数控机床技术已经得到广泛应用,而智能化制造技术正在发展中,例如用于测量、检验、控制、评价和优化程序。
二、现代航空制造技术的发展趋势1.轻量化随着能源保护意识的提高,航空工业在电力、燃料、液压、空气涡轮机等部分也发生了相应的变化。
利用复合材料与先进的结构设计使得新型航空产品达到了轻质化的目的。
航空航天技术创新与发展趋势分析

航空航天技术创新与发展趋势分析航空航天技术是人类科技进步和国家实力的重要标志,也是现代工业和军事的关键领域之一。
随着全球航空航天技术的不断发展和进步,人类探索宇宙的梦想和追求也在不断升温。
本文将对航空航天技术的创新与发展趋势进行分析和探讨。
一、创新趋势1. 绿色航空技术随着全球环境问题的日益突出,绿色航空技术成为航空航天行业的研究重点。
燃料效率的提高和减少二氧化碳的排放已成为航空公司和飞机制造商的首要任务。
未来,可再生能源和新能源的使用将进一步推动航空航天技术的绿色发展。
2. 无人机和自动化飞行无人机和自动化飞行技术目前已经取得了长足的发展,广泛应用于航空航天领域。
未来,随着人工智能和自主导航技术的进一步发展,无人机和自动飞行系统将成为航空航天技术创新的主要方向。
无人机将广泛运用于货运、农业、勘探等领域,提高效率和降低成本。
3. 超音速和高超音速技术超音速和高超音速技术是航空航天技术领域的重要发展方向。
随着超音速客机和高超音速导弹的研制成功,航空航天技术将迈向一个全新的时代。
超音速飞行可以大幅缩短航行时间,提高交通效率。
高超音速技术的突破将带来巨大的军事优势。
4. 载人航天和深空探索载人航天是航空航天技术创新的重要领域。
未来,随着航天器技术的进一步发展,载人航天任务将进行更加多样化的深空探索。
人类将进一步探索月球、火星以及更远的星球,为人类的未来生存和发展提供重要的科学数据。
二、发展趋势1. 私人航天领域的崛起随着航空航天技术的不断进步和商业化运营的发展,私人航天领域将成为未来的重要发展方向。
私人航天公司将参与载人航天任务,推动航天技术的创新和应用。
同时,私人航天公司也将开展太空旅游和商业卫星发射等活动,为航空航天行业带来新的商机。
2. 航空航天技术与其他领域的融合随着信息技术、材料科学、能源科学等领域的不断进步,航空航天技术和其他领域开始深度融合。
智能化、电气化、自主导航等技术将与航空航天技术相结合,推动航空航天技术的发展。
国外飞机发展现状及未来趋势分析

国外飞机发展现状及未来趋势分析近年来,国外飞机技术的快速发展和创新推动了航空业的提升。
本文将探讨国外飞机发展的现状,并分析未来的趋势。
一、国外飞机发展现状1.1 商用飞机市场商用飞机市场是国外飞机发展的主要方向之一。
目前,欧洲的空客和美国的波音是全球两大主要民用飞机制造商。
两家公司竞争激烈,不断推出新款机型,并在技术上提升飞机的燃油效率和安全性能。
除了空客和波音,俄罗斯的伊尔和中国的COMAC也在努力提升自己的市场份额。
1.2 军用飞机技术发展军用飞机技术也在不断发展。
先进的战斗机和无人机已经成为了各国军事实力竞争的焦点。
美国的F-35战斗机、俄罗斯的苏-57以及中国的歼-20都是当前最先进的战斗机之一。
此外,无人机技术的进步也在改变军事战略和战斗方式。
1.3 新能源飞机随着全球对环境保护的关注不断增加,新能源飞机的发展已经成为国外飞机制造商的重点。
电动飞机和混合动力飞机的研发取得了一定的进展,并逐渐应用于商用航空领域。
这些飞机能够减少对化石燃料的依赖,减少碳排放,有助于保护环境。
1.4 超音速飞行技术超音速飞行技术的研究也在进行中。
通过提高飞机的速度,可以缩短长途航班的飞行时间,提高旅行的效率。
波音和空客等制造商都已开始研发下一代超音速民用飞机。
二、国外飞机发展的未来趋势2.1 自动化技术的应用未来飞机制造商将更多地利用自动化技术。
自动驾驶飞机、自动化维修和自动化生产等将成为未来飞机发展的新趋势。
这不仅能提高飞行安全性,还能减少人工成本。
2.2 无人机的普及应用无人机的发展将进一步普及和应用。
无人机可以应用于商业巡查、物流配送、农业植保等领域,不仅提高效率,还减少人力资源的开支。
2.3 绿色能源的推广环保意识的提高推动了新能源飞机的研发和推广。
可以预见,未来飞机将采用更多的电动和混合动力技术,以减少对化石燃料的依赖,降低排放。
2.4 轻量化材料的应用轻量化材料的应用也将成为未来发展的重要趋势。
航空航天制造技术发展现状与前景

航空航天制造技术发展现状与前景随着科技的飞速发展,航空航天产业也获得了长足的进步,航空航天制造技术已经成为一个重要的领域。
这是一个充满挑战和机遇的领域,其中涉及到许多技术和工程问题,必须通过创新和发展来推动技术和行业的进步。
本文将探讨航空航天制造技术的现状和前景,从当前科技水平和未来发展趋势两个方面进行讨论。
一、当前的航空航天制造技术水平航空航天制造技术是一个高度复杂的体系,涵盖了很多领域,包括材料科学、机械工程、电子信息、控制技术等等。
目前,航空航天制造技术已经进入了一个高度发达的阶段,取得了许多成果。
首先,航空航天材料方面的技术进步令人瞩目。
高性能陶瓷、超高强度复合材料、智能材料等新型材料的出现,不仅提高了飞机和火箭的性能,还使得它们的维护保养更加便捷和经济。
其中最令人兴奋的是碳纤维增强材料的应用,将有望在未来几年内取代传统的金属材料,成为飞行器重要的结构材料。
其次,在机械加工和制造技术方面,也取得了很大的进步。
比如,3D打印技术的应用,既加快了零件制造的速度,又提高了零件的精度和制造效率。
此外,新型加工工艺技术(如电子束加工、激光加工等)的出现,也更加完善了机床设备的工作效率和加工精度。
另外,智能制造和物联网技术的进步,使得生产制造业更加自动化和智能化,增强了生产的效率和品质,这些对航空航天制造业也有很大的推动作用。
此外,提高了质量管理和检测技术,使得生产与质量更加可控。
二、未来的航空航天制造技术发展趋势虽然现在的航空航天制造技术已经很先进,但是仍然有很多问题需要解决,而且新技术的出现也将会有助于航空航天行业的快速发展。
首先,在材料科学领域,将会有更多的材料技术问世,这些材料将会更加轻量化、高强度和高温耐受。
这将有助于开发更加先进的航空航天器,并提高飞行器的有效载荷比和燃油效率。
其次,增加智能制造和物联网技术的应用和覆盖面,将改善生产效率,加强品质控制,增强节能和环保手段。
对于生产制造业而言,当利用互联网的力量时,将促进生产、管理、制造、服务的整体性和高水平发展,使得航空航天制造技术走向全方位和全程智能化的快速发展。
航空航天技术现状和发展趋势

航空航天技术现状和发展趋势
自从轻型客机首次投入使用后,航空业迅速发展。
航空航天技术一直
是航空业发展的重要支撑。
其发展不仅促进了航空运输的市场化发展,而
且还带来了航空安全、客观性服务和技术进步的创新。
在过去的20年中,航空航天技术迅速发展,以及航空行业的快速发展,使得航空技术的发展
变得更加迅速,这为航空安全带来了更多的便利和安全。
下面就航空航天
技术的现状及发展趋势作一简要介绍。
一、航空航天技术现状
1、飞机制造
随着科技的发展,飞机制造工艺也发生了显著变化,许多部件现在是
采用3D打印和机器加工来制造,缩短了产品研发周期和生产时间,提高
了产品质量,极大地改善了航空安全性。
在飞机设计方面,通过现代计算
机辅助设计(CAD)和计算机辅助制造(CAM)技术,可大大改善飞机的设
计和制造水平。
2、飞机维护
飞机维护技术也在不断发展和进步,现在的飞机大部分采用计算机控
制系统,现代的飞机维护技术和运用技术已经达到非常深入的程度,极大
地保证了飞机的可靠性和安全性。
3、航空安全
航空安全技术的发展是航空业的重中之重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代飞机制造技术以及未来飞机制造技术的发展趋势一、飞机制造技术概论1、飞机制造技术概论飞机制造技术所涉及的领域包括装配、铸造、锻造、成形、机械加工、特种加工、焊接、热处理和表面处理、工艺检测等方面,它是随着一个国家的科学与技术的进步而不断发展的,社会的需求和市场的竞争也推动着飞机制造技术的不断更新和发展。
飞机是一种重于空气的飞行器,它是一种依靠自身的动力产生升力来支持其自身在空中飞行的特殊机器。
它或用于空有人员、物资,或用用于空中作战。
在结构上飞机有以下几个重要部分:主要用于装载人员、物资和燃料的机身;主要用于产生升力及装载燃料的机翼;控制飞行方向和保证飞行稳定性的襟翼、副翼、尾翼及其操纵系统;用于起飞和着陆的起落架及其辅助系统;用于导航通信等的仪表、特设系统等。
飞机结构不但尺寸大、外形复杂,而且其机体结构主要是由大量形状复杂、连接面多、工艺刚性小以及在加工和装配过程中都会产生变形的钣金件或非金属薄壁零件组成的薄壳结构,这就决定了它的制造过程与一般机械制造有不同的特殊要求:①飞机外形严格的气动要求和结构的互换协调。
②严格控制飞机的结构重量。
在航空技术高度发达的今天,研制一种新型飞机,从设计方案的提出、试制生产到投入使用,一般都要经过几年甚至十几年的时间,这是一个很复杂的过程,简单的归纳起来,飞机研制工作的一般过程大致为:概念性设计——初步设计——方案审查——详细设计——设计审查——原型机试制——设计定型、颁发TC——原型机试飞——批生产准备。
2、飞机制造技术特点由于飞机结构复杂,零件及连接件数量又多,且大多数零件在自身重量下刚度较小,而组合成的外形又有严格的技术要求等特点,在飞机制造中,除了那些形状规则、刚性好的机械加工零件外,大多数零件,特别是那些形状复杂、尺寸大、附性小的钣金零件,都必须用体现零件尺寸和形状的专用工艺装备来制造,以确保其形状和尺寸的准确度。
一般机械产品零件的刚度比较大,连接产生的变形小,故装配准确度主要取决于零件的制造准确度;而飞机装配是由大量刚性较小的钣金零件或薄壁机械加工件在空间组合、连接的结果,故飞机装配准确度在很大程度上取决于装配型架(夹具)的准确度。
此外,在飞机装配中还有定位和连接产生的应力和变形(如铆接应力和变形、焊接应力和变形),装配件从装配型架上取下还要产生变形等,为保证飞机装配工作的顺利进行,希望进入装配个阶段的零件、组合件和部件具有生产互换性,在装配过程中,零件、组合件和部件具有生产互换性,可以不对工件进行试装和修配,能减少大量的手工修配工作量,节省大量工时,缩短装配周期,有利于组织均衡的、有节奏的生产。
在飞机成批生产中,许多钣金零件,机械加工件、装配个阶段的装配单元、部件都采用生产互换的方法。
因此在飞机制造中一般采取互换和协调的方法以保证飞机装配的准确度。
3、飞机制造的主要部分飞机工艺装备是飞机制造中必备的一种设备或工具,用来保证飞机产品的质量,提高劳动生产率,减轻劳动强度,降低产品成本,从而提高产品的竞争能力。
飞机工艺装备分为两大类:一类为直接用于零件的成形和飞机装配过程中的生产工艺装备;另一类为作为生产工艺装备的制造依据和统一标准的标准工艺装备。
随着现代科学技术最新成果的不断涌现,设计、制造飞机工艺装备主要内容已从传统的机械加工向机电结合、数字测量方向发展。
飞机制造技术也已转向采用新的综合技术工作法,建立以飞机产品数字建模技术为主导,并广泛采用新技术和综合化的完整工艺制造体系的新方向发展。
飞机零件的制造包括飞机零件的机械加工(如整体壁板的加工、梁类零件的加工、缘条长桁类零件的加工、框类零件的加工、接头类零件的加工和钛合金零件的加工等)和飞机钣金工艺(如蒙皮零件成形、整体壁板成形、落压零件成形、型材零件成形和钛合金钣金零件成形等)两大类。
飞机制造过程的主要环节是飞机的装配,飞机装配过程就是将大量的飞机零件按图纸、技术条件进行组合、连接的过程。
二、飞机制造中的互换和协调1、结构分析由传统的飞机制造模式可知,由于飞机产品的特殊性,飞机制造技术及其过程与一般的机械制造有着明显的不同,有自己的独特之处。
在采用传统的飞机制造模式来制造薄壁结构的飞机时,由于飞机结构的特点,大部分的结构零件,特别是与外形有关的零件,多为尺寸大、刚性小、形状和配合关系复杂、容易变形的钣金件和型材零件。
这些零件不能用一般的机械加工的方法来制造,而是利用大量标准和专用的工艺装备来制造,在将这些零件装配成组合件和部件时,其装配的准确度和互换性的保证方法,也不能像一般的机械产品那样靠零件的制造准确度本身来保证,而必须要以上述工艺装备来保证。
工艺装备不仅是制造产品的手段,而且是保证产品装配协调和互换的依据。
因此,要保证飞机的制造准确度以及生产中的协调性和互换性,首先必须保证各种生产工艺装备的制造准确度和协调准确度。
2、互换飞机制造中的互换性(即完全互换性)是指相互配合的飞机结构单元(部件、组件或零件)在分别制造后进行装配或安装时,除设计规定的调整外,不需选配和补充加工(如切割、锉铣、钻铰、敲修等)即能满足所有几何尺寸,形位参数和物理功能上的要求。
飞机制造中的互换性分为几何形状互换性和物理功能互换性两个方面的内容。
它是由飞机结构和生产上的特点所决定的。
互换性只是对同一飞机结构单元于言的。
飞机制造中的互换要求包括气动力外形的互换要求、部件对接接头的互换要求、强度互换要求、重量(包括重心)互换要求等方面。
在飞机制造中,当飞机的零件、组合件、段件和部件具有生产和使用互换性时,不但可以减少装配和对接时的修配工作量,节省大量工时,缩短生产周期,降低生产成本,有利于组织有节奏的批量生产,而且可避免出现由于强迫装配而产生的装配变形,以及飞机结构内产生的装配残余应力的集中。
同时,当飞机某个零件、组合件、段件或部件在使用中被损坏后,能用备件迅速更换,不会由于局部的损坏而影响飞机的正常使用,从而可延长飞机的使用寿命,保证飞机的使用性能。
3、协调飞机制造中的协调性是指两个或多个相互配合和对接的飞机结构单元之间、飞机结构单元与它们的工艺装备之间、成套的工艺装备之间配合尺寸和形状的一致性程度。
一致性程度越高,则其协调性越好,协调准确度越高。
协调性仅指几何参数而言。
①保证协调准确度的基本方法按独立制造原则进行协调:对于相互配合的零件,当按独立制造原则对其进行协调时,协调准确度实际上要低于各零件本身的制造准确度。
按相互联系原则进行协调:如果其他条件相同,那么当采用独立制造和相互联系制造两种不同的原则时,即使零件制造的准确度相同,得到的协调准确度也不同;按相互联系原则能得到更高的协调准确度,而且在尺寸传递过程中,公共环节数量越多,协调准确度也就越高。
按相互修配(或补偿)原则进行协调:当采用相互修配原则进行协调时,协调准确度仅取决于将零件A的尺寸传递给零件B这一环节的准确度。
②协调方案的确定以及协调图表飞机的机体主要由大量外形复杂的钣金零件组成,在我国现阶段,对于钣金零件所采取的协调方法(即尺寸传递体系)大体上分为模拟量传递、数字量传递和模拟量与数字量混合传递3种方式。
在确定协调方案时必须先了解飞机机种上需要重点进行协调的部位,以根据不同的机型和结构特点做出正确决策。
三、飞机图纸的绘制飞机图纸的绘制见装配图和零件图。
垫板外舱侧盖蒙皮加强梗、装配图见图。
四、飞机零件的制造1、房外舱蒙皮制造飞机蒙皮是构成飞机气动外形的关键零件,一般采用闸压滚弯、拉伸成形的方法制造,蒙皮制造技术是衡量一个国家飞机制造能力和水平的重要标志之一。
因此蒙皮制造技术对于我国航空制造业具有十分重要的意义。
①蒙皮制造的特点:⑴外形复杂,协调准确度高。
⑵不允许划伤和鼓动。
一般构成气动外形,表面光滑流线。
⑶结构尺寸大,相对厚度小,刚性差。
⑷采用切面样板制造或样板为制造依据,并按模胎、切线样板、检验夹具、拉形模控制外形⑸需要大型专用设备⑹要求操作工人的技术水平较高。
2、合理选材:机机体钣金零件常用材料种类有铝及铝合金、镁合金、钛及钛合金、碳素钢、合金钢及不锈钢等,而此次设计蒙皮所采用的材料均为LY12,LY12在退火和新淬火状态下塑性尚可,可热处理强化。
焊接性能不好,未热处理焊缝的强度为基体的60% ~ 75%,焊缝塑性低。
抗蚀性不高,有晶间腐蚀倾向,阳极氧化处理、涂漆或包铝可大大提高抗蚀能力。
要合理地、有区别地选择结构各部分的材料,既要满足静强度要求,又要具有良好的抗疲劳性能。
高强度铝合金LC4比铝铜合金LY12的静强度高约20%左右,但是LC4的疲劳性能却较差,对于毛刺、细小裂纹很敏感,故发动机机舱蒙皮不用LC4而用LY12,但应注意:①控制应力水平:在较低的应力作用下,结构不易产生疲劳裂纹②避免构件形状和截面的急剧变化,应尽可能逐渐过渡或用较大的圆弧光滑连接。
3、工艺方案的选择与确定①热处理LY12经退火处理(LY12-M)抗拉强度小于245Mpa,伸长率为12%。
LY12经过淬火和自然时效(LY12-CZ),当型材厚度小于5.0mm时,抗拉强度为392Mpa,屈服强度为294Mpa,伸长率为10%;当型材厚度在5.1~10.0mm 之间时,抗拉强度为412Mpa,屈服强度为294Mpa;当型材厚度在10.1~20.0mm之间时,抗拉强度为422Mpa,屈服强度为364 Mpa;当型材厚度在20.0~40.0mm之间时,抗拉强度为441Mpa,屈服强度为313Mpa;当型材厚度大于40.0mm时,抗拉强度为392Mpa,屈服强度为294Mpa;以上状态下伸长率均为10%。
②技术条件JT00-7 普通铆接技术条件JT00-64 飞机零件、组件、部件重量控制4、发房外舱蒙皮工艺规程如下:(1)垫板、加强梗钣金件的制造飞机钣金零件的协调飞机钣金零件的协调包括零件之间相互协调、零件与装配工艺装备之间的协调。
①作用飞机钣金零件的协调可以减少装配和对接时的修配工作量,节省大量工时,缩短生产周期,降低生产成本有利于组织有节奏的批量生产,而且可避免出现由于强迫装配而产生的装配变形,以及飞机结构内产生的装配残余应力的集中,保证飞机的使用性能。
②依据协调依据内容包括:数据尺寸、样板、标准工艺装备、移形工艺装备和标准实样。
协调图表编制依据与其他指令性工艺文件的关系:产品图纸生产大纲——工艺总方案——标准工装协调图表——部件装配协调图表——钣金零件协调图表——钣金零件制造生产文件。
③编制原则⑴、在具备一定物质、技术条件下,尽量采用数字量传递法,CAD/CAM工作法适用于各型飞机的研制、试制和批生产。
⑵、采用模拟量传递法时,也要根据飞机特点、生产批量以及钣金零件的复杂程度,选择不同的协调方法:a、大、中型飞机采用模线样板——表面标准样件工作法;小型飞机(歼击机)可用模线样板——标准样件工作法。