七年级数学上册 第二章 有理数 2.4 绝对值与相反数(第3课时)教案 (新版)苏科版

合集下载

苏科版(2024)七年级上册数学第2章 有理数2.3绝对值与相反数 教案

苏科版(2024)七年级上册数学第2章 有理数2.3绝对值与相反数 教案

苏科版(2024)七年级上册数学第2章有理数2.3绝对值与相反数教案一、教学目标1. 知识与技能:理解并掌握绝对值的概念,能正确计算有理数的绝对值,理解相反数的定义,能找出任何数的相反数。

2. 过程与方法:通过实例引导学生自主探索绝对值和相反数的特性,培养他们的观察、分析和归纳能力。

3. 情感态度与价值观:让学生体验数学的实用性和美感,提高学习数学的兴趣,培养严谨的思维习惯。

二、教学方法和手段1. 直观教学法:利用数轴来解释绝对值和相反数的概念。

例如,可以画一条数轴,让学生理解一个数的绝对值是它在数轴上的距离,而相反数就是与它在数轴上相隔原点等距离的那个数。

2. 实例教学法:通过生活中的实例来解释,比如,温度零上5℃和零下5℃的绝对温差是一样的,这就是绝对值的含义。

同样,向上走5步和向下走5步,步数的绝对值是相等的,可以对应相反数的概念。

3. 互动教学法:设计一些问题让学生自己去探索,比如,"一个数的绝对值总是正的吗?0的绝对值是多少?","如何找到一个数的相反数?"等,通过互动讨论来加深理解。

4. 练习与应用:提供足够的练习题让学生进行操作,通过实际计算来熟练掌握绝对值和相反数的计算方法。

同时,可以设计一些实际问题,让学生用学到的知识去解决,提高他们的应用能力。

5. 多媒体辅助教学:利用多媒体教学软件或者在线教学平台,制作生动的动画或图表,帮助学生更直观地理解抽象的数学概念。

6. 分层教学法:考虑到学生的学习能力和理解程度可能不同,可以设计不同难度的题目,确保每个学生都能在自己的水平上得到提升。

7. 反馈与评价:及时对学生的学习进行反馈和评价,对他们的疑惑进行解答,对他们的进步给予肯定,激发他们的学习积极性。

三、教学重难点1.重点:理解绝对值的概念:绝对值是一个数在数轴上的距离,不考虑正负号,因此任何数的绝对值都是非负的。

掌握绝对值的性质:如|a| = |-a|,绝对值的非负性,以及绝对值与比较大小的关系等。

2023七年级数学上册第二章有理数及其运算3绝对值教案(新版)北师大版

2023七年级数学上册第二章有理数及其运算3绝对值教案(新版)北师大版
-学生可以加入数学社团或兴趣小组,与志同道合的同学一起学习和探讨数学问题。
-学生可以寻求家长或教师的帮助,解答自己在学习中遇到的困惑和问题。
教学资源拓展旨在提供更多的学习材料和活动,帮助学生巩固和拓展绝对值知识,激发学生的学习兴趣和主动性。同时,通过拓展建议,引导学生合理利用各种资源,提高自己的数学能力和综合素质。
2.拓展建议
-学生可以利用网络资源,搜索有关绝对值的知识,了解绝对值在实际生活中的应用。
-学生可以尝试自己设计一些有关绝对值的数学游戏,与同学一起玩耍,巩固知识。
-学生可以参加数学竞赛或奥数课程,提高自己的数学能力,挑战更高难度的题目。
-学生可以阅读一些数学名著或数学故事书籍,了解数学的发展历程,培养对数学的兴趣。
针对以上问题和不足,我将在今后的教学中进行改进。首先,我将针对不同学生的学习需求,进行分层教学,给予他们个性化的指导和支持。其次,我将加强课堂提问环节的设计,提高学生的主观能动性,培养他们的逻辑思维和数学交流能力。最后,我将不断丰富和更新教学资源,提供更多具有实际意义和挑战性的题目,激发学生的学习兴趣和主动性。
教学过程设计
1.导入环节(5分钟)
-创设情境:通过展示一幅地图,提出问题:“如何在地图上找到两个城市之间的最短距离?”
-引导学生思考和讨论,激发学生对绝对值的兴趣和求知欲。
2.讲授新课(15分钟)
-围绕绝对值的定义和性质进行讲解,强调绝对值的非负性和奇偶性。
-通过示例和图形演示,帮助学生理解和记忆绝对值的概念。
①设计一个简洁的绝对值板书,突出定义、性质和运算规则。
②利用创意字体设计,将“绝对值”三个字以特殊形式呈现,吸引学生的注意力。
③使用色彩,将板书设计得更加生动有趣,如用不同颜色的粉笔标注不同的知识点。

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

人教版新版教材初中七年级上册数学课本教学目标

人教版新版教材初中七年级上册数学课本教学目标


新版教材初中七年级上册数学课本教学目标 教学目标 1.通过实际例子,感受引入负数的必要性.会用正 负数表示实际问题中的数量. 2.理解有理数的意义,能用数轴上的点表示有理 数.借助数轴理解相反数和绝对值的意义,会求有理 数的相反数与绝对值(绝对值符号内不含字母),会比 较有理数的大小.通过上述内容的学习,体会从数与 形两方面考虑问题的方法. 3.掌握有理数的加、减、乘、除运算,理解有理数 的运算律,并能运用运算律简化运算.能运用有理数 的运算解决简单的问题. 4.理解乘方的意义,会进行乘方的运算及简单的混 合运算(以三步为主).通过实例进一步感受大数,并 能用科学记数法表示.了解近似数与有效数字的概 念.
1、理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。 2、在理解同类项概念的基础上,掌握合并同类项的方法,能正确地进行合并同类项。 3、掌握去括号法则,通过去括号对整式进行化简。
1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一 次方程及其相关概念,认识从算式到方程是数学的进步. 2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法. 3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次 方程的解法,体会解法中蕴涵的化归思想. 4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量 关系”,体会建立数学模型的思想. 5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学 的应用价值,提高分析问题、解决问题的能力.
人教版新版教材初中七年级上册数学课本教学目标 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 课程内容 第一章 有理数 1.1 正数和负数 1.2 有理数 1.2.1 有理数 1.2.2 数轴 1.2.3 相反数 1.2.4 绝对值 1.3 有理数的加减法 1.3.1 有理数的加法 1.3.2 有理数的减法 1.4 有理数的乘除法 1.4.1 有理数的乘法 1.4.2 有理数的除法 1.5 有理数的乘方 1.5.1 乘方 1.5.2 科学记数法 1.5.3 近似数 第二章 整式的加减 2.1 整式 2.2 整式的加减 第三章 一元一次方程 3.1 从算式到方程 3.1.1 一元一次方程 3.1.2 等式的性质 3.2~3.3 解一元一次方程 3.4 实际问题与一元一次方程 第四章 几何图形初步 4.1 几何图形 4.1.1 立体图形与平面图形 4.1.2 点、线、面、体 4.2 直线、射线、线段 4.3 角 4.3.1 角 4.3.2 角的比较与运算 4.3.3 余角和补角

数学北师大版七年级上册绝对值教材分析

数学北师大版七年级上册绝对值教材分析

第二章教材分析
教学目标:
1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
3.理解乘方的意义,掌握有理数的加,减,乘,除,乘方及简单的混合运算(以三步为主).
4.理解有理数的运算律,并能运用运算律简化运算.
5.能运用有理数的运算解决简单的问题.
设计思路: 1.借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.借助数轴理解相反数,绝对值等概念.
2.借助生活中的实例,引入有理数的运算.通过归纳学生总结运算法则和运算律.为了避免因为小数,分数运算的复杂性而冲淡学习的重点,以整数运算的学习为出发点,然后过渡到含有小数,分数的运算.利用有理数运算解决实际问题.
3.探索计算器的使用,利用计算器解决复杂数据的实际问题,探索数学规律. ——归纳,猜测,描述,验证,计算,尝试,交流.
教学建议:
1.有理数概念和运算含义的教学应尽量从实际问题引入,注重对运算含义的理解.
2.鼓励学生自己归纳运算法则和运算律. 自己的思考与表达——交流,形成较为规范的语言——规范的语言.
3.注重估算,提倡算法多样化,删除繁难的笔算.
4.注重使用有理数及其运算解决实际问题.。

【初+中数学】+绝对值与相反数(第3课时+根据绝对值比较数的大小)+七年级数学(苏科版2024)

【初+中数学】+绝对值与相反数(第3课时+根据绝对值比较数的大小)+七年级数学(苏科版2024)
10.5




− =_______,
− 的相反数是_______;




0
0
(3) =_______
,0的相反数是______.
0的绝对值是 0
概念归纳
由绝对值和相反数的意义可知:
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0。
也可以表示为:
当a>0时,|a|=a;当a<0时,|a|=-a;当a=0时,|a|=0
1.绝对值与相反数的关系:
正数的绝对值是
对值是 0
,负数的绝对值是 它的相反数 , 0的绝
它本身
.
即 ︱a︱=
a (a≥0)
-a
(a≤0)
2.两个正数比较大小,
两个负数比较大小,
绝对值大的正数 大,
绝对值大的负数反而 小.
.
(3)若|a-3|=2,|b-3|=1,且数a、b在数轴上对应的点分别是点A、点B,分别求出
A、B两点之间的最大距离和最小距离.
备用图
解析
(1)由题意可知,数轴上表示5和1的两点之间的距离是4,表示-3和2的
两点之间的距离是5.故答案为4;5.
(2)因为|x-1|=3,所以数轴上表示x和1的两点之间的距离是3,
A. 2个
B. 3个
C. 4个
D. 5个
)
)
15. [2024 无锡梁溪区校级期中]有理数 m , n 在数轴上对应点的位置如图,则
m , n ,| n |,- m ,0的大小关系是( D
)
A. n <0<- m < m <| n |
C. n <| n |<0<- m < m

2024年苏科版七年级数学上册 2.3 绝对值与相反数(课件)

2024年苏科版七年级数学上册 2.3 绝对值与相反数(课件)
解题秘方:求一个数的绝对值,就是求一个数对 应的点到原点的距离.
感悟新知
解:如图2.3-1所示.
知1-练
因为-3 对应的点到原点的距离是3,所以|-3|=3 ; 因为2 对应的点到原点的距离是2,所以|2|=2 ; 因为-14对应的点到原点的距离是14,所以|- 14|=14.
感悟新知
知1-练
方法点拨 求一个数的绝对值的方法:
(2)求一个字母或一个式子的相反数时,也只需在这
个字母或式子的整体前面加上“-”号.
感悟新知
知识点 3 绝对值的代数意义
知3-讲
1. 性质 正数的绝对值是它本身;负数的绝对值是它的相 反数;0 的绝对值是0 . 也可以表示为:当a>0 时,|a|=a;当a<0 时,|a|=- a;当a=0 时,|a|=0 .
感悟新知
知1-讲
3. 特别提醒 一个数对应的点离原点越近,它的绝对值越小,离原
点越远,它的绝对值越大,所以没有绝对值最大的数,只 有绝对值最小的数.
感悟新知
知1-讲
特别提醒 由于绝对值是两点间的距离,所以任意一个
数的绝对值都是非负数.
感悟新知
知1-练
例 1 在数轴上表示下列各数:-3,2,-14,并求出各数 的绝对值.
(2)若a=-b,则a与b互为相反数.
3. 相反数的求法 求一个数的相反数就是在这个数的前面
加上“-”号,即a的相反数是-a,其实质是改变这个
数的符号.
感悟新知
知2-练
例 4 分别写出下列各数的相反数. -3,2,4.5,0,-613,a,a-b. 解题秘方:紧扣相反数的求法,直接写出各个数 的相反数.
也是一种运算,绝对值运算的本质就是要把带有绝对值 符号的数化为不带绝对值符号的数(即去掉绝对值符号).

第二章 有理数的运算(教案)人教版(2024)数学七年级上册

第二章 有理数的运算(教案)人教版(2024)数学七年级上册

第二章有理数的运算2.1有理数的加法与减法2.1.1有理数的加法(2课时)第1课时有理数的加法1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.重点了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点有理数加法中的异号两数如何进行加法运算.一、导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?二、探究新知一个小球作左右方向的运动,我们规定向左为负,向右为正.师:根据题意列出对应的式子:(1)如果小球先向右运动3米,再向右运动5米,那么两次运动后总的运动结果是什么?(2)如果小球先向左运动5米,再向左运动3米,那么两次运动后总的结果是什么?加数加数和(+3)+(+5)=+8,(-5)+(-3)=-8)师:你从上面的两个算式中发现了什么?归纳:同号两数相加,取相同的符号,并把绝对值相加.(3)如果小球先向右运动5米,再向左运动3米,那么两次运动后总的结果是什么?(4)如果小球先向右运动3米,又向左运动5米,两次运动后小球从起点向__左__运动了__2__米.加数加数和(+5)+(-3)=+2,(+3)+(-5)=-2)师:你从上面的两个算式中发现了什么?归纳:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(5)小球先向右运动5米,再向左运动5米,小球从起点向__左(右)__运动了__0__米.师:观察,你又有什么发现?归纳:互为相反数的两个数相加得0.总结归纳:有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.三、课堂练习试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-6)+(-5);(3)(+3)+(-7);(4)(+9)+(-4);(5)(+8)+(-8);(6)(-3)+0;(7)0+(+2);(8)0+0.【答案】(1)7(2)-11(3)-4(4)5(5)0(6)-3(7)2(8)0学生逐题口答后,师生共同得出.方法总结:1.先判断类型(同号、异号等);2.再确定和的符号;3.最后进行绝对值的加减运算.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第28页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.四、课堂小结五、课后作业教材P28练习第1,2,3,4题.本节课主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时有理数加法的运算律及运用1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.重点有理数加法运算律的运用.难点能运用有理数加法运算律来简化加法运算.一、导入新课问题1:在小学中我们学过哪些加法的运算律?加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).问题2:加法的运算律是不是也可以扩充到有理数范围?二、探究新知探究活动(一)1.计算(口算):(1)39+15=__54__,15+39=__54__;(2)(-98)+(-12)=__-110__,(-12)+(-98)=__-110__;(3)(-24)+(+24)=__0__,(+24)+(-24)=__0__;(4)(-23)+(+17)=__-6__,(+17)+(-23)=__-6__.问题3:通过以上的运算结果,你发现了什么?归纳加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变,加法交换律:a+b=b+a.探究活动(二)2.填空:(1)(-15)+(+26)+(+9)=[__(-15)__+__(+26)__]+(+9)=(-15)+[__(+26)__+__(+9)__]=__20__.(2)(-2)+(-12)+(+12)=[__(-2)__+__(-12)__]+(+12)=(-2)+[__(-12)__+__(+12)__]问题4:请你们猜想一下结合律在有理数加法中仍然成立么?使用这些运算律有什么好处呢?请小组开始讨论.归纳加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或先把后两个数相加,和不变.加法的结合律:(a +b )+c =a +(b +c ).师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.例1 计算:16+(-25)+24+(-35). 【答案】-20 例2 灵活运用运用加法交换律和结合律做简便运算 (1)(-25)+(+56)+(-39)+(+28); (2)(-1.9)+3.6+(-10.1)+1.4;(3)13 +(-34 )+(-13 )+(-14 )+1819 ; (4)(-337 )+12.5+(-1647 )+(-2.5).【答案】(1)20 (2)-7 (3)-119(4)-10问题:回顾以上各题的解答,思考:将怎样的加数结合在一起,可使运算简便? 总结归纳:1.一般地,总是先把正数或负数分别结合在一起相加; 2.有相反数的可先把相反数相加,能凑整的可先凑整; 3.有分母相同的,可先把分母相同的数结合相加. 师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂练习 1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.上周五股民新买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元)【答案】1.(1)-10 (2)-3 2.34元 四、课堂小结1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?五、课后作业教材P30练习第1,2,3题.本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的运算律在有理数范围内是否适用?”接着让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.2.1.2有理数的减法(2课时)第1课时有理数的减法1.掌握有理数的减法法则;2.能运用有理数的减法法则进行运算;3.渗透转化思想,培养运算能力.重点有理数的减法法则.难点有理数减法法则的推导.一、导入新课师:出示温度计,提出问题:1.你能从温度计上看出5℃比-5℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式5-(-5)=10.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了5-(-5)=10,而我们还知道5+(+5)=10.即5-(-5)=5+(+5).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则:减去一个数,等于加上这个数的相反数用符号表示:a-b=a+(-b).注意:减法在运算时有2个要素要发生变化: ①减号变加号;②减数变成它的相反数. 三、课堂练习师:出示教材P32例4. (1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)(-312 )-514.【答案】(1)2 (2)-7 (3)12 (4)-834计算(口答): (1)6-9;(2)(+4)-(-7); (3)(-5)-(-8); (4)(-2.5)-5.9; (5)1.9-(-0.6); (6)-25 -(45 );(7)0-(-5); (8)0-5.【答案】(1)-3 (2)11 (3)3 (4)-8.4 (5)2.5 (6)-65(7)5 (8)-5师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材32页练习. 四、课堂小结小结:谈谈本节课的收获. 思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?五、课后作业教材P32练习第1,2题.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索.法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成,减法法则的归纳得出是本节课的难点,在这个过程中,教师适时、适度的引导,也体现教师是学生学习的引导者和伙伴的新型师生关系.第2课时 有理数的加减混合运算1.熟练掌握有理数的加法和减法运算法则;2.能进行有理数的加减混合运算,培养学生的计算能力.重点1.有理数的加减混合运算;2.将加减法统一成加法的省略括号的形式并读出来.难点1.有理数的加减混合运算;2.将加减法改写成省略括号和加号的形式并读出来.一、导入新课一口深3.5米的深井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米.问题:小青蛙爬出井了吗?学生回答.二、探究新知师:投影展示教材例5.计算(-20)+(+3)-(-5)-(+7).学生完成.说明:学生可以按照从左到右的运算顺序去进行计算.在这一过程中本身也需要将减法统一成加法,可以先让学生感受这一方法.师:提出新的问题,可否将其先统一成加法,然后再进行运算?学生讨论后回答.师:让学生尝试新的思路,然后与刚才的方法相比较.师:进一步提出,在刚才的过程中你是否注意到了加法运算律的应用.让学生再重新尝试做一做.之后师生共同归纳方法:有理数加减法的混合运算可以统一成加法运算.探索统一成加法以后的省略括号的书写形式及读法.师:出示例子(-20)+(+3)+(+5)+(-7)并指出,这个式子是否可看作-20,3,5,-7这四个数的和,为书写简便,可以写成省略括号和加号的形式:-20+3+5-7.可以读作(1)负20,正3,正5,负7的和.(2)负20加3加5减7.注意让学生理解这两种读法,尤其是第一种,学生可能不习惯,但在后面讲到多项式时还会涉及类似的问题.例6计算:14-25+12-17.解:14-25+12-17=14+12-25-17=26-42=-16.探究:在数轴上,点A,B分别表示数a,b.对于下列各组数a=2,b=6;a=0,b=6;a=2:b=-6;a=-2,b=-6.(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数的运算,你能用含有a,b的算式表示上述各组点A,B之间的距离吗?一般地,你能发现点A,B之间的距离与数a,b之间的关系吗?三、课堂小结小结:谈谈你这节课的收获.四、课后作业教材P34练习第1,2题.在学生的合作交流、探求新知过程中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意引导学生的思维方向,渗透了转化的思想.2.2有理数的乘法与除法2.2.1有理数的乘法(2课时)第1课时有理数的乘法1.掌握有理数的乘法法则;2.能利用乘法法则正确进行有理数乘法运算.重点运用有理数的乘法法则正确进行计算.难点有理数乘法法则的探索过程及对法则的理解.一、导入新课师:由于长期干旱,水库放水抗旱,每天水位下降2米,已经放了3天,现在水位20米,问放水抗旱前水库水位多少米?生:26米师:能写出算式吗?生:……师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.二、探究新知1.(1)教师出示以下问题,学生以组为单位探索.a.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,__积逐次递减3__.b.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=__-6__,3×(-3)=__-9__.c.观察下面的算式,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.规律:__左右两个因数相乘,其中一个因数为3,若另一个因数逐次减少1,乘积也相应减少3__.d.要使c中的规律在引入负数后仍成立,那么应有:(-1)×3=__-3__,(-2)×3=__-6__,(-3)×3=__-9__.(2)以小组为单位对以上问题从符号和绝对值两个角度进行观察总结归纳,得出正数乘正数,正数乘负数,负数乘正数的规律.(3)利用(2)中的结论计算下面的算式,你又发现了什么规律?(-3)×3=__-9__,(-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0__.规律:__随着后一乘数逐次减1,积逐次加3__.(4)按照(3)中的规律,填空,并总结归纳.(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.结论:__负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积__.2.师生共同归纳总结有理数的乘法法则,并用文字叙述.(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同0相乘,都得0.讨论:(1)若a<0,b>0,则ab<0;(2)若a<0,b<0,则ab>0;(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?3.运用法则计算,巩固法则.教师出示教材例1,师生共同完成,学生口述,教师板书,要求学生能说出每一步依据.教师出示例2,引导学生完成.4.倒数计算并观察结果有何特点?(1)12×2; (2)(-0.25)×(-4). 【答案】(1)1 (2)1要点:有理数中,乘积是1的两个数互为倒数. 思考:数a (a ≠0)的倒数是什么?(a ≠0时,a 的倒数是1a)巩固:口答,说出下列各数的倒数:1,-1,13 ,-13 ,5,-5,0.75,-213 .例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1 km ,气温的变化量为-6℃,攀登3 km 后,气温有什么变化?解:(-6)×3=-18. 答:气温下降18℃. 三、课堂练习 计算: (1)4×(-9); (2)-11×5; (3)(-0.3)×(-0.6);(4)(-12 )×23 ;(5)-98×0; (6)(-0.2)×(-13).【答案】(1)-36 (2)-55 (3)0.18 (4)-13 (5)0 (6)115四、课堂小结1.有理数乘法法则;2.有理数乘法的求解步骤; 3.乘积是1的两个数互为倒数. 五、课后作业教材P40练习第1,2,3题.本节课在引入时采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究.在引例中把表示具有相反意义量的正负数在实际问题中求积的问题,与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则.第2课时 有理数乘法的运算律及多个有理数相乘1.正确理解乘法交换律、结合律和分配律,能用字母表示运算律; 2.能运用运算律较熟练地进行乘法运算; 3.掌握多个有理数相乘的运算方法.重点1.掌握多个有理数相乘的计算方法以及乘法运算律,能运用乘法运算律进行简便运算.2.运用有理数的乘法解决问题.难点逆用乘法分配律进行简便运算.一、导入新课1.有理数的乘法法则是什么?2.小学时候大家学过乘法的哪些运算律?二、探究新知1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.用文字语言归纳:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.用公式的形式表示为:(ab)c=a(bc).(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律.用文字语言归纳:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用公式的形式表示为:a(b+c)=ab+ac.(7)一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c+d)=ab+ac+ad.3.几个不为0的数相乘:确定下列积的符号,试分析积的符号与各因数的符号之间有什么规律?2×3×(-0.5)×(-7),2×(-2)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).当负因数个数为奇数时,积为__负__;当负因数个数为偶数时,积为__正__.结论1:几个不等于0的数相乘,积的符号由__负因数的个数__决定;结论2:有一个乘数为0,则积为__0__;三、课堂练习下列各式中用了哪条运算律?如何用字母表示?1.(-4)×8=8×(-4).乘法交换律:a×b=b×a.2.[(-8)+5]+(-4)=(-8)+[5+(-4)]. 加法结合律:(a +b )+c =a +(b +c ). 例3 用两种方法计算 (14 +16 -12)×12. 比较上面两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?计算:-47 ×3.59-47 ×2.41+47×(-3).师:这道题直接进行计算显然比较麻烦,同学们想一想,有没有简便方法呢?生:同学相互讨论完成. 四、课堂小结小结:这节课你有什么收获? 1.乘法的运算律;2.多个有理数相乘积的符号规律. 五、课后作业教材P43练习第1,2题.新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.2.2.2 有理数的除法(2课时)第1课时 有理数的除法1.了解有理数除法的定义;2.经历有理数除法法则的探索过程,会进行有理数的除法运算; 3.会化简分数.重点正确运用除法法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商.一、导入新课1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、探究新知(一)有理数除法法则的推导师提出问题:根据“除法是乘法的逆运算”填空: (-4)×(-2)=8 → 8÷(-4)=____; 6×(-6)=-36 → -36÷6=____; (-35 )×(45 )=-1225 → -1225 ÷(-35)=____; -8×9=-72 → -72÷9=____.问题:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 与小学学过的除法法则一样,对于有理数除法,得到有理数除法法则(一): 除以一个不等于0的数,等于乘这个数的倒数. 用字母表示为a ÷b =a ·1b(b ≠0).师指出,有理数除法法则(二):两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:法则(1)所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);法则(2)揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例4. 计算: (1)(-36)÷9;(2)(-1225 )÷(-35). 师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值. 教师出示教材例5. 化简下列分数: (1)-123 ;(2)-45-12. 教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.三、课堂练习 计算: (1)24÷(-6);(2)(-4)÷12 ;(3)0÷34 ;(4)(-78 )÷(-47).【答案】(1)-4 (2)-8 (3)0 (4)4932教师分析,学生口述完成. 四、课堂小结小结:谈谈本节课的收获.(有理数的除法法则) 五、课后作业教材P45练习第1,2题,P48习题第6,8题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象,并应该讲清楚除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则(二)计算;2.在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法.然后统一用乘法的运算律解决问题.第2课时 有理数的加减乘除混合运算1.掌握有理数加、减、乘、除运算的法则,运算顺序,能够熟练运算; 2.能运用法则解决实际问题.重点有理数四则混合运算的方法与技巧 难点如何按有理数的运算顺序,正确而合理地进行计算.一、导入新课问题1:小学的四则混合运算的顺序是怎样的? 问题2:我们目前都学习了哪些运算? 二、探究新知教师投影出示教材P45页例6 (1)(-12557 )÷(-5);(2)-2.5÷58 ×(-14).你能尝试解决这两个问题吗?学生尝试解决,然后交流,师生再共同分析.教师提出问题,进行有理数的乘除混合运算,运算顺序是怎样的?学生讨论后回答:乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)问题1:下列式子含有哪几种运算?先算什么,后算什么?归纳:有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的运算.三、课堂练习教师投影展示教材P46例7.教师先示范(1),然后学生口述,教师板书师生共同完成(2).过程中注意联系讲解法则的运用.教师出示例8.例8某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?提示,可记盈利为正数,亏损为负数.本例题教师可让学生上黑板板演,以便发现学生的问题,及时讲解和纠正.教师布置学生练习:教材47页练习题.学生独立完成,然后同学交流,教师安排学生板演.布置自学任务,使用计算器进行计算,教师布置学生互相交流,然后完成教材47页练习3.四、课堂小结小结:说说你本节课的收获.五、课后作业教材P47习题2.2第4,9,10题.在练习过程中,学生所表现出来的问题比较多,一是运算顺序出现问题;二是符号出现问题,尤其是两个负数相加经常和乘法中的负负得正混淆,异号两数相加也往往弄错符号.究其原因还是因为没有完全熟练掌握,形成能力.因此,在教给学生解题方法的同时,还要着重强调易错点,不断加强训练,才能确保计算准确无误.2.3有理数的乘方2.3.1乘方(2课时)第1课时有理数的乘方1.理解有理数乘方的意义;2.能正确进行有理数乘方运算;3.让学生经历探索乘方的有关规律的过程.重点理解有理数乘方的意义.难点理解有理数乘方的意义,熟练进行有理数的乘方运算.一、导入新课师:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的体积为2×2×2=8(cm3).2×2,2×2×2都是相同因数的乘法.生思考回答,为了简便,我们可以将它们记作什么,读作什么?同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?a·a·a·a·a·a可以记作什么?读作什么?学生讨论交流后教师进一步提出:师:怎么表示a·a·…·a,\s\do4(几个a)) (n为正整数)呢?生归纳总结:可以记作a n,读作a的n次方.师:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说,a可以取任意有理数,这就是我们今天研究的课题:有理数的乘方(板书).二、探索新知师:求n个相同因数的积的运算,叫作乘方.乘方的结果叫作幂,相同的因数叫作底数,相同的因数的个数叫作指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.师:出示教材例1.提出问题:怎样进行乘方的运算,你能根据乘方的意义进行上面这个例题的运算吗?学生进行交流讨论,尝试解决.然后师生共同完成例1.师:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?。

七年级数学上册第二章有理数的运算讲义(含解析)

七年级数学上册第二章有理数的运算讲义(含解析)

七年级数学上册第二章有理数的运算考试要求:重难点:1.理解并掌握加减法法则且能熟练运用法则计算2.理解并掌握乘除法法则且能熟练运用法则计算3.能利用有理数的运算法则简化运算4.能借助数轴比较有理数的大小例题精讲:模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;①求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)①三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.a b c a b c++=++(加法结合律)()()有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.①带分数可分为整数与分数两部分参与运算.①多个加数相加时,若有互为相反数的两个数,可先结合相加得零.①若有可以凑整的数,即相加得整数时,可先结合相加.①若有同分母的分数或易通分的分数,应先结合在一起.①符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。

苏科版-数学-七年级上册-2.4《绝对值与相反数(3)》教学设计

苏科版-数学-七年级上册-2.4《绝对值与相反数(3)》教学设计
绝对值与相反数(3)
一、教学目标
1.会求该数的绝对值与相反数,通过学生动脑动手感知有理数的绝对值与该数或
他的相反数的关系。
2会用绝对值比较两个负数的大小
二、教学重点难点
1.重点:有理数的绝对值与该数或他的相反数的关系。
2.难点:会用绝对值比较两个负数的大小
三、教学方法:整体建构和谐教学
四、教学过程
教师活动
先让学生相互讨论,探索解题方法,教师再指导学生回答。
及时反馈加强指导。
五、课后反思
负数的绝对值是它的相反数
0的绝对值是0
互为相反数的两个数的绝对值相等
联想数轴上比较有理数大小的方法,揭示用绝对值比较有理数大小的合理性;
两个正数,绝对值大的正数大;
两个负数,绝对值大的负数反而小;
学生先自主思考,然后参与讨论,归纳。
通过学生观察分析使学生主动参与到学习活动中来,培养学生的观察分析能力和语言表达能力
学生活动
设计意图
导入新课
明确目标
探索活动(一)
1求值
(1)—(+5);—(—5);+(+5);+(—5);
(2)—〔—(+5)〕;+〔—(—6)〕;
(3)︱10︱= ;︱1.9︱= ; ︱— ︱=
= ; 的相反数是 ;
—7.8的相反数 ;
(4) = ;0的相反数是 ;
思考:一个数的绝对值与这个数本身或它的相反数有什么关系?
探索活动(二)
Байду номын сангаас2 比较大小 (1) 与0; 0与 —2;
—9与—9.3; —6与6
讨论:绝对值大的数大,绝对值小的数小吗?
学生回顾所学
知识

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2… 议一议 你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试 你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做 以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内:127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...… … … …有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗?(2)生活中,我们也常常对事物进行分类,请你举例说明.【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,12,-312,3,0,50%,-0.3(1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3}(3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%} 分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边.(三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B) ⑦-1-2021-1-45E DC B AA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

七年级(上)第二章 有理数 第7课时 绝对值与相反数(3)(附答案)

七年级(上)第二章  有理数 第7课时 绝对值与相反数(3)(附答案)

第7课时 绝对值与相反数(3)预学目标1.巩固对绝对值和相反数意义的理解.2.通过计算,尝试归纳、了解绝对值与原数、相反数之间的关系.3.初步了解利用绝对值比较两个负数的大小以及比较有理数大小的一般方法. 知识梳理1.绝对值的计算 (1)8______=,3______4=,10.3______=,… 可以发现:一个正数的绝对值等于______________ (2)6-=_______,-6的相反数是______;3______4-=,-34的相反数是_______;… 可以发现:一个负数的绝对值等于______________.(3)0=_______,0的相反数是_______.2.有理数的大小比较(1)通过学习,我们知道数轴上右边的点所表示的数_______左边的点所表示的数.如图1,A 、B 、C 、D 四个点所表示的数的大小依次为:_______<________<________<________.(2)通过学习,我们发现:①对于原点右边的正数,绝对值大的正数所对应的点都在绝对值小的正数所对应的点的边.说明:两个正数比大小,________________________________________________. ②对于原点左边的负数,绝对值大的负数所对应的点都在绝对值小的负数所对应的点的_______边,说明:两个负数比大小,__________________________________________. 例题精讲例1 求下列各数的绝对值:-712,110,-4.75,10.5. 提示:求一个数的绝对值,可根据概念直接求解. 解答:172-=712;110=110; 4.75 4.75-=;10.510.5=. 点评:求有理数的绝对值,一般用代数结论比较方便,即“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0” .例2 比较下面各组数的大小:(1) -1与-0.2; (2) -3-与0.提示:比较两个数的大小,可以利用数轴进行比较,也可以利用有理数大小比较的法则进行比较,要特别注意两个负数的大小比较方法,解答:(1)因为1-=l ,0.2-=0.2,且1>0.2,所以-1<-0.2.(2) -3-=-3,而-3<0,所以-3-<0.点评:利用数轴比较数的大小时,始终是右边的数大;正数>0>负数;比较两个负数的大小,绝对值大的负数反而小.热身练习1.下列各式中,等号不成立的是 ( )A .4-=4B .-4=-4-C .4-=4D .-4-=42.下列说法中,错误的是 ( )A .一个正数的绝对值一定是正数B .任何数的绝对值都是正数C .一个负数的绝对值一定是正数D .任何数的绝对值都不是负数3.绝对值大于1且不大于3的整数有 ( )A .3个B .4个C .5个D .6个4.已知a 、b 是有理数,则下列结论一定正确的是 ( )A .若a <b ,则a <bB .若a >b ,则a >bC .若a =b ,则a =bD .若a ≠b ,则a ≠b5.若a =4,b =9,则a b +的值为 ( )A .13B .5C .13或5D .以上都不是 6.-2的绝对值是_______,23的绝对值是_______,0的绝对值是_______. 7.绝对值是+3.1的数是_______,绝对值小于2的整数是_______.8.若x =5,则x =________ ;若x =7-,则x =_______;3.14π-=_______.9.如图,数轴上有两个点A 、B ,分别表示有理数a 、b ,根据图形填空:(1)a ________b ; (2) a -_______b ;(3) a b -=_______; (4) b a -=_______.10.a -=-a 成立的条件是________.11.用“>”、“=”或“<”填空:(1)-13_______14; (2) 34_______0.75; (3)3.6_______334 (4) (4)-3_______-5. 12.如图,数轴上有四个点A 、B 、C 、D ,分别表示有理数a 、b 、c 、d ,请用“<”号连接a 、b 、c 、d 、a 、b 、-c 、-d .参考答案1.D 2.B 3.B 4.C 5.C 6.2 230 7.3.1和-3.1 -1、0、18.±5 ±7 π-3.14 9.(1)< (2)< (3) b-a (4) b-a 10.a≤0 11.(1)< (2)=(3)< (4)> 12.a<-d<-c< b<b<c<d<a。

七年级上册第二章《有理数及其运算》第三节“绝对值”

七年级上册第二章《有理数及其运算》第三节“绝对值”

课题:2.3 绝对值一.备课标:(一)内容标准:借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数)(二)核心概念:初步学会从数形角度及特殊到一般学习相反数和绝对值的概念。

十大核心概念在本节课中突出培养的是符号意识、数形结合的思想方法、应用意识。

二、备重点、难点:(一)教材分析:本节课是七年级上册第第二章《有理数及其运算》第三节“绝对值”,属于“数与代数”领域中的“数与式”。

相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。

(二)重点、难点分析:本课中绝对值的两种定义是重点,绝对值的代数定义是本课的难点,其理论依据是如何突破绝对值符号里字母a的任意性这一难点,由于学生年龄小,解决实际问题能力弱,对数学分类讨论思想理解难度大。

重点:会求已知数的相反数和绝对值,会用绝对值比较两个负数的大小难点:知道|a|的含义,利用绝对值比较两个负数的大小。

三.备学情:(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:上一节课已经学习了有理数的概念和数轴,为绝对值,相反数的概念的建立和比较两个负数的大小积累的必要的学习经验。

(2)支持性条件:通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

2.起点能力分析学生已经掌握了有理数,已经会用数轴的点来表示有理数。

初步获得了分析问题和解决问题的一些基本方法,初步体验解决方法的多样性,初步发展了创新意识。

七年级数学上册《数轴相反数和绝对值》优秀教学案例

七年级数学上册《数轴相反数和绝对值》优秀教学案例
4.注重反思与评价,提升学生的自主学习能力
在教学过程中,本案例关注学生的反思与评价,鼓励学生进行自我反思,总结学习过程中的收获和不足。同时,教师及时对学生的学习过程和成果进行评价,给予针对性的指导和鼓励。这样的设计有助于提升学生的自主学习能力,使他们养成良好的学习习惯。
5.内容与过程并重,提高学生的数学素养
本案例从学生熟悉的生活情境出发,引入数轴的概念,通过实际操作让学生感受相反数和绝对值在生活中的应用。在教学过程中,我注重引导学生参与讨论、积极思考,鼓励他们提出问题、解决问题,从而激发学生的学习兴趣和探究欲望。同时,结合教育心理学原理,我采用了多元化的教学策略,如小组合作、分层教学等,以满足不同学生的学习需求。
1.提出问题:“如何表示一个数的相反数?它在数轴上有什么特点?”引导学生通过观察、思考、讨论,发现相反数的性质。
2.引导学生思考:“绝对值是什么?它有什么作用?”通过实例分析,让学生理解绝对值在生活中的应用。
3.设计具有挑战性的问题,鼓励学生运用所学知识解决问题,提高他们的数学思维能力。
(三)小组合作
2.问题导向,培养学生的探究能力
在教学过程中,本案例注重问题导向,引导学生主动发现、思考和解决问题。通过设计具有启发性和挑战性的问题,激发学生的探究欲望,培养他们的数学思维能力和解决问题的能力。
3.小组合作,提高学生的合作意识和沟通能力
本案例强调小组合作学习,让学生在小组内共同探究、讨论和解决问题。这种教学策略有助于培养学生的团队意识和合作精神,提高他们的沟通能力,使学生在互动交流中相互学习、共同成长。
(三)学生小组讨论
1.将学生分成小组,让他们在数轴上找出给定数的相反数和绝对值。
2.小组讨论:讨论相反数和绝对值在数轴上的特点,总结它们之间的关系。

绝对值与相反数-2022-2023学年七年级数学上册课件(苏科版)

绝对值与相反数-2022-2023学年七年级数学上册课件(苏科版)

(2)因为动点P,Q同时从A,B出发沿数轴负方向运动,点P的速度是每秒 个单位长度,点Q的


速度是每秒2个单位长度,又因为AB=6,两点速度差为:2- ,所以6÷(2- )=4,运动4


秒后,点Q可以追上点P.
(3)存在点M,使P到A,B,C的距离和等于10,当M在AB之间,则M对应的数是2;当M在C
结论.
解∶
因为|−


|= =





>




|− |= =





>



所以 −
<−


【典例1】若﹣1<x<4,则|x+1|﹣|x﹣4|= 2x﹣3 .
解析∶
利用数形结合分析求解
|x+1|是x到﹣1的距离,
x+1>0, |x+1|=x+1
解:



(+ )=










+(– ) =– ; – (– ) = ,故A、B、C选项错误.因为– ( – 0.2)= 0.2; –
,且0.2与–

互为相反数,故D选项正确.

四、绝对值的性质(难点)
正数的绝对值是它本身






文字描述
0的绝对值是0
负数的绝对值是它的相反数
a(a>0),
个负数的点都在原点的左边,并且表示绝对值较大的负数的点在表示绝对值较小

七年级数学上册 第二章 有理数及其运算 1 有理数优秀教案 (新版)北师大版

七年级数学上册 第二章 有理数及其运算 1 有理数优秀教案 (新版)北师大版

1.内容结构特点本章是在小学非负有理数知识的基础上引进负数的.首先介绍有理数的基本概念,然后再学习有理数的运算,并用有理数的知识解决实际问题.本章知识的引入注重从实际情境入手,通过学习有理数的分类、相反数、数轴、绝对值、有理数大小的比较,理解并掌握有理数的概念,初步渗透数形结合的数学思想,通过探索归纳的方式,寻求有理数的加法、减法法则和运算律,通过探索规律的方式归纳总结有理数的乘、除法法则和运算律,在现实背景中理解有理数乘方的意义,通过24点游戏的设立,训练基本运算能力,培养思维能力,通过计算器的使用,既使学生解脱了繁杂的运算,同时又培养了学生探索数字规律的能力.2.教材的地位及作用数是学习代数式、方程、不等式、函数等内容的基础.本章是初中阶段对数学习的一部分.在小学阶段学生已经学习了算术数,积累了初步的数感、符号感和基本的运算能力,本章将进一步探索有理数的相关知识并解决实际问题.教材通过现实生活提供的问题背景,给学生提供了归纳、猜想、验证、推理、计算、交流等数学活动机会,使学生在活动中发现问题、探索规律,促进了学生对知识的理解和掌握.所以,本章内容在知识的掌握、数学思想方法的渗透、学习能力的培养等方面都是非常重要的.3.教学重点与难点教学重点:(1)有理数的概念,特别是有理数的分类、绝对值、相反数等的概念.(2)有理数大小的比较方法,探索有理数四则运算法则并熟练计算.(3)用科学记数法表示数.(4)应用有理数的相关知识解决实际问题.教学难点:(1)有理数的概念和有理数的运算.(2)数形结合思想的应用.4.教学目标(1)在具体情境中,理解有理数及其运算的意义.(2)能用数轴上的点表示有理数,会比较有理数的大小.(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.(4)经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主);理解有理数的运算律,并能运用运算律简化运算.(5)会利用科学记数法表示数.(6)能运用有理数及其运算解决简单的实际问题.5.教学建议第一,教师应尽量从实际问题引入有理数的概念,借助有趣的情境和生活实例帮助学生理解概念,使学生正确地理解正数和负数是表示具有相反意义的量.也可让学生自己从生活中寻找素材,加深理解;第二,进行有理数运算教学时,鼓励学生自己探索运算法则和运算律,并在与同伴交流的过程中逐步形成较为规范的解题格式.在该过程中,提倡算法多样化,教学时应减少繁难的笔算,对于出现的繁杂运算,鼓励学生使用计算器;第三,要重视应用有理数及其运算解决实际问题的教学,让学生会用正负数表示实际问题中的量,能用运算的结果作出合理的解释,并赋予实际意义.1 有理数1课时2 数轴1课时3 绝对值1课时4 有理数的加法2课时5 有理数的减法1课时6 有理数的加减混合运算3课时7 有理数的乘法2课时8 有理数的除法1课时9 有理数的乘方2课时10 科学记数法1课时11 有理数的混合运算1课时12 用计算器进行运算1课时教学重点与难点教学重点:1.理解并掌握有理数的概念.2.会用正、负数表示生活中具有相反意义的量.教学难点:有理数的分类.学情分析认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟悉,并且已经熟练地掌握了非负有理数的四则运算法则及运算律,能规范条理地表述运算过程,初步具有了有条理地思考和书面表达能力,这些都为本章的学习奠定了基础.活动经验基础:北师大版的小学数学重视学生的生活经验,密切数学与现实的联系,教材对重要的数学内容都是按照“问题情境——建立模型——解释与应用”的叙述方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了良好的数学思维习惯和应用意识,有了一定的解决问题的能力,同时学生在研究具体问题的过程中自主地参与、探究和交流,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力.教学目标1.了解正数与负数是从实际需要中产生的,并会判断一个数是正数还是负数.2.会用正、负数表示具有相反意义的量.3.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学方法创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索.通过小组交流合作的形式,构建以教师为主导,学生为主体自主探索的课堂学习环境,使学生在探索合作的过程中掌握知识,提高技能,形成自己的观点.教学过程一、引入新课设计说明教材例题贴近学生生活实际,生动活泼,通过对该例设置问题串,由浅入深,引导学生在轻松熟悉的气氛中进行思考,既复习旧知,作好新知学习的铺垫,同时鼓励学生大胆想象,充分进行思考、交流.阅读教材本节起始部分的内容,回答下列问题:问题1:你能很快地为这两个队排一下名次吗?你的依据是什么?学生排名次的依据可能不唯一,如:数笑脸的个数、计算总得分等,只要学生能充分思考,正确表达出排名次的依据,就进行表扬.问题2:在完成表格后,你有什么发现?学生通过填“答错题的得分”这一栏,发现“-3”“-2”,这种数字是我们没有学过的数,它是什么数?表示什么意义?和我们以前学过的数有什么关系?——引入新课.教学说明以上问题从学生已有的知识入手,以问题为载体,自然理顺学生解决问题的思路,问题1和问题2对于开拓学生解题思维有很大帮助,使个性化思维得到鼓励和发展,同时引入了新课的学习.实践证明,该设计调动了学生的积极性,成功引入了新课.二、讲授新课1.达标导学,初探新知通过上面的问题我们看到,生活中的有些量用我们以前学过的数不能表示了,这些比0小的数,可以用带有“-”的数来表示.比如-10,我们读作“负10”.对于比0大的数,我们用带有“+”的数来表示.如+10,读作“正10”.注意:“+”常常可以省略.问题:“-”可以省略吗?为什么?学生回答:不可以省略.“+”和“-”是表示数的性质符号,“-”省略了,数的性质就改变了.2.小组讨论,理解新知生活中你见过带有“-”的数吗?设计说明安排这一活动的目的,主要为了鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数的引入是实际生活的需要.同时,可以根据实际需要,选择一些学生熟悉的实例展开讨论.如,零上温度与零下温度,海拔高于海平面的高度与海拔低于海平面的高度,等等.像5,1.2,23…这样的数叫做正数,它们都比0大. 在正数前面加上“-”的数叫做负数,如-10,-3,…问题1:正数和负数有什么关系?根据学生关于具有相反意义的量的讨论,使学生通过对数学模型的观察、归纳、概括、交流等数学活动,进一步理解怎样用正、负数表示现实生活中具有相反意义的量,掌握正、负数的意义,培养学生的正、负数的数感.问题2:0是正数还是负数?学生的回答会多种多样,甚至有的学生无法回答,这里教师明确告诉学生,引入负数以后,“0”的意义就不仅仅表示“没有”了,它还是正、负数的分界,是“基准”.问题3:带“-”的数一定是负数吗?该问题学生回答有一定困难.对于正数和负数的概念,要提醒学生注意不要认为带“+”的数就是正数,带“-”的数就是负数.如-a 不一定是负数.但此处不易引申太多.3.例题处理,巩固新知设计说明通过例题的教学,要求学生能正确地表达出负数所表示的实际意义以及用正、负数表示相反意义的量;同时,了解并不是所有的基准都必须为0.教材实例(例题):问题1:在以上3道题中正数、负数分别表示什么量?问题2:每道题的基准分别是什么?问题1根据学生的回答强调,习惯上人们经常把零上的温度、上升的高度、向东的行程等规定为正的,而把零下的温度、下降的高度、向西的行程等与前面意义相反的量规定为负的;问题2要求学生注意并不是所有的基准都必须为0,如第1小题的基准为转盘静止不动,第2小题的基准为一只乒乓球的标准质量,第3小题的基准为10 kg.练习题组设计说明为了让学生更好地理解巩固正数和负数是表示一对意义相反的量,在例题讲解完成后及时补充练习,同时通过填空题的形式规范书写格式,包括正、负数的书写及填空题的单位.通过该练习培养学生严谨规范地书写.练习完成后教师可提问学生各题中互为相反意义的量分别是什么?基准分别是什么?帮助学生更全面地理解本节的重点.(1)海平面上的高度记为正,海平面下的深度记为负,则海平面下150米记作________;(2)盈利100元记作+100元,那么亏损100元记作________;(3)如果零上5 ℃记作+5 ℃,那么零下5 ℃记作________;(4)某仓库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作________;(5)东西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示________,物体原地不动记为________;(6)向南走-4米,实际上是向________走了________米.4.小组活动,再探新知现在大家分组活动,列举我们已学过的数,然后将列举的所有数适当地分成几组,并说明这样分组的理由.有理数的分类:有理数(按定义)⎩⎪⎨⎪⎧ 整数⎩⎪⎨⎪⎧ 正整数零负整数分数⎩⎪⎨⎪⎧ 正分数负分数 有理数(按性质)⎩⎪⎨⎪⎧ 正数⎩⎪⎨⎪⎧ 正整数正分数零负数⎩⎪⎨⎪⎧ 负整数负分数整数和分数统称有理数.设计说明有理数的概念是本节课的重点内容,通过该题组使学生充分理解有理数的分类.把下列各数填入相应数集里:3,-2,3.5,-23,0,-3.14,-10% 正数集合:﹛ …﹜;负数集合:﹛ …﹜; 整数集合:﹛ …﹜;有理数集合:﹛ …﹜. 教学说明本过程通过初探、理解、巩固、再探四个环节,使学生在教师的引导下,通过问题的探讨、交流、合作,自主地解决问题,巩固知识.同时练习题组的设计使学生的新知得到了及时地巩固掌握,教学效果良好.三、巩固提高设计说明通过三个练习,使学生对本节课学习过程中易出错和模糊的概念从不同题型加以理解,掌握解题技巧.1.小学学过的小数是不是有理数?属于分类中的哪一类?2.判断下列说法是否正确:(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是负数;(3)一个整数不是正整数就是负整数;(4)一个分数不是正分数就是负分数.3.议一议:一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%.(1)±10%的含义是什么?(2)请你算出该商品的最高价格和最低价格;(3)如果以标准价格为标准,超过标准记作“+”,低于标准记作“-”,该商品价格的浮动范围又可以怎样表示?答案:1.有限小数和无限循环小数都是有理数,属于分数;无限不循环小数不是有理数.2.第(1),(4)说法正确.3.(1)±10%的含义是在标准的基础上加价或降价的幅度不超过10%.(2)最高价格为200+200×10%=220(元);最低价格为200-200×10%=180(元).(3)因为220-200=20(元),200-180=20(元),所以这件商品加价或降价的幅度不超过20元,所以这件商品价格的浮动范围又可以表示为±20元. 中考链接:1.在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A.+2米 B.-2米 C.+18米 D.-18米2.如果水库的水位高于标准水位3 m时,记作+3 m,那么低于标准水位2 m时,应记作( )A.-2 m B.-1 m C.+1 m D.+2 m答案:1.B 2.A教学说明本过程仍然先让学生独立思考,再进行小组交流的方式进行展开.课堂上鼓励学生大胆发言,用自己的语言说明理由,进一步培养提高学生的思维表达能力.练习1对于有限小数和无限循环小数都是分数,学生不能很好的说明理由,考虑到为避免喧宾夺主,教学时可视学生情况适当解释.四、总结反思通过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为什么要学习负数,学会了用正、负数表示生活中的具有相反意义的一对量,还知道了有理数都包括哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易困惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混淆和重复,应通过判断题或选择题的形式多加练习.评价与反思本节课设计为学生创设了轻松愉快地自主探索交流的学习环境,四大环节的设计遵循学生的认知规律,重在挖掘学生潜力,给了学生更多的思考空间.教学过程中注重发挥学生的主体作用,培养学生在学习互动过程中学会竞争与合作,增强团队互助合作精神.教学时一直让学生处于发现问题、提出猜想、交流讨论的状态中,用自己的思维方式形成自己对于问题独特地理解和认识.。

七年级数学绝对值教案【三篇】

七年级数学绝对值教案【三篇】

⼩编整理了七年级数学绝对值教案【三篇】,希望对你有帮助!绝对值教案1●教学内容七年级上册课本11----12页1.2.4绝对值●教学⽬标1.知识与能⼒⽬标:借助于数轴,初步理解绝对值的概念,能求⼀个数的绝对值,初步学会求绝对值等于某⼀个正数的有理数。

2.过程与⽅法⽬标:通过从数形两个侧⾯理解绝对值的意义,初步了解数形结合的思想⽅法。

通过应⽤绝对值解决实际问题,体会绝对值的意义。

3.情感态度与价值观:通过应⽤绝对值解决实际问题,培养学⽣浓厚的学习兴趣,使学⽣能积极参与数学学习活动,对数学有好奇⼼与求知欲。

●教学重点与难点教学重点:绝对值的⼏何意义和代数意义,以及求⼀个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某⼀个正数的有理数。

●教学准备多媒体课件●教学过程⼀、创设问题情境1、两只⼩狗从同⼀点O出发,在⼀条笔直的街上跑,⼀只向右跑10⽶到达A点,另⼀只向左跑10⽶到达B点。

若规定向右为正,则A处记作__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(⽤⽣动有趣的引例吸引学⽣,即复习了数轴和相反数,⼜为下⽂作准备)。

2、这两只⼩狗在跑的过程中,有没有共同的地⽅?在数轴上的A、B两点⼜有什么特征?(从形和数两个⾓度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表⽰-和的点呢?⼩结:在实际⽣活中,有时存在这样的情况,⽆需考虑数的正负性质,⽐如:在计算⼩狗所跑的路程中,与⼩狗跑的⽅向⽆关,这时所⾛的路程只需⽤正数,这样就必须引进⼀个新的概念———绝对值。

⼆、建⽴数学模型1、绝对值的概念(借助于数轴这⼀⼯具,师⽣共同讨论,引出绝对值的概念)绝对值的⼏何定义:⼀个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

⽐如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 绝对值与相反数
教学目标
1.能说出一个数的绝对值与相反数的意义;
2.会求已知数的绝对值与相反数;
3.会用绝对值比较两个负数的大小;
4.经历将实际问题数学化的过程,感受数学与生活的关系.
教学重点
1.一个数的绝对值与相反数的意义;
2.求已知数的绝对值与相反数;
3.用绝对值比较两个负数的大小.
教学难点
绝对值与相反数的意义.
教学过程(教师)
学生活动
设计思路
试一试:
根据绝对值与相反数的意义填空:
(1)_______,_________,_________;
(2)_______,的相反数是_______,
_________,的相反数是_______,
_________,的相反数是________;
(3)_______.
当a是正数时,a的绝对值是它本身,即当a>0时,;
当a是0时,a的绝对值是0,即当a=0时,;
当a是负数时,a的绝对值是它的相反数,即当a<0时,.
解:, 正数的绝对值是它本身

, 负数的绝对值是它的相反数

0的绝对值是0

求一个数的绝对值,首先要分清绝对值符号内的数:是正数、是负数还是0?然后再根据绝对值的意义求出结果.
探索活动:
议一议 两个正数中,绝对值大的那个数一定大吗?两个负数呢?
数轴上表示两个正数的点都在原点的右边,并且表示绝对值较大的正数的点在另一个点的右边;数轴上表示两个负数的点都在原点的左边,并且表示绝对值较大的负数的点在另一个点的左边.
通过探究得出结论:
两个正数,绝对值大的正数大;
两个负数,绝对值大的负数小.
结合数轴,体会利用绝对值可以比较同号的两个数的大小.
例题教学:
例6 比较与的大小.
解:因为,且,
所以.
两个负数,绝对值大的负数小.
掌握如何利用绝对值比较两个负数的大小.
练一练
1.填空:
(1)的符号是______,绝对值是______;
(2)10.5的符号是______,绝对值是______;
(3)符号是“+”号,绝对值是的数是______;
归纳知识体系,提炼思想和方法.
(4)符号是“-”号,绝对值是9的数是______;
(5)符号是“-”号,绝对值是0.37的数是______.
2.用“<”或“>”填空:
(1); (2);
(3)}; (4).
独立完成,课堂交流.
当堂巩固所学知识.
课堂小结:
谈谈你这一节课有哪些收获.
回顾本节课的教学内容,从知识和方法两个层面进行总结.
议一议:一个数的绝对值与这个数本身或它的相反数有什么关系?
正数的绝对值是它本身;
负数的绝对值是它的相反数;
0的绝对值是0.
通过填空将绝对值与相反数的关系具体化.通过不完全归纳法,探索绝对值的代值:
求一个数的绝对值,首先要分清这个数是正数、负数、还是0,然后才能正确地写出它的绝对值.
相关文档
最新文档