应力应变分析习题解答

合集下载

材料力学带答疑

材料力学带答疑

第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。

拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。

)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。

)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。

)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。

)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。

A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。

)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。

A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。

)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。

A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(应力和应变分析强度理论)【圣才出品】

刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(应力和应变分析强度理论)【圣才出品】

平面的外法线方向。
7 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台

三、三向应力状态分析 1.三向应力圆 如图 7-1-4 所示,以三个主应力表示的单元体,由三个相互垂直的平面分别作应力圆, 将三个平面的应力圆绘在同一平面上得到三向应力状态下的应力圆,如图 7-1-5 所示。与 每一主应力所对应的应力圆可由与该主平面相正交的其余面上的应力作出。 注意:作三向应力圆应至少知道一个主应力的大小和方向。
1 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台

实例:在滚珠轴承中,滚珠与外圈接触点处的应力状态,可以作为三向应力状态的实例。 二、二向应力状态分析 1.解析法 如图 7-1-1(a)所示,一单元体 abcd 处于平面应力状态,采用截面法取左边部分单 元体 eaf 为研究对象,如图 7-1-1(b)所示。
5 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 7-1-3(a)
图 7-1-3(b) ③求主应力数值和主平面位置 a.求主应力数值的方法 如图 7-1-3(b)所示,点 A1 和点 B1 分别为代表最大主应力和最小主应力,其大小为
6 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 7 章 应力和应变分析强度理论
7.1 复习笔记
一、应力状态 一点的应力状态:过一点不同方向面上应力的集合。 应力状态的研究对象是单元体,其特征为:①单元体的尺寸无限小,每个面上应力均匀 分布;②任意一对平行平面上的应力相等。 主单元体是指各侧面上切应力均为零的单元体。其中,单元体上切应力为零的面称为主 平面,主平面上的正应力称为主应力。 说明:一点处必定存在一个单元体,使得三个相互垂直的面均为主平面,三个互相垂直 的主应力分别记为 σ1、σ2、σ3,且规定按代数值大小的顺序来排列,即 σ1≥σ2≥σ3。 应力状态分类及实例 (1)单向应力状态:也称为简单应力状态,三个主应力 σ1、σ2、σ3 中只有一个不等 于零。 实例:简单的拉伸或压缩。 (2)平面(二向)应力状态:三个主应力 σ1、σ2、σ3 中有两个不等于零。 实例:薄壁圆筒横截面上的点和圆形容器包含直径的任意横截面上的点。 (3)空间(三向)应力状态:和平面应力状态统称为复杂应力状态,三个主应力 σ1、 σ2、σ3,均不等于零。

材料力学典型例题及解析7.应力应变状态典型习题解析

材料力学典型例题及解析7.应力应变状态典型习题解析

应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。

绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。

b = 60 mm ,h = 100 mm 。

解题分析:从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。

则各点处的应力状态如图示。

2、梁截面惯性矩为点微体上既有正应力又有切应力。

解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z 1点处弯曲正应力(压应力)MPa 100Pa 10100m10500m 1050m N 101064833−=×=×××⋅×==−−z I My σ1点为单向压缩受力状态,所以021==σσ,MPa 1003−=σ2点为纯剪切应力状态,MPa 30Pa 1030m10100602N1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa303−=σ3点为一般平面应力状态弯曲正应力MPa50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−z I My σ弯曲切应力σ14τ2F S =120 kN题图1中性轴324hστ25 mm 31b M =10 kN·mσ3150 mm 1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−zz bI S F τMPa6.8MPa6.58Pa)10522()2Pa 1050(2Pa 1050)2(22626622minmax −=×+×±×=+−±+=x y x yx τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。

弹塑性力学习题集 很全有答案

弹塑性力学习题集 很全有答案
3—8 有一处于二向拉伸应力状态下的微分体( σ1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ),其主应变
为 ε1 = 1.7 ×10−4 , ε 2 = 0.4 ×10−4 。已知ν = 0.3,试求主应变 ε 3 。 3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。
2—9 已知一点的应力张量为:
50 50 80
σ ij
=
0 − 75MPa
(对称)
− 30
试求外法线
n
的方向余弦为: nx
=
1 2
,ny
=
1 2
, nz
=
1 2
的微斜面上的全应力 Pα
,正
应力 σ α 和剪应力τ α 。
2—10 已知物体的应力张量为:
50 30 − 80
σ ij
=
0 − 30MPa
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为:
εz
=
γz E
,
εx
=εy
=
− νγz E
;
γ xy = γ yz = γ zx = 0;
试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
2—42 如题 2—42 图所示的圆截面杆扭转时得到的应变分量为:ε x = ε y = ε z = γ xy = 0,
2
3
各弹性常数的物理意义。
3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据
单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来

应力状态与应变状态例题

应力状态与应变状态例题
A.(1)正确、(2)不正确;
B.(1)不正确、(2)正确;
C.(1)、(2)都正确;
D.(1)、(2)都不正确。
若构件内危险点的应力状态为二向等拉,则除 ( B )强度理论以外,利用其他三个强度理论得到 的相当应力是相等的。
A.第一; B.第二; C.第三; D.第四;
r1
r2
r3 1 3
第二强度理论
3

1+
1-(2+3)
对于铸铁: 0.25
1 3 2
2
(1+)
0.8
0.5
1
2
1
2 2
2
3 2
3
1 2
3
0.6
基本习题结束
铸铁水管冬天结冰时会因冰膨胀而被胀裂, 而管内的冰却不会破坏。这是因为( B )。
第一强度理论
1 +
23 11
x 10, y 23, xy 11
max
min
x y
2
x
2
y
2
2 x
10
29.8MPa
3.72MPa
(单位 MPa)
1 29.28MPa,2 3.72MPa,3 0
1 29.28MPa< 30MPa
故满足强度要求。
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试用第三、第四强度理论校核此结构是否安全。
xy
cos 2
0
故所给45度方向是主应力方向。
一受扭圆轴,直径d=20mm,圆轴的材料为 钢,E=200GPa,ν=0.3。现测得圆轴表面上与轴线成450 方向的应变为ε=5.2×10-4,试求圆轴所承受的扭矩。

《材料力学》第7章-应力状态和强度理论-习题解

《材料力学》第7章-应力状态和强度理论-习题解
解:左支座为A,右支座为B,左集中力作用点为C,右集中力作用点为D。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

应力应变分析习题解答

应力应变分析习题解答

402
94.72 5.28
MPa
习题解答
根据大小来确定主应力的次序如下:
1 94.72MPa, 2 50MPa, 3 5.28MPa
于是该单元体的形状改变比能为:
uf
1 6E
(1
2)2
(2
3 ) 2
(3
1)2
1 0.3106
6 200103
[(94.72
50)2
(50
5.28)2
y
m x
n
y
y
x
n
x
习题解答
x
2
y
x
2
y
cos2
x
sin
2
x
2
y
sin
2
x
cos2
A
2
Bo
x
y
习题解答
3、各单元体各面上的应力如图所示(应力单位MPa)。试利用应力圆: 1)求指定截面上的应力; 2)求主应力的数值; 3)在单元体上绘出主平面的位置及主应力的方向。
30
30
30
60o
30
解:1)由以下应力公式 可得
y 30MPa
解:要想求单元体的形状改变比能,必须先求出
该单元体的三个主应力,由右图可知 z 50
为该单元体的一主应力,于是可只计算垂直于z轴的
70MPa
平面上的主应力。由平面应力公式可得
m a x
min
x
y 2
x
2
y
2
2x
40MPa x z 50MPa
70 30 2
70 30 2 2
2
y
2
2x
70 30 2

应力状态分析及强度理论习题讲解

应力状态分析及强度理论习题讲解

答案:
D
四、计算
1. 构件内危险点应力状态如图所示,试作强度校核: 1)材料为铸铁,已知许用拉应力 t 30MPa,压应力 90MPa;3)材料仍为铸铁,应力分量中 为压应力。
15MPa
c 90MPa,泊松比 =0.25;2)材料为铝合金,
15MPa






45 , 45
90 90
45 45
45
x
O


45 , 45
(b)
45
45
x
(c)
(d)
4.用电阻应变仪测得空心钢轴表面一点与母线成45 方向 上的正应变 45 200 103。已知该轴转速为120r / min , 外径D 120mm,内径d 80mm,钢材E 210GPa, =0.28, 求轴传递的功率。
45
a b
1
45



1
3
O


45 3
x
(b)
4 WP D 1 12 10 1 8 /12 16 16 272.3 106 m 3 n E 所以 N WP 45 9550 1 120 210 109 272.3 106 200 103 112kW 9550 1 0.28 3 4 3 6
n

dA
y

30
120
1
t
30
20
1 2
x
2
40 30
(b)

4 5,26 B C
68
240
3)作应力圆(图(c)) (1)取比例尺,1cm-20MPa,在 - 坐标平 面内作点1(+20,0)、2(-40,0);

材料力学习题 应力状态分析答案详解

材料力学习题 应力状态分析答案详解
解析: 与 无关
13、在图示梁的A点测得梁在弹性范围内的纵横方向的线应变 、 后,所能算出的材料常数有( D )。
(A)只有E;(B)只有v;(C)只有G;(D)E、v和G均可算出。
解析:中间段为纯弯曲,A点为单向拉伸,

14、纯剪应力状态下,各向同性材料单元体的体积改变有四种答案,正确答案是( C )。
解答:
确定 , 确定
6、 物体内某一点,载荷系统Ⅰ和载荷系统Ⅱ单独作用时产生的应力状态分别如图(a)和(b)所示。试求两载荷系统同时作用时(仍处于弹性小变形)的主单元体和主应力。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
确定
确定
2、已知应力状态如图。试求主应力及其方向角,并确定最大切应力值。
解答:
确定
所以 确定
3、图示单元体,求:(1)指定斜截面上的应力:(2)主应力大小,并将主平面标在单元体图上。
解答:
确定
所以 确定
4、用解析法求图示单元体ab面上的应力( ),并求 及主应力。
解答:
5、试求图示单元体主应力及最大切应力,并将主平面在单元体上标出。
由第三强度理论 安全
10、直径为20mm的圆截面折杆受力情况如图所示,已知:F=0.2kN,材料的许用应力为 。试用第三强度理论确定折杆的长度a的许用值。
解答:
在危险截面A上危险点在七上下边缘
由第三强度理论

11、AB、CD两杆互相垂直,在水平面内,C点的集中力2F及D点的集中力F与刚架平面垂直。已知F=20kN,l=1m,各杆直径相同d=10cm, 。试按最大切应力强度理论校核强度。

工程力学第8章剪应力分析习题及解析

工程力学第8章剪应力分析习题及解析

第8章弹性杆件横截面上的切应力分析8-1扭转切应力公式r(p)^M x p/I p的应用范圉有以下几种,试判断哪一种是正确的。

(A)等截面圆轴,弹性范囤内加载:(B)等截面圆轴:(C)等截面圆轴与椭恻轴:(D)等截面圆轴与椭恻轴.弹性范鬧内加较。

知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是A cTip) = M x p/l?在推导时利川J'等截面鬪轴受扭后.其横截血保持平血的假设•同时推导过程中还应用了剪切胡克定律.婆求在线弹性范刑加載。

8-2两根长度相等、直径不等的圆轴受扭后.轴表iftlJJU线转过相同的角度。

设直径大的轴和直径小的轴的横截面上的最大切应力分别为耳吨'和r2max,切变模虽分别为Gi和G2O试判断下列结论的正确性。

(A)(B)(C)若G、>G“则有r Inux > r2nux:(D)若G>G“则有右叭沁。

知识点:圆轴扭转时横截面上的切应力难度:易解答•正确答案是c °因两恻轴等长,轴表面上母线转过相同角度,指切应变相同,即/,=/,=/由剪切胡克定律2“知> °2 时,f lnux > r2max °8-3承受相同扭矩且长度相等的直径为山的实心恻轴与内.外径分别为D2(a = d2/D2)的空心圆轴.二者横截面上的垠大切应力相等。

关于二者重之比(M/WJ有如下结论.试判断哪一种是正确的。

(A)(l-a4严;(B)(l-a4)V2(l-a2):(C)(l-^Xl-a2):(D)(1 一a」)的/(I一小)。

知识点:组合圆轴扭转时横截面上的切应力难度:难解答•\6M X I6M正确答案是D即A-d-a4)7D2匹=如=必W2人D;(l-a2)习题8/图⑴代入(2〉.得8-4由两种不同材料组成的圆轴,里层和外 层材料的切变模址分别为Gi 和Gi.且G = 2G 2. 圆轴尺寸如图所示。

圆轴受扭时.里、外层之间无相对滑动。

(4-6)部分习题及其解答

(4-6)部分习题及其解答

1本教材习题和参考答案及部分习题解答第四章4.1已知物体内一点的六个应力分量为: 50x a σ=,0yσ=,30z a σ=-,75yz a τ=-,80zx a τ=,50xy a τ=试求法线方向余弦为112n =,122n =,3n 的微分面上的总应力T 、正应力n σ和剪应力n τ。

解:应力矢量T 的三个分量为11106.57i i T n a σ==,228.033T a =-,318.71T a =-总应力111.8T a 。

正应力26.04n i i T n a σ==。

剪应力108.7n a τ。

4.2过某点有两个面,它们的法向单位矢量分别为n 和m ,在这两个面上的应力矢量分别为1T 和2T ,试证12⋅=⋅T m T n 。

证:利用应力张量的对称性,可得12()()ij i j ji i j n m n m σσ⋅=⋅⋅===⋅⋅=⋅T m n σm m σn T n 。

证毕。

4.3某点的应力张量为01211210x xy xz yx y yz y zx zy z στττστσττσ=⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦且已知经过该点的某一平面上的应力矢量为零,求y σ及该平面的单位法向矢量。

解:设要求的单位法向矢量为i n ,则按题意有 0ij j n σ=即2320n n +=,1230y n n n σ++=,1220n n += (a) 上面第二式的两倍减去第一式和第三式,得 2(22)0y n σ-=上式有两个解:20n =或1yσ=。

若20n =,则代入式(a)中的三个式子,可得1n =30n =,这是不可能的。

所以必有1y σ=。

将1y σ=代入式(a),利用1i i n n =,可求得=n4.4基础的悬臂伸出部分具有三角柱体形状,见图4.8,下部受均匀压力作用,斜面自由,试验证应力分量 22(arctg )x y xyA C x x yσ=--++ 22(arctg )yy xyA B x x yσ=-+++0z yz xz σττ===,222xy y A x y τ=-+满足平衡方程,并根据面力边界条件确定常数A 、B 和C 。

材料力学典型例题及解析 7.应力应变状态典型习题解析

材料力学典型例题及解析 7.应力应变状态典型习题解析

应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。

绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。

b = 60 mm ,h = 100 mm 。

解题分析: 从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。

则各点处的应力状态如图示。

2、 梁截面惯性矩为 点微体上既有正应力又有切应力。

解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z1点处弯曲正应力(压应力)MPa 100Pa 10100m 10500m1050m N 101064833−=×=×××⋅×==−−zI My σ 1点为单向压缩受力状态,所以 021==σσ,MPa 1003−=σ 2点为纯剪切应力状态, MPa 30Pa 1030m10100602N 1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa 303−=σ 3点为一般平面应力状态弯曲正应力MPa 50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−zI My σ 弯曲切应力F S =120 kN题图1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−z z bI S F τ MPa 6.8MPa 6.58Pa)105.22()2Pa 1050(2Pa 1050)2(22626622min max −=×+×±×=+−±+=xy x y x τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y

材料力学习题应力状态分析答案详解

材料力学习题应力状态分析答案详解
二、填空题
1、图示应力状态,按第三强度理论的强度条件为 。
(注: )
解答:
2、第三强度理论和第四强度理论的相当应力分别为 及 ,对于纯剪切应力状态,恒有 / = 。
解答:纯剪应力状态
3、一般情况下,材料的塑性破坏可选用最大剪应力或形状改变能密度强度理论;而材料的脆性破坏则选用最大拉应力或最大伸长线应变强度理论(要求写出强度理论的具体名称)。
解答:
17、一体积为10×10×10mm3的立方铝块,将其放入宽为10mm的刚性槽中,已知v(铝)=0.33,求铝块的三个主应力。
解答:
18、外径为D、内径为d的空心圆轴受扭转时,若利用一电阻应变片作为测力片,用补偿块作为温度补偿,采用半桥接线。问:(1)此测力电阻片如何粘贴可测出扭矩;(2)圆轴材料的E、v均为已知, 为测得的应变值,写出扭矩计算式。
解答:
7、构件上某点处的应力状态如图所示。试求该点处的主应力及最大切应力之值,并画出三向应力状态的应力圆。
解答:
8、图示单元体,已知 、 及该点的最大主应力 。求该点的另外两个主应力 、 及最大切应力 。
解答:
9、试确定图示单元体的最大切应力,以及图示斜截面上的正应力和切应力。
解答:
10、已知受力构件某处的 , , ,材料的E=200GPa,v=0.3。试求该点处的 、 。
解答:在危险截面A上危险点在七上下边缘
由第三强度理论
不安全
12、图示齿轮传动轴内电机带动,作用在齿轮上的力如图示,已知轴的直径d=30mm,P=0.8kN,Q=2kN,l=50mm,齿轮节圆直径D=200mm。试用第三强度理论校核轴的强度。已知轴的 。
13、图示传动轴,皮带轮Ⅰ直径D1=80cm,皮带轮Ⅱ直径D2=40cm,已知轴的许用应力 。试以第四强度理论设计轴的直径d,并指出危险截面位置,画出危险点的应力状态。

第七章应力状态习题答案

第七章应力状态习题答案

( 2 )图解法作应力圆如题 7 . 4 图( d 1)所示。应力圆与 σ 轴的两个交点的坐标,即是 σ 1 、 σ 3 的数 值。由 CDx ,顺时针旋转 2α 0 ,可确定主平面的方位。 CDx 的长度即为最大切应力的数值。主应力单 元体如题 7 . 4 图(d2)所示。
5
( e )如题 7 . 4 图( e )所示。
τα =
σ x −σ y
2
⎛ 100 − 50 ⎞ sin 2α + τ xy cos 2α = ⎜ sin120D + 0 ⎟ MPa = 21.7 MPa 2 ⎝ ⎠
( 2 )图解法 作应力圆如题 7 . 3 图( cl )所示。从图中可量得 Dα 点的坐标,此坐标便是 σ α 和 τ α 数值。 ( d )如题 7 . 3 图( d )所示。
按照主应力的记号规定
σ 1 =4.7MPa, σ 2 =0, σ 3 =-84.7MPa
tan 2α 0 = − 2τ xy
σ x −σ y
=
=
−2 × 20 = −0.5 , α 0 =-13.3° 0 + 80
τ max =
σ1 − σ 3
2
4.7 + 84.7 MPa = 44.7 MPa 2

1
斜截面 AB 与 x 平面的夹角 a2 = 105 ,其上应力 σ a2=45MPa,τ a = 25 3MPa 。将这些数据代入斜截面

2
上应力公式中,对 AB 斜截面有
σx +σ y
2
+
σ x −σ y
2
cos 210。− τ xy sin 210。= 45 ①
σ x −σ y

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析一、选择题1、对于图示各点应力状态,属于单向应力状态的是(A )。

(A )a 点;(B )b 点;(C )c 点;(D )d 点 。

2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==; (B)AC AC /2,/2ττσ==; (C)AC AC /2,/2ττσ==;(D)AC AC /2,/2ττσ=-=。

4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。

关于它们的正确性,现有四种答案,正确答案是( D )。

(A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的。

5、对于图示三种应力状态(a )、(b )、(c )之间的关系,有下列四种答案,正确答案是( D )。

(A )三种应力状态均相同;(B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同;6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。

解答:max τ发生在1σ成45的斜截面上7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。

(A )脆性材料;(B )塑性材料;(C )材料为各向同性,且处于线弹性范围内;(D )任何材料; 8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适用于( C )。

(A )任何材料在任何变形阶级; (B )各向同性材料在任何变形阶级; (C )各向同性材料应力在比例极限范围内;(D )任何材料在弹性变形范围内。

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
难度:一般
解答:
正确答案是D。
四个应力状态的主应力, 、 、 ;其主力方向虽不全相同,但应变比能与主应力值有关,因此它们的应变比能相同。
9-30关于图示应力状态,有如下论述,试选择哪一种是正确的。
(A)最大主应力为500MPa,最小主应力为100MPa;
(B)最大主应力为500MPa,最大切应力为250MPa;
工程力学(工程静力学与材料力学)习题与解答
第9章 应力状态分析
9-1木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。试求:
1.面内平行于木纹方向的切应力;
2.垂直于木纹方向的正应力。
知识点:平面应力状态、任意方向面上的应力分析
难度:易
解答:
(a)平行于木纹方向切应力
MPa
垂直于木纹方向正应力
知识点:广义胡克定律、压力容器应力分析
难度:一般
解答:
MPa
MPa
MPa
9-21液压缸及柱形活塞的纵剖面如图所示。缸体材料为钢,E = 205GPa, = 0.30。试求当内压p=10MPa时,液压缸内径的改变量。
知识点:广义胡克定律、压力容器应力分析
难度:难
解答:
缸体上
MPa
MPa
9-22试证明对于一般应力状态,若应力应变关系保持线性,则应变比能
知识点:应力状态的基本概念
难度:一般
解答:
正确答案是B。
MPa
MPa
,为单向应力状态。
9-28试分析图示的四个应力状态是否等价,有下列四种答案。
(A)四者均等价;
(B)仅(a)和(b)等价;
(C)仅(b)、(c)等价;
(D)仅(a)和(c)等价。

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
1. MPa
MPa
MPa
2.
MPa
MPa
9-13图示外径为300mm的钢管由厚度为8mm的钢带沿20°角的螺旋线卷曲焊接而成。试求下列情形下,焊缝上沿焊缝方向的切应力和垂直于焊缝方向的正应力。
1.只承受轴向载荷FP = 250kN;
2.只承受内压p=5.0MPa(两端封闭)
3.同时承受轴向载荷FP = 250kN和内压p=5.0MPa(两端封闭)
难度:一般
解答:
(1)当 = 40℃
mm<
mm<
所以铝板内无温度应力,
(2)当 = 80℃
mm>
mm>
∴ (1)
(2)
所以解得qx = qy=70MPa(压)
, MPa
MPa
9-18对于一般平面应力状态,已知材料的弹性常数E、 ,且由实验测得 和 。试证明:
知识点:广义胡克定律、 三者之间的关系
难度:一般
难度:一般
解答:
正确答案是C。
(A)不满足切应力互等定律;
(B)不满足平衡;
(C)既可满足切应力互等,又能达到双向的平衡;
(D)不满足两个方向的平衡。
9-27微元受力如图所示,图中应力单位为MPa。试根据不为零主应力的数目,它是:
(A)二向应力状态;
(B)单向应力状态;
(C)三向应力状态;
(D)纯切应力状态。
MPa
9-7受力物体中某一点处的应力状态如图所示(图中p为单位面积上的力)。试求该点处的主应力。
知识点:应力圆的应用
难度:难
解答:
应力圆半径
9-8从构件中取出的微元,受力如图所示。试:
1.求主应力和最大切应力;
2.确定主平面和最大切应力作用面位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力应变分析习题解答
习题解答
1、试从图示各构件中A点处取出单元体,并表明单元 体各面上的应力
A
m2
m1
m1 = 39.3N ⋅ m m 2 = 78.6 N ⋅ m
解:该构件在A点处受弯矩和扭矩作用产生拉应力和剪应力, 分别计算如下: 在A处受到的拉应力最大,即 m m 39.3 σ = 1 = 13 = = 50MPa 3 π × (0.02) W πD 32 32
习题解答
在A处受到的剪应力为:
τ= m2 m 78.6 = 13 = = 50MPa 3 π × (0.02) 2 W πD 16 16
所以在A处单元体的应力图为:
50MPa 50MPa 50MPa 50MPa 50MPa 50MPa
习题解答
2、试根据相应的的应力圆上的关系,写出图示单元体任一斜面mn 上正应力及剪应力的计算公式。设mn面的法线与x轴成α 角如图示 (作图时可设 σ y > σ x )。
30 30
60
o
30
30
解:1)由以下应力公式 可得
οx +οy οx −οy οα = + cos α−τx sin2α 2 2 2 οx −οy τα = sin2α+τx cos α 2 2
习题解答
ο60o = −30×sin( ×60o ) = −2598 2 . τα = 30×cos( ×60o ) =15 2
σ max σ min
=
σx + σy 2
σx − σy + τ2 ± x 2
2 2
z
40MPa 50MPa
x
70 + 30 70 − 30 2 94.72 = ± + 40 = 5.28 MPa 2 2
习题解答
根据大小来确定主应力的次序如下:
σ1 = 94.72MPa , σ 2 = 50MPa , σ3 = 5.28MPa
于是该单元体的形状改变比能为:
1+ µ uf = (σ1 − σ 2 ) 2 + (σ 2 −σ 3 ) 2 + (σ3 − σ1 ) 2 6E (1 + 0.3)×106 [(94.72 − 50) 2 + (50 − 5.28) 2 + (5.28 − 94.72) 2 ] = 6 × 200 × 103 = 12.99 × 103 N ⋅ m / m 3
2)主应力,由以下公式可得:
σ max σ min
=
σx + σy 2
σx − σy + τ2 σ ± x 2 max
2
σ min
= ± τ = 30 MPa −30
显然,主应力方向沿着对角线方向。 3)绘出主平面位置及主应力方向 如右图所示:
σ min
σ max
习题解答
o
ε 0o = 700 × 10 −6 , ε 45o = 350 ×10 −6 , ε 90o = −500 ×10 −6
习题解答
ε2
y
ε1
ε 90o
ε 45o
C
ε1
D2
O
O1
(a )
ε 0o
x
L c ε 90o
2α 0
D1
ε
o 45o 45
γ 2
ε 45o B ε 0o
(b )
La
Lb
ε1 = 750 ×10 −6 , ε 2 = −550 ×10−6
[
ቤተ መጻሕፍቲ ባይዱ
]
4、单元体各面上的应力如图(应力单位为MPa)。试用应力圆求主应力 及最大剪应力。 y 30 1) 由图中可知 σ z = 50为该单元体的 一主应力,于是可只计算与z轴相 40 70 垂直平面上的主应力。由平面应力 公式可得: 40
x
50
z
σ max σ min
=
σx + σy 2
σx − σy + τ2 ± x 2
σx − σy + τ2 = ± x 2 2 = ±50MPa
2
σx + σy
习题解答
根据大小来确定主应力的次序如下:
σ1 = 50MPa , σ 2 = −50MPa , σ3 = −80MPa , τ max = 65MPa
5、用45 应变花测得构件表面上一点处三个方向的线应变分别为 试作应力圆,求该点处的主应变数值和方向。 ε 解:选比例尺如图b所示。绘出纵坐标轴,并根据已知的ε 0o 、 45o o 和 ε 90值分别作出平行于该轴的直线 L a、L b和 L c 。过 L b线上的 o 任一点B,作与 L b 线成 45 角(顺时针转向)的BA线,交 L a 线于 A点;作与 L b 线成 45o 角(逆时针转向)的BC线,交L c 线于C点。 作BA与BC两线的垂直等分线,相交于 O1 点。过 O1点作横坐标轴 即 ε 轴,并以 O1A 为半径作圆,按上述比例尺量取应变圆与ε 轴 D 的交点 D1 、 2 的横坐标,即得
O 再从应力圆上量得 2α 0 = 22.6 如图中(a)所示。
O ,故 α 0 = 11.3 ,主应变
ε1 的方向
习题解答
6、已知图示单元体材料的弹性常数 E = 200GPa , υ = 0.3 y 30MPa 试求该单元体的形状改变比能 解:要想求单元体的形状改变比能,必须先求出 该单元体的三个主应力,由右图可知 σ z = 50 70MPa 为该单元体的一主应力,于是可只计算垂直于z轴的 平面上的主应力。由平面应力公式可得
2 2
70 + 30 70 − 30 2 94.72 = ± + 40 = 5.28 MPa 2 2
习题解答
根据大小来确定主应力的次序如下:
σ1 = 94.72MPa , σ 2 = 50MPa , σ3 = 5.28MPa
2)
y
80 50
z x
σ max σ min
由图中可知 σ x = −80为该单元体的 一主应力,于是可只计算与x轴相 垂直平面上的主应力。由平面应力 公式可得:
y
m
σy
σx
α
n
σy
n
x
σx
习题解答
σ
οx +οy οx −οy οα = + cos α−τx sin2α 2 2 2 οx −οy τα = sin2α+τx cos α 2 2
οα

τα
B
A
οx
οy
o
τ
习题解答
3、各单元体各面上的应力如图所示(应力单位MPa)。试利用应力圆: 1)求指定截面上的应力; 2)求主应力的数值; 3)在单元体上绘出主平面的位置及主应力的方向。
相关文档
最新文档