微积分课程教学基本要求

合集下载

《微积分》课程标准

《微积分》课程标准

《微积分》课程标准一、课程目标本课程的目标是使学生掌握微积分的基本概念、原理和方法,培养学生的数学思维能力和解决问题能力,为进一步学习其他学科打下基础。

二、教学内容1. 极限思想:理解极限的概念、极限的计算方法和极限在数学中的应用。

2. 导数与微分:掌握导数的定义、导数的计算方法、微分的概念和计算方法。

3. 不定积分与定积分:掌握不定积分的计算方法和定积分的概念、计算方法及应用。

4. 微分中值定理与导数的应用:掌握微分中值定理,理解洛必达法则等求导技巧,学会运用导数解决实际问题。

5. 多元函数微积分:了解多元函数的极限、导数和积分概念,掌握二重积分的计算方法。

三、教学方法1. 结合实际:通过案例教学、实践活动等方式,将微积分知识与实际相结合,帮助学生更好地理解和应用微积分知识。

2. 循序渐进:按照从简单到复杂的顺序进行教学,逐步提高学生的理解和应用能力。

3. 小组讨论:鼓励学生进行小组讨论,相互交流学习心得和体会,增强学生的团队合作意识和沟通能力。

四、教学评估1. 平时成绩:包括出勤率、作业完成情况、课堂表现等,占总评成绩的30%。

2. 期中考试:检验学生对微积分知识的掌握情况,占总评成绩的40%。

3. 期末考试:全面考察学生的微积分应用能力,占总评成绩的30%。

五、教材与教学资源1. 选用合适的教材,如高等教育出版社出版的《微积分》等。

2. 收集网络教学资源,如教学视频、习题解答等,丰富课堂教学内容。

3. 组织学生进行课外学习小组,共同学习微积分知识,并组织开展实践活动,如数学竞赛、数学建模等。

六、师资力量1. 教师应具备数学专业背景和教学经验,能够熟练运用微积分知识进行教学。

2. 教师应注重自身素质的提高,不断学习和掌握新的教学方法和手段,提高教学质量。

3. 学校应提供良好的教学环境,如教学设备、实验室等,为教师和学生提供良好的教学和学习条件。

七、课程实施与管理1. 学校应制定详细的教学计划和管理制度,确保课程的有序实施。

《微积分》课程教学大纲.

《微积分》课程教学大纲.

《微积分》课程教学大纲学 时 数:126学 分 数:7适用专业:经济类本科执 笔:吴赣昌 编写日期:2006年6月课程的性质、目的和任务 本课程是高等学校经济类本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。

是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。

通过本课程的学习,要使学生获得一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程等方面的基本概念、基本理论和基本运算技能,为后续课程的学习奠定必要的数学基础。

为后续课程的学习奠定必要的数学基础。

在课程的教学过程中,要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。

能力以及自学能力。

课程教学的主要内容与基本要求一、函数、极限与连续 主要内容:函数的概念及其表示法,函数的有界性、单调性、周期性和奇偶性;反函数、复合函数和隐函数,基本初等函数的性质及其图形特征,初等函数,简单应用问题的函数关系的建立;常用经济函数;数列极限与函数极限的定义和性质,函数的左、右极限,无穷小与无穷大;无穷小的比较;极限的四则运算;极限存在的两个准则和两个重要极限; 连续函数的概念,函数间断点的分类;初等函数的连续性,闭区间上连续函数的性质(最大值最小值定理和介值定理)。

基本要求:1、理解函数的概念,掌握函数的表示法;、理解函数的概念,掌握函数的表示法;2、了解函数的有界性、单调性、周期性与奇偶性;、了解函数的有界性、单调性、周期性与奇偶性;3、理解复合函数、反函数、隐函数和分段函数的概念;、理解复合函数、反函数、隐函数和分段函数的概念;4、掌握基本初等函数的性质及其图形,理解初等函数的概念;、掌握基本初等函数的性质及其图形,理解初等函数的概念;5、会建立简单应用问题的函数关系,熟悉几种常用经济函数;、会建立简单应用问题的函数关系,熟悉几种常用经济函数;6、了解数列极限和函数极限(包括左、右极限)的概念;、了解数列极限和函数极限(包括左、右极限)的概念;7、了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。

《微积分》授课计划

《微积分》授课计划

《微积分》授课计划一、课程简介微积分是数学的一个重要分支,广泛应用于自然科学、工程学、经济学等领域。

本课程旨在帮助学生掌握微积分的基本概念、方法和技巧,提高数学素养和解决实际问题的能力。

二、教学目标1. 掌握微积分的基本概念,如函数、极限、导数、微分、积分等;2. 学会运用微积分方法解决实际问题,如求函数的最值、求解积分问题等;3. 提高数学素养和逻辑思维能力,培养数学兴趣和数学精神。

三、教学内容与安排第一周:导数与微分内容:导数与微分的概念、几何意义、基本性质和运算方法;安排:讲授导数与微分的基本概念,通过例题和练习加深学生对概念的理解;组织小组讨论,鼓励学生运用所学知识解决实际问题。

第二周:不定积分内容:不定积分的概念、性质和基本方法;安排:讲授不定积分的计算方法,通过例题和练习加深学生对方法的理解;组织学生参加数学竞赛,提高学生的数学应用能力。

第三周:定积分及其应用内容:定积分的概念、性质和计算方法;定积分的应用,如求面积、求平均值等;安排:讲授定积分的计算方法和应用,通过例题和练习加深学生对方法的理解;组织学生参加数学建模比赛,提高学生的团队协作能力和创新意识。

第四周:专题讲座内容:微积分在其他领域的应用,如物理、经济等;安排:邀请相关领域的专家进行专题讲座,拓宽学生的知识面,增强学生对微积分的认识和应用。

四、教学方法与手段1. 讲授法:通过系统地讲解微积分的基本概念和方法,帮助学生建立完整的知识体系;2. 案例教学法:结合实际案例,引导学生运用微积分知识解决实际问题,提高学生的学习兴趣和实际应用能力;3. 小组讨论法:鼓励学生进行小组讨论,培养学生的团队协作能力和交流沟通能力;4. 竞赛和比赛法:组织学生参加数学竞赛和数学建模比赛,提高学生的数学应用能力和创新意识。

五、考核方式1. 平时成绩:包括出勤率、作业完成情况、课堂表现等;2. 期中考试:检验学生对微积分基本知识的掌握情况;3. 数学竞赛和建模比赛成绩:鼓励学生积极参与数学竞赛和建模比赛,展示学生的数学应用能力和创新能力。

《高等数学B-微积分一》本科教学大纲

《高等数学B-微积分一》本科教学大纲

《高等数学B-微积分(一)》本科教学大纲课程编号:上海立信会计金融学院《高等数学B—微积分(一)》课程教学大纲一、课程基本信息课程名称:高等数学B-微积分(一)英文名称:Advanced Mathematics (B)-Calculus Ⅰ课程编号:课程类别:长学段-专业必修课预修课程:初等数学开设部门:统计与数学学院适用专业:经管类专业(本科)学分:4总课时:60学时其中理论课时:60学时,实践课时:0学时二、课程性质、目的微积分是经济管理类本科专业的学科专业课。

本课程的教学目的是使学生掌握经济管理学科所需的微积分基础知识,学会应用变量数学的方法分析研究经济现象中的数量关系,同时通过本课程的教学,培养学生的抽象思维和逻辑推理能力,为后继课程的学习和将来进一步的专业发展打好扎实必要的数学基础。

思政元素融入课程,引导学生树立正确的科学观,培养学生科学理性思维能力、创新思维能力、独立思考能力,解决实际问题能力,培养探索未知、追求真理、勇攀科学高峰的责任感和使命感;引导学生树立正确的人生观和价值观,了解数学发展史和数学文化,提升数学素养、弘扬中华文明、培养民族文化自信,以精神文明为切入点,科学育人、文化育人。

在大纲中,概念、理论方面用“理解”表述,方法、运算方面用“掌握”表述的内容,应该使学生深入领会和掌握,并能熟练运用;概念理论方面用“了解”表述,方法、运算方面用“熟悉”表述的内容,也是必不可少的,只是在教学要求上低于前者。

三、教学内容、基本要求、课时分配四、课程考核考核方式:考试;期末考核形式:课程试卷闭卷(教考分离);题型:填空、选择、计算、证明题和应用题等;课程类别:■必修(考试)课程□除体育类、短学段开设、实践教学类以外的必修(考查)课程□选修课程□体育类必修(考查)课程□短学段开设的必修(考查)课程□实践教学类必修(考查)课程平时成绩占50 %,期末成绩占50 %(见下表)。

平时成绩考核项目参照表平时成绩考核评定依据与标准:1. 课堂表现(含考勤):随机抽查考勤、课堂提问、参与讨论等20次,每次5分,满分100分,按20%的比例记入平时成绩;2. 课外作业:作业共收15次,随机抽10次记分,每次满分10分,满分100分,按30%的比例记入平时成绩;3. 阶段测验:在学期1/4和3/4节点处各安排1次阶段测验,每次满分100分,取两次成绩平均分,按30%的比例记入平时成绩;4. 期中测验:在学期1/2节点处安排1次期中测验,满分100分,按20%的比例记入平时成绩。

微积分课程教学大纲

微积分课程教学大纲

微积分课程教学大纲摘要:微积分[M].上海:复旦大学出版社,2005年出版(05级使用).课程概述:微积分是研究变量及其变化规律的科学,它具有丰富的内容和深刻的思想.它为研究事物的发展变化提供...关键词:微积分类别:专题技术来源:牛档搜索()本文系牛档搜索()根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。

不代表牛档搜索()赞成本文的内容或立场,牛档搜索()不对其付相应的法律责任!《微积分》课程教学大纲适用专业:经济类、管理类专业执笔人:鲍远圣、陈美霞审定人:李辉系负责人:张从军南京财经大学应用数学系《微积分》课程教学大纲课程代码:300001/300019英文名:Calculus课程类别:文化技能课适用专业:经济类、管理类专业前置课:初等数学后置课:线性代数、概率论与数理统计、数学建模学分:8学分课时:155课时主讲教师:王育全等选定教材:[1]龚德恩等.《经济数学基础(第一分册微积分)》[M],成都:四川人民出版社,2004(04级使用);[2]张从军、王育全、李辉、刘玉华. 微积分[M].上海:复旦大学出版社,2005年出版(05级使用).课程概述:微积分是研究变量及其变化规律的科学,它具有丰富的内容和深刻的思想。

它为研究事物的发展变化提供了基本的数学基础和框架。

微积分在各种实际问题中有着广泛的应用。

《微积分》课程是高等财经院校中财经类专业的一门重要的公共基础课,是后继专业基础课和专业课程的基础。

本课程以函数为主要研究对象,以极限分析为基本方法,系统地介绍了微积分的基本理论与基本方法,同时着重介绍了微积分在实际问题尤其在经济问题中的应用。

教学目的:通过本课程的学习,使学生系统掌握微积分的基本理论和基本方法。

培养学生具有一定的抽象思维能力、逻辑推理能力、空间想象能力以及综合运用所学知识进行分析、解决实际问题的能力,为进一步学习其它数学课程和专业课程打好基础。

小学教育(数学方向)专业 《微积分》教学大纲

小学教育(数学方向)专业 《微积分》教学大纲

《微积分》课程教学大纲课程编号: 0401301 总学时: 99 总学分: 5开课学期:第1、2学期适用专业:小学教育(数学方向)大纲执笔人:大纲审核人:一、课程性质、目的与任务微积分是小学教育(数学方向)专业的一门重要的专业必修课程,它为学习专业课程和后续课程奠定必要的数学基础,它是为培养我国社会主义现代化建设所需要的高技能专门人才服务的。

通过本课程的学习,要使学生获得:1、函数极限与连续;2、一元函数微分学及应用3、一元函数积分及应用;4、常微分方程;5、多元函数微积分学及应用;6、无穷级数等方面的基本概念、基本理论和基本运算技能。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生的数学探究能力、数学建模能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、课程教学的基本要求1、正确理解下列基本概念和它们之间的内在联系:函数,极限,无穷小,连续,导数,微分,极值,不定积分,定积分,偏导数,全微分,条件极值,重积分,曲线积分,曲面积分,无穷级数,微分方程。

2、正确理解下列基本定理和公式并能正确运用:极限的主要定理,罗尔定理和拉格朗日中值定理,泰勒定理,定积分作为其上限函数的求导定理,牛顿-莱布尼兹公式,格林公式,高斯公式。

3、牢固掌握下列公式:两个重要极限,基本初等函数的导数公式,基本积分公式,函数exp(x) 、sinx的麦克劳林展开式。

4、熟练运用下列法则和方法:导数的四则运算法则和复合函数的求导法,换元积分法和分部积分法,二重积分的计算法,正项级数的比值审敛法,变量可分离的方程及一阶线性微分方程的解法,二阶常系数齐次线性微分方程的解法。

5、会运用微积分和常微分方程的方法解一些简单的实际问题。

三、课程的主要内容、重点和难点1、函数、极限与连续教学内容:区间、邻域、函数、基本初等函数、初等函数;数列极限、函数极限及其性质、无穷小与无穷大、极限的运算、极限存在准则、两个重要极限、函数的连续性及其性质。

微积分课程教学大纲

微积分课程教学大纲

微积分课程教学大纲一、课程简介微积分课程是大学数学的基础课程之一,旨在培养学生分析、解决实际问题的能力,以及为后续数学课程和科学类课程奠定基础。

本大纲将介绍微积分课程的教学目标、教学内容、教学方法和评估方式。

二、教学目标1、掌握微积分的基本概念、原理和方法,了解微积分的实际应用。

2、培养学生的数学思维、逻辑推理和解决问题的能力。

3、培养学生的创新意识和团队协作能力。

三、教学内容1、极限与连续:极限的定义与性质,极限的运算,连续函数的概念与性质。

2、导数与微分:导数的定义与计算,微分的定义与计算,导数与微分的应用。

3、不定积分与定积分:不定积分的定义与计算,定积分的定义与计算,定积分的应用。

4、多元微积分:多元函数的极限、导数与微分,以及偏导数与全微分的应用。

5、无穷级数与常微分方程:无穷级数的概念与性质,常微分方程的基本概念与求解方法。

四、教学方法1、理论教学:通过课堂讲解、推导和证明,使学生深入理解微积分的原理和方法。

2、实践教学:通过例题讲解、课堂练习、课后作业和实验等方式,加强学生的实际操作能力。

3、多媒体教学:利用多媒体课件、教学视频等手段,提高教学效果和学生学习效率。

4、团队协作:通过小组讨论、合作解决问题等方式,培养学生的团队协作能力。

五、评估方式1、平时成绩:包括课堂表现、作业完成情况、实验报告等。

2、期中考试:以闭卷形式进行,主要考察学生对基本概念和方法的掌握情况。

3、期末考试:以闭卷形式进行,主要考察学生对整个课程内容的理解和应用能力。

4、总评成绩:结合平时成绩、期中考试和期末考试的成绩进行综合评价。

六、教学进度安排本课程总计学时,具体分配如下:5、极限与连续:学时;6、导数与微分:学时;7、不定积分与定积分:学时;8、多元微积分:学时;9、无穷级数与常微分方程:学时;10、总复习与答疑:学时。

微积分教学大纲一、课程简介微积分是高等数学的一个分支,研究函数的微分和积分以及相关的概念和应用。

上海大学大一秋季学期理工《微积分1》教学要求

上海大学大一秋季学期理工《微积分1》教学要求

《微积分》教学要求说明:从2013学年起《微积分》课程教学内容分为三个学期完成,课时数分别为60,60,40.(课时总数没有变化,但时间跨度从四学期变为三学期)第一学期(60学时)第一章 函数与极限(14学时)1 了解极限的概念,了解分段函数的极限的计算。

2 掌握极限四则运算法则,会用变量代换求某些简单复合函数的极限。

3 了解极限的性质(惟一性、有界性和保号性)和两个极限存在准则(夹逼准则与单调有界准则),会用两个重要极限求极限。

4 了解无穷小、无穷大以及无穷小的阶的概念,会用等价无穷小求极限。

5 理解函数连续性的概念,会判别函数间断点的类型。

6 了解初等函数的连续性和闭区间上连续函数的性质。

说明1:本章原来教学时数是16,现改为14,建议第一节(常用符号介绍)、第二节(函数的概念)作为自学内容。

说明2:用,N X εεδε---,定义证明极限不作要求。

第二章 导数与微分(12学时)1 理解导数(包括左、右导数)的概念,了解导数的几何意义,了解函数的可导性与连续性之间关系。

2 掌握导数的四则运算法则、反函数与复合函数的求导法则,掌握基本初等函数的导数公式。

会求分段函数的导数。

3 了解高阶导数的概念。

掌握初等函数的二阶导数的计算。

会求简单函数的n 阶导数。

4 掌握求隐函数、参数方程所确定的函数的一阶、二阶导数。

会解一些简单实际问题中的相关变化率问题。

5 了解微分的概念与四则运算。

说明:建议导数的经济意义作为自学内容。

高阶导数以二阶为主。

第三章 微分中值定理及导数的应用(12学时)1 理解并会应用罗尔定理、拉格朗日中值定理,了解柯西中值定理。

2 掌握洛必达法则求不定式极限的方法。

3 理解函数的极值概念,掌握用导数判别函数的单调性和求函数极值的方法。

会用单调性证明不等式。

4 会求最大值、最小值问题,会解决简单的实际应用问题。

5 会用导数判别函数图形的凹凸性,会求拐点。

说明1:建议第六节(函数图形的描绘)、第七节(曲率)、第八节(方程的近似解)作为自学内容。

专科《微积分》大纲08-09

专科《微积分》大纲08-09

《微积分》专科教学大纲(课程编号:191320401 )上海立信会计学院《微积分》课程教学大纲一、课程基本信息课程名称:微积分英文名称:Calculus课程编号:191320401课程类别:专业必修课程预修课程:无开设部门:数学与统计学系适用专业:除外语专业外的所有专科专业学分:4总课时:68学时其中:理论教学课时:68学时,上机实验课0学时选用教材:赵斯泓等编:《微积分》,立信会计出版社,2000年8月第1版二、课程性质、目的本课程是立信会计学院经济应用数学基础课程之二。

本课程的教学目的是使学生获得从事经济管理工作所必需的微积分基础知识,学会应用变量数学的方法分析研究经济现象中的数量关系,培养学生具有一定的抽象思维和逻辑推理能力。

同时,本课程也为后继课程提供必要的数学基础。

三、与其他课程的衔接本课程是学生入大学以来第一门数学课程,只需高中数学基础即可。

四、教学基本要求本课程要求学生理解极限、连续的概念,掌握极限的求法。

掌握导数和微分的概念、导数和微分的计算方法、导数的应用。

掌握不定积分及定积分的概念,计算方法及应用。

掌握二元函数的偏导数、全微分的计算方法及二元函数的极值,掌握二重积分的计算方法。

五、教学内容与课时本课程教学内容与课时分配见下表:六、课程考核1.考核方式:考试。

2.考核内容:以考查数学建模的基本方法和模型分析研究为主要内容。

3.成绩评定:平时成绩占30%,期末测验占70%。

七、参考文献资料1. 《微积分》,赵树嫄编著,中国人民大学出版社,1988年5月第一版八、制定与审定签章。

微积分教学大纲

微积分教学大纲

《微积分》教学大纲一、使用说明(一)课程性质《微积分》是高等学校财经、管理类专业核心课程经济数学基础之一,它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。

微积分作为一学年的课程,是为财经类、管理类等非数学专业本科生开设的,制定大纲的原则是具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习专业课打下坚实的基础。

(二)教学目的通过本课程的学习,使学生较好地掌握微积分特有的分析思想,并在一定程度上掌握利用微积分认识问题、解决问题的方法;对微积分的基本概念、基本方法、基本结果有所了解,并能运用其手法解决实际问题中的简单课题。

(三)教学时数本课程共132学时,8学分。

(四)教学方法采用课堂讲授、多媒体课件等方法和形式。

(五)面向专业经济学、管理学所有本科专业。

二、教学内容第一章函数(一)教学目的与要求[教学目的]使学生正确理解函数的定义。

理解函数的各种表示法,特别是分析表示法。

了解函数的几何特性及图形特征,了解反函数、复合函数概念。

熟练掌握基本初等函数的性质及图形,掌握初等函数的结构并能确定其定义域,能列出简单的实际问题中的函数关系。

[基本要求]1、理解实数与实数的绝对值的概念。

2、理解函数、函数的定义域和值域,熟悉函数的表示法。

3、了解函数的几何特性并掌握各几何特性的图形特征。

4、了解反函数概念;知道函数与其反函数的几何关系;给定函数会求其反函数。

5、理解复合函数的概念;了解函数能构成复合函数的条件;掌握将一个复合函数分解为较简单函数的方法。

6、基本初等函数及定义域、值域等概念;掌握基本初等函数的基本性质。

7、了解分段函数的概念。

8、会建立简单应用问题的函数关系。

(二)教学内容函数的定义,函数的几何特性,反函数,复合函数,初等函数,经济中的常用函数。

教学重点:1、五个基本初等函数的分析表达式、定义域、值域及其图形。

2、初等函数的概念,复合函数的复合步骤的分解方法。

微积分教学大纲

微积分教学大纲

微积分教学大纲一、引言微积分作为高等数学的重要分支,是培养学生逻辑思维能力和解决实际问题能力的重要工具。

本教学大纲旨在明确微积分课程的教学目标、内容和评价方式,为教师和学生提供指导,以达到更好的教学效果。

二、教学目标本课程的主要教学目标如下:1. 理解微积分的基本概念和原理,包括极限、导数、不定积分和定积分等;2. 掌握微积分的计算方法和技巧,能够运用微积分解决实际问题;3. 培养学生的逻辑思维能力、抽象思维能力和问题解决能力;4. 培养学生的数学建模能力,能够将实际问题转化为数学模型并进行求解。

三、教学内容本课程的主要教学内容如下:1. 极限1.1 极限的概念1.2 极限的性质1.3 极限的计算方法2. 导数2.1 导数的概念2.2 导数的计算方法2.3 导数的应用3. 不定积分3.1 不定积分的概念3.2 基本不定积分的计算方法3.3 不定积分的应用4. 定积分4.1 定积分的概念4.2 定积分的计算方法4.3 定积分的应用5. 微积分的应用5.1 曲线的切线与法线5.2 速度和加速度5.3 积分学的应用5.4 微分方程四、教学方法本课程采用多种教学方法,包括课堂教学、实例演练、小组讨论和实践应用等。

1. 课堂教学:通过讲解和示范,引导学生理解微积分的基本概念和原理。

2. 实例演练:通过大量的实例练习,巩固学生对微积分的计算方法和技巧的掌握。

3. 小组讨论:组织学生进行小组讨论,促进学生思维交流和合作学习。

4. 实践应用:引导学生将微积分应用于实际问题的解决,培养其数学建模和问题解决能力。

五、教学评价本课程的评价方式包括平时表现评价和考试评价。

1. 平时表现评价:包括课堂参与、作业完成情况和小组讨论等,反映学生的学习态度和学习效果。

2. 考试评价:通过期中考试和期末考试,考察学生对微积分基本概念的理解和计算方法的掌握。

六、教学资源本课程需要准备的教学资源包括教材、课件、实例题和相关参考资料。

微积分课程教学大纲

微积分课程教学大纲

《微积分(I)》课程教学大纲英文译名:Calculus I适用专业:学分数:6 总学时数:96一、本课程教学目的和任务通过本课程的学习,使学生获得一元函数微积分学、向量代数和空间解析几何等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

同时,注重培养学生获取知识能力、应用能力和创新能力,提高学生的素质。

二、本课程的基本要求1.理解函数的概念,掌握基本初等函数的性质及其图形,理解复合函数的概念,了解反函数、分段函数的概念。

会建立简单实际问题的函数关系模型。

2.理解极限的概念(对极限的ε—N、ε—δ定义,可在教学过程中逐步加深理解,对于给定ε求N或δ不作过高要求),掌握极限四则运算法则,了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限,了解无穷小、无穷大的概念,会用无穷小的比较求极限。

3.理解函数在一点连续的概念,了解间断点的概念并会判别间断点的类型,了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大值最小值定理)。

4.理解导数和微分的概念,理解导数的几何意义及函数的可导与连续之间的关系,掌握导数与微分的运算法则和导数的基本公式,掌握初等函数的一阶、二阶导数的求法,会求隐函数和参数方程所确定的函数的一阶、二阶导数,会用导数描述一些几何量与物理量。

5.理解拉格朗日中值定理,了解罗尔中值定理、柯西中值定理和泰勒公式。

6.理解函数极值的概念,会求函数的极值;会判断函数的单调性、函数图形的凹凸性,会求拐点;会描绘函数的图形(包括水平和铅直渐近线);会求解较简单的最大值和最小值的应用问题。

7.会用罗必达法则求不定式的极限。

8.会求曲线的曲率和曲率半径。

9.理解不定积分和定积分的概念和性质,掌握换元积分法和分部积分法,含有理函数和三角函数有理式的积分,理解变上限函数及求导定理,掌握牛顿—莱布尼兹公式,了解广义积分的概念,掌握用定积分求一些几何量和物理量(如平面面积、体积、平面弧长、功、压力、引力等)的方法。

微积分的基本教学思想

微积分的基本教学思想

微积分的基本教学思想微积分是高等数学的重要分支,也是现代科学和工程技术中不可或缺的数学工具。

微积分的基本教学思想是以函数为中心,注重理论与实践相结合,强调概念的深入理解和应用能力的培养。

一、以函数为中心微积分的核心概念是函数,因此教学应以函数为中心。

首先要让学生了解函数的定义、性质和图像,掌握函数的基本运算和复合函数的概念。

其次,要引导学生学会利用函数描述实际问题,如运动学问题、几何问题、物理问题等。

最后,要让学生掌握微积分的基本概念和方法,如导数、积分、微分方程等,进而深入理解微积分的应用。

二、注重理论与实践相结合微积分是一门理论性很强的学科,但也是一门非常实用的学科。

因此,在教学中要注重理论与实践相结合,既要让学生掌握微积分的基本理论,又要让学生学会将微积分应用于实际问题中。

例如,可以通过实例讲解导数和微分的概念,让学生掌握微积分的基本思想;同时,也可以通过实际问题的求解,如最优化问题、曲线拟合问题等,让学生感受到微积分的实用性。

三、强调概念的深入理解微积分是一门概念性很强的学科,因此在教学中要注重概念的深入理解。

首先要让学生了解概念的定义和性质,例如导数的定义、连续性的定义等;其次,要让学生掌握概念之间的联系和区别,例如导数和微分的关系、积分和微分的关系等;最后,要让学生学会运用概念解决实际问题,例如利用导数求函数的极值、利用积分求曲线下面积等。

四、培养应用能力微积分是一门非常实用的学科,因此在教学中要注重培养学生的应用能力。

首先要让学生学会将微积分应用于实际问题中,例如运动学问题、几何问题、物理问题等;其次,要让学生学会利用微积分解决最优化问题、曲线拟合问题等实际问题;最后,要让学生学会利用计算机软件辅助微积分的求解,例如利用MATLAB、Mathematica等软件进行微积分的计算和绘图。

总之,微积分的基本教学思想是以函数为中心,注重理论与实践相结合,强调概念的深入理解和应用能力的培养。

高职微积分课程设计

高职微积分课程设计

高职微积分课程设计一、教学目标本节课的教学目标是让学生掌握微积分的基本概念和方法,培养学生运用微积分解决实际问题的能力。

具体包括以下三个方面的目标:1.知识目标:(1)了解微积分的基本概念,如极限、连续、导数、微分、积分等;(2)掌握微积分的运算方法,如求导、积分、级数等;(3)理解微积分在实际问题中的应用。

2.技能目标:(1)能够运用微积分解决简单的实际问题;(2)具备较强的数学表达和逻辑思维能力;(3)学会使用数学软件或工具进行微积分的计算和分析。

3.情感态度价值观目标:(1)培养学生对数学的兴趣和好奇心,激发学习热情;(2)培养学生勇于探索、严谨求实的科学态度;(3)培养学生的团队协作和交流表达能力。

二、教学内容本节课的教学内容主要包括微积分的基本概念、方法和应用。

具体安排如下:1.微积分的基本概念:极限、连续、导数、微分、积分等;2.微积分的运算方法:求导、积分、级数等;3.微积分在实际问题中的应用:优化问题、动力学问题、经济问题等。

三、教学方法为了达到本节课的教学目标,我们将采用以下教学方法:1.讲授法:通过教师的讲解,让学生掌握微积分的基本概念和方法;2.案例分析法:通过分析实际问题,让学生了解微积分在实际中的应用;3.讨论法:分组讨论,培养学生的团队协作和交流表达能力;4.实验法:使用数学软件或工具进行微积分的计算和分析,提高学生的实践能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:微积分教材,为学生提供系统的理论知识;2.参考书:提供丰富的例题和习题,帮助学生巩固知识;3.多媒体资料:制作课件、视频等,提高学生的学习兴趣和效果;4.实验设备:计算机、数学软件等,用于实践操作和分析。

五、教学评估为了全面、客观地评估学生的学习成果,本节课采用以下评估方式:1.平时表现:通过课堂参与、提问、回答问题等环节,评估学生的学习态度和积极性;2.作业:布置适量的作业,评估学生对知识点的掌握程度和应用能力;3.考试:安排一次期中考试,测试学生对微积分知识的全面理解和运用能力。

《高等学校工科基础课程教学基本要求》

《高等学校工科基础课程教学基本要求》

《高等学校工科基础课程教学基本要求》一、前言数学是研究客观世界数量关系和空间形式的科学. 随着现代科学技术和数学科学的发展,“数量关系”和“空间形式”具备了更丰富的内涵和更广泛的外延. 现代数学内容更加丰富, 方法更加综合, 应用更加广泛. 数学不仅是一种工具, 而且是一种思维模式; 不仅是一种知识, 而且是一种素养; 不仅是一种科学, 而且是一种文化, 能否运用数学观念定量思维是衡量民族科学文化素质的一个重要标志. 数学教育在培养高素质科学技术人才中具有其独特的、不可替代的重要作用.高等学校工科类专业本科生的数学基础课程应包括微积分、线性代数与空间解析、概率论与数理统计, 它们都是必修的重要基础理论课. 通过这些课程的学习, 应使学生获得一元函数微积分及其应用、多元函数微积分及其应用、无穷级数与常微分方程、向量代数与空间解析几何、线性代数、概率论与数理统计等方面的基本概念、基本理论、基本方法和运算技能, 为今后学习各类后继课程和进一步扩大数学知识面奠定必要的连续量、离散量和随机量方面的数学基础. 在传授知识的同时, 要努力培养学生进行抽象思想和逻辑推理的理性思维能力, 综合运用所学的知识分析问题和解决问题的能力以及较强的自主学习能力, 逐步培养学生的创新精神和创新能力.课程的教学基本要求, 是工科院校本科生学习本课程都应当达到的合格要求, 其中带*号的条目是为某些相关专业选用的, 也是对选用专业学生的基本要求. 各校根据本校的实际情况, 在达到基本要求的基础上, 还可以提出一些较高的或特殊的要求.各门课程的内容按教学要求的不同, 都分为两个层次. 文中用黑体字排印的内容, 应使学生深入领会和掌握, 并能熟练运用. 其中, 概念、理论用“理解”一词表述, 方法、运算用“掌握”一词表述. 非黑体字排印的内容, 也是必不可少的, 只是在教学要求上低于前者. 其中, 概念、理论用“了解”一词表述, 方法、运算用“会”或“了解”表述.基本要求中所列出的各项内容与要求是制订教学计划、教学大纲和编写教材的重要依据, 但不涉及课程体系的结构、教学内容的先后安排和编写教材的章节顺序.二、微积分课程教学基本要求(一) 函数、极限、连续1. 在中学已有函数知识的基础上,加深对函数概念的理解和函数性质(奇偶性、单调性、周期性和有界性)的了解.2. 理解复合函数的概念,了解反函数的概念.3. 会建立简单实际问题中的函数关系式.4. 理解极限的概念,了解极限ε-N,ε-δ定义(不要求学生做给出ε求N或δ)的习题.5. 掌握极限的有理运算法则, 会用变量代换求某些简单复合函数的极限.6. 了解极限的性质(唯一性、有界性、保号性) 和两个存在准则(夹逼准则与单调有界准则) , 会用两个重要极限与求极限.7. 了解无穷小、无穷大、高阶无穷小和等价无穷小的概念, 会用等价无穷小求极限.8. 理解函数在一点连续和在一区间上连续的概念.9. 了解函数间断点的概念, 会判别间断点的类型.10. 了解初等函数的连续性和闭区间上连续函数的介值定理与最大值、最小值定理.(二) 一元函数微分学及其应用1. 理解导数的概念及其几何意义(不要求学生做利用导数的定义研究抽象函数可导性的习题) , 了解函数的可导性与连续性之间的关系.2. 了解导数作为函数变化率的实际意义, 会用导数表达科学技术中一些量的变化率.3. 掌握导数的有理运算法则和复合函数的求导法, 掌握基本初等函数的导数公式.4. 理解解微分的概念, 了解微分概念中所包含的局部线性化思想, 了解微分的有理运算法则和一阶微分形式不变性.5. 了解高阶导数的概念, 掌握初等函数一阶、二阶导数的求法(不要求学生求函数的n阶导数的一般表达式).6. 会求隐函数和由参数方程所确定的函数的一阶导数以及这两类函数中比较简单的二阶导数, 会解一些简单实际问题中的相关变化率问题.7. 理解罗尔(Rolle)定理和拉格朗日(Lagrange)定理, 了解柯西(Cauchy)定理(对三个定理的分析证明不作要求, 并且不要求学生掌握构造辅助函数证明相关问题的技巧), 会用洛必达(L'Hospital)法则求不定式的极限.8. 了解泰勒(Taylor)定理以及用多项式逼近函数的思想(对定理的分析证明以及利用泰勒定理证明相关问题不作要求).9. 理解函数的极值概念, 掌握用导数判断函数的单调性和求极值的方法. 会求解较简单的最大值与最小值的应用问题.10. 会用导数判断函数图形的凹凸性, 会求拐点, 会描绘一些简单函数的图形(包括水平和铅直渐近线).11. 了解曲率和曲率半径的概念, 会计算曲率和曲率半径.12. 了解求方程近似解的二分法和切线法的思想.(三) 一元函数积分法及其应用1. 理解定积分的概念和几何意义(对于利用定积分定义求定积分与求极限不作要求) , 了解定积分的性质和积分中值定理.2. 理解原函数与不定积分的概念, 理解变上限的积分作为其上限的函数及其求导定理, 掌握牛顿(Newton)-莱布尼兹(Leibniz)公式.3. 掌握不定积分的基本公式以及求不定积分、定积分的换元法与分部积分法(淡化特殊积分技巧的训练, 对于求有理函数积分的一般方法不作要求, 对于一些简单有理函数、三角有理函数和无理函数的积分可作为两类积分法的例题作适当训练).4. 掌握科学技术问题中建立定积分表达式的元素法(微元法), 会建立某些简单几何量和物理量的积分表达式.5. 了解两类反常积分及其收敛性的概念.6. 了解定积分的近似计算法(梯形法和抛物线法) 的思想.(四) 多元函数微分学及其应用1. 理解二元函数的概念, 了解多元函数的概念.2. 了解二元函数的极限与连续性的概念, 了解有界闭区域上连续函数的性质.3. 理解二元函数偏导数与全微分的概念, 了解全微分存在的必要条件与充分条件.4. 了解一元向量值函数及其导数的概念与计算方法.5. 了解方向导数与梯度的概念及其计算方法.6. 掌握复合函数一阶偏导数的求法, 会求复合函数的二阶偏导数(对于求抽象复合函数的二阶导数, 只要求作简单训练).7. 会求隐函数(包括由两个方程构成的方程组确定的隐函数) 的一阶偏导数(对求二阶偏导数不作要求).8. 了解曲线的切线和法平面以及曲面的线平面与法线, 并会求出它们的方程.9. 理解二元函数极值与条件极限的概念, 会求二元函数的极值, 了解求条件极值的拉格朗日乘数法, 会求解一些比较简单的最大值与最小值的应用问题.(五) 多元函数微积分学的应用1. 理解二重积分的概念, 了解三重积分的概念, 了解重积分的性质.2. 掌握二重积分的计算方法(直角坐标、极坐标) , 会计算简单的三重积分(直角坐标、柱面坐标、*球面坐标).3. 理解两类曲线积分的概念, 了解两类曲线积分的性质及两类曲线积分的关系, 会计算两类曲线积分(对于空间曲线积分的计算只作简单训练).4. 掌握格林(Green) 公式, 会使用平面线积分与路径无关的条件, 了解第二类平面线积分与路径无关的物理意义.5. 了解两类曲面积分的概念及其计算方法.6. 了解高斯(Gauss) 公式, 斯托克斯(Stokes)公式(斯托克斯公式的证明以及利用该公式计算空间曲线积分不作要求).*7. 了解场的基本概念, 了解散度、旋度的概念和某些特殊场(无源场、无旋场和调和场) , 会计算散度与旋度.8. 了解科学技术问题中建立重积分与曲线、曲面积分表达式的元素法(微元法) , 会建立某些简单的几何量和物理量的积分表达式.(六) 无穷级数1. 理解无穷级数收敛、发散以及和的概念, 了解无穷级数的基本性质及收敛的必要条件.2. 了解正项级数的比较审敛法以及几何级数与p-级数的敛散性, 掌握正项级数批值审敛法.3. 了解交错级数的莱布尼兹定理, 会估计交错级数的截断误差. 了解绝对收敛与条件收敛的概念及二者的关系.4. 了解函数项级数的收敛域与和函数的概念, 掌握简单幂级数收敛区间的求法(区间端点的收敛性不作要求). 了解幂级数在其收敛区间内的一些基本性质(对求幂级数的和函数只要求作简单训练).5. 会利用,sin x, cos x, ln(1+x)与的马克劳林(Maclaurin) 展开式将一些简单的函数展开成幂级数.6. 了解利用将函数展开为幂级数进行近似计算的思想.7. 了解用三角函数逼近周期函数的思想, 了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirich let)条件, 会将定义在(-π,π) 和(-l, l)上的函数展开为傅里叶级数, 会将定义在(0, l)上的函数展开为傅里叶正弦或余弦级数.(七)常微分方程1. 了解微分方程、解、通解、初始条件和特解等概念.2. 掌握变量可分离的方程及一阶线性微分方程的解法.3. 会解齐次方程, 并从中领会用变量代换求解微分方程的思想.4. 会用降阶法求下列三种类型的高阶方程: ,,.5. 理解二阶线性微分方程解的结构.6. 掌握二阶常系数齐次线性微分方程的解法, 了解高阶常系数齐次线性微分方程的解法.7. 会求自由项形如,的二阶常系数非齐次线性微分方程的特解, 其中为实系数n次多项式, α,β,A,B为实数.8. 会会通过建立微分方程模型, 解决一些简单的实际问题.三、线性代数与空间解析几何课程教学基本要求说明:在此次修订中, 考虑到线性代数与空间解析几何的内在联系, 我们将线性代数与空间解析几何作为一门课程, 但基本要求的具体内容还是相对独立的, 并且不要求所有学校都遵循这一模式. 将空间解析几何与线性代数分开授课的学校可根据基本要求中的空间解析几何部分的要求(即几何向量和空间曲线与曲面两章) 进行教学.(一) 行列式1. 了解行列式的定义.2. 掌握行列式的性质和行列式按行(列)展开的方法.3. 会计算简单的n阶行列式.(二) 矩阵1. 理解矩阵的概念.2. 了解单位矩阵, 数量矩阵、对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质.3. 掌握矩阵的线性运算、乘法、转置及其运算规则.4. 理解逆矩阵的概念. 掌握矩阵可逆的充要条件, 掌握可逆矩阵的性质.5. 掌握矩阵的初等变换及用矩阵的初等变换求逆矩阵的方法.6. 了解矩阵等价的概念.7. 理解矩阵秩的概念并掌握其求法.(三) 几何向量1. 理解空间直角坐标系, 理解向量的概念及其表示.2. 掌握向量的运算(线性运算、数量积、向量积), 了解两个向量垂直、平行的条件3. 掌握单位向量、方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法.4. 掌握平面的方程和直线的方程及其求法, 会利用平面、直线的相互关系解决有关问题.(四) n维向量与向量空间1. 理解n维向量的概念.2. 理解向量组的线性组合、线性相关、线性无关的概念.3. 掌握向量组线性相关、线性无关的有关性质及判别法.4. 了解向量组的极大线性无关组和向量组的秩的概念, 会求向量组的极大线性无关组及秩.5. 了解n维向量空间、线性子空间、基底、维数、坐标等概念.*6. 了解基变换公式和坐标变换公式, 会求过渡矩阵.7. 了解内积的概念, 会用施密特(Schmidt)方法将线性无关的向量组标准正交化.8. 了解标准正交基、正交矩阵的概念及它们的性质.9. 了解线性变换的概念及其矩阵表示.(五) 线性方程组1. 了解克莱姆(Cramer)法则.2. 理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件.3. 理解齐次线性方程组的基础解系及通解等概念.4. 理解非齐次线性方程组解的结构及通解等概念.5. 掌握用行初等变换求线性方程组的通解的方法.(六) 矩阵的特征值与特征向量1. 理解矩阵的特征值与特征向量的概念, 会求矩阵的特征值与特征向量.2. 了解相似矩阵的概念和性质.3. 了解矩阵对角化的充要条件和对角化的方法.4. 会求实对称矩阵的相似对角形矩阵(七) 实二次型1. 掌握二次型及其矩阵表示, 了解二次型的秩的概念.2. 了解合同变换和合同矩阵的概念.3. 了解实二次型的标准形式及其求法.4. 了解惯性定理(对定理的证明不作要求) 和实二次型的规范形.5. 了解正定二次型、正定矩阵的概念及它们的判别法.(八) 空间曲线与曲面1. 理解二次曲面方程的概念, 了解空间曲线方程的概念.2. 了解常用二次曲面的方程及其图形, 了解以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.3. 了解空间曲线的参数方程和一般方程.4. 了解曲面的交线在坐标平面上的投影.*5. 了解二次曲面的分类.四、概率论与数理统计课程教学基本要求(一) 随机事件与概率1. 了解随机现象, 了解样本空间的概念, 理解随机事件的概念, 掌握事件之间的关系与运算.2. 了解事件频率的概念, 理解概率的统计定义. 了解概率的古典定义, 会计算简单的古典概率3. 理解概率的公理化定义和概率的基本性质, 了解概率加法定理.4. 了解条件概率的概念、概率的乘法定理. 了解全概率公式, 会应用贝叶斯(Bayes)公式解决比较简单的问题.5. 理解事件的独立性概念.6. 了解贝努利(Bernoulli)概型和二项概率的计算方法.(二) 随机变量及其分布1. 理解随机变量的概念, 了解分布函数的概念和性质, 会计算与随机变量相联系的事件的概率.2. 理解离散型随机变量及其分布律的概念, 掌握0-1分布、二项分布和泊松(Poisson)分布.3. 理解解连续型随机变量及其密度函数的概念, 掌握正态分布, 了解均匀分布和指数分布.4. 会根据自变量的概率分布求简单随机变量函数的概率分布.(三) 多维随机变量及其分布1. 了解多维随机变量的概念, 了解二维随机变量的联合分布函数.2. 了解二维离散型随机变量的联合分布律的概念, 理解二维连续型随机变量的联合密度函数的概念.3. 理解二维随机变量的边缘分布.4. 理解随机变量的独立性概念.5. 会求两个独立随机变量简单函数的分布(和、差、商、极大、极小).(四) 随机变量的数字特征1. 理解随机变量数学期望与方差的概念, 掌握它们的性质与计算方法.2. 了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望与方差.3. 了解矩、协方差、相关系数的概念及其性质, 并会计算.(五) 大数定律和中心极限定理1. 了解切比雪夫(Чебышёв) 不等式、切比雪夫大数定律和贝努利大数定律, 了解贝努利大数定律与概率的统计定义、参数估计之间的关系.*2. 了解独立同分布的中心极限定理和棣莫弗(De moiver)-拉普拉斯(Laplace)中心极限定理.*3. 了解棣莫弗(De moiver)-拉普拉斯(Laplace)中心极限定理在实际问题中的应用.(六) 数理统计的基本概念1. 理解总体、个体、样本和统计量的概念.2. 了解直方图的作法.3. 理解样本均值、样本方差的概念, 掌握根据数据计算样本均值、样本方差的方法.4. 了解χ2分布,t分布,F分布的定义, 并会查表计算分位数.5. 了解正态总体的某些常用抽样分布, 如正态总体样本产生的标准正态分布χ2分布,t分布,F分布等.(七) 参数估计1. 理解点估计的概念, 了解矩估计法与极大似然估计法.2. 了解无偏性、有效性、一致性等估计量的评判标准.3. 理解区间估计的概念, 会求单个正态总体均值与方差的置信区间, 会求两个正态总体均值差与方差比的置信区间.(八) 假设检验1. 理解假设检验的基本思想, 掌握假设检验的基本步骤, 了解假设检验可能产生的两类错误.2. 了解单个和两个正态总体均值与方差的假设检验.3. 了解总体分布假设的χ2检验法, 会应用该方法进行分布拟合优度检验.五、建议1. 在课程的教学过程中, 应当积极开展对教学内容与课程体系、教学方法与教学手段的改革, 认真总结经验, 并将教学改革的成果逐步吸收到教学中来, 不断提高教学质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分课程教学基本要

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
(1) 微积分(I)教学基本要求(3学时/周, 48学时)
(一)说明
《微积分(I)》称之为“直观微积分”,其特点是给极限以易懂的直观定义,
跨过极限理论证明的难点,尽快进入微积分的最基本的主线内容:一元函数的
微分、积分以及简单微分方程等. 这样使学生容易入门,先掌握实际应用广泛
的微积分基本内容,突出牛顿式的数学与物理概念、几何直观相结合的处理方法, 不拘泥于严格的数学证明,注重基本的计算能力和运用微积分方法分析和
解决实际问题能力的培养。

(1)这部分内容的极限概念主要以“无限趋向”直观的定义, 只介绍极限的精
ε-的极限证明, 但极限的保号性的运用要求掌握。

确定义,不要求用δ
(2)连续函数在闭区间上的有界性,取最值性,及介值性的结论要求会运用.
(3)这部分要求突出计算和应用。

由于学生从中学到大学在学习方法上有较大变化,为适应这个过程,建议在
教学中注意对学生学习方法和阅读教材与参考书的指导,堂上要有适当的例题
讲解。

(二)内容
1. 函数:
函数定义,基本初等函数; 隐函数, 参数方程表示的函数,复合函数。

函数的几个主要性质:有界性,奇偶性,单调性,周期性,凸凹性。

2极限:
ε-”定义的证明题,只要只讨论函数的极限,强调“无限趋近”, 不要求“δ
ε-”思想说明极限的保号及有界等性质.
求用“δ
极限的运算性质,两个重要极限,无穷小量,无穷大量.利用极限性质、等价无穷小、高阶无穷小计算极限。

3.连续:
连续和间断的概念(不讲一致收敛),闭区间连续函数的性质.
4. 导数与微分
导数与微分的概念,几何意义.
导数与微分计算: 基本导数、微分公式, 四则运算法则,复合函数链式法则,
参数方程求导数,隐函数求导数;高阶导数Leibniz 公式
5. 微分中值定理和导数应用
三个微分中值定理的证明及应用.
L ’Hospital 法则, Taylor 公式, 函数()()α
x x e x x x ++1,1ln ,,cos ,sin 在00=x 处的Taylor 公式, 用Taylor 公式求函数的极限.
函数性态的研究: 增减极值,凸性,拐点, 渐近线; 函数图象的讨论和略画。

一元函数的极值及最值问题。

6.积分
原函数和不定积分的概念及性质; 不定积分的计算: 凑微分,变量代换,分部积分, 了解有理函数的积分的思路与结论
7. 定积分的概念及基本性质, 变限积分与微积分基本定理,Newton-Leibniz 公式
定积分的计算:凑微分,变量代换,分部积分,了解不能积成初等函数的积分。

定积分的应用
几何应用:面积,均值, 旋转体体积, 曲线弧长, 旋转体侧面
物理应用: 质心,转动惯量,引力,做功.
8. 简单微分方程
微分方程的实际背景,基本概念.
微分方程的初等解法:分离变量法,齐次方程,一阶线性方程, 常数变异法,伯
努利方程,可降阶的二阶方程:),(,),(y y f y y x f y '=''=''
(2) 微积分(I)教学基本要求(4学时/周, 64学时)
(一)说明
这是为信息、理科类开的课程。

(二)内容
基本内容同微积分(I) (3学时/周, 48学时)的内容, 另外增加以下内容:
1. 微分方程解的存在唯一性介绍。

高阶线性方程解的结构, 常数变异法求特解。

齐次常系数高阶线性方程求解, 非齐次常系数高阶线性方程的比较系数法. 微分方程的应用.
2. 另外,前面的内容及应用可适当深一点,多一点。

(3) 微积分(II)教学基本要求(3学时/周, 48学时)
(一)说明
《微积分(II)》称之为“理性微积分”,其特点是通过对极限、函数可积性以及级数等内容作比较严格的数学理论上的讨论, 对学生进行数学理性思维和较严密的逻辑推理的训练,以加强学生的数学素养。

这部分课程作为数学思维及方法培养的基础课程,要求在基本内容掌握的同时,让学生尽可能理解处理连续模型的一些基本思路。

(二)内容
1.数系的扩充、数集的界与确界、确界存在定理。

注:主要讲清实数集有界和无界的概念,给出确界定义,承认确界存在定理。

2.极限和函数的连续性
数列极限:概念、性质、单调有界有极限定理、夹逼定理、有界数列必有收敛子列、Cauchy准则。

函数极限:概念、性质、极限证明典型例子。

一致连续概念,连续函数在有界闭区间上性质的证明。

注:应强调比较严格的极限论证, 加强用极限思想处理问题的方法训练。

从连续到一致连续应该是一个比较大的跳跃,若能处理好,意义决不是仅仅懂的了一个概念。

至少能使学生体会到点性质与整体性质是两个概念。

3.定积分
定积分的概念:定义、必要条件。

可积的充要条件:充要条件、常见可积函数类。

定积分的性质的证明举例:
广义积分概念、性质,两种广义积分的判敛法则。

4. 数项级数
数项级数的基本概念及性质;
正项级数及其比较判敛法,,达氏法则,柯两法则等;
任意项级数性质及其的判敛法, 交错级数的莱布尼兹法则,绝对收敛,条件收敛。

5. 函数项级数
函数项级数:一致收敛性的概念、函数项级数的解析性质;
幂级数 : 强调收敛半径的概念, 幂级数的解析性质;
函数()()α
x x e x x x ++1,1ln ,,cos ,sin 在00=x 处的Taylor 级数, 函数展成幂级数的直接方法和间接方法.
Fourier 级数: 函数的正交性,正交函数簇概念,三角函数正交性;函数展成Fourier 级数, 收敛定理。

Fourier 级数的平均收敛性.
注:加讲平均收敛性至少在以下几点使学生有所收获:
1. 可以接触到线性空间中范数的有关概念,将直观与抽想联系起来。

2. 接触到判断同一件事情可以有不同的标准。

3. 体会到如何用所学知识去证明(解决)一个问题。

(4) 微积分(II)教学基本要求(2学时/周, 32学时)
(一)说明
这是为信息、理科类开的课程。

(二)内容
基本内容同微积分(II) (3学时/周, 48学时)的内容,内容适当调整. 可与前面的微积分(I) (4学时/周, 64学时)内容综合考虑。

(5) 微积分(III)教学基本要求(4学时/周, 64学时)
(一)说明
《微积分(III)》内容包括多元微积分及微积分的进一步的应用. 其特点注重拓宽知识面,引入与近代数学知识的接口,同时加强数学应用意识与能力的培养。

(二)内容
(1) 多元函数微分学
1.2R (3R )的距离和收敛,开集和邻域,连通集和区域.多元函数的极限,连续函数定义
和性质;
2. 偏导数和(全)微分,高阶偏导数;
3. 复合函数微分法,方向导数和梯度;
4. 映射的微分*,雅克比矩阵*;
5. 隐函数微分法,由方程0),,,,(121=+n n x x x x F 确定的隐含数微分法; 6*.由方程组
⎪⎩
⎪⎨⎧==0),,,,,,,(................................
0),,,,,,,(21212121m n m n y y y x x x F y y y x x x F 确定的隐含数微分法; 7. 微分学应用(1):
空间曲线的切向量 ,空间曲面的法向量和切平面.
*活动标架: 曲线的曲率和挠率;
8. 微分学应用(2): 极值与条件极值。

(2)重积分
1. 二重积分的定义和性质;
2. 二重积分的计算:
在直角坐标系和极坐标系中化二重积分为累次积分;
3. 二重积分变量代换;
4. 用直角坐标系,柱坐标系和球柱坐标系计算三重积分;
5. 曲面面积,直角交坐标系下的面积微元和参数方程下的面积微元,第一型曲面积分。

(3). 线、面积分及向量函数
1.向量场的概念,第一型、第二型曲线积分,格林公式,平面曲线积分与路径无关的条件;
2.第二型曲面积分概念和计算;
3.高斯公式于斯托克斯公式;
4.向量场初步:
数量场的梯度, 向量场的旋度和散度,保守场,无旋场.
(4).含参积分
1. 含参积分的概念,基本性质;
3.含参积分表示函数的解析性:连续、可微及可积性;
3. Γ-函数与β-函数。

(5).微分方程
1. 微分方程基本概念,存在唯一性定理(不证);
2. 高阶线性方程解的结构,齐次、非齐次常系数高阶线性方程求解,应用;
3. 常系数线性微分方程组用特征值和特征向量求解.
注:对学微积分(I)(4学时/周, 64学时)的班级, 微分方程改为:
(5).微分方程
1. 常系数线性微分方程组用特征值和特征向量求解:
解的结构*,常数变异法;
2.稳定性概念和意义, 线性微分方程组解的稳定性。

还可适当增加选读内客。

相关文档
最新文档