七年级数学上册4.3.2 角的比较与运算
七年级数学上册4.3.2角的比较与运算全国公开课一等奖百校联赛微课赛课特等奖PPT课件
8/13
5.角计算 学生探究例1:
9/13
跟踪练习:
1.如图,∠Aபைடு நூலகம்B=35°,∠BOC=90°,OD是∠AOC平分线, 求∠BOD度数. 解:∵∠AOB=35°,∠BOC=90°, ∴∠AOC=35°+90°=125°. ∵OD是∠AOC平分线, ∴∠AOD= 1 ∠AOC=62.5°,
2
∴∠BOD=∠AOD-∠AOB=62.5°35°=27.5°.
11/13
三、课堂小结 师生互动,共同总结本节课学习内容: 1.角大小比较方法和角大小关系有哪些?认 识了角哪些运算. 2.本节课学习了用三角板拼出哪些角? 3.角平分线定义是什么? 4.怎样进行角相关计算?
12/13
四、作业布置 书本习题4.3复习巩固5.6,
综合利用10,拓广探索15.
13/13
10/13
2.已知在平面内,∠AOB=70°,∠BOC=40°, 求∠AOC度数. 解:分两种情况考虑: (1)当∠BOC在∠AOB外部时, ∠AOC=∠AOB+∠BOC═70°+40°=110°; (2)当∠BOC在∠AOB内部时, ∠AOC=∠AOB-∠BOC═70°-40°=30°, 则∠AOC度数为110°或30°.
4.3.2角比较与运算
1/13
教学目标: 1、会比较角大小,能预计一个角大小. 2、会分析图中角和差关系. 3.认识角平分线,会画一个角平分线. 4.能够依据条件进行角相关运算. 教学重点:比较角大小,认识角平分线,分析 角和差关系, 依据条件进行角相关运算. 教学难点:正确地进行角相关运算.
2/13
5/13
提出问题: 利用一副三角板还能拼出多少度角?
105°,120°,135°.
【精讲课件】2022-2023学年人教版数学七年级上册 4
例1:如图,O 是直线 AB 上一点,∠AOC=53°17′, C 求∠BOC 的度数.
解:∵∠AOB 是平角, ∠AOB= ∠AOC+∠BOC. ∴∠BOC=∠AOB-∠AOC =180°-53°17′ =179°60′-53°17′
A
OB
可以向 180º借1º, 化为60′.
如何计算?
=126°43′.
4.3.2 角的比较与运算
1. 掌握角的大小的比较方法. 2. 理解角平分线和角的和、差、倍、分的意义及数量关系, 能够用几何语言进行相关表述,并能解答相关问题. 3. 会进行涉及度、分、秒的角度的计算.
问题: 学生张虎和王鹏各带了一把折扇 (如图),下面是他们的一段对话:
张:我的折扇大一些,所以我的折扇的角 也大一些. 王:我的折扇长一些,所以我的折扇的角 也大一些.
二、角的和差
图中有几个角?它们之间有什么关系? 图中有3个角:∠AOC,∠AOB,∠BOC.
C B
它们的关系:
O
A
∠AOC 是∠AOB 与∠BOC的和,记作∠AOC = ∠AOB +∠BOC;
∠AOB 是∠AOC与∠BOC的差,记作∠AOB = ∠AOC-∠BOC;
类似地,∠AOC-∠AOB= ∠BOC .
C B
A
3、已知:如图∠AOC=30°,∠COB=60°,ON、
OM分别平分∠AOC、∠BOC,求∠MON的度数.
解:∵ON平分∠AOC
BM
∴∠CON= 12∠AOC= ×1230°=15°
∵ OM平分∠BOC
∴∠COM= 12∠BOC= ×1260°=30°
O
∴∠MON=∠CON+∠COM
=15°+30°=45°
4.3.2角的比较与运算教案
4.3.2 角的比较与运算(1)教学目标:1.理解角的大小,角的和、差、倍、分的意义及数量关系,并会用文字语言,图形语言,符号语言进行描述,并会进行度、分、秒的角度的计算;2.类比线段的大小,和与差,学习角的比较,角的和与差,体会类比的思想。
教学重点:角的大小比较,角的和、差、倍、分的意义和计算方法教学难点:度、分、秒的角度的计算教学过程一.情景引入有一天学生张亮和王帅各带了一把折扇(如图所示),下面是他们的一段对话: 张:我的折扇张开大一些,所以我的折扇的角也大一些.王:我的折扇长一些,所以我的折扇的角也大一些.同学们你们有办法帮他们判断吗?怎样比较∠ABC和∠DEF的大小?二. 解读目标三.新课讲解1.温故知新问题1:前面我们研究了线段,学习了线段的比较与运算。
你能回忆一下,在这一节我们学习了哪些知识?师生活动:学生回顾所学内容,教师归纳2.探究新知问题2:类比线段大小的比较,你认为该如何比较两个角的大小?在练习本画两个角,比较它们的大小,并说明你是怎么比较的?师生活动:学生讨论解决问题的方法,学生代表交流学生展示交流后提问:比较角的大小的方法有几种?每种方法应注意什么?(1)度量法(2)叠合法(叠合两角时注意:两角顶点重合;一边重合;另一边落在重合边的同旁)你能用图形和几何语言,说明两个角的大小关系吗?(1)''B O 落在B A 0∠的外部,''OB A ∠大于B A 0∠,记作''OB A ∠>B A 0∠(2)''B O 与OB 重合,''OB A ∠等于B A 0∠,记作''OB A ∠=B A 0∠(3)''B O 落在B A 0∠的内部,''OB A ∠小于B A 0∠,记作''OB A ∠<B A 0∠问题3:如图,图中共几个角?它们之间有什么关系?师生活动:学生确定角的个数,明确角的和差关系教师关注:学生是否能发现角的和差关系,若学生仅说出它们的大小关系,教师可引导学生进一步观察图形,类比线段的和与差,发现角的和差关系提问:你能用符号表示这些角之间的和差关系吗?AOC ∠是AOB ∠与BOC ∠的和,记作AOC ∠=AOB ∠+BOC ∠AOB ∠是AOC ∠与BOC ∠的差,记作AOB ∠=AOC ∠-BOC ∠类似地,AOC ∠-AOB ∠=BOC ∠问题4:利用一副三角尺,你能画出哪些度数的角?师生归纳:一副三角尺上的角都是常用的角,它们是30°,45°,60°,90°的角,利用这些角可以很方便地画出这些角的一些特殊角,如:15°,30°,45°,60°,90°,105°,120°,135°等问题5:在前面我们已经说过一个角的大小可以用度、分、秒来表示,会进行度、分、秒来表示,会进行度、分、秒的转换,还需要会进行加、减运算。
七年级数学上册第四章几何图形初步认识4
D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:
七年级数学人教版(上册)4.3.2角的比较与运算
知识点 2 角的和差 3.如图,若∠AOB=∠COD,则( C ) A.∠1>∠2 B.∠1<∠2 C.∠1=∠2 D.∠1,∠2 的大小关系不确定
4.把两块三角板按如图所示的方式拼在一起,则∠ABC 的大小 为( C )
A.90° B.100° C.120° D.135°
5.根据图形填空: (1)∠AOD= ∠DOC +∠AOC=∠DOB+ ∠AOB =∠AOB +∠COD+ ∠COB . (2)∠AOD-∠COD= ∠AOC . (3)∠DOB=∠DOA-∠AOC+ ∠BOC .
易错点 对角的位置情况考虑不周致错 11.若∠AOB=75°,∠AOC=27°,则∠BOC= 48°或102°.
12.用一副三角板不能画出下列哪组角( D )
A.45°,30°,90°
B.75°,15°,135°
C.60°,105°,150°
D.45°,80°,120°
1 13.如图,∠AOB=2∠BOD,OC 平分∠AOD,下列四个等式
第四章 几何图形初步
4.3 角
4.3.2 角的比较与运算
知识点 1 角的比较 1.比较∠1 与∠2 的大小,下列放置方法正确的是( D )
2.在∠AOB 的内部任取一点 C,作射线 OC,则一定存在( A )
A.∠AOB>∠AOC
B.∠AOC=∠BOC
C.∠BOC>∠AOC
D.∠AOC>∠BOC
=∠
1 DOC ,∠BOD=3
∠AOB ,∠AOD=2 ∠BOD(或∠DOC或
∠COA)
.
8.如图,O 是直线 AB 上一点,OC 平分∠DOB,∠COD=56°, 则∠AOD= 68° .
9.如图,已知∠AOC=90°,∠COB=60°,OD 平分∠AOB, 求∠COD 的度数.
河南省驻马店市汝南县清华园学校七年级数学上册 4.3.2 角的比较与运算课件 (新版)新人教版
AOC AOB 2
BOC
2
AOB
4、如图 ,若∠AOD=105°,∠AOC=85°, ∠COB=50°,则∠DOC= °,∠AOB= ° 5、已知, ,0 OC是的一条三等分线,则的 AOB 45 度数是 ; 6、如图,若OB是∠AOC的平分线,OC是∠BOD的平分线, 则∠BOC=∠ =∠ , ∠BOD=2∠ =2∠ =2∠ , ∠AOD=__∠BOC=__∠BOD。
D
A 展示二: O (1)32°21 ′ + 68°48′ (2)90 °-25°32 ′ (3) 15°23 ′8 ″ ×4 (4)109°11′4″÷7 总结: 由(1)(2)得出:涉及度、分、秒的加减的计算方法 是: ; 由(3)(4)得出:涉及度、分、秒的乘除的计算方法 是: ;
归纳总结
D
C
B
D C
B
O 6题 A
O 4题
A
7、(1)用10倍放大镜看30°的角,你观察到的角是_______; (2)用10倍放大镜看50°的角,60°的角,你观察到的角分 别是______,______。 由(1),(2),你能得到的结论是角的大小只 和 有关,和 无关。 8、如图,O为直线AB上一点,射线OD、OE分别平分∠AOC、 ∠BOC,求∠DOE的度数。
4.3.2.角的比较与运算
学习目标
1、知道比较角的大小的方法; 2、理解角平分线的概念; 3、会进行简单的角的和、差运算。
学法指导
认真看课本(P134-P136练习前)注意: 1、角的大小比较有哪些方法?分别是? 2、回答134页“思考”中的问题; 3、理解角平分线的概念,类比了解角的三等分线; 4、类比线段的和、差运算,掌握角的运算,注意例题解题的 格式和步骤,认真研究136页标签里的内容。 (时间7分钟)
4.3.2角的比较与运算 课件人教版七年级数学上册
典型例题 例2 把一个周角7等分,每一份是多少度的角(精确到分)?
解:360º÷7=51º+3º÷7 =51º+180′÷7 ≈ 51º26′.
答:每份约是51º26′.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
练习1 按图填空: (1)∠AOB+∠BOC=_∠__A__O_C____; (2)∠AOC+∠COD=_∠__A_O__D____; (3)∠BOD-∠COD=_∠__B_O__C____; (4)∠AOD-__∠__B_O_D____=∠AOB.
探究 怎么用符号语言表示角平分线呢?
C
O
B
A
∵OB平分∠AOC,
∴∠AOB =∠BOC = 1 ∠AOC
2
(或者∠AOC =2 ∠AOB = 2∠COB ).
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 类似角平分线,如图射线OB、OC是∠AOD的三等分线.
D
α α α
O
C B
A
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
练习2 如图,OP是∠AOB的平分线,则下列说法错误的是( C )
A.∠AOB=2∠AOP
C.∠AOB= 1 ∠BOP 2
B.∠AOP= 1 ∠AOB 2
D.∠AOP=∠BOP
创设情境
探究新知
角
的
应用新知
比
较
巩固新知
与 运
算
课堂小结
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题 例1 如图,O是直线AB上一点,∠AOC=53º17′,求∠BOC的度数.
兴仁县四中七年级数学上册 第四章 几何图形初步 4.3 角4.3.2 角的比较与运算导学案新人教版
一、新课导入1.导入课题:这节课我们学习角的大小比较与运算(板书课题).2.三维目标:(1)知识与技能①会比较角的大小,能估计一个角的大小,在操作活动中认识角的平分线.②会进行度、分、秒的换算,并能解决角的运算题.(2)过程与方法①实际观察、操作,体会角的大小,培养学生的观察思维能力.②动手计算,熟练解决有关角的运算题,培养学生的计算能力.(3)情感态度①角的测量和折叠等,体验数、符号和图形是描述现实世界的重要手段.②帮助学生体验数学在生活中的用处,激发学生对数学的学习兴趣.3.学习重、难点:重点:①角的大小比较与运算;②角平分线的概念;③感受类比思想.难点:图形语言、文字语言、符号语言的相互转换.二、分层学习1.自学指导:(1)自学范围:教材第134页至第135页的内容.(2)自学时间:10分钟.(3)自学要求:认真阅读课文,类比线段的相关内容进行学习.(4)自学参考提纲:①与线段的大小比较相类似,比较两个角的大小,也有两种方法:一是度量,二是叠合法,用叠合法比较时,必须使两个角的顶点及一边重合,另一边落在同一侧.(如课本图4.3-6所示).②如图,图中共有3个角?∠AOC是∠AOB与∠BOC的和.记作:∠AOC=∠AOB+∠BOC;∠AOB是∠AOC与∠BOC的差,记作:∠AOB=∠AOC-∠BOC;类似地,∠BOC=∠AOC-∠AOB.③一副三角尺的角有哪些?利用角的和或差,用一副三角形尺你还能画出哪些度数的角?与同学交流一下.④a.从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如图,若射线OB是∠AOC的角平分线,则有∠AOB=∠BOC,或∠AOB=12∠AOC,或∠BOC=12∠AOC或∠AOC=2∠AOB,或∠AOC=2∠BOC,反过来也成立.b.与a类似地,还有角的三等分线,四等分线等,你能分别画出图形,并用几何语言描述它们吗?2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,充分了解学生的自学情况.②差异指导:根据学情进行相应的指导,重点是几何语言描述.(2)生助生:小组内同学间相互交流研讨,互助解题疑难.4.强化:(1)角的大小比较方法.(2)角平分线的意义、注意几种语言间的转换.(3)类比思想.(4)练习:如图,OC平分∠AOB,OD平分∠AOC,则图中相等的角有∠AOD=∠DOC,∠AOC=∠BOC,∠AOD=12∠AOC=14∠AOB.1.自学指导:(1)自学范围:教材第136页例1和例2.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,注意解题格式,并按照例题旁边方框中的提示动手演算验证.不懂的地方,小组内讨论解决.(4)自学参考提纲:①角度的加减运算,要将单位对齐相加减,即度与度,分与分,秒与秒分别相加、减.分、秒相加时逢60要进位,如23°45′37″+70°26′40″=93°71′77″=94°12′17″;相减时要借1当作60,例1中应借1°,化为60′.即:180°-53°17′=179°60′-53°17′=126°43′②例2中,是怎样将剩余的度数化成分的?如果用精确到秒来表示计算的结果,答案是多少呢?例2中,将余数的度数乘以60化成分.360°÷7=51°+3°÷7=51°+180′÷7=51°+25′+5′÷7=51°25′+300″÷7=51°25′43″③做教材第136页“练习”的第2、3题.练习2:360°÷8=45°,360°÷45°=24(份).练习3:∠AOD=12∠AOB-∠COD=90°-31°28′=58°32′.2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:对学习有困难的学生进行点拨和指导.(2)生助生:小组内同学间相互交流研讨,互助解疑难.4.强化:学生交流展示学习成果,教师再归纳强化.三、评价1.学生自我评价:让学生交流学习目标的达成情况及学生的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学过程应体现:(1)善于从图形中发现角与角之间的关系,转化为数学式子进行计算.特别是像角平分线这些特殊几何元素.(2)角的计算要根据问题适时进行分类讨论.(3)结合已有的线段计算认知,来类比角的计算规律和方法.一、基础巩固1.(10分)如果∠1=∠2,∠2=∠3,则∠1=∠3,如果∠1>∠2,∠2>∠3,则∠1>∠3.2.(10分)按图填空:(1)∠AOB+∠BOC=∠AOC;(2)∠AOC+COD=∠AOD;(3)∠BOD-∠COD=∠BOC;(4)∠AOD-∠BOD=∠AOB.3.(10分)下列说法正确的是(C)A.若∠AOB=2∠AOC,则OC是∠AOB的平分线B.若∠AOC=12∠AOB,则OC是∠AOB的平分线C.若∠AOC=∠BOC=12∠AOB,则OC是∠AOB的平分线D.以上说法都不对4.(40分)(1)48°39′+67°31′(2)77°42′-34°45′(3)21°17′×5(4)109°24′÷6解:(1)116°10′;(2)42°57′;(3)106°25′;(4)18°14′.二、综合应用5. (20分)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=140°,∠COD=30°,那么∠AOB是多少度?解:(1)由题意知∠AOB=∠BOC,∠EOD=∠DOC,∴∠BOD=∠BOC+∠COD=∠AOB+∠DOE=40°+30°=70°.(2)∠COD=30°,∵∠COE=2∠COD=60°,∴∠AOC=∠AOE-∠COE=140°-60°=80°,∴∠AOB=12∠AOC=40°.三、拓展延伸6.(10分)如图,将长方形纸片的一角作折叠,使顶点A落在A′处,EF为折痕,若EA′恰好平分∠FEB.(1)判断∠A′EB与∠FEA的大小关系.(2)你能求出∠FEB的度数吗?解:(1)∵EA′平分∠FEB,∴∠BEA′=∠FEA′又∵△A′EF由△AEF折叠得到.∴∠AEF=∠A′EF,∴∠FEA=∠A′EB(2)∵∠FEA+∠FEA′+∠A′EB=180°,又三者相等,∴∠FEA=∠FEA′=∠A′EB=60°,∴∠FEB=∠FEA′+∠A′EB=120°.第2章代数式章末复习【知识与技能】1.用字母表示数.2.列出代数式.3.对代数式进行加减.4.合并同类项.5.先化简,再求值.【过程与方法】1.加强学生对所学知识的理解.2.提高运用知识解决问题的能力.【情感态度】在观察、想象、推理、交流的数学活动中,初步养成言之有据的习惯,并初步形成积极参与数学活动,与他人合作交流的意识,积累活动经验(学习或思维的方法、策略等).【教学重点】列代数式,求代数式的值.【教学难点】代数式的化简.一、知识结构【教学说明】揭示知识之间的内在联系,将所学的零散的知识连接起来,形成一个完整的知识结构,有助于学生对知识的理解和运用.二、释疑解惑,加深理解1.代数式:把数与表示数的字母用运算符号连接而成的式子叫做代数式.单独的一个字母或一个数也是代数式.2.用字母表示式子时应注意:①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写.省略乘号时,一般把数字写在字母的前面.②两个相同字母相乘时,也写成乘方的形式.③当数字1与字母相乘时,1也省略不写.3.代数式的值:如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值.4.单项式:由数与字母的积组成的代数式叫做单项式.单独的一个字母或一个数也是单项式.单项式中,与字母相乘得数叫做单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数.5.多项式:由几个单项式的和组成的代数式叫做多项式.组成多项式的每个单项式叫做多项式的项,其中不含字母的项叫常数项.多项式中次数最高的项的次数,叫做这个多项式的次数.6.整式:单项式和多项式统称为整式.7.同类项:含有的字母相同,并且相同字母的指数也分别相同的项称为同类项.把多项式中的同类项合并成一项,叫做合并同类项.8.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.9.去括号法则:括号前面是“+”号,运用加法结合律把括号去掉,原括号里各项的符号都不变.括号前面是“-”号,把括号和它前面的“-”号去掉,原括号里各项的符号都要改变.【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.三、典例精析,复习新知1.下列语句正确的是(A)A.0是代数式.B.S=2πR是一个代数式.C.单独的一个数12不是代数式.D.单独一个字母a不是代数式.2.有一个两位数,十位数字是a,个位数字是b,若把它们的位置交换,得到新的两位数是(C)A.abB.baC.10b+aD.10a+b3.计算:(2x2-3xy+6)-2(3y2x-xy-3) 解:原式=2x2-3xy+6-6xy2+2xy+6=2x2-6xy2-xy+124.先化简,再求值:-5+x2-5x-x2+3x+4,其中x=-12.解:原式=(x2-x2)+(-5x+3x)+(-5+4)=-2x-1把x=-12代入原式=-2×(-12)-1=05.某物体运动的速度与时间的关系如下表:(1)请你用含t的代数式来表示该物体运动速度y.(2)当该物体运动的时间为20秒时,此时物体的速度是多少?答案:(1)y=0.2t+0.5;(2)4.5(米/秒).6.1千瓦时电(即通常所说的1度电)可供一盏40瓦的电灯点亮25小时.(1)1千瓦时的电量可供n瓦的电灯点亮多少时间?(2)若每度电的电费为a元,一个100瓦的电灯使用12时的电费是几元?答案:(1)1000n时,(2)1.2a元.【教学说明】通过典型例题,培养学生的识图能力和推理能力.四、复习训练,巩固提高1.已知多项式ax+bx合并的结果为0,则下列说法正确的是(D)A.a=b=0B.a=b=x=0C.a-b=0D.a+b=02.某同学自己装订笔记本,第一本用了a张纸,第二本用的纸张数是第一本的78,两本共用了(A)张纸.A.a+78a B.a-18aC.a+18a D.a+783.已知x2+2xy=3,y2=2,则代数式2x2+4xy+y2的值为(A)A.8B.9C.11D.124.先列出式子,再求结果:一个代数式加上5x2+4x-1得6x-8x2+2,求这个代数式.解:6x-8x2+2-(5x2+4x-1)=6x-8x2+2-5x2-4x+1=-13x2+2x+3答案:(x2+1)等6.如图:用代数式表示阴影部分的面积.答案:12(a-b)h7.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度按0.60元收费.(1)若某住户四月份的用电量是a度(a≤140),这个用户四月份应交多少电费?(2)若该住户五月份的用电量是a度(a>140),则他五月份应交多少电费?(3)若该住户六月份的用电量是200度,那么他六月份应交多少电费?答案:(1)当a≤140度时,应交电费0.45a元;(2)当a>140度时,应交电费为(0.6a-21)元;(3)140×0.45+(200-140)×0.60=99(元).8.同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为a(7<a≤23),分别用代数式表示同一时刻的巴黎时间和东京时间.(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻的巴黎时间、东京时间分别为几时?答案:(1)巴黎:a-7;东京:a+1(2)巴黎:15:08;东京:23:08【教学说明】进一步加深对知识的理解,体会本节课所涉及的数学思想和数学规律.同时,学会归纳概括和总结,积累学习经验,为今后的学习奠定基础.五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还存在哪些疑惑?布置作业:教材“复习题”中第2、8、12、14、15、16题.能达到我们所制定的目标:在教学的过程中我着重精讲例题,在解题过程中实现三个目标,化解重点难点,使学生了解、理解、掌握并应用!注重基础重在实效:题目面对大众,不搞偏难怪.在解题的过程中强化书写格式.从学生的做题情况,对于发现问题作出及时处理以达到规范.同时也存在几个缺点:①有的知识点没有顾及到;②有的学生没有自觉地解决问题;③与学生互动不激烈.在授课过程中要精讲多练,多让学生发问,而且也要让学生多多总结,学以致用.第3课时球赛积分表问题【知识与技能】通过对实际问题的分析,掌握用方程计算球赛积分一类问题的方法.【过程与方法】培养学生分析问题、解决问题的能力.【情感态度】学生在从事探索性活动的学习过程中,形成良好的学习方式和学习态度,借助学生身边熟悉的例子认识数学的应用价值.【教学重点】1.让学生知道球赛积分的算法.2.把生活中的实际问题抽象成数学问题.【教学难点】弄清题意,分析实际问题中的数量关系,找出解决问题的等量关系.一、情境导入,初步认识上一课时我们探究了有关销售中的盈亏问题,通过学习学生应初步掌握了有关一元一次方程实际问题的解决办法.本课时我们继续探讨有关球赛积分表的问题,先来看一个问题:暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?二、思考探究,获取新知探究球赛积分表问题(教材第103~104页探究2)设问1:通过观察积分榜,你能选择出其中哪一行最能说明负一场积几分吗?进而你能得到胜一场积几分吗?【教学说明】教师让学生观察教材或课件中的积分表进行思考.观察积分榜,从最下面一行数据可以看出:负一场积1分;设胜一场积x分,从表中其他任何一行可以列方程,求出x的值,如可以从第一行列方程10x+4=24.由此得x=2.即:负一场积1分,胜一场积2分.设问2:你能用式子表示总积分与胜、负场数之间的数量关系吗?教师引导学生分析:如果一个队胜m场,则负(14-m)场,胜场积分2m分,负场积分(14-m)分,总积分为2m+(14-m)=m+14.设问3:某队的胜场总积分能等于它的负场总积分吗?教师引导学生分析:设一个队胜了x场,则负了(14-x)场.如果这个队的胜场总积分等于负场总积分,则得方程2x-(14-x)=0.由此得x=14/3.由于x的值必须是整数,所以x=143不符合实际,因此没有哪个队的胜场总积分等于负场总积分.【教学说明】以上探究中,教师通过逐层提出问题,根据具体情况放手让学生充分发表自己的见解,探索解题思路,最终达到解决问题的思路,这样能培养学生的独立思考问题的习惯.另外,探究解决问题的方法,体验解决问题的思维方式,渗透特殊值法、分类讨论思想,有利于提高学生的数学建模能力.三、运用新知,深化理解一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分,如果一个学生得90分,那么他选对几题?现有500名学生参加考试,有得83分的同学吗?为什么?【教学说明】本题要注意其结果是否符合实际,这题可让学生板演后再讲解.【答案】一个学生得90分,他选对23题;若有500名学生参加考试,不可能有得83分的同学.四、师生互动,课堂小结教师通过以下问题引导学生小结:(1)由学生谈谈本节课学到了哪些知识?学后有何感受?(2)由学生说说在积分问题中有哪些基本等量关系?1.布置作业::从教材习题3.4中选取.2.完成练习册中本课时的练习.积分问题的解题思路告诉我们:表格数据能够给我们提供重要的解题信息,而利用方程解决这类问题不仅可求得具体数值,而且还可以进行推理判断.另外,用方程解决实际问题时要注意让学生进行检验.由于本课时的学习有了上一课时作为基础,所以教学时教师应注意让学生进行独立思考并合作交流,而教师仅起引导作用.。
人教版数学七上4.3.2角的比较与运算(教案)
4.增加实践活动环节,让学生在实际操作中加深对角的比较与运算的理解。
5.课后关注学生的掌握情况,及时解答他们的问题,帮助他们巩固知识点。
在接下来的教学中,我将根据今天的反思,调整教学方法,以期提高学生们的学习效果。
此外,我在课堂总结时强调了角的比较与运算的重要性,希望学生们能够将这些知识点内化为自己的能力,并在解决实际பைடு நூலகம்题时能够灵活运用。但从学生的提问来看,他们对这部分知识点的掌握还不够扎实,需要在课后进行进一步巩固。
1.加强度、分、秒之间换算的讲解和练习,让学生熟练掌握换算方法。
2.课堂教学中,多结合生活实例,让学生感受数学知识在实际中的应用。
举例:
-难点突破:通过使用图形和实际例子,帮助学生理解角度换算的实际意义。
-比较技巧:教授学生使用直尺或量角器辅助比较两个角的大小,以及通过角的度数直接比较。
-补角理解:通过具体图形,展示补角的概念,并用具体数字进行讲解,如180度减去一个角的度数得到其补角。
-运算应用:设计实际应用题,如“一个角度为75度,求其补角;两个角的度数分别为50度和60度,求它们的和与差”,指导学生如何运用所学知识解题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的基本概念和度量单位。角是由两条射线的公共端点(顶点)所围成的图形部分。角的度量单位有度、分、秒,它们之间的换算是60进制。掌握这些概念对于进行角的比较和运算至关重要。
2.案例分析:接下来,我们来看一个具体的案例。通过比较两个角的度数,我们可以判断它们的大小,并且在一些实际问题中,如分割图形或计算角度总和,我们需要进行角的运算。
3.重点难点解析:在讲授过程中,我会特别强调角的度量和运算这两个重点。对于难点部分,如角度的换算,我会通过实际例子和图示来帮助大家理解。
2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》知识点分类练习题(附答案)
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》知识点分类练习题(附答案)一.角平分线1.如图,下列结论中,不能说明射线OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOB=2∠AOC D.∠AOC+∠BOC=∠BOA2.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78°B.80°C.88°D.90°3.一个钝角的平分线和这个角的一边形成的角一定是()A.锐角B.钝角C.直角D.平角4.如图,∠AOB是直角,OE平分∠AOC,OD平分∠BOC.求∠EOD的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.6.如图,点O为直线AB上的一点,∠BOC=42°,∠COE=90°,且OD平分∠AOC,求∠AOE和∠DOE的度数.7.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠AOD=()A.45°B.55°C.65°D.75°8.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD 的平分线,∠MON等于度.9.如图,OC平分∠AOB,若∠BOC=23°,则∠AOB=度.10.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°11.如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB 的度数.12.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD 的度数是.二.角的计算13.不能用一副三角板拼出的角是()A.150°B.105°C.15°D.110°14.如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=°.15.如图,已知∠AOB=90°,OD平分∠AOC,OE平分∠BOC.(1)若∠DOB=15°,求∠DOE的度数;(2)若∠DOB=x,此时∠DOE=.(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=.又∵OD平分∠AOC,∴.请继续完成求∠DOE度数的推理过程:16.如图,∠DOC=∠BOD,OB平分∠AOC.(1)若∠DOC=20°,求∠BOD和∠AOC的度数;(2)若∠DOC=α,则∠AOD=°.17.如图,已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,若∠COE=35°,求∠DOB的度数;(2)若将图1中的∠COD放置到图2所示的位置,其他条件不变,若∠COE=β,求∠DOB的度数.(根据图形中角的关系进行推理和计算,并用含β的代数式表示出∠DOB)18.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°19.平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB=30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为.21.如图:已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=32°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,求∠BOD的度数.22.如图,点O为直线AC上任意一点,∠AOB=78°,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC.求∠EOC及∠DOC的度数.23.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.24.如图,OE为∠AOD的平分线,∠EOC,∠COD=18°,求:∠AOD的大小.三.比较角的大小25.将钝角,直角,平角,锐角由小到大依次排列,顺序是.26.比较大小:52°52′52.52°.(填“>”、“<”或“=”)27.如图,正方形网格中每个小正方形的边长都为1,则∠α与∠β的大小关系为()A.∠α<∠βB.∠α=∠βC.∠α>∠βD.无法估测28.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.29.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?参考答案一.角平分线1.解:A、∵∠AOC=∠BOC,∴OC平分∠AOB,故A正确;B、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BO,C∴∠AOC=∠BOC,故B正确;C、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BOC,∴∠AOC=∠BOC,故C正确;D、∵∠AOC+∠BOC=∠AOB,∠AOC不一定等于∠BOC,故D错误;故选:D.2.解:∵OD是∠AOC的平分线,∴∠COD=∠AOC,同理,∠COE=∠BOC,又∵∠AOB=∠AOC+∠BOC,∴∠DOE=∠COD+∠COE=∠AOB=×156°=78°.故选:A.3.解:设这个角的度数是α°,则90<α<180,两边都除以2得:45<α<90,即是锐角.故选:A.4.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠EOD=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB,∵∠AOB是直角,∴∠EOD=45°.5.解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°6.解:∵点O为直线AB上的一点,∠BOC=42°,∴∠AOC=180°﹣42°=138°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=69°,∵∠COE=90°,∴∠DOE=90°﹣69°=21°,∴∠AOE=∠AOD﹣∠DOE=48°.7.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=45°,∴∠BOC=45°﹣15°=30°,∵OC是∠AOB的角平分线,∴∠BOC=∠AOC=30°,∴∠AOD=75°.故选:D.8.解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故答案为135.9.解:∵OC平分∠AOB,且∠BOC=23°,∴∠AOB=2∠BOC=46°.∴∠AOB=46°.故答案为46.10.解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选:C.11.解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.12.解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.二.角的计算13.解:A、150°可以用90°与60°角拼出;B、105°可以用60°与45°角拼出;C、15°可以用30°与45°角拼出;D、110°不能拼出.故选:D.14.解:∵∠AOD+∠BOC=∠AOB+∠COB+∠DOC+∠COB+∠COD,∵∠AOC=∠BOD=90°,∴∠AOD+∠BOC=180°.故答案为180.15.解:(1)∵∠AOB=90°,∠DOB=15°,∴∠1=90°﹣∠DOB=90°﹣15°=75°.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=150°,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=150°﹣90°=60°,∵OE平分∠BOC,∴∠3=∠BOC=30°,∴∠DOE=∠DOB+∠3=15°+30°=45°;故答案为:90°﹣∠DOB=90°﹣15°=75°;∠1=∠COD=∠AOC,(2)∵∠AOB=90°,∠DOB=x,∴∠1=90°﹣∠DOB=90°﹣x.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=180°﹣2x,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=180°﹣2x﹣90°=90°﹣2x,∵OE平分∠BOC,∴∠3=∠BOC=45°﹣x,∴∠DOE=∠DOB+∠3=x+45°﹣x=45°.故答案为:45°.16.解:(1)∵∠DOC=∠BOD,∠DOC=20°,∴∠BOD=3∠DOC=60°,∴∠BOC=∠BOD﹣∠DOC=60°﹣20°=40°,∵OB平分∠AOC,∴∠AOC=2∠BOC=80°,答:∠BOD和∠AOC的度数分别为60°,80°;(2)∵∠DOC=∠BOD,∴∠BOD=3∠DOC=3α°,∴∠BOC=∠BOD﹣∠DOC=3α°﹣α°=2α°,∵OB平分∠AOC,∴∠AOC=2∠BOC=4α°,∴∠AOD=∠DOC+∠AOC=5α°,故答案为:5α.17.解:(1)∵∠COE=35°,∠COD是直角,∴∠DOE=∠COD﹣∠COE=55°,∵OE平分∠AOD,∴∠AOD=2∠DOE=110°,∴∠DOB=180°﹣∠AOD=70°;(2)∵∠COD是直角,∠COE=β,∴∠DOE=∠COE﹣∠COD=β﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2β﹣180°,∴∠DOB=180°﹣∠AOD=360°﹣2β.18.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.19.解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON﹣∠BOM=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON+∠BOM=35°+15°=50°.故答案为:20°或50°.20.解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故答案为:28°或112°.21.解:(1)∵∠COE=90°,∠AOC=32°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣32°﹣90°=58°;(2)∵∠BOD:∠BOC=2:7,∠BOD+∠BOC=180°,∴∠BOD=40°.22.解:∵∠AOB=78°,OD平分∠AOB∴,∴∠DOC=180°﹣∠AOD=180°﹣39°=141°;∵,∴∠EOC====68°.23.解:∵∠COD=∠AOD=120°,∴∠AOC=120°,∵∠AOB=∠AOC,∴∠AOB=40°,∴∠COB=80°.24.解:∵∠COD=∠EOC,∠COD=18°,∴∠EOC=72°;∵OE平分∠AOD,∴∠DOE=∠AOE,∵∠EOC=72°,∠COD=18°,∴∠DOE=54°,则∠AOD=2∠DOE=108°.三.比较角的大小25.解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.26.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.27.解:将∠α平移,使∠α与∠β两个角的顶点重合,∠α下边的一条边与∠β下边的一条边重合,可得:∠α上面的一条边在∠β的内部,所以∠α<∠β,故选:A.28.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.29.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.。
面试说课17学员音频示范《角的比较与运算》+教案+说课稿
面试说课17学员音频示范《角的比较与运算》+教案+说课稿01教材部分02教案部分《角的比较与运算》教案人教版初中数学七年级上册4.3.2一、三维目标1.知识与技能目标:学生学会比较角的大小的方法,并且能够进行简单的角度加减运算。
2.过程与方法目标:学生通过合作交流、探索发现的形式归纳出比较角度大小的方法,并且学会运算。
3.情感态度价值观目标:培养自主学习、归纳比较的能力,增强数学学习的乐趣。
二、教学重点:学会比较角的大小的方法,并且能够进行简单的角度加减运算;三、教学难点:体会数学在实际生活中的应用价值。
四、教学过程1.创设情境,导入新知回忆比较线段长度的方法,并提问:角也能比较大小吗?角的大小又应该如何比较呢?引发学生思考,学生提出可以用量角器量一量,教师追问,还有别的方法吗?教师提示可以将两个角的顶点和一条边重合通过观察位置来比较角的大小,从而引出课题角的运算与比较。
2.师生交流,探索新知活动一、探究角之间的大小和关系教师出示课本134页思考问题截图,并提问:图中有几个角?几个角之间都有什么关系?学生小组交流数一数,得出结论图中共有三个角,角之间的关系为∠A O C是∠A O B和∠B O C 的和,用数学符号可以表示为∠A O C=∠A O B+∠B O C,∠A O B 是∠A O C与∠B O C的差,可以表示为∠A O B=∠A O C-∠B O C,教师提问,你还能得出什么结论呢?学生指出∠A O C-∠A O B=∠B O C总结:同一顶点引出的三条不同射线可以组成三个角,这三个角之间存在和差关系。
活动二、探究角平分线的性质大屏幕出示课本135页探究问题截图,教师展示用三角板画出15°和75°角的过程和方法,并请学生利用三角板画几个角,并找学生展示画的结果,请学生观察,画的角有什么特点?教师大屏幕展示课本135页图 4.3-9,并讲解如图所视如果∠A O B=∠B O C,那么射线O B把∠A O C平均分成两个相等角,这条线就是∠A O C的角平分线。
2023-2024人教部编版初中数学七年级上册第四单元教案4.3.2角的比较与运算
§4.3.2角的比较与运算教学内容:数学七年级(上)(人教版)§4.3.2角的比较与运算教学目标:知识与技能:理解并掌握利用叠合法比较角的大小,角的和、差、倍分的意义及表示方法,角平分线的定义及其简单应用。
过程与方法:通过观察、思考、动手操作,经历和体验角的大小变化,培养识图能力和动手操作能力,渗透类比的数学思想。
情感、态度与价值观:通过将角的大小与线段的大小方法的比较,培养学生知识和方法的迁移能力,通过角的测量活动,体验数形结合的思想,培养学生学习的积极性和主动性。
教学重点:比较两个角的大小和角的平分线及其应用。
教学难点:角的和与差以及角的平分线的应用。
教学用具:一副三角尺教学方法:引导学生探究教学过程:一、复习导入1、前面我们学习了线段的哪些内容?2、什么是角?角有哪三种常见的表示方法?度分秒的转换二、新课探究1、引导学生探究角的比较的方法师:运用多媒体课件展示两个折扇,请同学们观察并判断折扇两边所夹的角的大小?生:…(回答不出或乱猜)师:同学们,比较两个角的大小只用眼睛观察是不够的,那么我们使用什么方法比较好呢?我们可以想想线段是怎么比较大小的。
生A:把两个角重叠放在一起比较,使用叠合法生B:用量角器量角的大小,使用度量法师:两位同学说的都有道理,请同学们想想谁的方法更好呢?更容易操作呢?(把确定权交给学生)活动1:请同学们在半透明纸上画出一个角、与同伴所画的角比较并得出结论。
叠合法比较方法:移动一个角使它的顶点和一条边与另一个角的顶点和一边重合,而其余的边在重合边的同侧,通过不重合两边的位置来判断两个角的大小.活动2:思考:图中共有几个角?它们有什么关系?1、图中共有__个角,它们分别是____3、∠AOC=____-_____4、∠BOC=____-_____2、引导学生探究角的运算师:从以上的计算中我们知道:角的度数可以进行运算,事实上,角也可以进行运算。
例如,观察图中的∠AOC、∠COB和∠AOB,这三个角有何关系。
人教版七年级数学上册4.3.2《角的比较与运算》说课稿
人教版七年级数学上册4.3.2《角的比较与运算》说课稿一. 教材分析《角的比较与运算》是人教版七年级数学上册4.3.2的内容,这部分内容是在学生已经掌握了角的概念和分类的基础上进行学习的。
本节课的主要内容是让学生掌握角的比较方法和角的运算方法,包括角的度量、角的加减法和乘除法等。
通过这部分的学习,让学生能够解决一些与角有关的问题,为后续学习更复杂的几何知识打下基础。
二. 学情分析七年级的学生已经具备了一定的几何基础知识,对角的概念和分类有了初步的了解。
但是,学生对于角的度量方法和角的运算方法可能还不够熟悉,需要通过本节课的学习来进一步掌握。
此外,学生可能对于角的比较和运算的内在联系还不够理解,需要通过教师的引导和学生的实践来逐步领悟。
三. 说教学目标1.知识与技能目标:让学生掌握角的度量方法,能够正确地进行角的度量;让学生掌握角的加减法和乘除法运算方法,能够正确地进行角的运算。
2.过程与方法目标:通过学生的实践操作,培养学生的动手能力和观察能力;通过教师的引导,培养学生的思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验到数学的趣味性和实用性,增强学生对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:角的度量方法,角的加减法和乘除法运算方法。
2.教学难点:角的比较和运算的内在联系,角的乘除法运算方法。
五. 说教学方法与手段本节课采用讲授法、实践操作法、小组合作法等多种教学方法。
通过教师的讲解,让学生掌握角的度量方法和角的运算方法;通过学生的实践操作,让学生加深对角的概念的理解;通过小组合作,让学生互相交流和学习,提高学生的合作能力。
六. 说教学过程1.导入:通过一些与角有关的生活实例,引发学生对角的比较和运算的思考,激发学生的学习兴趣。
2.角的度量:讲解角的度量方法,让学生进行角的度量实践,巩固角的度量方法。
3.角的加减法:讲解角的加减法运算方法,让学生进行角的加减法实践,巩固角的加减法运算方法。
人教版七年级上4.3.2角的比较与运算(1)课件
解:
A
B
C D
21
因为∠AOB=∠COD ∠BOC=∠BOC
所以∠AOC=∠BOD
O
*课堂小结
这节课,我们学会了
度量法、叠合法; *角的大小比较方法: *角的和差的表示
这节课,我们感受最深的是
这节课,我还有什么疑惑?
类比的数学思想
2、叠合法比较
A D
B
C
E
F
DE边在∠ABC的内部,则
∠ABC>∠DEF
二. 角的和差
1
2
3
⌒
∠2= ∠1+∠3
∠1= ∠2-∠3 ∠3= ∠2- ∠1
如图
∠ AOC = (∠ AOB ) + (∠ BOC )
= (∠ AOD
)
- ( ∠
COD )
∠ BOC=( ∠ BOD ) - (∠ COD )
观察与思考
角的大小与角的两边画出的长短有关吗?
角的大小与角的两边画出的长短没有关系。
12
张:我的折扇大一些,所以我的折扇的角 结论:角的大小与角的两边张开的大小 也大一些. 一致 , 与所画边的长短无关 王:我的折扇长一些,所以我的折扇的角 也大一些.
回到开始的问题,学生张虎和王鹏的 对话中说的折扇的大小和长短能判断角 的大小吗?
线段、角的比较与运算
1
感悟数学事实
议 一 议 试比较线段AB、CD的长短。 .
A B
.
(1) 度量法
• C
• D
用刻度尺量出线段AB长4cm,线段CD长4.5cm, 所以线段AB比线段CD短。 (记作AB<CD 或 CD >AB) (2) 叠合法 将一线段“移动”,使其一端点与另一线段的 一端点重合,两线段的另一端点均在同一射线上 。
人教版数学七年级上第四单元几何图形初步《角的比较与运算》说课稿
§4.3.2 角的比较与运算说课稿一、说教材一)说课内容:我说课的内容是初中数学课本七年级上册第四单元《几何图形初步》第三节。
二)教材分析《角的比较与运算》第一课时是初中数学课本七年级上册第四单元《几何图形初步》第三节,角的比较、角的和与差、角的平分线,这三个内容是本章重要的基础知识,也是后续学习图形与几何必备的基础。
比较两角的大小是本节知识的起点,角的和与差是问题的延伸,等分问题又是角的和与差的特殊化,这三个知识点相互之间是紧密联系的,而且与生活息息相关。
三)学情分析在前面已经学过线段的大小比较、线段的和与差,线段的中点,本节课可以采用类比的学习方法,便于理解与掌握。
这是学生的有利条件。
然而学生处于几何的启蒙阶段,如何正确的用图形语言、文字语言、符号语言综合描述所研究的对象将是他们的难处。
四)教学目标根据学生的年龄特点,认知规律及对教材的剖析与学生的分析,我确立了本课教学目标及重难点。
1、会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。
2、学生经历“观察——对比——归纳”的学习过程,培养用数学语言描述图形的能力及类比的数学思想方法。
3、培养学生爱思考的习惯,通过对角大小的比较,使学生体会数学的形象直观美,向学生渗透团结协作的合作精神,培养勇于探索的精神和解决问题的优化意识。
五)教学重难点重点:角的大小的比较方法,角平分线的定义难点:角的加减运算,角的平分线的运用六)教学具为了突出重点,突破难点,加大课堂练习密度,我采用了多媒体教学与教具。
二、说教学法教法:学生在前面学习过线段的大小比较,线段的和与差,线段的中点基础上,教师采用启发式教学,引导学生自主探索,合作交流,体会类比的数学思想。
学法:初一学生仍以形象思维能力为主,因此要充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展.三、教学流程(一)情景导入:以登山的情景导入新课,学生在选择登山路径的过程中,若考虑路径的长短,则是对线段的大小比较,若是考虑坡度的陡与缓,则是对角的大小比较。