高考物理:机械振动和机械波知识点

合集下载

高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波

高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。

下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。

一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。

常见的机械振动有单摆振动、弹簧振动等。

1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。

摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。

2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。

弹簧振动有线性振动和简谐振动两种形式。

二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。

2.周期:振动一次所需要的时间,记为T。

3.频率:振动在单位时间内所完成的周期数,记为f。

频率和周期之间的关系为f=1/T。

4.角频率:单位时间内振动角度的增量,记为ω。

角频率和频率之间的关系为ω=2πf。

5.相位:刻画振动状态的物理量。

任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。

三、机械波的传播机械波是指质点或介质在空间传播的波动现象。

按传播方向的不同,机械波可以分为纵波和横波。

1.纵波:波动传播的方向与波的传播方向一致。

纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。

2.横波:波动传播的方向与波的传播方向垂直。

横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。

四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。

记为λ。

2.波速:波的传播速度。

波速和频率、波长之间的关系为v=λf。

3.频率:波动现象中,单位时间内波的传输周期数。

记为f。

4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。

5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。

高三物理 机械振动和机械波

高三物理 机械振动和机械波

高三物理机械振动和机械波知识要点:1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:(1)回复力不为零。

(2)阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

机械振动是高中阶段力学学习中最复杂的运动,所以本部分内容的高考大纲要求和学习方法与其他章节也有所区别。

2、简谐振动:在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。

3、描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。

(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

(4)频率f:振动物体单位时间内完成全振动的次数。

(5)角频率 :角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

周期、频率、角频率的关系是:T f Tf ===122,ωππ。

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:答复力f=-kx,加速度a=-kx/m,方向与加速度方向恰好相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)叙述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅a:振动物体返回平衡位置的最小距离,就是标量,则表示振动的高低.③周期t和频率f:表示振动快慢的物理量,二者互为倒数关系,即t=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像就是正弦(或余弦)曲线.③应用:可直观地读取振幅a、周期t以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只依赖于弹簧的劲度系数和振子的质量,与其置放的环境和置放的方式并无任何关系.例如某一弹簧振子搞简谐运动时的周期为t,不管把它放到地球上、月球上还是卫星中;就是水平置放、弯曲置放还是直角置放;振幅就是小还是大,它的周期就都就是t.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可以看做简谐运动的条件就是:最小挂角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)并作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量毫无关系,只与长棒l和当地的重力加速度g有关.③摆长l是指悬点到摆球重心间的距离,在某些变形单摆中,摆长l应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动平衡时,系统振动的频率等同于驱动力的频率,跟系统的固有频率毫无关系.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等同于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向横向的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[特别注意]气体、液体、液态都能够传播纵波,但气体、液体无法传播横波.(3)机械波的特点①机械波传播的就是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波搬迁.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③距波源将近的质点助推距波源离的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相连的且在振动过程中对平衡位置的加速度总是成正比的质点间的距离叫做波长.振动在一个周期里在介质中传播的距离等同于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等同于波源的振动频率,与介质毫无关系.(4)三者关系:v=λf由波的图像可以以获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以轻易念出波长(特别注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向未知(或未知波源方位)时可以确认各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)8.波动问题多解性波的传播过程中时间上的周期性、空间上的周期性以及传播方向上的双向性是导致“波动问题多解性”的主要原因.若题目假设一定的条件,可使无限系列解转化为有限或惟一解9.波的绕射波在传播过程中偏离直线传播,绕过障碍物的现象.衍射现象总是存在的,只有明显与不明显的差异.波发生明显衍射现象的条件是:障碍物(或小孔)的尺寸比波的波长小或能够与波长差不多.10.波的共振几列波相遇时,每列波能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的矢量和.两列波相遇前、相遇过程中、相遇后,各自的运动状态不发生任何变化,这是波的独立性原理.11.波的干预:频率相同的两列波叠加,某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象,叫波的干涉.产生干涉现象的条件:两列波的频率相同,振动情况稳定.[特别注意]①干预时,振动强化区域或振动弱化区域的空间边线就是维持不变的,强化区域中心质点的振幅等同于两列波的振幅之和,弱化区域中心质点的振幅等同于两列波的振幅之差.②两列波在空间相遇发生干涉,两列波的波峰相遇点为加强点,波峰和波谷的相遇点是减弱的点,加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小. 如图若s1、s2为振动方向同步的相干波源,当ps1-ps2=nλ时,振动加强;当ps1-ps2=(2n+1)λ/2时,振动减弱。

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。

一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。

振动具有周期性、往复性和简谐性等特点。

2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。

振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。

3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。

简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。

4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。

阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。

5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。

当外力的频率与振动系统的固有频率相同时,产生共振现象。

6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。

当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。

二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。

波有传播介质,传播介质可以是固体、液体或气体。

波分为机械波和电磁波两种。

2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。

横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。

3.波的传播速度波的传播速度与介质的性质和波的频率有关。

在同一介质中,传播速度与波长成正比,与频率成反比。

在不同介质中,波长相等时,传播速度与频率成正比。

4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。

当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。

5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。

波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。

机械振动及机械波知识点(全)

机械振动及机械波知识点(全)

机械波的产生和传播知识点一:波的形成和传播〔一〕介质能够传播振动的媒介物叫做介质。

〔如:绳、弹簧、水、空气、地壳等〕〔二〕机械波机械振动在介质中的传播形成机械波。

〔三〕形成机械波的条件〔1〕要有 ;〔2〕要有能传播振动的 。

注意:有机械波 有机械振动,而有机械振动 能产生机械波。

〔四〕机械波的传播特征〔1〕机械波传播的仅仅是 这种运动形式,介质本身并不随波 。

沿波的传播方向上各质点的振动都受它前一个质点的带动而做 振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是将这种运动形式在介质中依次向外传播的过程。

对简谐波而言各质点振动的振幅和周期都 ,各质点仅在各自的 位置附近振动,并 随波动过程的发生而沿波传播方向发生迁移。

〔2〕波是传递能量的一种运动形式。

波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。

因此机械波也是传播 的一种形式。

〔五〕波的分类波按照质点 方向和波的 方向的关系,可分为:〔1〕横波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。

凸起的最高处叫 ,凹下的最底处叫 。

〔2〕纵波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。

质点分布最密的地方叫作 ,质点分布最疏的地方叫作 。

知识点二:描述机械波的物理量知识〔一〕波长〔λ〕两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。

在横波中,两个 的波峰〔或波谷〕间的距离等于波长。

在纵波中,两个 的密部〔或疏部〕间的距离等于波长。

振动在一个 内在介质中传播的距离等于一个波长。

〔二〕频率〔f 〕波的频率由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。

在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。

〔三〕波速〔v 〕 振动在介质中传播的速度,指单位时间内振动向外传播的距离,即x v t∆=∆。

高考物理第六章机械振动和机械波知识点优选份

高考物理第六章机械振动和机械波知识点优选份

高考物理第六章机械振动和机械波知识点优选份高考物理第六章机械振动和机械波知识点 1一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。

1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。

例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。

1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物__移和时间关系的图像。

1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。

机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。

b 、阻力足够小。

回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动概念:回复力与位移大小成正比且方向相反的振动 受力特征:kx F -= 运动性质为变加速运动 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动回复力:重力沿切线方向的分力 周期公式:glT π2= (T 与A 、m 、θ无关——等时性) 测定重力加速度g,g=224T Lπ 等效摆长L=L 线+r6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。

机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。

2.振幅:振动的最大偏离量,表示振动的幅度大小。

3.周期:振动完成一次往复运动所经历的时间。

4.频率:单位时间内振动的循环次数。

5.角频率:单位时间内振动的循环角度。

6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。

7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。

二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。

2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。

3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。

三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。

2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。

3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。

4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。

四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。

2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。

3.机械波分为横波和纵波。

横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。

五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。

2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。

3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。

六、机械波的特性1.超前传播:波的传播速度比振动速度快。

2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。

3.波的衍射:波通过孔隙或物体边缘时发生的现象。

4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。

机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波一、知识结构二、重点知识回顾1机械振动一机械振动物体质点在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力;回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力;产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用;b、阻力足够小;二简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动;简谐振动是最简单,最基本的振动;研究简谐振动物体的位置,常常建立以中心位置平衡位置为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移;因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反;2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用;3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能重力势能和弹性势能都随时间做周期性变化;三描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量;1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒;2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数;振动的周期T跟频率f之间是倒数关系,即T=1/f;振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率;四单摆:摆角小于5°的单摆是典型的简谐振动;细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆;单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力;单摆的周期公式是T=;由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离;g是单摆所在处的重力加速度,在有加速度的系统中如悬挂在升降机中的单摆其g应为等效加速度;五振动图象;简谐振动的图象是振子振动的位移随时间变化的函数图象;所建坐标系中横轴表示时间,纵轴表示位移;图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律;要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况;六机械振动的应用——受迫振动和共振现象的分析1物体在周期性的外力策动力作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关;2在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣;2机械波中的应用问题1. 理解机械波的形成及其概念;1机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质;2机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同;3机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移;4描述机械波的物理量关系:注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定;例1单摆的运动规律为:当摆球向平衡位置运动时位移变___,回复力变____,加速度变 ,加速度a 与速度υ的方向 ,速度变 ,摆球的运动性质为_____________________,摆球的动能变_____,势能变___;当摆球远离平衡位置运动时位移变___,回复力变___,加速度变___,加速度a 与速度υ的方向____,速度变___,摆球的运动性质为_____________________,摆球的动能变____,势能变_____、例2 如图6-1所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、B 两点,历时1s,过B 点后再经过1s,小球再一次通过B 点,小球在2s 内通过的路程为6cm,N 点为小球下落的最低点,则小球在做简谐运动的过程中:1周期为 ;2振幅为 ;3小球由M 点下落到N 点的过程中,动能E K 、重力势能E P 、弹性势能图6-1E P ’的变化为 ;4小球在最低点N 点的加速度大小 重力加速度g 填>、=、<;分析:1小球以相同动量通过A 、B 两点,由空间上的对称性可知,平衡位置O 在AB 的中点;再由时间上的对称性可知,t AO =t BO =, t BN = t NB =,所以t ON =t OB +t BN =1s,因此小球做简谐运动的周期T =4t ON =4s;2小球从A 经B 到N 再返回B 所经过的路程,与小球从B 经A 到M 再返回A 所经过的路程相等;因此小球在一个周期内所通过的路程是12cm,振幅为3cm;3小球由M 点下落到N 点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小;4M 点为小球的振幅位置,在该点小球只受重力的作用,加速度为g ,方向竖直向下,由空间对称性可知,在另一个振幅位置N 点小球的加速度大小为g ,方向竖直向上;解答:4s ;3cm ;E K 先增大后减小,E P 减少,E P ’ 增加;=;说明:分析解决本题的关键是正确认识和利用简谐运动的对称性,其对称中心是平衡位置O ,尤其小球在最低点N 点的加速度值,是通过另一个振动最大位移的位置M 来判断的;如果小球是在离弹簧最上端一定高度处释放的,而且在整个运动过程中,弹簧始终处于弹性形变中,那么小球与弹簧接触并运动的过程可以看成是一个不完整的简谐运动;因为小球被弹簧弹起后,在弹簧处于原长时与弹簧分离,这个简谐运动有下方振动最大位移的位置,但无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度;例3 已知某摆长为1m 的单摆在竖直平面内做简谐运动,则:1该单摆的周期为 ;2若将该单摆移到表面重力加速度为地球表面重力加速度1/4倍的星球表面,则其振动周期为 ;3若在悬点正下方摆长中点处钉一光滑小钉,则该小球摆动的周期为 ;分析:第一问我们可以利用单摆周期公式计算出周期;第二问是通过改变当地重力加速度来改变周期的;只要找出等效重力加速度,代入周期公式即可得解;第三问的情况较为复杂,此时小球的摆动已不再是一个完整的单摆简谐运动;但我们注意到,小球在摆动过程中,摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆长不同的简谐运动的周期,便可确定出摆动的周期;解答:1依据gL T π2=,可得T =2s; 2等效重力加速度为4/'g g =,则依据'2'g L T π=,可得4'=T s; 3钉钉后的等效摆长为:半周期摆长为L 1=1m,另半周期摆长为L 2=; 则该小球的摆动周期为: 222''21+=+=g L g L T ππs 说明:单摆做简谐运动的周期公式是我们学习各种简谐运动中唯一给出定量关系的周期公式;应该特别注意改变周期的因素:摆长和重力加速度;例如:双线摆没有明确给出摆长,需要你去找出等效摆长;再例如:把单摆放入有加速度的系统中,等效重力加速度将发生怎样的变化;比如把单摆放入在轨道上运行的航天器中,因为摆球完全失重,等效重力加速度为0,单摆不摆动;把单摆放入混合场中,比如摆球带电,单摆放入匀强电场中,这时就需要通过分析回复力的来源从而找出等效重力加速度;这类问题将在电学中遇到;例4一弹簧振子做简谐运动,振动图象如图6—3所示;振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时,1在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度;2弹簧振子由c 点对应x 轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置所用时间均为;弹簧振子振动的周期是多少3弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm,求弹簧振子振动的振幅;分析:1弹簧振子振动的加速度与位移大小成正比,与位移方向相反;振子具有沿x 轴正方向最大加速度,必定是振动到沿x 轴具有负向的最大位移处,即图中f 点对应的时刻;振子振动到平衡位置时,具有最大速度,在h 点时刻,振子速度最大,再稍过一点时间,振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向的最大速度;2图象中c 点和e 点,对应振子沿x 轴从+7cm 处振动到-7cm 处;e 、f 、g 点对应振子沿x 轴,从-7cm 处振动到负向最大位移处再返回到-7cm 处;由对称关系可以得出,振子从c 点对应x 轴位置振动到g 点对应x 轴位置,振子振动半周期,时间为,弹簧振子振动周期为T =;3在e 点、g 点对应时间内,振子从x 轴上-7cm 处振动到负向最大位移处,又返回-7cm 处行程共6cm,说明在x 轴上负向最大位移处到-7cm 处相距3cm,弹簧振子的振幅A =10cm;解答:1f 点;h 点;2T =;3A =10cm;说明:本题主要考察结合振动图象如何判断在振动过程中描述振动的各物理量及其变化;讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在x 轴左侧画一质点做与图象描述完全相同的运动形式;当某段图线随时间的推移上扬时,对应质点的振动方向向上;同理若下降,质点振动方向向下;振动图象时间轴各点的位置也是振子振动到对应时刻平衡位置的标志,在每个时刻振子的位移方向永远背离平衡位置,而回复力和加速度方向永远指向平衡位置,这均与振动速度方向无关;因为振子在一个全振动过程中所通过的路程等于4倍振幅,所以在t 时间内振子振动n 个周期,振子通过的路程就为4nA ;例6 一弹簧振子做简谐运动,周期为T ,以下说法正确的是A. 若t 时刻和t +Δt 时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍B. 若t 时刻和t +Δt 时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍图6-3C. 若Δt =T /2,则在t 时刻和t +Δt 时刻振子运动的加速度大小一定相等D. 若Δt =T /2,则在t 时刻和t +Δt 时刻弹簧的长度一定相等分析:如图6-4所示为物体做简谐运动的图象;由图象可知,在t 1、t 2两个时刻,振子在平衡位置同侧的同一位置,即位移大小相等,方向相同,而T t t t <-=∆12,所以选项A 错误;在t 1时刻振子向远离平衡位置方向振动,即具有正向速度,在t 2时刻振子向平衡位置方向振动,即具有负向速度,但它们速度大小相等;而212T t t t <-=∆;所以选项B 错误; 因为T t t t =-=∆14,振子在这两个时刻的振动情况完全相同,所以具有相同的加速度,选项C 正确; 因为213T t t t =-=∆,振子在这两个时刻位于平衡位置的两侧,即若t 1时刻弹簧处于伸长状态,则t 3时刻弹簧处于压缩状态;所以选项D 错误;解答:选项C 正确;说明:做简谐运动的物体具有周期性,即物体振动周期的整数倍后,物体的运动状态与初状态完全相同;做简谐运动的物体具有对称性,即描述振动的物理量的大小除周期和频率外在关于平衡位置对称的两点上都相等,但矢量的方向不一定相同;做简谐运动的物体具有往复性,即当物体振动回到同一点时,描述振动的物理量的大小除周期和频率外相同,但矢量的方向不一定相同;例7在某介质中,质点O 在t =0时刻由平衡位置开始向上振动;经第一次向上振动到最大位移处;同时,产生的横波水平向右传播了50cm;在O 点右侧有一点P ,与O 点相距8m;求:1这列横波的波速;2波动传播到P 点,P 点刚开始振动时的速度方向;3从O 点开始振动到P 点第一次到达波峰位置所需时间分析:由题目所给条件可知:振源在内振动了1/4周期,波对应向右传播1/4个波长,从而可以确定波长和周期,进而求出波速;因为波匀速向前传播,所以波从O 点传播到P 点所用时间=OP 距离/波速;当波传播到P 点时,O 点的振动形式也传播到了P 点,因而P 点的起振方向与O 点起振方向相同,即为竖直向上,P 点由平衡位置第一次到达波峰还在需要T 41时间;解答:1由题意知:周期T =×4=s波长λ=×4=2m∴波速(5==T v λm/s 2P 点刚开始振动时的速度方向为竖直向上;3设所求时间为t ,则 7.141=+=T v OP t s 说明:题目本身并不难,但要求对机械波的形成和传播能有一个正确的理解,在多数有关机械波的高考题目中也是这样体现的;随着波的传播,振动形式和能量在传播,所以波动涉及到的每一个质点都要把振源的振动形式向外传播,即进行完全重复的振动,其刚开始的振动方向一定与振源的起振方向相同;例8如图6-10所示,甲为某一简谐横波在t =时刻的图象,乙为参与波动的某一质点的振动图象;1两图中的AA ’、OC 各表示什么物理量量值各是多少 2说明两图中OA ’B 段图线的意义 3该波的波速为多大4画出再经过0 .25s 后的波动图象和振动图象; 5甲图中P 点此刻的振动方向;分析:依据波动图象和振动图象的物理意义来分析判断;注意振动图象和波动图象的区别与联系;解答:1甲图中的AA ’表示振幅A 和x =1m 处的质点在t =时对平衡位置的位移,振幅A =,位移y=;甲图中OC 表示波长,大小=4m;乙图中AA ’即是质点振动的振幅,又是t =时质点偏离平衡位置的位移,振幅A =,位移y =;OC 表示质点振动的周期,大小T =;2甲图中的OA ’B 段图线表示O 到B 之间的各质点在t =时相对平衡位置的位移,OA 间各质点正向着平衡位置运动,AB 间各质点正在远离平衡位置运动;乙图中的OA ’B 段图线表示该质点在t =0~时间内振动位移随时间变化的情况,在0~内该质点正远离平衡位置运动,在~内该质点正向平衡位置运动;3由v =/t 可得波速 v =14m/s= 4m/s4再过,波动图象向右平移x =vt =4m=1m=/4;振动图象在原有的基础上向后延伸T /4,图象分别如图6-11丙、丁所示5已知波的传播方向或某质点的振动方向判定图象上该时刻各质点的振动方向或波的传播方向,常用方法如下:a .带动法:根据波动过程的特点,利用靠近波源的点带动它邻近的离波源稍远的点的特性,在被判定振动方向的点P 附近图象上靠近波源一方找一点P ’,若在P 点的上方,则P ’带动P 向上运动,如图所示;若P ’在P 点的下方,则P ’带动P 向下运动;b .微平移法:将波形沿波的传播方向做微小移动x </4,根据质点P 相对平衡位置位移的变化情况判断质点P 的运动方向;图6-10’m ’ 图6-10mc .口诀法:沿波的传播方向看,“上山低头,下山抬头”,其中“低头”表示质点向下运动,“抬头” 表示质点向上运动;故P 向上振动;说明:波动图象和振动图象的形状相似,都是正弦或余弦曲线,其物理意义有本质的区别,但它们之间又有联系,因为参与波动的质点都在各自的平衡位置附近振动,质点振动的周期也等于波动的周期;例9如图6-11所示,一列在x 轴上传播的横波t 0时刻的图线用实线表示,经Δt =时,其图线用虚线表示;已知此波的波长为2m,则以下说法正确的是:A. 若波向右传播,则最大周期为2sB. 若波向左传播,则最大周期为2sC. 若波向左传播,则最小波速是9m/s D. 若波速是19m/s,则波的传播方向向左分析:首先题目中没有给出波的传播方向,因而应分为两种情况讨论;例如波向右传播,图中实线所示横波经过传播的距离可以为, +λm, +2λm ……,其波形图均为图中虚线所示;因而不论求周期最小值还是求周期的最大值,都可以先写出通式再讨论求解;解答:如果波向右传播,传播的距离为+n λm n =1,2,3……,则传播速度为2.022.0n t s v +=∆=m/s,取n =0时对应最小的波速为1m/s,根据周期vT λ=,得最大的周期为2s;因此选项A 是正确的;如果波向左传播,传播的距离为n λ- m n =1,2,3……,则传播速度为2.02.02-n t s v =∆=m/s ,取n =1时对应最小的波速为9m/s,根据周期vT λ=,得最大的周期为92s;因此选项C 是正确的,B 是错误的;在向左传播的波速表达式中,当取n =2时,计算得波速为19 m/s,因此选项D 是正确的;说明:1. 在已知两个时刻波形图研究波的传播问题时,因为波的传播方向有两种可能,一般存在两组合理的解;又由于波的传播在时间和空间上的周期性,每组解又有多种可能性;为此,这类问题的解题思路一般为:先根据波的图象写出波的传播距离的通式,再根据波速公式列出波速或时间的通式,最后由题目给出的限制条件,选择出符合条件的解;2. 本题还可以直接考虑:例如对选项A :因为波长一定,若周期最大,则波速必最小,波在相同时间内传播距离必最短,即为;由此可知最小波速为1m/s,从而依据波速公式可求出最大周期为2s;其它各选项同理考虑;这样做的主要依据是波是匀速向前传播的,紧抓波速、传播距离、传播时间三者的关系,其实波速公式也是这三者关系的一个体现;图6-11例10绳中有列正弦横波,沿x 轴传播,图中6—12中a 、b 是绳上两点,它们在x 轴方向上的距离小于一个波长;a 、b 两点的振动图象如图6-13所示;试在图6-12上a 、b 之间画出t =时的波形图;分析:首先我们先由振动图象确定t =时a 、b 两质点在波形图上的位置以及振动方向,然后在一列已经画好的常规波形图上按题意截取所需波形既可;因为题中没给波的传播方向,所以要分两种情况讨论;解答:由振动图象可知:t =时,质点a 处于正向最大位移处波峰处,质点b 处于平衡位置且向下振动;先画出一列沿x 轴正方向传播的波形图,如图6-14所示;在图左侧波峰处标出a 点;b 点在a 的右测,到a 点距离小于1个波长的平衡位置,即可能是b 1、b 2两种情况;而振动方向向下的点只有b 2;题中所求沿x 轴正方向传播的波在a 、b 之间的波形图即为图6-14中ab 2段所示;画到原题图上时波形如图6-15甲实线所示;同理可以画出波沿x 轴负方向传播在a 、b 之间的波形图,如图6-15乙虚线所示;说明:1. 分析解决本题的关键是要搞清楚振动图象和波动图象的区别和联系;振动图象详细描述了质点位移随时间的变化,但要找该质点在波中的位置,就必须关心所画波形图对应哪个时刻,进而由振动图象找到在这个时刻该质点的位置及振动方向;如果已知质点的振动方向、机械波的传播方向和机械波的波形中的任意两个,就可以对第三个进行判断,这也是贯穿整个机械波这部分内容的基本思路和方法;值得注意的是:如果已知质点的振动方向、波的传播方向,再判断机械波的波形时,由于机械波传播的周期性,可能造成波形的多解;例如本题中没有“a 、b 在x 轴方向上的距离小于一个波长”这个条件,就会造成多解现象;本题还可以利用“同侧法”来画图;“同侧法” 是来判断质点的振动方向、机械波的传播方向和机械波的波形三者关系的方法;其结论是:质点的振动方向、机械波的传播方向必在质点所在波形图线的同一侧;例如图6-16甲 所示是一列沿x 轴正方向传播的简谐波图象,若其上M 点的振动图6-12图6-14图6-16甲图6-16乙方向向下,则该点的振动方向与波的传播方向在M 点所在图线的同侧;如图6—16乙图所示,若其上M 点的振动方向向上,则该点的振动方向与波的传播方向在M 点所在图线的两侧;依据“同侧法”的判定,质点M 的振动方向向下 ;对于本题中沿x 轴正方向传播的情况,因为质点b 振动方向向下,波沿x 轴正方向传播,为保证波传播方向、质点振动方向在该点图线的“同侧”,波形图只能是图6-17中实线所示;图线若为虚线所示,则波传播方向、质点振动方向在该点图线的“两侧”;同理对沿x 轴负方向传播的情况;有时我们还可以用图像平移法画图;例19从一条弦线的两端,各发生一如图6—24所示的脉冲横波,它们均沿弦线传播,速度相等,传播方向相反;已知这两个脉冲的宽度均为L ,当左边脉冲的前端到达弦中的a 点时,右边脉冲的前端正好到达与a 相距L/2的b 点;请画出此时弦线上的脉冲波形;分析右传播到a 点,而右边的脉冲前端向左传到b 两列脉冲波有半个波长是重叠的;在a 、b 之间,而右脉冲引起质点振动的位移方向向上,移大小相等,叠加结果相互抵消,形如图6—25所示;说明:此题是依据波的叠加原理而求解的;“叠加”的核心是位移的叠加,即在叠加区域内每一质点的振动位置由合位移决定;质点振动速度由合速度决定;例20如图6-26所示,S 1、S 2是振动情况完全相同的两个机械波波源,振幅为A ,a 、b 、c 三点分别位于S 1、S 2连线的中垂线上,且ab =bc ;某时刻a 是两列波的波峰相遇点,c 是两列波的波谷相遇点,则A 、 a 处质点的位移始终为2AB 、 c 处质点的位移始终为-2AC 、 b 处质点的振幅为2AD 、 c 处质点的振幅为2A分析:因为两个波源的频率相同,振动情况也相同,而a 、b 、c 三点分别到两个波源的距离之差均为0,依判断条件可知该三个点的振动都是加强的,即各点振动的振幅均为两波振幅之和2A ;解答:选项CD 是正确的;说明:对于稳定的干涉现象中的振动始终加强的点,应理解为两列波传到该点的振动位移及振动方向完全一致,使得该点的振动剧烈,表现为该质点振动的振幅始终最大,而不是位移最大;如本题中的a 点此时刻在波峰处,但过1/4周期该点会振动到平衡位置;b 点位于ac 中点,该时刻它位于平衡位置,但过1/4周期该点会振动到波峰位置;所以a 、b 、c 所在这条线为振动加强区域; 图6-25 S 1 2对于稳定的干涉现象中的振动始终减弱的点,应理解为两列波传到该点的振动位移及振动方向相反,使得该点的振动减弱,表现为该质点振动的振幅始终最小,而不是位移最小;例22关于多普勒效应的叙述,下列说法正确的是A. 产生多普勒效应的原因是波源频率发生了变化B. 产生多普勒效应的原因是观察者和波源之间发生了相对运动C. 甲乙两车相向行驶,两车均鸣笛,且发出的笛声频率相同,乙车中的某旅客听到的甲车笛声频率低于他听到的乙车笛声频率D. 波源静止时,不论观察者是静止的还是运动的,对波长“感觉”的结果是相等的例23根据多普勒效应,我们知道当波源与观察者相互接近时,观察者接收到的频率增大;如果二者远离,观察者接收到的频率减小;由实验知道遥远的星系所生成的光谱都呈现“红移”,即谱线都向红色部分移动了一段距离,由此现象可知A、宇宙在膨胀B、宇宙在收缩C、宇宙部分静止不动D、宇宙只发出红光光谱例24声纳水声测位移向水中发出的超声波,遇到障碍物如鱼群、潜艇、礁石等后被反射,测出发出超声波到接收到反射波的时间及方向,即可算出障碍物的方位,;雷达则向空中发射电磁波,遇到障碍物后被反射,同样根据发射电磁波到接收到反射波的时间及方向,即可算出障碍物的方位;超声波与电磁波相比较,下列说法正确的是A. 超声波和电磁波在传播时,都向外传递能量,但超声波不能传递信息B. 这两种波都可以在介质中传播,也可以在真空中传播C. 在真空中传播的速度与在其他介质中传播的速度相比较,这两种波在空气中传播时具有较大的传播速度D.这两列波传播时,在一个周期内向前传播一个拨长。

高考物理机械波和机械振动知识点归纳

高考物理机械波和机械振动知识点归纳

高考物理机械波和机械振动知识点归纳机械振动是指物体或质点在其平衡位置附近所作有规律的往复运动。

振动的强弱用振动量来衡量,振动量可以是振动体的位移、速度或加速度。

以下是为大家精心准备的高考物理机械波和机械振动知识点归纳,欢迎参考阅读!(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。

(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。

简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。

②特点:简谐运动的图像是正弦(或余弦)曲线。

③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。

2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°。

(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

①在振幅很小的条件下,单摆的振动周期跟振幅无关。

②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关。

高三物理机械振动和机械波知识点总结

高三物理机械振动和机械波知识点总结

3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。

(2)特点:简谐运动的图像是正弦(或余弦)曲线。

(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。

二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。

3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。

(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。

2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。

3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。

高考物理知识点之机械振动与机械波

高考物理知识点之机械振动与机械波

高考物理知识点之机械振动与机械波考试要点基本概念一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。

也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。

(2)回复力是一种效果力。

是振动物体在沿振动方向上所受的合力。

(3)“平衡位置”不等于“平衡状态”。

平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。

(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。

(1)由定义知:F∝x,方向相反。

(2)由牛顿第二定律知:F ∝a ,方向相同。

(3)由以上两条可知:a ∝x ,方向相反。

(4)v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。

3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。

因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。

(1)振幅A 是描述振动强弱的物理量。

(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T 是描述振动快慢的物理量。

(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。

高中物理-【机械波与机械振动】知识点总结

高中物理-【机械波与机械振动】知识点总结

103(4)简谐运动的两种模型 模型弹簧振子单摆示意图简谐 运动 条件①弹簧质量可忽略 ②无摩擦等阻力 ③在弹簧弹性限度内①摆线为不可伸缩的轻细线 ②无空气等的阻力 ②最大摆角小于10° 回复力弹簧的弹力提供F=kx 摆球重力沿切向的分力 F 回=-mg sin θ=-mg lx 平衡 位置弹簧处于原长处最低点周期与振幅无关T =2πL g L 为摆长,表示从悬点到摆球重心的距离。

简谐运动的特点受力 特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动 特征 靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量 特征振幅越大,能量越大。

在运动过程中,系统的动能和势能相互转化,机械能守恒选修3-4 周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T;动能和势能也随时间做周期性变化,其变化周期为T2对称性特征关于平衡位置O对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O用时相等2.简谐运动的公式和图象(1)简谐运动的表达式①动力学表达式:F=-kx,其中“-”表示回复力与位移的方向相反。

②运动学表达式:x=Asin(ωt+φ),其中A代表振幅,ω=2πf表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相。

(2)简谐运动的图象①从平衡位置开始计时,函数表达式为x=Asinωt,图象如图甲所示。

②从最大位移处开始计时,函数表达式为x=Acosωt,图象如图乙所示。

(3)根据简谐运动图象可获取的信息①振幅A、周期T(或频率f)和初相位φ(如图所示)。

②某时刻振动质点离开平衡位置的位移。

③某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定。

高中物理机械振动、机械波知识要点

高中物理机械振动、机械波知识要点

高中物理机械振动、机械波知识要点1、简谐运动、振幅、周期和频率的概念(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:,。

(2)简谐运动的规律:①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。

②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。

③振动中的位移x都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。

加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。

(3)振幅A:振动物体离开平衡位置的最大距离称为振幅。

它是描述振动强弱的物理量。

它是标量。

(4)周期T和频率f:振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz)。

周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f。

2、单摆的概念(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。

(2)单摆的特点:①单摆是实际摆的理想化,是一个理想模型;②单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关;③单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角时,单摆的振动是简谐运动,其振动周期T=。

(3)单摆的应用:①计时器;②测定重力加速度g,g=。

3、受迫振动和共振(1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

(2)共振:①共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

②产生共振的条件:驱动力频率等于物体固有频率。

(完整版)机械振动和机械波知识点总结

(完整版)机械振动和机械波知识点总结

机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。

回复力是指振动物体所受的总是指向平衡位置的合外力。

回复力是产生振动的条件,它使物体总是在平衡位置附近振动。

它属于效果力,其效果是使物体再次回到平衡位置。

回复力可以是某一个力,也可以是几个力的合力或某个力的分力。

平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。

简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。

例如弹簧振子、单摆。

注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。

振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。

②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。

高考物理机械波和机械振动知识点归纳

高考物理机械波和机械振动知识点归纳

高考物理机械波和机械振动知识点归纳高考物理机械波和机械振动知识点归纳机械振动是指物体或质点在其平衡位置附近所作有规律的往复运动。

振动的强弱用振动量来衡量,振动量可以是振动体的位移、速度或加速度。

以下是为大家精心准备的高考物理机械波和机械振动知识点归纳,欢迎参考阅读!1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。

(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。

简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。

②特点:简谐运动的图像是正弦(或余弦)曲线。

③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。

2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

(1)单摆的振动可看作简谐运动的条件是:最大摆角5。

(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

①在振幅很小的条件下,单摆的振动周期跟振幅无关。

②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关。

机械振动和机械波知识点

机械振动和机械波知识点

机械振动和机械波一、什么是机械振动机械振动是指机械系统的动力学行为,是指机械系统内部的物理变化,其中包括机械系统的位移、速度和加速度的变化。

机械振动是机械系统的一种动态特性,它可以反映机械系统的动力学状态。

二、机械振动的类型机械振动可以分为简谐振动、非简谐振动、混沌振动等。

1. 简谐振动简谐振动是指振动的频率和振幅是定值,振动的方向和位置是定值,振动的周期是定值,振动的形状是定值的振动。

简谐振动的特点是振动的频率、振幅、方向和位置都是定值,振动的周期和形状也是定值,振动的运动轨迹是定值的曲线。

2. 非简谐振动非简谐振动是指振动的频率、振幅、方向和位置都不是定值,振动的周期和形状也不是定值,振动的运动轨迹不是定值的曲线。

非简谐振动的特点是振动的频率、振幅、方向和位置都是变化的,振动的周期和形状也是变化的,振动的运动轨迹也是变化的曲线。

3. 混沌振动混沌振动是指振动的频率、振幅、方向和位置都是变化的,振动的周期和形状也是变化的,振动的运动轨迹也是变化的曲线,但是振动的运动轨迹是一种不可预测的混沌运动轨迹。

三、什么是机械波机械波是指机械系统内部的物理变化,是一种振动的波形,它可以反映机械系统的动力学行为。

机械波可以分为空气波、液体波、地壳波等。

1. 空气波空气波是指由空气中的振动产生的波,它的特点是波的传播速度比较快,波的频率也比较高,波的振幅也比较大。

空气波的运动轨迹是一个椭圆形的曲线,它们可以用来传播声音、光、热、电等信号。

2. 液体波液体波是指由液体中的振动产生的波,它的特点是波的传播速度比较慢,波的频率也比较低,波的振幅也比较小。

液体波的运动轨迹是一个圆形的曲线,它们可以用来传播液体中的物质。

3. 地壳波地壳波是指由地壳中的振动产生的波,它的特点是波的传播速度比较慢,波的频率也比较低,波的振幅也比较小。

地壳波的运动轨迹是一个圆形的曲线,它们可以用来传播地壳中的物质。

四、机械振动和机械波的应用机械振动和机械波在工程中有着广泛的应用,它们可以用来检测机械系统的动力学状态,以及检测机械系统的可靠性和可靠性。

高中物理选修3-4机械振动_机械波_光学知识点(好全)

高中物理选修3-4机械振动_机械波_光学知识点(好全)

机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F:使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。

(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。

物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。

4.位移x:相对平衡位置的位移。

它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。

5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

(1)动力学表达式为:F= -kxF=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

(2)运动学表达式:x=A sin(ωt+φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。

(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。

故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。

(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。

(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。

机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

振动的周期T跟频率f之间是倒数关系,即T=1/f。

振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理:机械振动和机械波知识点
:高三就是到了冲刺的阶段,大家在大量练习习题的时候,也不要忘记巩固知识点,只有很好的掌握知识点,才能运用到解题中。

接下来是小编为大家总结的高考物理知识点,希望大家喜欢。

1.简谐运动
(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。

(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。

简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

(3)描述简谐运动的物理量
①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

(4)简谐运动的图像
①意义:表示振动物体位移随时间变化的规律,注意振动图
像不是质点的运动轨迹。

②特点:简谐运动的图像是正弦(或余弦)曲线。

③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。

2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

(1)单摆的振动可看作简谐运动的条件是:最大摆角α5°。

(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

①在振幅很小的条件下,单摆的振动周期跟振幅无关。

②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关。

③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g‘等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

4.受迫振动
(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。

(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。

(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。

共振的条件:驱动力的频率等于振动系统的固有频率。

相关文档
最新文档