新人教版垂径定理课件(1)
合集下载
人教版九年级数学上册24.垂径定理课件

方法归纳:
解决有关弦的问题时,
经常连结半径;过圆心
作一条与弦垂直的线段
等辅助线,为应用垂径
E
定理创造条件。
2m
垂径定理经常和勾股定 理结合使用。
在⊙O中,若⊙O的半径r、圆心到弦的
距离d、弦长a、弓形高h中,任意知道
两个量,可根据 垂径定理 构造直角
三角形求出其余两个量。
C
(a)2 d 2 r2
• 学习目标: 1.理解圆的轴对称性,会运用垂径定理解决有 关的证明、计算和作图问题; 2.感受类比、转化、数形结合、方程等数学思 想和方法,在实验、视察、猜想、抽象、概括、 推理的过程中发展逻辑思维能力和识图能力.
• 学习重点: 垂径定理及其推论.
实践探究 把一个圆沿着它的任意一条直径对折,
重复几次,你发现了什么?由此你能得到什 么结论?
r
2
O
或( a )2 (r h)2 r 2 2
rd A ha
B
D
例2.如图,在⊙O中,AB、AC为互相垂直且相 等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.
C
E
·O
A
D
B
小结评学
1、圆是轴对称图形,任何一条直径所在直线都 是它的对称轴.
2、垂径定理及其推论:
直径平分弦
于点E,则AE=BE( √ )
4则、AE如=图BE(4,),A︵D⊙=O中B︵,D弦(AB√⊥半) 径OD于点E,
C
C
C
O
O
E A
ห้องสมุดไป่ตู้
BA E
BA
D 如图(1)
D 如图(2)
O E BA
D如图(3)
人教版九年级数学上册24.-垂径定理的应用(用)1课件(共39张)

经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
AD 据由1垂题A径设B定得 理1A,BD7是.2A7.B2的3,C.6中D, 点,2C.是4, HANB的中12点M,CND就1.是5.拱高.
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD 2 , 即R2 3.62 (R 2.4)2.
中点,EF过圆心O,CDAB为什么?
C F D 分析: CD AB
.O
CFE= BEF
A
E
B CFE=90
BEF=90
OFCD
OE AB
OF过圆心
OE过圆心
点F是CD中点 点E是AB中点
2. 在我们生活中处处存在数学问题,比如:
某村在村口建一个如图形状的门楼,半圆拱 的圆心距地面2米,半径1.5米。现有一辆 高2.9米,宽2.5米的集装箱卡车,问能通 过这个门楼吗?要解决这个问题,必须运用 圆的有关知识,
你是第一 个告知同 学们解题 方法和结 果的吗?
随堂练习P92 4
赵州石拱桥
驶向胜利 的彼岸
解:如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
据垂径定理,D是AB的中点,C是AB 的中点,CD就是拱高.
由题设 AB 37.4,CD 7.2,
圆的线段问题转化
O
为直角三角形问题
变式1:如上图,若以O为圆心再画一 个圆交弦AB于C,D,则AC与BD间可 能存在什么关系?
A C E DB O
(1)
AC
DB
O
(2)
垂径定理PPT课件(人教版)

37.4m
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P
┗
D
③ CP=DP
可推得
④
⌒ AC
=
⌒ AD
O
⑤
⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P
┗
D
③ CP=DP
可推得
④
⌒ AC
=
⌒ AD
O
⑤
⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A
《垂径定理》课件

答案:3cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再根据勾股定 理求解。
习题二
题目:已知圆O的半径为5cm,弦AB的长为6cm,则圆心O到弦AB的距 离为 _______.
答案:4cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再 根据勾股定理求解。
习题三
01
02
CATALOGUE
垂径定理的表述
定理的文字表述
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的两条弧。
解释
如果一条直径垂直于一条弦,那 么这条直径会平分这条弦,并且 平分弦所对的两条弧。
定理的图形表述
图形示例
可以画出一个圆和经过圆心的一条弦 ,然后画一条垂直于该弦的直径,用 以展示垂径定理。
03
这种方法需要学生掌握相似三角形的 性质和判定方法,适合数学基础较好 的学生理解和掌握。
04
CATALOGUE
垂径定理的应用
在几何作图中的应用
确定圆的中心
利用垂径定理,我们可以确定一个圆 的中心,只需在圆上任取两点,然后 通过这两点作垂直平分线,两条垂直 平分线的交点即为圆心。
作圆的切线
利用垂径定理,我们可以找到一个圆 的切线。在圆上任取一点,然后通过 这一点作圆的切线,切线与过圆心的 垂线交于一点,该点即为切点。
《垂径定理》ppt课 件
目录
• 引言 • 垂径定理的表述 • 垂径定理的证明 • 垂径定理的应用 • 垂径定理的变式 • 习题与解答
01
CATALOGUE
引言
什么是垂径定理
垂径定理
垂径定理是平面几何中一个重要的定理,它描述了垂直于弦的直径与弦之间的 关系。具体来说,如果一条直径垂直于一条弦,则这条直径将该弦平分,并且 平分该弦所对的弧。
人教版九年级上册数学垂径垂径定理PPT精品课件

A
AE
BE
1 2
AB
4,
OE
3
连结OA,在RtAOE中,根据勾股定理:
E
B
.O
OA AE 2 OE 2
32 42 5
人教版九年级上册数学课件:24.1.2 垂径垂径定理
∴⊙O的半径为5厘米。
人教版九年级上册数学课件:24.1.2 垂径垂径定理
2.在半径为30㎜的⊙O中,弦AB=36㎜,求O 到AB的距离。
温固而知新
一、圆的定义:
平面上到定点的距离等于定 长的所有点组成的图形叫做圆.
二、圆的相关概念
B
1、连接圆上任意两点间 直径
的线段叫做弦(如弦AB).
O.
经过圆心的弦叫做直径
C
(如直径AC).
A
弦
2.圆弧:连接圆上任意两点间的部分叫做圆弧,简称弧.
以A、B为端点的弧记作 AB ,
读作:“圆弧AB”或“弧AB”C
解:过O点作OP⊥AB,连OA.
AP
BP
1 AB 2
18,
A
在Rt⊿AOP中,根据勾股定理:
OP AO 2 AP 2
302 182 24
∴O到AB的距离为24mm。
PB
O
人教版九年级上册数学课件:24.1.2 垂径垂径定理
人教版九年级上册数学课件:24.1.2 垂径垂径定理
3.已知:如图,在以O为圆心的两个同心圆中,大 圆的弦AB交小圆于C,D两点。你认为AC和BD有 什么关系?为什么?
解: AC=BD,
理由是:
过O作OE⊥AB,垂足为E, 则AE=BE,CE=DE.
∴ AE-CE=BE-DE 即 AC=BD
O.
河南省三门峡市渑池三中九年级数学上册 24.1.2 垂径定

∵
⌒ AG
=
⌒ BG
C⌒G = D⌒G
圆弧加减
∴
⌒ AG
-
⌒ CG
=
⌒⌒ BG - DG
即 A⌒C = B⌒D
1、如图,AB、CD都是⊙O的弦,且AB∥CD. ⌒⌒
求证:AC = BD。
解:过点O作OE⊥CD,交CD于点E
交AB于点F,交⊙O于点G
在⊙O中,OF⊥弦AB
A
∴ A⌒G = B⌒G
C
∵ OE⊥弦CD
rd
a
2
问题 :它的主桥是圆弧形, 它的跨度(弧所对的弦的长) 为37.4m,拱高(弧的中点到 弦的距离)为7.2m,
你能求出赵州桥主桥拱的 半径吗?
C
D
A
B
R
O
解决求赵州桥拱半径的问题?
⌒
⌒
如图,用AB表示主桥拱,设 AB所 » AB 在圆的圆心为O,半径为R.
经根过据圆前心面的O作结弦论A,BD的是垂A线BO的C中,点D为,垂C是足⌒A,BO的C与中A点B,相C交D于就点是C拱,
(1)圆是轴对称图形吗?如果是,它的对称轴是什么?
(2)你能发现图中有那些相等的线段和弧?为什么?
C
(1)是轴对称图形.直
径CD所在的直线是它的对
称轴
(2) 线段: AE=BE
弧:
⌒⌒ AC = BC
⌒⌒ AD = BD
·O
E
A
B
D
垂径定理:
垂直于弦的直径平分弦, 并且平分弦所对的两条弧
C
在⊙O中,直径CD⊥弦AB
高.解: ∵半径OC⊥弦AB AB=37.4,CD=7.2,
∴AD 1 AB 1 37.4 18.7,
《垂径定理》优秀ppt课件

拓展问题讨论
引导学生提出与垂径定理 相关的拓展问题,如逆定 理、推广等,并进行讨论 和交流。
25
课堂小测验
2024/1/28
测验题目设计
设计涵盖垂径定理基本概念、性质、证明方法和应用场景的测验 题目。
学生完成测验
让学生在规定时间内完成测验,以检验学生对垂径定理的掌握程 度。
测验结果反馈
及时公布测验结果,并针对学生的答题情况进行点评和指导,帮 助学生查漏补缺,巩固所学知识。
向量运算
利用向量的点积运算和模长运算,结合已知条件 进行推导和证明。
3
垂径定理的向量形式
通过向量运算,可得垂径定理的向量形式为 $(vec{OA}+vec{OB})cdot vec{AB}=0$。
2024/1/28
10
03
垂径定理在几何问题中应 用
2024/1/28
11
求解三角形问题
01
利用垂径定理求解直角三角形
深入研究。
2024/1/28
22
06
总结回顾与课堂互动环节
2024/1/28
23
关键知识点总结回顾
2024/1/28
垂径定理的定义和性质
回顾垂径定理的基本概念,包括直径、垂径、弦等要素的定义和 性质。
垂径定理的证明方法
总结垂径定理的多种证明方法,如构造法、解析法等,并强调不同 方法之间的联系和区别。
通过垂径将直角三角形划分为两个较小的直角三角形,便于求解边长和
角度。
02
求解三角形面积
结合垂径定理和三角形面积公式,可快速求解三角形面积。
2024/1/28
03
判断三角形形状
通过垂径定理判断三角形边长关系,从而确定三角形形状(如等腰、等
《垂径定理》课件1

通过计算或观察图像,确定函数的最值。
判断函数单调性
利用垂径定理确定函数图 像的对称轴,进而判断函 数在不同区间的单调性。
结合函数的导数,分析函 数在不同区间的增减性。
通过比较函数值或观察图 像,确定函数的单调区间。
分析函数图像特征
利用垂径定理确定函数图像的对称轴,分 析图像的对称性。
结合函数的奇偶性,分析图像关于原点的 对称性。
其他领域应用举例
航海和航空导航
在航海和航空导航中,垂径定理可以用于计算航向和距离。通过观察天体(如太阳、星星)的位置和角度,可以 利用垂径定理确定航行方向和距离,实现准确的导航。
地理测量
垂径定理在地理测量中也有应用。例如,在测量地球表面上两点之间的距离时,可以利用垂径定理计算出大圆距 离,这是一种更精确的距离测量方法。
建立平面直角坐标系
以圆心为原点,以过圆心的直线为x轴 建立平面直角坐标系。
设圆的方程和弦的方程
联立方程求解
将两个方程联立,消去y得到关于x的 二次方程,由根与系数的关系可得垂 线平分弦的结论。
设圆的方程为x^2 + y^2 = r^2,设 弦所在直线的方程为y = kx + b。
向量法证明
1 2
定义向量 设圆心为O,弦的两个端点分别为A和B,垂足为 C,则向量OC垂直于向量AB。
利用向量数量积的性质 由向量数量积的性质可知,OC·AB = 0,即 |OC|·|AB|·cos90° = 0,由此可推出垂线平分弦。
3
利用向量加法的性质 由向量加法的性质可知,向量OA + 向量OB = 2 向量OC,由此可推出垂线平分弦。
03
垂径定理在几何问题中应用
求解三角形问题
利用垂径定理求解直角三角形中的边长和角度
判断函数单调性
利用垂径定理确定函数图 像的对称轴,进而判断函 数在不同区间的单调性。
结合函数的导数,分析函 数在不同区间的增减性。
通过比较函数值或观察图 像,确定函数的单调区间。
分析函数图像特征
利用垂径定理确定函数图像的对称轴,分 析图像的对称性。
结合函数的奇偶性,分析图像关于原点的 对称性。
其他领域应用举例
航海和航空导航
在航海和航空导航中,垂径定理可以用于计算航向和距离。通过观察天体(如太阳、星星)的位置和角度,可以 利用垂径定理确定航行方向和距离,实现准确的导航。
地理测量
垂径定理在地理测量中也有应用。例如,在测量地球表面上两点之间的距离时,可以利用垂径定理计算出大圆距 离,这是一种更精确的距离测量方法。
建立平面直角坐标系
以圆心为原点,以过圆心的直线为x轴 建立平面直角坐标系。
设圆的方程和弦的方程
联立方程求解
将两个方程联立,消去y得到关于x的 二次方程,由根与系数的关系可得垂 线平分弦的结论。
设圆的方程为x^2 + y^2 = r^2,设 弦所在直线的方程为y = kx + b。
向量法证明
1 2
定义向量 设圆心为O,弦的两个端点分别为A和B,垂足为 C,则向量OC垂直于向量AB。
利用向量数量积的性质 由向量数量积的性质可知,OC·AB = 0,即 |OC|·|AB|·cos90° = 0,由此可推出垂线平分弦。
3
利用向量加法的性质 由向量加法的性质可知,向量OA + 向量OB = 2 向量OC,由此可推出垂线平分弦。
03
垂径定理在几何问题中应用
求解三角形问题
利用垂径定理求解直角三角形中的边长和角度
垂径定理第一课时PPT优选课件

过点O作直线OE⊥AB,交CD于F。
A
20 E
B
A
. 25
15
C
25
C
O7
24 F
D
E
B
.F
D
O
AB、CD在点O两侧 EF=OE+OF=15+7=22 2A020B/1、0/18CD在点O同侧 EF=OE-OF=15-7=810
练习:AB是⊙O的直径,弦CD⊥AB,E为 垂足,若AE=9,BE=1,求CD的长.
∴AM=BM.
∴点A和点B关于CD对称.
B
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B
重合, ⌒ AC和B⌒C重合, ⌒ AD和B⌒D重合.
∴A⌒C =B⌒C, A⌒D =B⌒D.
5
垂径定理
• 定理 垂直于弦的直径 平分弦,并且平分弦所的两条弧.
C
A M└ ●O
D
如图∵ CD是直径,
12
练习: 在⊙O中,AB.CD为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E.
求证:四边形ADOE是正方形.
C
E
O
D
A
B
2020/10/18
13
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
C
连OC
A
O E
B
D
2020/10/18
11
例3 已知:如图,在以O为圆心的两个同心 圆中,大圆的弦AB交小圆于C,D两点。
试说明:AC=BD。
证明:过O作OE⊥AB于E
A
20 E
B
A
. 25
15
C
25
C
O7
24 F
D
E
B
.F
D
O
AB、CD在点O两侧 EF=OE+OF=15+7=22 2A020B/1、0/18CD在点O同侧 EF=OE-OF=15-7=810
练习:AB是⊙O的直径,弦CD⊥AB,E为 垂足,若AE=9,BE=1,求CD的长.
∴AM=BM.
∴点A和点B关于CD对称.
B
∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B
重合, ⌒ AC和B⌒C重合, ⌒ AD和B⌒D重合.
∴A⌒C =B⌒C, A⌒D =B⌒D.
5
垂径定理
• 定理 垂直于弦的直径 平分弦,并且平分弦所的两条弧.
C
A M└ ●O
D
如图∵ CD是直径,
12
练习: 在⊙O中,AB.CD为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E.
求证:四边形ADOE是正方形.
C
E
O
D
A
B
2020/10/18
13
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
C
连OC
A
O E
B
D
2020/10/18
11
例3 已知:如图,在以O为圆心的两个同心 圆中,大圆的弦AB交小圆于C,D两点。
试说明:AC=BD。
证明:过O作OE⊥AB于E
人教版九年级上册垂径定理精品课件PPT

●
6、我就经历 过许 多 大 大 小 小的 挫 折 。 大 海因 为 有 了 狂 风的 袭 击 , 才 显示 出 了 它 顽 强的 生 命 力 , 它把 狂 风 化 成 了 朵朵 浪 花 , 给 人们 带 来 美 丽 ;
感谢观看,欢迎指导!
水管水面下降,此时排水管水面宽变为 1.2 m,求
水面下降的高度 .
O.
A
B
C
D人教版九年级上册24Fra bibliotek1.2 垂径定理课件
●
1、在困境中 时刻 把 握 好 的 机遇 的 才 能 。 我在 想 , 假 如 这个 打 算 是 我 往履 行 那 结 果 必定 失 败 , 由 于我 在 作 决 策 以 前会 把 患 上 失 的因 素 斟 酌 患 上太 多 。
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
实践探究
把一个圆沿着它的任意一条直径对折, 重复几次,你发现了什么?由此你能得到 什么结论?
●
4、让学生有 个整 体 感 知 的 过程 。 虽 然 这 节课 只 教 学 做 好事 的 部 分 , 但是 在 研 读 之 前我 让 学 生 找 出风 娃 娃 做 的 事 情, 进 行 板 书 ,区 分 好 事 和 坏事 , 这 样 让 学生 能 了 解 课 文大 概 的 资 料 。
●
5、人们都期望 自 我 的 生 活中 能 够 多 一 些快 乐 和 顺 利 ,少 一 些 痛 苦 和挫 折 。 可 是 命运 却 似 乎 总 给人 以 更 多 的 失 落、 痛 苦 和 挫 折。 我 就 经 历 过许 多 大 大 小 小的 挫 折 。