6 振动与波习题课
振动与波习题课
b
c
O
a
.
b
c X t
a 0
b
2
3 c 2
10.如图(a)为t=0时的波形曲线,经0.5s后波形变为(b) 求(1)波动方程 Y (a) (b) u
(2)P点的振动方程
解:O处的振动方程为 0.1
yo A cos(t )
由图得A=0.1 =/2 =4m
( 2k 1) 2 2 1 1 2 ( 2k 1) 4 r1 [ ] 2 ( 2k 1) 2 ( 2k 1)
Y
u=0.08m/s P . 0.02
X yo A cos(t ) -0.04 0.04 P点的振动方程 2 1 T u 0.08 令x=0.02 u 2 2 3 4 y P 0.04 cos(4t ) T 2 x y 0.04 cos[4 ( t ) ] 0.08 2
A A A 2 A1 A2 cos( 2 1 ) A1 sin 1 A2 sin 2 tg A1 cos 1 A2 cos 2 2 1 B.同方向不同频率:拍 拍频为:
A. 同方向同频率:
2 1 2 2
C.两个相互垂直同频率的振动:椭圆 D.两个相互垂直不同频率的振动:李萨如图 5.平面简谐波波动方程:
u 0.84m / s 取 /3
故得波动方程为
17 / 3
O a b
u
X
x y 0.1cos[7 ( t ) ]( m ) 0.84 3
13.题中图a表示一水平轻绳,左端D为振动器,右端 固定于B点。t0时刻振动器激起的简谐波传到O点。其 波形如图b所示。已知OB=2.4m,u=0.8m/s. 求:(1) 以为计时零点,写出O点的谐振动方程;(2)取O 点 为原点,写出向右传播的波动方程;(3)若B 处有 半波损失,写出反射波的波动方程(不计能量损失)。 2 D O 解:(1)由 B u 2 2 y(cm) 得 u 80 4 40 4
振动和波动习题课(改)
x)
yBP
Acos[ t
2
(30 x)]
l
两波同频率,同振幅,同方向振动,所以相干静止的点满足:
(t 2 x) [t 2 (30 x)]
l
l
(2k 1)
k 0,1,2,...
化简后 30 2x kl
30 2x kl O x
X
因为: l u 4m
x 15 k 2
1
3
x 3 102 sin(4t 1 ) (SI)
2
6
画出两振动的旋转矢量图,并求合振动的振动
方程.
x1
5
102
cos(4t
1 3
)
x2
3
102
sin(4t
1 6
)
3
102
cos(4t
1 6
1 2
)
3 102 cos(4t 2 ) 3
x x1 x2
1
2 102 cos(4t 1 )
7.一简谐振动曲线如图所示,试由图确
定在t=2s时刻质点的位移为
,速
度为
。
t=2s, x=0
Vm
A
2 A
T
3
102
8.已知两个简谐振动 曲线如图所示,
X1的位相比X2的位相
A) 落后 1
2
C) 落后
B) 超前 1 √
2
D) 超前
9.一简谐振动的振动曲线如图,求此振动的 周期。
解: =/3+ /2=5/6 t=5= 5/6 = /6
2
之间)
(1)2 1 2k k 0,1,2,
A A1 A2 振动加强; 此时有= 1= 2
A1
振动和波Word
振动和波习题课Ⅰ教学基本要求振动和波动1.掌握描述简谐振动和简谐波的各物理量(特别是相位)及各量间的关系。
2.理解旋转矢量法。
3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义。
4.理解同方向、同频率的两个简谐振动的合成规律。
5.理解机械波产生的条件。
掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法及波函数的物理意义。
理解波形图线。
了解波的能量传播特征及能流、能流密度概念。
6.了解惠更斯原理和波的叠加原理。
理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件。
7.理解驻波及其形成条件。
了解驻波和行波的区别。
8.了解机械波的多普勒效应及其产生原因。
在波源或观察者单独相对介质运动,且运动方向沿二者连线的情况下,能用多普勒频移公式进行计算。
9.了解电磁波的性质。
Ⅱ内容提要一、振动1.简谐振动的定义:恢复力F=-kx微分方程d2x/d t2+ω2x=0运动方程x=A cos(ωt+ϕ0)弹簧振子ω=(k/m)1/2,单摆ω=(g/l)1/2,复摆ω=(mgh/J)1/2;2.描述谐振动的物理量:(1)固有量:固有频率ω,周期T,频率ν其关系为ω=2π/T=2πνν=1/T(2)非固有量,振幅A: A=(x02+v02/ω2)1/2 位相ϕ: ϕ=ωt+ϕ0 初位相ϕ0: tanϕ0=-v0/(ω x0)(再结合另一三角函数定出ϕ0);3.旋转矢量法(略);4.谐振动能量:E k=E sin2(ωt+ϕ0) E p=E cos2(ωt+ϕ0) E=E k+ E p5.谐振动的合成:(1)同方向同频率两谐振动的合成A=[A12+A22+2A1A2cos(ϕ20-ϕ10)]1/2tgϕ0=(A1sinϕ10+A2sinϕ20)/(A1cosϕ10+A2cosϕ20) (再结合另一三角函数定出ϕ0)拍∆ω<<ω1拍频∆ν=|ν2-ν1|(2)相互垂直振动的合成ω1=ω2时为椭圆方程:x2/A12+y2/A22- 2(x/A1)(y/A2)cos(ϕ20-ϕ10)=sin2(ϕ20-ϕ10)ω1与ω2成简单整数比时成李萨如图形二、波动1.机械波的产生的条件:(1)波源,(2)媒质.机械波的传播实质是相位(或振动状态)的传播,质量并不迁移;2.描述波的物理量:波长λ,频率ν,周期T,波速.u其关系为T=1/ν=λ/u u=λ/T=λν3.平面简谐波的波动方程y=A cos[ω(t-x/u)+ϕ0]=A cos[2π(t/T-x/λ)+ϕ0]=A cos[2π(νt-x/λ)+ϕ0]4.平均能量密度w=ρA2ω2/2,能流密度(波的强度) I=w u=ρA2ω2u/25.惠更斯原理(略);6.波的叠加原理:独立性,叠加性;7.波的干涉(1)相干条件:频率相同,振动方向相同,位相差恒定。
振动与波动习题课
(1) B处质元的振动动能减小 处质元的振动动能减小, 则其弹性势能必增大; 则其弹性势能必增大 错 答:质元的振动动能和弹 质元的振动动能和弹 性势能是同相位的 ,同 时增大,同时减少. 时增大,同时减少.
B
o
C
x
(2) A处质元回到平衡位置的过程中 它把自己的能量 处质元回到平衡位置的过程中,它把自己的能量 传给相邻的质元,其能量逐渐减小 其能量逐渐减小; 传给相邻的质元 其能量逐渐减小 错 在平衡位置质元的振动动能和弹性势能是最大, 答:在平衡位置质元的振动动能和弹性势能是最大,所 质元回到平衡位置的过程中能量应该逐渐增大 能量应该逐渐增大. 以A处质元回到平衡位置的过程中能量应该逐渐增大.
关于干涉条件的讨论
y1 = A1 cos( ω t + 10
y2 = A2 cos( ω t + 20
P点的合振动为 点的合振动为
2π r1
2π r2
λ
)
注意: 为正值! 注意:r1, r2为正值! P
r1
λ
)
S1 r2 S2
y = y1 + y2 = A cos( ω t + 0 )
2 1 2
波动学基础
教学要求
1 . 掌握平面简谐波波动方程的物理意义 掌握由质点 掌握平面简谐波波动方程的物理意义.掌握由质点 的谐振动方程或某时刻的简谐波波形曲线等已知条件建 立简谐波波动方程的方法. 立简谐波波动方程的方法 2 .理解波长,周期,频率,波速等概念的含意 并掌 理解波长, 理解波长 周期,频率,波速等概念的含意,并掌 握它们之间的关系. 握它们之间的关系 3 .理解波的干涉现象 掌握波的相干条件 能运用相位 理解波的干涉现象.掌握波的相干条件 理解波的干涉现象 掌握波的相干条件.能运用相位 差或波程差来确定相干波叠加后加强或减弱的条件. 差或波程差来确定相干波叠加后加强或减弱的条件 4 .理解驻波的特性及其形成条件 了解驻波与行波的 理解驻波的特性及其形成条件.了解驻波与行波的 理解驻波的特性及其形成条件 区别. 区别 5 .理解波的能量传播特征以及能流,能流密度等概念 理解波的能量传播特征以及能流, 理解波的能量传播特征以及能流 能流密度等概念. 6.掌握多普勒效应 6.掌握多普勒效应
振动与波动习题课修
A = 5 / cos α = 5 2 cm
2
πt 3π t= 0 t= 2 s (1) x = 5 2 × 10 cos( )( SI ) 4 4 3 π 2 (2) v = ω A sin = 5 2 × 10 sin( π ) 4 4 = 3 . 93 × 10 2 m / s
v A1
O X O
v A1
X O
A2
v A1
X
v A2
反相 同相
振动2比振动 超前 振动 比振动1超前 比振动
四、谐振动的合成 1。同方向、同频率的谐振动的合成: 。同方向、同频率的谐振动的合成:
A=
2 A12 + A2 + 2 A1 A2 cos( 2 1
A1 sin 1 + A2 sin 2 tg = A1 cos 1 + A2 cos 2
v0 tg = ω x0
两同频率的谐振动在任意时刻的相位差: 两同频率的谐振动在任意时刻的相位差:
= 2 1
振动2比振动1超前 > 0 LLLLL 落后 < 0 = = 2 kπ ( k = 0 ,1L ) 振动2和振动1同相 = ( 2 k + 1 )π ( k = 0 ,1L ) LLL反相
8. 一系统作简谐振动,周期为 ,以余弦函数 一系统作简谐振动,周期为T,
1 表达振动时,初相位为零。 表达振动时,初相位为零。在 0 ≤ t ≤ T范围 2 T/8或3T/8 时动能和势能相等 系统在t=_________时动能和势能相等。 时动能和势能相等。 内,系统在
解: x = Acosωt
x = 2cos(ωt + )
O t=0
5 Vm = ωA = 5 ω = 2 5 π x = 2cos( t )cm 2 2
振动与波习题课及课后作业解答
π
2π
λ
2OB π = 5π
2π
= 入 反 = π
λ
x (5π +
2π
λ
x) = 6π
4π
2kπ , 波腹 = (2k + 1)π , 波节
0≤x≤1.25λ ≤ ≤ λ
λ
x
3. 空气中声速为 空气中声速为340m/s, 一列车以 一列车以72km/h的速度行驶 车上旅客 的速度行驶, 的速度行驶 听到汽笛声频率为360Hz, 则目送此火车离去的站台上的旅客听到 听到汽笛声频率为 此汽笛声的频率为( 此汽笛声的频率为 B) (A) 360Hz (B) 340Hz (C) 382.5Hz (D) 405Hz 解:
t = ( / 2π )T = T / 12 6
A/2 -π/3
π
ω
x
A
2. 如图为用余弦函数表示的一质点作谐振动曲线 振动圆频率 如图为用余弦函数表示的一质点作谐振动曲线, ,从初始状态到达状态 所需时间为 2s 从初始状态到达状态a所需时间为 . 为 7π/6 π 从初始状态到达状态 分析: 分析:本题的关键是确定各时刻 X(m) 6 的位相, 的位相,在振动曲线上由位移和 3 速度方向(斜率的正负) 速度方向(斜率的正负)定 0 t=0时: -3 X0=A/2,v0<0 = π/3 t=1时: X=0,v>0 ωt+= 3π/2
u vs
s
u = 334m s 1 (3)
u v0 ( 4) λ ′ = ν′ 334 65 = = 0.190m 1418
ω
t = 0, v0 = ωA sin 0 = 10cm / s
3 ∴0 = π 2
大学物理振动波动例题习题
振动波动一、例题(一)振动1。
证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3。
已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。
07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4。
沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。
25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。
大学物理振动和波习题课
12、一质点作简谐振动,周期为 T。质点由平衡
位置向X轴正方向运动时,由平衡位置到二分之一 最大位移这段路程所需要的时间为( )。
A T 4 B T 1 C 2 T 6 D T 8
解:令简谐振动为 xA si n t
则当 xA2 时, si n t0.5
Acos2(t 1) T2
Acos2T(t 13)
.
7.图中所示为两个简谐振动的振动曲线.若以余弦函数表 示这两个振动的合成结果,则合振动的方程为
xx1x2 0.04cos(t)
x (m)
0.08
O
-0.04
1
x1 t (s)
2 x2
.
8 如果在固定端 x0处反射的反射波方程式是
y2 Aco2stx
设反射波无能量损失,则入射波的方程式是( ) 形成的驻波的表达式是( )。
y1OAcos2vt y2OA cos2vt
形成的驻入 波射 为波 :方 程 y1Acos 2 t x
y y 1 y 2 A c 2 ot s2 x A c 2 ot s2 x
得:
S
wu
1 A22u
2
3.惠更斯原理和波的叠加原理
惠更斯原理:
波阵面上每一点都可以看作是发出球面子波的 新波源,这些子波的包络面就是下一时刻的波阵面。
波的叠加原理:
当几列波在介质中某点相遇时,该质点的
振动位移等于各列波单独传播时在该点引起位 移的矢量和。
.
4.波的干涉: 相干条件: 振动方向相同
频率相同
1.机械波
产生的条件: 波源和弹性介质
描述波动的特征量: 波速、波长、波的周期、频率
2.平面简谐波
波函数 yAcos(tux)
大学物理活页答案(振动和波)
大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。
11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。
波的习题课[1]
机械波试题分类一、系列问题1.各质点作什么运动,是否迁移?2.原来不动的质点,启动方向如何?3.各质点的振动步调是否一致?频率是否相同?4.各质点的振动周期与波源的振动周期是否相同?为什么?5.振动步调总一致的质点间的距离有何关系?6.振源每完成一次的全振动,波(峰、谷、节、前)向前传播的距离如何?波形有何特点?7.对已经振动质点从空间上讲:平衡位置相距的质点振步调总相同,相距的质点振动部调总相反。
从时间上讲:每经T和nT各质点都回至原位,波形与原波形相同。
经Δt与经波形相同;传Δx与传波形相同。
8.公式:波峰、波谷、波节、波前的传播是匀速的,即波的传播是匀速的。
9.波速由决定;波的频率由决定;波长与都有关。
10.思考波动问题多解的原因有哪些?二、基本试题例题1如图所示,一列向右传播的横波,已知A点的振动周期为0.4秒。
(1)质点B的振动周期为(2)质点C的振动频率(3)质点E的振幅为(4)质点D比质点B少振动(5)质点D从开始振动到此时刻通过的路程是(6)波速(7)再经1秒通过截面MN的波峰有几个?例题2如图甲为一列波在某时刻的波形图,图乙为此波中平衡位置坐标为10cm的质点从该时刻起的振动图象,则:(1)此波的波长为;(2)振幅为;(3)周期为;(4)此波沿方向传播;波速为;(5)图甲中P点从图示时刻开始经过 s第一次回到平衡位置。
例题3一列简谐横波沿一直线在空间传播,某一时刻直线上相距为d的A.B两点均处在位移为零的位置,且A.B之间仅有一个波峰,若经过时间t,质点B恰好到达波峰位置。
(1)画出波形图,确定A.B的可能位置;(2)波传播的周期可能是多少?(3)该波的波速可能值是多少?三、习题分类(一)基本问题1.关于机械波的概念,下列说法中正确的是()A.质点振动的方向总是垂直于波传播的方向B.简谐波沿长绳传播,绳上相距半个波长的两质点振动位移的大小相等振动步调反向C.任一振动质点每经过一个周期时沿波的传播方向振动的形式移动一个波长D.对于已经振动的质点,相隔一个周期的两时刻,简谐波的图象相同E.机械波能够传播能量F.在机械波的传播过程中,介质中的质元和运动形式一起向外传播G.机械波能够发生干涉、衍射现象H.机械波在真空中也能传播,且传播的速度最大2.简谐机械波在给定的媒质中传播时,下列说法中正确的是()A.振幅越大,则波传播的速度越快B.振幅越大,则波传播的速度越C.在一个周期内,振动质元走过的路程等于一个波长D.振动的频率越高,则波传播一个波长的距离所用的时间越短3.下列关于简谐振动和简谐机械波的说法正确的是。
机械振动和机械波复习通用课件
振动与波的物理模型
弹簧振子模型
描述单摆或弹簧振子的运动,是研究振动和波动的基础。
波动方程
描述波动现象的基本方程,可以用来描述不同物理条件,决定了波的传播方式和形 状。
04
CATALOGUE
振动与波的实验
振动与波实验设备
振动台 用于模拟单自由度系统的振动
在实验结束后,应及时关闭实 验设备,并清理实验场地
数据处理与分析方法
记录实验数据时,应使用准确的 测量工具,确保数据的准确性
在处理数据时,可以采用图表或 图像的方式,将数据处理结果进
行可视化
可以使用信号处理方法,如傅里 叶变换等,将振动信号或波动信 号转化为频域信号,以便更好地
分析其特征
05
CATALOGUE
振动与波动的关系
振动是波动的源,是 指物体在一定位置附 近的往复运动。
振动和波动的相互关 系是密不可分的。
波动是振动的传播, 是指振动在空间中的 传播过程。
波动现象的应用
声波
声音是由物体的振动产生的,通 过空气或其他介质传播的波动现
象。
水波
水面的振动产生的水波,可以用 来传播信息或娱乐。
地震波
地震时,地壳的振动产生地震波, 可以用来探测地球内部结构。
总结词:掌握波动方程与波动速的基本概念、波动方程的形式
01
与求解方法、波动速的物理意义等基本要素。
02
详细描述
1. 波动方程与波动速的基本概念包括波动方程的形式、求解方
03 法
THANKS
感谢观看
应用
受迫振动在工程中有着广泛的应用, 如共振、谐振等。
02
CATALOGUE
机械波
波的形成与传播
大学物理学(第三版上) 课后习题6答案详解
习题66.1选择题(1)一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A)它的动能转化为势能. (B)它的势能转化为动能.(C)它从相邻的一段质元获得能量其能量逐渐增大.(D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.[答案:D ](2) 某时刻驻波波形曲线如图所示,则a,b 两点位相差是(A)π (B)π/2 (C)5π/4 (D)0[答案:A](3) 设声波在媒质中的传播速度为u,声源的频率为v s .若声源S不动,而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动,则位于S、R连线中点的质点P的振动频率为 (A)s v (B)s Bv uV u + (C)s B v V u u + (D) s Bv V u u-[答案:A]6.2填空题(1)频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距____m 。
[答案:0.5m ](2)一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是____,波长是____,频率是____,波的传播速度是____。
[答案:0.02;2.5;100;250/m m Hz m s ](3) 设入射波的表达式为])(2cos[1πλνπ++=xt A y ,波在x =0处反射,反射点为一固定端,则反射波的表达式为________________,驻波的表达式为____________________,入射波和反射波合成的驻波的波腹所在处的坐标为____________________。
[答案:)(2cos 2λνπxt A y -= ;2cos(2)cos(2)22x A t ππππνλ++ (21)4x k λ=-]6.3产生机械波的条件是什么?两列波叠加产生干涉现象必须满足什么条件?满足什么条件的两列波才能叠加后形成驻波?在什么情况下会出现半波损失?答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质。
振动和波习题课
20000 5 2 S 1.6 10 J / m s 2 4 10000
10)入射波方程为y1=Acos2 (t/T+x/ ),在自由 端x=0处发生反射后形成驻波,设反射后波的强度 不变,则反射波方程为 ,在x=2/3处 质点合振动的振幅为 。
自由端:在反射点没有半波损失。
波动
1.理解机械波产生的条件;掌握描述平面简谐波 的各物理量及各量间的关系;掌握由已知质点 的简谐振动方程得出平面简谐波的波函数的方 法;能运用波形图线分析和解决问题。 2.理解波的能量传播特征及能流密度概念。 3.了解电磁波的性质。 4.理解惠更斯原理和波的叠加原理;掌握波的相 干条件。能运用相位差和波程差分析、确定相 干波叠加后振幅加强或减弱的条件。 5.理解驻波的概念及其形成条件,能确定波腹和 波节的位置。 6.能用多普勒频移公式计算。
振动练习
1)一弹簧振子作简谐振动,当其偏离平衡位置 的位移大小为振幅的1/4时,其动能为振动总能量的 [E ] (A)7/16
(B)9/16
(C)11/16
(D)13/16
(E)15/16
1 2 2 2 E k m A si n (t 0 ) 2 1 m 2 ( A2 x 2 ) 2
(D)1:1:2
1 1 1 弹簧的串并联: 串联时等效劲度系数 k k1 k 2
并联时等效劲度系数 k k1 k2
4)用余弦函数描述一简谐振动,速度V与时间t的 关系曲线如图所示,则振动初位相为[ A ] ( A) / 6 (B) /3 (C) /2 (D) 2/3 (E) 5/6
Байду номын сангаас振动
1.掌握描述简谐振动的各物理量,特别是相位, 及各物理量之间的关系。掌握位移-时间曲线, 掌握旋转矢量法。能根据给定的初始条件,写 出一维简谐振动的运动方程,并理解其物理意 义;能比较同频率的不同谐振动的相位差。 2.掌握简谐振动的动力学特征,能建立一维简谐 振动(弹簧振子、单摆、复摆等)的微分方程。 3.掌握同方向、同频率的两个简谐振动的合成规 律;了解拍和拍频;了解相互垂直、同频率的 两个简谐振动的合成情况。
振动与波动习题课
2.一简谐波沿X轴正方向传播,图中所示为
t =T /4 时的波形曲线。若振动以余弦函数
表示,且次提各点振动的初相取 到
之间的值,则:
(A)0点的初位相为 0= 0; (B)1点的初位相为 1= /2; (C)2点的初位相为 2= (D)3点的初位相为 3= /2;
频率为
(A)nS
(B)u uvRns
(C)uuvRnS ;
(D) u
u
vRnS
[B]
13.两列完全相同的平面简谐波相向而行 形成驻波。以下几种说法中为驻波所特有 的特征是: (A)有些质元总是静止不动; (B)迭加后各质点振动相位依次落后; (C)波节两侧的质元振动位相相反; (D)质元的振动能与势能之和不守恒。
(A) 1/2 ; (C) 1/3;
(B) 1/5; (D) 2/3.
[A]
13.两偏振片堆叠在一起,一束自然光垂 直入射其上时没有光线透过。当其中一偏 振片慢慢转动180 °时透射光强度发生的 变化为:
(A)光强单调增加; (B)光强先增加,后有减小至零; (C)光强先增加,后减小,再增加; (D)光强先增加,然后减小,再增加再 减小至零。
[B]
20.根据惠更斯-菲涅耳原理,若已知光在
某时刻的波阵面为 S,则 S 的前方某点 P 的光强度决定于波阵面 S 上所在面积元发 出的子波各自传到 P 点的
(A)振动振幅之和; (B)光强之和; (C)振动振幅之和的平方; (D)振动的相干叠加。
[D]
21.一束光是自然光和线偏振光的混合光, 让它垂直通过一偏振片。若以此入射光束 为轴旋转偏振片,测得透射光强度最大值 是最小值的 5 倍,那么入射光束中自然光 与线偏振光的光强比值为
机械振动机械波课后习题
习题5·机械振动5.1选择题1一物体作简谐振动;振动方程为)2cos(πω+=t A x ;则该物体在0=t 时刻的动能与8/T t =T 为振动周期时刻的动能之比为:A1:4 B1:2 C1:1 D 2:12弹簧振子在光滑水平面上作简谐振动时;弹性力在半个周期内所作的功为AkA 2 B kA 2/2C kA 2//4 D03谐振动过程中;动能和势能相等的位置的位移等于 A 4A ± B 2A ± C 23A ±D 22A ± 5.2 填空题1一质点在X 轴上作简谐振动;振幅A =4cm;周期T =2s;其平衡位置取作坐标原点..若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动;则质点第二次通过x =-2cm 处的时刻为____s..2一水平弹簧简谐振子的振动曲线如题5.22图所示..振子在位移为零;速度为- A 、加速度为零和弹性力为零的状态;对应于曲线上的____________点..振子处在位移的绝对值为A 、速度为零、加速度为- 2A 和弹性力为-KA 的状态;则对应曲线上的____________点..题5.22 图3一质点沿x 轴作简谐振动;振动范围的中心点为x 轴的原点;已知周期为T;振幅为A..a 若t=0时质点过x=0处且朝x 轴正方向运动;则振动方程为x=___________________..b 若t=0时质点过x=A/2处且朝x 轴负方向运动;则振动方程为x=_________________..5.3 符合什么规律的运动才是谐振动分别分析下列运动是不是谐振动:1拍皮球时球的运动;2如题5.3图所示;一小球在一个半径很大的光滑凹球面内滚动设小球所经过的弧线很 短.题5.3图 题5.3图b5.4 弹簧振子的振幅增大到原振幅的两倍时;其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化5.5单摆的周期受哪些因素影响 把某一单摆由赤道拿到北极去;它的周期是否变化5.6简谐振动的速度和加速度在什么情况下是同号的 在什么情况下是异号的 加速度为正值时;振动质点的速率是否一定在增大5.7 质量为kg 10103-⨯的小球与轻弹簧组成的系统;按20.1cos(8)(SI)3x t ππ=+的规律作谐振动;求:1振动的周期、振幅和初位相及速度与加速度的最大值;2最大的回复力、振动能量、平均动能和平均势能;在哪些位置上动能与势能相等3s 52=t 与s 11=t 两个时刻的位相差;5.8 一个沿x 轴作简谐振动的弹簧振子;振幅为A ;周期为T ;其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:1A x -=0;2过平衡位置向正向运动;3过2A x =处向负向运动; 4过2Ax -=处向正向运动. 试求出相应的初位相;并写出振动方程.5.9 一质量为kg 10103-⨯的物体作谐振动;振幅为cm 24;周期为s 0.4;当0=t 时位移为cm 24+.求: 1s 5.0=t 时;物体所在的位置及此时所受力的大小和方向;2由起始位置运动到cm 12=x 处所需的最短时间;3在cm 12=x 处物体的总能量.5.10 有一轻弹簧;下面悬挂质量为g 0.1的物体时;伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子;将小球由平衡位置向下拉开cm 0.1后 ;给予向上的初速度s /cm 0.50=v ;求振动周期和振动表达式.5.11 题5.11图为两个谐振动的t x -曲线;试分别写出其谐振动方程.题5.11图5.12 一轻弹簧的倔强系数为k ;其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起;于是盘子开始振动.1此时的振动周期与空盘子作振动时的周期有何不同2此时的振动振幅多大3取平衡位置为原点;位移以向下为正;并以弹簧开始振动时作为计时起点;求初位相并写出物体与盘子的振动方程.5.13 有一单摆;摆长m 0.1=l ;摆球质量kg 10103-⨯=m ;当摆球处在平衡位置时;若给小球一水平向右的冲量s /m kg 100.14⋅⨯=∆-t F ;取打击时刻为计时起点)0(=t ;求振动的初位相和角振幅;并写出小球的振动方程.5.14 有两个同方向、同频率的简谐振动;其合成振动的振幅为m 20.0;位相与第一振动的位相差为6π;已知第一振动的振幅为m 173.0;求第二个振动的振幅以及第一、第二两振动的位相差.题5.14图5.15 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅: 1 ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x 2⎪⎩⎪⎨⎧+=+=cm )343cos(5cm )33cos(521ππt x t x 5.16 一质点同时参与两个在同一直线上的简谐振动;振动方程为试分别用旋转矢量法和振动合成法求合振动的振动幅和初相;并写出谐振方程..*5.17 如题5.17图所示;两个相互垂直的谐振动的合振动图形为一椭圆;已知x 方向的振动方程为cm 2cos 6t x π=;求y 方向的振动方程.题5.17图习题6·机械波6.1选择题1一平面简谐波在弹性媒质中传播;在媒质质元从平衡位置运动到最大位移处的过程中:A 它的动能转化为势能.B 它的势能转化为动能.C 它从相邻的一段质元获得能量其能量逐渐增大.D 它把自己的能量传给相邻的一段质元;其能量逐渐减小.2 某时刻驻波波形曲线如图所示;则a;b 两点位相差是Aπ Bπ/2C5π/4 D03 设声波在媒质中的传播速度为u;声源的频率为v s .若声源S不动;而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动;则位于S、R连线中点的质点P的振动频率为A s vB s B v uV u + C s B v V u u + D s Bv V u u - 6.2填空题1频率为100Hz;传播速度为300m/s 的平面简谐波;波线上两点振动的相位差为π/3;则此两点相距____m ..2一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π;则振幅是____;波长是____;频率是____;波的传播速度是____..3 设入射波的表达式为])(2cos[1πλνπ++=xt A y ;波在x =0处反射;反射点为一固定端;则反射波的表达式为________________;驻波的表达式为____________________;入射波和反射波合成的驻波的波腹所在处的坐标为____________________..6.3产生机械波的条件是什么 两列波叠加产生干涉现象必须满足什么条件 满足什么条件的两列波才能叠加后形成驻波 在什么情况下会出现半波损失答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质..两列波叠加产生干涉现象必须满足三个相干条件:频率相同;振动方向相同;在相遇点的位相差恒定..两列波叠加后形成驻波的条件除频率相同、振动方向相同、在相遇点的位相差恒定三个相干条件外;还要求两列波振幅相同;在同一直线上沿相反方向传播..出现半波损失的条件是:波从波疏媒质入射并被波密媒质反射;对于机械波;还必须是正入射..6.4波长、波速、周期和频率这四个物理量中;哪些量由传播介质决定 哪些量由波源决定答:波速由传播介质决定;周期和频率由波源决定..6.5波速和介质质元的振动速度相同吗 它们各表示什么意思 波的能量是以什么速度传播的 答:波速和介质质元的振动速度不相同..波速是振动状态在介质中的传播速度;而质元的振动速度是质元在其平衡位置附近运动的速度..波的能量传播的速度即为波速..6.6振动和波动有什么区别和联系 平面简谐波波动方程和简谐振动方程有什么不同 又有什么联系 振动曲线和波形曲线有什么不同 行波和驻波有何区别答: a 振动是指一个孤立的系统也可是介质中的一个质元在某固定平衡位置附近所做的往复运动;系统离开平衡位置的位移是时间的周期性函数;即可表示为)(t f y =;波动是振动在连续介质中的传播过程;此时介质中所有质元都在各自的平衡位置附近作振动;因此介质中任一质元离开平衡位置的位移既是坐标位置x ;又是时间t 的函数;即),(t x f y =.b 在谐振动方程)(t f y =中只有一个独立的变量时间t ;它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量;即坐标位置x 和时间t ;它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律. 当谐波方程)(cos ux t A y -=ω中的坐标位置给定后;即可得到该点的振动方程;而波源持续不断地振动又是产生波动的必要条件之一.c 振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律;因此;其纵轴为y ;横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置;随时间变化的规律;其纵轴为y ;横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律;即只能给出某一时刻的波形图;不同时刻的波动曲线就是不同时刻的波形图.d 两列频率相同、振动方向相同、在相遇点的位相差恒定、振幅相同、在同一直线上沿相反方向的行波叠加后才会形成驻波..行波伴随有能量的传播;而驻波没有能量的传播..6.7 波源向着观察者运动和观察者向着波源运动都会产生频率增高的多普勒效应;这两种情况有何区别解: 波源向着观察者运动时;波面将被挤压;波在介质中的波长;将被压缩变短;如题6.7图所示;因而观察者在单位时间内接收到的完整数目λ'/u 会增多;所以接收频率增高;而观察者向着波源运动时;波面形状不变;但观察者测到的波速增大;即B v u u +=';因而单位时间内通过观察者完整波的数目λu '也会增多;即接收频率也将增高.简单地说;前者是通过压缩波面缩短波长使频率增高;后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.题6.7图 多普勒效应6.8 已知波源在原点的一列平面简谐波;波动方程为y =A cos Cx Bt -;其中A ;B ;C 为正值恒量.求: 1波的振幅、波速、频率、周期与波长;2写出传播方向上距离波源为l 处一点的振动方程;3任一时刻;在波的传播方向上相距为d 的两点的位相差.6.9 沿绳子传播的平面简谐波的波动方程为y =0.05cos10x t ππ4-;式中x ;y 以米计;t 以秒计.求: 1绳子上各质点振动时的最大速度和最大加速度;2求x =0.2m 处质点在t =1s 时的位相;它是原点在哪一时刻的位相这一位相所代表的运动状态在t =1.25s 时刻到达哪一点6.10 如题6.10图是沿x 轴传播的平面余弦波在t 时刻的波形曲线.1若波沿x 轴正向传播;该时刻O ;A ;B ;C 各点的振动位相是多少2若波沿x 轴负向传播;上述各点的振动位相又是多少解: 1波沿x 轴正向传播;则在t 时刻;有题6.10图6.11 一列平面余弦波沿x 轴正向传播;波速为5 m/s;波长为2m;原点处质点的振动曲线如题6.11图所示. 1写出波动方程;2作出t =0时的波形图及距离波源0.5m 处质点的振动曲线.题6.11图a6.12 如题6.12图所示;已知t =0时和t =0.5s 时的波形曲线分别为图中曲线a 和b ;周期T>0.5s;波沿x 轴正向传播;试根据图中绘出的条件求:1波动方程;2P 点的振动方程.题6.12图6.13 一列机械波沿x 轴正向传播;t =0时的波形如题6.13图所示;已知波速为10 m/s 1;波长为2m;求: 1波动方程;2 P 点的振动方程及振动曲线;3 P 点的坐标;4 P 点回到平衡位置所需的最短时间.6.14 如题6.14图所示;有一平面简谐波在空间传播;已知P 点的振动方程为P y =A cos 0ϕω+t . 1分别就图中给出的两种坐标写出其波动方程;2写出距P 点距离为b 的Q 点的振动方程.题6.14图6.15 已知平面简谐波的波动方程为)24(cos x t A y +=πSI .1写出t =4.2 s 时各波峰位置的坐标式;并求此时离原点最近一个波峰的位置;该波峰何时通过原点题6.15图6.16 题6.16图中a 表示t =0时刻的波形图;b 表示原点x =0处质元的振动曲线;试求此波的波动方程;并画出x =2m 处质元的振动曲线.题6.16图6.17 一平面余弦波;沿直径为14cm 的圆柱形管传播;波的强度为18.0×10-3J/m 2·s;频率为300 Hz;波速为300m/s;求波的平均能量密度和最大能量密度.6.18 如题6.18图所示;1S 和2S 为两相干波源;振幅均为1A ;相距4λ;1S 较2S 位相超前2π;求: 1 1S 外侧各点的合振幅和强度;2 2S 外侧各点的合振幅和强度6.19 如题6.19图所示;设B 点发出的平面横波沿BP 方向传播;它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播;它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ;本题中y 以m 计;t 以s 计.设BP =0.4m;CP =0.5 m;波速u =0.2m/s;求: 1两波传到P 点时的位相差;2当这两列波的振动方向相同时;P 处合振动的振幅;题6.19图6.20 一平面简谐波沿x 轴正向传播;如题6.20图所示.已知振幅为A ;频率为ν;波速为u .1若t =0时;原点O 处质元正好由平衡位置向位移正方向运动;写出此波的波动方程;2若从分界面反射的波的振幅与入射波振幅相等;试写出反射波的波动方程;并求x 轴上 因入射波与反射波干涉而静止的各点的位置.题6.20图6.21 一驻波方程为y =0.02cos20x cos750t SI;求:1形成此驻波的两列行波的振幅和波速;2相邻两波节间距离.6.22 在弦上传播的横波;它的波动方程为1y =0.1cos13t +0.0079x SI试写出一个波动方程;使它表示的波能与这列已知的横波叠加形成驻波;并在x =0处为波节.6.23 两列波在一根很长的细绳上传播;它们的波动方程分别为1y =0.06cos t x ππ4-SI; 2y =0.06cos t x ππ4+SI .1试证明绳子将作驻波式振动;并求波节、波腹的位置;2波腹处的振幅多大x =1.2m 处振幅多大6.24 汽车驶过车站时;车站上的观测者测得汽笛声频率由1200Hz 变到了1000 Hz;设空气中声速为330m/s;求汽车的速率.6.25 两列火车分别以72km/h 和54 km/h 的速度相向而行;第一 列火车发出一个600 Hz 的汽笛声;若声速为340 m/s;求第二列火车上的观测者听见该声音的频率在相遇前和相遇后分别是多少。
振动和波习题课
习题:1. 下面关于声波的说法中正确的是 ( )A. 同一种声波在水中传播时的波长要比空气中传播时的波长要大B. 声波的传播速度与介质的种类及声源的振动频率有关C. 声波不论在什么介质中传播都是纵波D. 声波可以发生反射,也可以发生干涉和衍射2. 右图,两单摆的摆长相同,平衡时两球刚好接触,现将摆球A 向左拉开一小角度后释放,相碰后,两球分开各自做简谐振动。
以m A ,m B 分别代表A ,B 的质量,则: ( )A. 如果m A >m B ,下一次碰撞将发生在平衡位置的右侧。
B. 如果m A <m B ,下一次碰撞将发生在平衡位置的左侧。
C. 无论两球的质量之比是多少,下一次碰撞都不可能在平衡位置的右侧。
D. 无论两球的质量之比是多少,下一次碰撞都不可能在平衡位置的左侧。
3. 单摆的摆长为L ,最大摆角为θ(θ>5º),摆球的质量为m ,摆球由最大位移向平衡位置运动过程中:( ) A. 重力的冲量为gL m 2π B. 合力的冲量为gL m )cos 1(θπ-C. 合力的冲量为)cos 1(2θ-gL mD. 合力的冲量为gL m2π 4. 在波的传播方向上有M 、N 两个质点,相距3.0米。
(小于一个波长)右图为这两个质点的振动图象。
其中实线为M 质点的振动图象,虚线为N 质点的振动图象,则这列波的传播方向和传播速度可能为( )A. 向右传播,v =3米/秒B. 向右传播,v =1米/秒C. 向左传播,v =3米/秒D. 向左传播,v =1米/秒5. 水平弹簧振子的振动图线如图7所示,弹簧振子在1.0s 时的弹性势能是0.40J ,若振子的质量是0.20kg ,则振子在4.0s 时的速度大小是 ;方向是 ;加速度的大小是 。
6. 轻质线绳od的悬点与一单摆的悬点o´相靠近,且处于同一水平线上,如右图所示。
在悬线上穿着一个小球B,它可沿悬线滑动,将单摆的摆球A由偏角小于5º处释放,与此同时将B球由悬点o释放,当A第一次通过它的平衡位置时,正好与滑行中的B球相碰,求B球与悬线之间的摩擦力与B球所受重力之比。
医用物理学 课后习题解答
后是否仍为简谐振动?②合振动的周期是多少?
解: ①由于分振动的频率不同,所以它们合成后将不是简谐振动。②合振动的频率为 100Hz,
周期
T=
1 100
s=0.01s。
8-7 弹簧振子作简谐振动时,若其振幅增为原来的两倍,而频率降为原来的一半,它们的能 量怎样改变?
答:
弹簧振子作简谐振动时,其能量为 E
x A cos( t )
(a)
①第一种情况:位于平衡点右侧 6cm 处,这时位移 x=6cm,将 t=0,A=6cm,x=6cm 代 入(a)式得
6 6 cos 6
解之得, =0。已知 T=2 秒,则
2 2
,将 A、ω、值代入(a)式可得第一种情况
的位移表达式为
x 6 cos t (cm)
x=-A, v=0, a=Aω2
8-3 一个作简谐振动的质点,在 t=0 时,离开平衡位置 6cm 处,速度为零,振动周期为 2s, 求该简谐振动的位移、速度、加速度的表达式。 解:根据题意,t=0 时,质点速度为零,离开平衡位置 6cm,这说明该振动的振幅为 A=6cm, 这时质点可能位于平衡点右侧 6cm 处,或位于平衡点左侧 6cm 处。下面分这两种情况进行 讨论,设该振动方程为:
解:
①已知波源 O 的振动方程为
y
0.06
cos
9
t ,则其振幅为 A=0.06m,角频率
9
,
又知 u=2m·s -1 ,则该波的波动方程为
s
0.06
cos
9
(t
x 2
)
由它可得 x=10m 处的质点振动方程为
y
0.06
cos
9
b 2
物理竞赛--振动和波复习
1 cos 0
3
cos
2
1(m)
tan 0
Asin 0 A cos0
3
0 3或4 3 据题意 0 3
27
[解法二] 因为x x1 x2 cos t 3 cos( t 2)
x
12
3
2
1 cos t
12 32123来自32sint
2 1 cos t 3 sin t
0
作t=0时刻矢量图
AArr22
ArAr
20
x2
100
rr AA11
x
x1
x
A A12 A22 2 A1 A2 cos( 20 10 )
tan 0
A s in 0 Acos 0
A1 sin10 A1 cos 10
A2 sin20 A2 cos 20
注意:
Asin0 0
Acos0
0 (0,
xB 5
5cm
2;
5 4
5
Acos(
2
)
Asin
振动方程为: x 5
2
cos(
4
t
5 4
)cm
v x
t 6s
t 4s
5
2
4
sin(4
t
5 4
)
vA v0 5
2
4
sin
5 4
A
B
o
x
5 cm s1
4
t0
t 2s
习题集p50题2. 如图为用余弦函数表示的一质
点作谐振动曲线, 振动圆频率为
E1212kkAx22mEp1022ckoA12s2k2cA(o2s02t(120mt)02 A) 2
振动与波习题课
6、简谐振动的合成: 简谐振动的合成: 同方向、同频率的简谐振动的合成: 同方向、同频率的简谐振动的合成:
v A2
ϕ2 ϕ ϕ1
v A
v A1
x1
x (t ) = x1 (t ) + x2 (t )
= A cos(ωt + ϕ )
o
合成结果仍为同频率的简谐运动
x2
x
x
A=
2 A12 + A2 + 2 A1 A2 cos( ϕ 2 − ϕ 1 )
2π (r2 − r1 ) = ±2kπ k = 0,1,2,3,.....
λ 相消干涉: 相消干涉:∆ϕ = (ϕ20 − ϕ10 ) − 2π (r2 − r1 ) = ±(2k + 1)π k = 0,1,2,3,..... λ
相位、相位差和初相位的求法: 相位、相位差和初相位的求法:
解析法和 常用方法为解析法 旋转矢量法。 常用方法为解析法和旋转矢量法。 1、由已知的初条件求初相位: 、由已知的初条件求初相位: 已知初位置的大小、正负以及初速度的正负。 ①已知初位置的大小、正负以及初速度的正负。 A [例1]已知某质点振动的初位置 y0 = 且v0 > 0 。 例 已知某质点振动的初位置 2 y = A cos( ω t + ϕ )
A1 sin ϕ 1 + A2 sin ϕ 2 ϕ = arctg A1 cos ϕ 1 + A2 cos ϕ 2
机械波: 二、机械波:
1、产生的条件:波源及弹性媒质。 产生的条件:波源及弹性媒质。 2、描述波的物理量: 、描述波的物理量: 波长: 波传播时, 在同一波线上两个相邻的相位差为2 波长 波传播时 在同一波线上两个相邻的相位差为 π 的 质元之间的距离 ( λ )。 周期:波前进一个波长的距离所需的时间( 周期:波前进一个波长的距离所需的时间(T )。 频率:单位时间内波动传播距离中所包含的完整波长的数目(ν)。 频率:单位时间内波动传播距离中所包含的完整波长的数目 。 波速: 波在介质中的传播速度为波速。( 。(u 波速 波在介质中的传播速度为波速。( ) 各物理量间的关系: 各物理量间的关系:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k-角波数
t 2π t T
同一波线上不同质点在同一时刻的相位差:
2π
x
k x
6
四 、波动的能量 振动的能量 波的平均能量密度
1 2
注意区别特性
2 2
w= ρAω
波的强度I P = w u = 1 ρ A 2ω2u I = 2 (能流密度) S 波动能量特征: dE不守恒 能量传递 动能势能 同相位 dEk = dEp 同时达最大(小), 例:平衡位置处同时最大;最大位移处同时最小 谐振动能量特征: 守恒 动能势能内部转换 恒定 7 例:平衡位置处动能最大;最大位移处势能最大
t1时刻各质点的位移(波形方程4)
波动方程的建立
• 由振动方程建立波动方程(10-11,14) O点的 任一点的 • 由波形图建立波动方程(10-12,13,15) t=0 t=t’
5
波函数反映了波的时间、空间双重周期性
T 时间周期性
空间周期性
u
k
2
同一质点在不同时刻的相位差:
2π y 入振=Acos[ ωt - L + π ] λ A处相位突变 2π y 反振=Acos[ ωt - L + π + π ] λ 对反射波,考虑任一点p的振动, 2π ( L x) 它落后A的相位为 λ 2π 2π y 反波=Acos[ ωt - L + 2π - (L - x)] λ λ
26
π
当波从波密介质垂直入射到波疏介 质, 被反射到波密介质时形成波腹. 入 射波与反射波在此处的相位时时相同, 即反射波在分界处 不产生相位跃变.
14
例1 在竖直平面内半径为R的一段光滑圆弧 形轨道上,放一小物体,使其静止于轨道最 低处,然后轻碰一下此物体,使其沿轨道作 来回小幅度运动,试证: (1)此物体作简谐运动
E = Ek + EP = kA
1 2
Ek = mv
1 2
2
Ep = kx
2
1 2
2
波的叠加原理
动画
8
波的干涉 动画
频率相同、 振动方向平行、
相位相同或相位
差恒定的两列波 相遇时,使某些 地方振动始终加 强,而使另一些
地方振动始终减
弱的现象,称为 波的干涉现象.
9
五 波的干涉 (条件) 直接考虑相遇处的相位差
(2)此简谐运动的周期为
R
R T 2π g
mg
15
•分析受力
•化为标准式
2
d Ft mg sin ma t mR mR 2 dt
2
d g g 2 sin 2 dt R R
•得到
g R R T 2π g
•教材习题9-8,9 •注意选平衡位置为坐标原点
波节 波腹
4 Hz
1.5 m
u 6 m s y A cos 2 π(t
1
x
)
4πx π 3 (2k 1) x (2k 1) 3 2 8
4πx 3 kπ x k 3 4 k 0,1,
24
例4 一列平面谐波沿 x 方向传播, 波长为λ, 已知 在xB=λ/2处质点的振动方程为 yB= Acosωt 求1)该波的波动表式y入波=? u 2) 若在x=L处 (L> λ/2 ) λ p A 放一反射面,如图 , o 2 B • • • • x x 则y反波=? L 解1): 考虑任一点p的振动, 2π λ
+ Q0 + +
L
C
Q0
-
-
振荡电偶极子
29
偶极振子发射的电磁波 极轴 S(k )
(C) 2 A cos2x /
( D) |2 A cos2x / |
[ D ]
22
6 两波在一很长的弦上传播,其波动方程分别为:
π y2 0.04 cos (4 x 24t ) 3 求: (1) 两波的频率、波长、波速;
(2)两波叠加后的节点位置;
π y1 0.04 cos (4 x 24t ) 3
2 max
Ek max = mv
= mω A = 2.0 ×10 J
1 2
2
2
-3
3)因动能最大时,势能为零 -3 2 总能量 E = Ek max = 2.0 × 10 J k = mω 4)当Ek=Ep时, Ep=1.0×10-3J=(1/2) kx2
x 0.707cm
19
例4 一沿+x向传播的平面谐波,t=t’时刻的波形 Y(cm) u=12m/s 如图示。试求: t = t’ t’+T/ 10 1) o点的振动方程? o 12 24 X(cm) 2)该波的波动表式? -10 3)x=16cm处的质点与o 处质点的振动相位差? 4)画出t’+T/4时刻的波形曲线。 ω = 2 π ν = π u = λ ν 由 t=t ’ ,y=0,v>0 解: φ0 =3π/2 -πt’ →ωt’+φ0=3π/2
π 2 y 0 . 04 cos ( 4 x 24 t ) ( 1) 1 0.04 cos 2 (8t x ) 3 3 π 2 y2 0.04 cos (4 x 24t ) 0.04 cos 2 (8t x ) 3 3
4πx cos8πt (2) y y1 y2 0.08cos 3
o点振动方程
x 3 ) - π t'+ 2 π ] cm 波动表式 y 0 = 10 cos[π (t 12 ω π 4
相位差 Δ φ = - Δ x = - (16 - 0) = - π u 12 3
20
y 0 = 10 cos[π t - π t'+ π ] cm
3 2
5波的干涉
2 1
h
S 1 D强 S 2 D弱 求波长λ?由题意,对D处
解:
(3)叠加后振幅最大的那些点的位置.
π (1) y1 0.04 cos (4 x 24t ) x 3 y A cos 2 π ( t ) 比较 π y2 0.04 cos (4 x 24t ) 3 得: 1 4 Hz 1.5 m u 6 m s 23
2 2 A A A 合振幅 1 2 2A1A2 cos(2 1) =2k A=A1+A2 加强 初相差Δ = 2-1 =(2k+1) A= A1-A2 削弱
2
横波: 特征:具有交替出现的波峰和波谷.
纵波:特征:具有交替出现的密部和疏部.
3
三 波动表式的建立及其物理意义
旋转矢 量 A的 端点在 x 轴上 的投影 点的运 动为简 谐运动.
x A cos(t )
1
振动与波习题课
一、主要内容归纳 1 谐振动的判定及方程的建立
受力: f = -kx
d x 2 x 0 2 dt
2
x A cos( t )
k m
2
2 两个同方向同频率谐振动的合成
振动: yo (t ) A cos(t )
落后取“-” x 波动 y( x, t ) A cos[ ( t ) ] 超前取 “+” u y(x,t) -波线上任一点任意时刻的位移 x=x1 y = Acos[(t – x1/u)+φ]= y(t) x1处质点的振动方程 t=t1 y = Acos[(t1 – x/u)+φ]= y(x)
若I1=I 2 A
2
k = 0,± 1,± 2
2
波强
Δφ I = 4I1 cos 2
Imax = 4I1 Imin = 0
10
驻 波 的 形 成
11
3 驻波的特点
振幅:A=A(x), 与t 无关,有波腹、波节 相位: 两波节之间的各质点同相位振动 任一波节两侧的质点反相位振动 波节处-相位突变 能量: 无定向传播。
R FN mg
16
2π
例2一轻弹簧在60N的拉力下伸长30cm,现在下端悬 挂4kg的物并使其静止。然后将物向下拉10cm后由 静止释放并开始计时。求1)物体的振动方程?2) 物体在平衡位置上方5cm处所受拉力?3)物体从第 一次越过平衡位置时刻起到它运动到上方5cm处 所需的最短时间?
∵t=0,x0=10cm,v0=0 ∴A=10cm, φ=0
练习 一质点同时参与两个同方向的简谐运动, 其运动方程分别为:
1 x1 5 10 cos(4t π) 3 2 2 x2 3 10 cos(4t π) 3
2
4π 3
o 3 5 x
π 3
画出两运动的旋转矢量图, 并求合运动的运动方程. 解:
1 x x1 x2 2 10 cos(4t π) 3
2) 合振动
合振幅
2π 2π y = 2A cos x cos t λ T
y 反=Acos2 π( - ) T λ
2π 2 A 合 = 2 A cos xλ λ 3 1 = 2A(- 2 ) = A
28
9-7;路
电能与磁能交替转换
1 2、 提高频率 辐射功率 2 LC 3、开放 L-C 电路 C L →偶极振子(天线)
r'
So
r
d
D o
H 减弱 Δ r = 2r'-d = (2k + 1)λ (2)
加强 Δ r = 2r - d = kλ
(1)
2
式中 r = H 2 + (d 2) 2
由(1) (2)可求
注:一般地