高二数学第二章《立体几何》单元测试题 人教版
高二数学立体几何试题及答案
【模拟试题】一. 选择题〔每题5分,共60分〕 1. 给出四个命题:①各侧面都是正方形的棱柱肯定是正棱柱;②各对角面是全等矩形的平行六面体肯定是长方体; ③有两个侧面垂直于底面的棱柱肯定是直棱柱; ④长方体肯定是正四棱柱。
其中正确命题的个数是〔 〕 A. 0 B. 1C. 2D. 32. 以下四个命题:①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的全部面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。
正确的命题有________个A. 1B. 2C. 3D. 43. 长方体的一个顶点处的三条棱长之比为1:2:3,它的外表积为88,那么它的对角线长为〔 〕 A. 12B. 24C. 214D. 4144. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm ,深为8cm 的空穴,那么该球的半径是〔 〕 A. 8cmB. 12cmC. 13cmD. 82cm5. 一个圆柱的侧面绽开图是一个正方形,这个圆柱的全面积为侧面积的比是〔 〕A. 122+ππB. 144+ππC.12+ππD. 142+ππ6. 直线l m ⊥⊂平面,直线平面αβ,有下面四个命题:①αβ//⇒⊥l m ;②αβ⊥⇒l m //;③l m //⇒⊥αβ;④l m ⊥⇒αβ//。
其中正确的两个命题是〔 〕A. ①②B. ③④C. ②④D. ①③7. 假设干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,假设将这些水倒入轴截面是正三角形的倒圆锥形器皿中,那么水面的高度是〔 〕 A. 63cmB. 6cmC. 2182D. 31238. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是〔 〕A.63πcmB. 3233πcmC. 833πcmD. 433πcm9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是〔 〕 A. m n m n ⊥,,////αβ B. m n m n ⊥=⊂,,αβα C. m n n m //,,⊥⊂βαD. m n m n //,,⊥⊥αβ10. 假如直线l 、m 与平面αβγ、、满意:l l m m =⊂⊥βγααγ ,,,//,那么必有〔 〕A. αγ⊥⊥和l mB. αγβ////,和mC. m l m //β,且⊥D. αγαβ⊥⊥且11. 正方体的八个顶点中,有四个点恰好为正四面体的顶点,那么该正四面体的体积与正方体的体积之比为〔 〕 A. 13:B. 12:C. 2:3D. 1:312. 向高为H 的水瓶中注水,注满为止,假如注水量V 与水深h 的函数关系的图象如下图,那么水瓶的形态是〔 〕二. 填空题〔每题4分,共16分〕13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的外表积是__________。
高二数学立体几何试题答案及解析
高二数学立体几何试题答案及解析1.如图,在腰长为2的等腰直角三角形ABC内任取一点P,则点P到直角顶点A的距离小于的概率为【答案】【解析】点P到直角顶点A的距离小于,则点P在以点A为圆心为半径的扇形区域内,则其概率为2.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角3.已知正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,则该四棱台的侧面积等于.【答案】.【解析】因为正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,所以正四棱台的斜高,则该四棱台的侧面积为.【考点】正四棱台.4.已知空间中两点A(1,2,3),B(4,2,a),且,则a=()A.1或2B.1或4C.0或2D.2或4【答案】D【解析】或【考点】空间两点间距离5.三棱锥A—BCD的四个顶点同在一个球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=1,则球O的表面积等于.【答案】【解析】易知,棱AD的中点即为球心O.由已知条件可得AD=.所以球半径为,则其表面积等于.【考点】多面体与其外接球问题.6.在正方体中,下列几种说法正确的是()A.与成角B.与成角C.D.【答案】A【解析】直线与是异面直线,而∥,所以即为与所成的角.显然三角形是等边三角型,所以.故选A.同时可分别证明答案B、C、D是错误的.【考点】异面直线所成的角及其是否垂直的问题.7.如图是一个几何体的三视图,其中正视图与左视图都是全等的腰为的等腰三角形,俯视图是边长为2的正方形,(1)画出该几何体;(2)求此几何体的表面积与体积.【答案】;【解析】根据题意可得该几何体是正四棱锥,底面为2的的正方形,因为侧面斜高为,所以可得高为2,即可求得表面积与体积试题解析:(1)此几何体是正四棱锥,它的底为边长为2的正方形,侧面斜高为表面积为体积为【考点】1.三视图;2.几何体的体积、表面积公式8.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9B.10C.11D.12【答案】D【解析】根据题中所给的几何体的三视图,可以断定该几何体是下边是一个圆柱,上边是一个球体,且球的半径和圆柱的底面圆的半径是相等的,可知其表面积是圆柱的表面积加上球的表面积,即为,故选D.【考点】根据几何体的三视图,求其表面积.9.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;【答案】(1)(2)【解析】(1)取中点,,连接,则为所求二面角的平面角,找出二面角的平面角再根据题目所给条件即可计算出二面角的大小。
高二数学立体几何试题
高二数学立体几何试题1.几何体的三视图如图,则几何体的体积为()A.B.C.D.【答案】D【解析】此几何体的下面是半径为1,高为1的圆柱,上面是半径为1,高为1的圆锥,所以体积是。
【考点】1.三视图;2.几何体的体积.2.若一个球的表面积为,现用两个平行平面去截这个球面,两个截面圆的半径为.则两截面间的距离为.【答案】1或7【解析】由球的表面积为知,球的半径为.有两种可能情况,一是两截面在球心同侧,二是两截面在球心两侧. 所以由球的截面性质定理得,两截面间的距离为或,答案为1或7.【考点】球的截面性质定理.3.在一座高的观测台顶测得对面水塔塔顶的仰角为,塔底俯角为,则这座水塔的高度是__________.【答案】【解析】如图所示,AB为观测台,CD为水塔,AM为水平线,依题意得:,,,∴,,,∴cm.【考点】解斜三角形.【思路点睛】由已知条件得到,,在直角三角形中,用勾股定理求出CM的边长,再求出CD的值即可.4.如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)求证://平面;【答案】(Ⅰ);(Ⅱ)见解析【解析】(Ⅰ)根据已知可得平面,三棱锥的体积可表示为其中高为,即可求得;(Ⅱ)连接,,连接,通过证得四边形为平行四边形,可得平面试题解析:(Ⅰ)三棱锥的体积为 --6分(Ⅱ)证明:连接,,连接为中点,且为矩形,所以四边形为平行四边形,..【考点】1.求体积;2.证明线面平行5.在空间直角坐标系中,点关于轴对称的点的坐标为()A.B.C.D.【答案】B【解析】空间点关于轴对称的点横坐标相同,纵坐标竖坐标互为相反数,因此点关于轴对称的点的坐标为【考点】空间点的坐标6.(本小题满分12分)如图,在正四棱台中,=1,=2,=,分别是的中点.(1)求证:平面∥平面;(2)求证:平面平面;(3)(文科不做)求直线与平面所成的角.【答案】(1)详见解析;(2)详见解析;(3)60°【解析】(1)连接,分别交,,于,连接,.由面面平行的性质定理得,∥,所以∥平面,同理,.根据相似可知,=,又因为,=,所以平行且等于,平行且等于,∥平面,进而得到结论;(2)连接,由正棱台知,,⊥,所以⊥面,由面面垂直的判定定理即可证明结论;(3)法一:,计算有=,=="2," 体积转化得到线面角的补角是30°,即可求出结果;法二:=="2,"=="2," 所以⊥,⊥,所以⊥面,过作⊥交于,得到⊥.△为等边三角形,⊥,所以⊥面,所以∠为与面所成角,即可求出结果.试题解析:(1)连接,分别交,,于,连接,.由面面平行的性质定理得,∥,所以∥平面,同理,.根据相似可知,=,又因为,=,所以平行且等于.所以平行且等于,所以∥平面,平面∥平面(2)连接,由正棱台知,,⊥,所以⊥面,所以平面⊥平面(3)法一:,计算有=,=="2," 体积转化得到线面角的补角是30°,所以所求角为60°法二:=="2," =="2," 所以⊥,⊥,所以⊥面,过作⊥交于,得到⊥.△为等边三角形,⊥,所以⊥面,所以∠为与面所成角为60°.……12分.【考点】1.面面平行的判定定理;2.面面垂直定理的判定定理.7.下列命题中真命题是()A.若,则;B.若,则;C.若是异面直线,那么与相交;D.若,则且【答案】A【解析】如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直,所以选项A正确.一个平面内的两条相交直线分别平行于另一平面,则这两个平面平行.显然选项B错误;若是异面直线,那么与相交或平行,所以选项C错误;若,则且或n在某一平面内,故选项D错误;故选A.【考点】判断命题的真假性.8.长、宽、高分别为的长方体,沿相邻面对角线截取一个三棱锥(如图),剩下几何体的体积为.【答案】【解析】根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即.【考点】几何体的体积.9.如图所示,为正方体,给出以下五个结论:①平面;②平面;③与底面所成角的正切值是;④二面角的正切值是;⑤过点且与异面直线和均成角的直线有2条.其中,所有正确结论的序号为_______.【答案】①②④【解析】对于①,因为,且面,面,,所以,正确;对于②,由三垂线定理得,同理可得,又于,所以平面,②正确;对于③,连接,是与底面所成角,在中,,③不对;对于④,连接交于点,,连接,所以为二面角的平面角,解三角形,④正确;对于⑤,把直线平移到跟共面,平移后有一个公共点,根据对称性过点且与异面直线和均成角的直线有4条,⑤错误.【考点】命题真假的判断【思路点睛】在判断线面平行时一般采用构造平行四边形法、中位线法、构造平性平面法,所以要根据题设中所给的条件选择合适的方法;在判断线面垂直时,会选择证明一条直线垂直一个面内的相交直线或者用面面垂直证明线面垂直,根据条件选择合适的方法;求线面角的三角函数值,关键在于作出其平面角,然后通过解三角形,求出其所求三角函数值.10.(2012•沈河区校级模拟)在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.(Ⅰ)求证:AB∥平面DEG;(Ⅱ)求证:BD⊥EG.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)由AD∥EF,EF∥BC,知AD∥BC.由BC=2AD,G是BC的中点,知ADBG,故四边形ADGB是平行四边形,由此能够证明AB∥平面DEG.(Ⅱ)由EF⊥平面AEB,AE⊂平面AEB,知EF⊥AE,由AE⊥EB,知AE⊥平面BCFE.过D 作DH∥AE交EF于H,则DH⊥平面BCFE.由此能够证明BD⊥EG.解:(Ⅰ)证明:∵AD∥EF,EF∥BC,∴AD∥BC.又∵BC=2AD,G是BC的中点,∴AD BG,∴四边形ADGB是平行四边形,∴AB∥DG.∵AB⊄平面DEG,DG⊂平面DEG,∴AB∥平面DEG.(Ⅱ)证明:∵EF⊥平面AEB,AE⊂平面AEB,∴EF⊥AE,又AE⊥EB,EB∩EF=E,EB,EF⊂平面BCFE,∴AE⊥平面BCFE.过D作DH∥AE交EF于H,则DH⊥平面BCFE.∵EG⊂平面BCFE,∴DH⊥EG.∵AD∥EF,DH∥AE,∴四边形AEHD是平行四边形,∴EH=AD=2,∴EH=BG=2,又EH∥BG,EH⊥BE,∴四边形BGHE为正方形,∴BH⊥EG,又BH∩DH=H,BH⊂平面BHD,DH⊂平面BHD,∴EG⊥平面BHD.∵BD⊂平面BHD,∴BD⊥EG.【考点】直线与平面垂直的性质;直线与平面平行的判定.11.如图,在四棱锥中,平面,底面是菱形,AB=2,.(Ⅰ)求证:平面PAC;(Ⅱ)若,求与所成角的余弦值;【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)根据菱形的条件,对角线,又根据平面,也能推出,这样就能证明直线垂直于平面内的两条相交直线,则线面垂直,即平面;(Ⅱ)取中点,设,连结,,根据中位线平行,就将异面直线所成角转化成相交直线所成角,即即为所求角,根据平面几何的几何关系,求三边,然后根据余弦定理求角.试题解析:(Ⅰ)证明:因为平面,所以.在菱形中,,且,所以平面.(Ⅱ)解:取中点,设,连结,.在菱形中,是中点,所以.则即为与所成角。
精选最新版2019高中数学单元测试《立体几何初步》专题考核题(含标准答案)
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行2.若3sin (0)52x x π=--<<,则tan x =_____________.二、填空题3.如图,有一圆柱形的开口容器(下表面密封),其轴截面是边长为2的正方形,P 是BC 中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一米粒,则这只蚂蚁取得米粒所需经过的最短路程为 .4.把半径为3cm ,中心角为π32的扇形卷成一个圆锥形容器,这个容器的容积为:__________.5.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________(2013年高考上海卷(理))6.空间中可以确定一个平面的条件是 _.(填序号) ①两条直线; ②一点和一直线; ③一个三角形; ④三个点.7.设,,a b g 为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若,,//,//,m n m n ⊂⊂a a b b 则//a b ; ②//,,l ⊂a b a 若则//l b ; ③,,,//,l m n l m ===若ab bg ga 则 //m n ; ④若⊥⊥a gb g ,,则//a b ; 则其中所有正确命题的序号是 ▲ .8.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.9.设正四棱锥的侧棱长为1,则其体积的最大值为 ▲ .10.如图,在边长为a 的正方体ABCD-A 1B 1C 1D 1中,E 是棱AB 上一点,M 是棱D 1C 1上一点,则三棱锥M-DEC 的体积是 ▲11.给出下列命题:DABC1C1D 1A1BD C1A 1B 1C 1D .EBAM.(第6题图)(1)若直线a 在平面α外,则直线a 与平面α没有公共点;(2)两个平面平行的充分条件是其中一个平面内有无数条直线平行于另一个平面; (3)设a 、b 、c 是同一平面内三条不同的直线,若a ⊥b ,a ⊥c ,则b ∥c ; (4)垂直于同一平面的两个平面平行;(5)若,a b 为异面直线,则过不在,a b 上的任一点,可作一个平面与,a b 都平行. 上面命题中,真命题...的序号是 .12.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 . (2011年高考全国卷理科16)13.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,,AB BC PA AB BC ⊥==,则PB 与平面ABC 所成的角为_______,PC 与平面PAB 所成的角的正切值等于____________ CBAP14.在长方体1111ABCD A B C D -中,若13,4AB BC AA ===,求1A B 和1B C 所成角的余弦值。
高中数学第二册(下B)立体几何单元测试题-旧人教[原创
上杭二中2006—2007学年第二学期三月份月考高二数学试题(考试时间:120分钟 满分:150分)一.选择题(本大题共12小题,每小题5分,共60分)1.过空间三个不同的点可以确定的平面的个数是 ( C ) A . 1个 B .无数个 C . 1个或无数个 D .无法确定2.两条异面直线是指 ( D )A .分别位于两个不同平面内的两条直线;B .空间内不相交的两条直线;C .某一平面内的一条直线与这个平面外的一条直线;D .空间中两条既不平行也不相交的直线。
3.在空间中,有下列命题:①有两组对边相等的四边形是平行四边形。
②四边相等的四边形是菱形。
③平行于同一条直线的两条直线平行。
④连结空间四边形各边中点得到的四边形一定是平行四边形。
上述命题中,真命题的个数是( B )个A . 1B . 2C . 3D . 4 4.三棱锥P —ABC 中,若PA ⊥平面ABC ,∠ACB =90°,那么在三棱锥的侧面和底面中,直角三角形的个数为 ( A ) A .4个 B . 3个C . 2个D . 1个5.已知P 是矩形ABCD 所在平面外一点,PA ⊥平面 ABCD ,则下列各式中,可能不成立的是( B )A .0=⋅AB PAB .0=⋅BD PCC .0=⋅AB PD D .0=⋅CD PA6.点P 在正方形ABCD 所在平面外,PD ⊥平面 ABCD ,PD =AD ,则PA 与BD 所成的角为( C )A . 30°B . 45°C . 60°D .90°7.在△ABC 中,∠ACB =90°,点P 是平面ABC 外一点,PA =PB =PC ,AC =12,P 到平面ABC 的距离为8,则P 到BC 的距离为 ( C )A . 6B . 8C . 10D . 128.一棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:2,则此棱锥的高被分成的两段(自上而下)之比为 ( D ) A .2:1 B .1:4 C .)12(:1+ D .)12(:1- 9.在北纬60°圈上有A 、B 两地,它们的纬线圈上的劣弧长等于R 2π(R 为地球半径),则这两点的球面距离是 ( A )A .R 3πB .4arcsinπ⋅R C .4arcsin2π⋅R D . 2R10.自二面角内一点,到两个面的距离分别为22和4 ,到棱的距离为24,则此二面角的度数为 ( D )A . 60°B . 75°C . 165°D .75°和165°11.(理科)直平行六面体的底面是菱形,一个底面面积为4,两个对角面面积分别为5和6,那么它的体积为 ( C )A .302B .30C .152D . 154(文科)已知一个正四面体的顶点是一个正方体的顶点,那么正方体的表面积是正四面体的表面积的( C )倍A .22 B . 36C . 3D .2612.(理科)长方体一个顶点上的三条棱长分别是3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是( C )A . π220B .π225C .π50D . π200(文科)设三棱锥的三个侧面两两互相垂直,且侧棱长均为32,那么其外接球的面积为( C ) A . π12 B .π32 C .π36 D . π48 二.填空题(本大题4小题,每小题4分,共16分)13.已知直线a ∥平面α,且距离为1,则到直线a 和平面α距离都为54的点的轨迹为是 .[两条平行直线]14.已知平行六面体1111D C B A ABCD -中,11===AA AD AB ,且BAD ∠=AD A 1∠=AB A 1∠=θ,则1AC = .[θcos 63+]15.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱1DEB 1BAFD 1 C A 1CB C D A BC D 1111 E O②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 [②④](写出所有正确结论的编号).16.有六根细木条,其中较长的两根木条长分别为3,2,其余四根长均为1,若用它们搭成一个三棱锥,则其中两条较长的棱所在直线所成的角的余弦值为 。
高中数学立体几何测试题(10套)
∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
高二数学立体几何单元测试题
高二数学立体几何第一二章测试卷必修2班级编号姓名得分:一、 选择:12×5=60分 1、经过空间任意三点作平面 ()A .只有一个B .可作二个C .可作无数多个D .只有一个或有无数多个2、两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是 ()A .cm 77B .cm 27C .cm 55D .cm 2103.已知α,β是平面,m ,n 是直线.下列命题中不正确的是() A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β4.在正三棱柱所成的角的大小为与则若中B C AB BB AB C B A ABC 111111,2,=-()A .60°B .90°C .105°D .75°5、在正方体1111ABCD A B C D -中,下列几种说法正确的是()A 、11AC AD ⊥B 、11DC AB ⊥C 、1AC 与DC 成45o 角D 、11AC 与1B C成60o 角6、如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点, 那么异面直线EF 与SA 所成的角等于()A .90°B .45°C .60°D .30°7、异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为()A .[30°,90°]B .[60°,90°]C .[30°,60°]D .[60°,120°]8、PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是 ()A .21B .22 C .36 D .33 9、如图,PA ⊥矩形ABCD ,下列结论中不正确的是() A .PB ⊥BC B .PD ⊥CDC .PD ⊥BDD .PA ⊥BDA10、设M 是球心O 的半径OP 的中点,分别过,M O 作垂直于OP 的平面,截球面得两个圆,则这两个圆的面积比值为:()(A)41 (B)12 (C)23 (D)3411、如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影必在()(A )直线AB 上(B )直线BC 上 (C )直线AC 上(D )△ABC 内部12、.(08年海南卷12)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a+b 的最大值为() A.22 B.32D.52一、 填空:4×4=16分13、长方体一个顶点上三条棱的长分别为3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是14、已知球内接正方体的表面积为S ,则球体积等于.15、若AC 、BD 分别是夹在两个平行平面?、?间的两条线段,且AC =13,BD =15,AC 、BD 在平面?上的射影长的和是14,则?、?间的距离为.16、从平面?外一点P 引斜线段PA 和PB ,它们与?分别成45?和30?角,则?APB 的最大值、 最小值分别是。
人教版A版必修二第二章立体几何复习题及答案
人教版A版必修二第二章立体几何复习题及答案必修二第二章复习题班级________姓名________一、多项选择题上,a,cad分别取点e,f,g,使1的三棱锥a?bcd侧棱abae∶eb?af∶fc?ag∶gd?2∶1,记o为三平面bcg,cde,dbf的交点,则三棱锥o?bcd 的体积A等于()1.如图,在体积为a.19b.18c.17d.十四2.木星的体积约是地球体积的24030倍,则它的表面积是地球表面积的()ba.60倍b、 6030次c.120倍d、 12030xefgodc3。
三角金字塔p?在ABC中,PA、Pb和PC相互垂直,而PC?1,爸爸?x、 pb?y、 x?Y4.三角金字塔p?abc体积的最大值()1.a.1.b.3c.23d。
不在场4.一条直线和直线外不在同一条直线上的三点所确定的过该直线的平面有()a.1个b.2个c.3个d.至多3个5.异面直线a,b,a⊥b,c与a成30角,则c与b成角范围是()90]a.[60,??90]b.[30,??c.[60,120]d.[30,120]6.在立方体中?在a1b1c1d1中,有()a.4条线,其中表面的对角线为60,AD1b.6条c、第八条d.10条7.如果两个角落??L与飞机的锐角是?,?如果与边L的距离分别为22、4和42,则二面角的大小为()a.45或30b.15或75c.30或60d.15或608.对于以下四个命题,确定结论的数量为()①若三条直线两两相交,则它们组成的图形为平面图形②一条直线和一个点确定一个平面③若四点不共面,则每三点一定不共线④三条平行线确定三个平面a.1个b.2个c.3个d.4个9.下列命题中正确的是()a、两条直线可以确定一个平面B。
一组两边相对的平行四边形是一个平面图c。
一个点和一条直线可以确定一个平面D。
三条相交的线必须共面。
10给出以下四个命题,其中正确的一个是()①在空间若两条直线不相交,则它们一定平行②平行于同一条直线的两条直线③一条直线和两条平行直线的一条相交,那么它也和另一条相交④ 空间中有四条直线a、B、C和D。
高二数学立体几何试题答案及解析
高二数学立体几何试题答案及解析1.(本题满分10分)把边长为60cm的正方形铁皮的四角切去边长为xcm的相等的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,问x取何值时,盒子的容积最大,最大容积是多少?【答案】16000【解析】设长方体高为xcm,则底面边长为(60-2x)cm.(0<x<30)…1分长方体容积(单位:),…3分…5分令解得x=10,x=30(不合题意合去)于是…7分在x=10时,V取得最大值为…10分2.已知三棱锥满足,则点在平面上的射影是三角形的心.【答案】外【解析】,设点在平面上的射影是.则,所以是外心.【考点】射影定理3.(本题满分16分,第(1)小题7分,第(2)小题9分)如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等.铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm,加工中不计损失).(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为mm,求钉身的长度(结果精确到mm).【答案】(1);(2)【解析】(1)观察铆钉的面积,钉身为圆柱形的侧面积,加半球的底面积加半球面的面积;(2)将钉身圆柱捶打成钢板厚的圆柱加一个半球形的帽,所以利用等体积建立方程,求的钉身的长度.试题解析:解:设钉身的高为,钉身的底面半径为,钉帽的底面半径为,由题意可知:圆柱的高圆柱的侧面积半球的表面积所以铆钉的表面积()(2)设钉身长度为,则由于,所以,解得答:钉身的表面积为,钉身的长度约为.【考点】1.组合体的表面积;2.组合体的体积;3.等体积.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】【解析】由三视图可知原几何体如图所示:故几何体的体积,答案选B.【考点】空间几何体的三视图与体积5.直三棱柱中,,,、分别为、的中点.(1)求证:;(2)求异面直线与所成角的余弦值.【答案】(1)见解析(2)【解析】(1)以为原点,以,,为,,轴建立空间直角坐标系.设,计算与的数量积即可得到(2)同理可计算,利用向量的夹角的余弦公式可得向量与的余弦值,亦即异面直线与所成角的余弦值试题解析:由题知平面,,以为原点,以,,为,,轴建立空间直角坐标系.设,,,,,,,,,,,所以;(2),设异面直线与所成角为,则有【考点】向量法解决空间几何中的直线与直线垂直和异面直线所成的角.6.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面和平面有不同在一条直线上的三个交点【答案】C【解析】A如果三点在一条直线上,则不能确定一个平面;B四边形可以为空间中的三棱锥;C梯形两平行边确定一个平面;D平面和平面相交所有的点都在交线上,所以三个点一点在同一条直线上,故选择C【考点】空间点、线、面7.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为,故选D.【考点】空间几何体的三视图.8.在长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,,则与所成角的余弦值为【考点】空间向量求异面直线所成角9.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为,则三棱锥O-AB1D1的体积为_____________.【答案】【解析】【考点】棱锥体积10.设为不同的平面,为不同的直线,则的一个充分条件为().A.,,B.,,C.,,D.,,【答案】D【解析】一条直线垂直于两个互相垂直的平面的交线,则这条直线与这两个平面中的某一平面可能垂直也可能不垂直,所以选项A错误;同理,可说明B、C不正确;若,,,则∥,,所以。
2019年人教版高二数学必修2【1.2空间几何体的结构】单元测试卷及解析
2019年人教版高二数学必修2【1.2空间几何体的三视图和直观图】单元测试卷考试时间:100分钟;满分:120分分卷I一、选择题(共12小题,每小题4.0分,共48分)1.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中正确的是()A.①②B.②③C.①③D.①②③2.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.倍B.2倍C.倍D.倍3.如图所示,△A′B′C′是水平放置的△ABC的斜二测直观图,其中O′C′=O′A′=2O′B′,则以下说法正确的是()A.△ABC是钝角三角形B.△ABC是等腰三角形,但不是直角三角形C.△ABC是等腰直角三角形D.△ABC是等边三角形4.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形5.水平放置的△ABC,有一边在水平线上,用斜二测画法作出的直观图是正三角形A′B′C′,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.A.③①②B.①②③C.③②④D.④②③7.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④8.已知△ABC,选定的投影面与△ABC所在平面平行,则经过中心投影后所得的△A′B′C′与△ABC的关系是()A.全等B.相似C.不相似D.以上都不对9.一条直线在平面上的平行投影是()A.直线B.点C.线段D.直线或点10.一个几何体的三视图如图所示,则该几何体的直观图可以是()A.B.C.D.11.如图是某物体的三视图,根据物体的三视图描述该物体的形状是()A.正五边形B.正六棱柱C.正五棱柱D.正方体12.一个几何体的三视图如图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台分卷II二、填空题(共4小题,每小题4.0分,共16分)13.如图,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是________.14.如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.15.如图,E,F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把所有可能的序号都填上)16.如图所示,桌面上放着一个半球,则它的三视图中,与其他两个视图不同的是________.(填“正视图”“侧视图”或“俯视图”)三、解答题(共7小题,每小题8.0分,共56分)17.用斜二测画法画边长为4 cm的水平放置的正三角形(如图)的直观图.(2)画出对应的x′轴、y′轴,使∠x′O′y′=45°.18.根据图①②③所示的几何体的三视图,想象其实物模型,画出示意图.19.如图是同一个圆柱的不同放置,阴影面为正面,分别画出它们的三视图.20.说出下面的三视图表示的几何体的结构特征.21.画出一个正三棱台的直观图.(尺寸:上、下底面边长分别为1 cm,2 cm,高为2 cm)(2)过O作z轴,使∠xOz=90°,在z轴上截取OO′=2 cm,作上底面等边三角形的直观图△A′B′C′,其中B′C′=1 cm,连接AA′,BB′,CC′,得正三棱台的直观图.【解析卷】2019年人教版高二数学必修2【1.2空间几何体的三视图和直观图】单元测试卷考试时间:100分钟;满分:120分分卷I一、选择题(共12小题,每小题4.0分,共48分)1.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中正确的是()A.①②B.②③C.①③D.①②③【答案】B【解析】根据画三视图的规则“长对正,高平齐,宽相等”可知,几何体的俯视图不可能是圆和正方形.2.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.倍B.2倍C.倍D.倍【答案】A3.如图所示,△A′B′C′是水平放置的△ABC的斜二测直观图,其中O′C′=O′A′=2O′B′,则以下说法正确的是()A.△ABC是钝角三角形B.△ABC是等腰三角形,但不是直角三角形C.△ABC是等腰直角三角形D.△ABC是等边三角形【答案】C4.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形【答案】B【解析】由直观图的性质知B正确.5.水平放置的△ABC,有一边在水平线上,用斜二测画法作出的直观图是正三角形A′B′C′,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【答案】C【解析】将△A′B′C′还原,由斜二测画法知,△ABC为钝角三角形.6.如图,甲、乙、丙是三个立体图形的三视图,与甲、乙、丙相对应的标号是()①长方体;②圆锥;③三棱锥;④圆柱.A.③①②B.①②③C.③②④D.④②③【答案】D7.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【答案】D【解析】在各自的三视图中①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.8.已知△ABC,选定的投影面与△ABC所在平面平行,则经过中心投影后所得的△A′B′C′与△ABC的关系是()A.全等B.相似C.不相似D.以上都不对【答案】B【解析】根据题意画出图形如图.由图易得====,则△ABC∽△A′B′C′.9.一条直线在平面上的平行投影是()A.直线B.点C.线段D.直线或点【答案】D【解析】当投影线与该直线平行时直线的平行投影为一个点;当投影线与该直线不平行时,直线的平行投影为一条直线.10.一个几何体的三视图如图所示,则该几何体的直观图可以是()A.B.C.D.【答案】D【解析】由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选D.11.如图是某物体的三视图,根据物体的三视图描述该物体的形状是()A.正五边形B.正六棱柱C.正五棱柱D.正方体【答案】C【解析】侧视图和俯视图的大致轮廓为长方形,那么此几何体为柱体,由正视图为五边形可判断此柱体为正五棱柱,故选C.12.一个几何体的三视图如图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台【答案】B【解析】由已知中的三视图可得该几何体是一个组合体,由几何体上部的三视图均为矩形可知上部是四棱柱,由下部的三视图中有两个梯形可得下部为四棱台,故组成该组合体的简单几何体为四棱柱与四棱台,故选B.分卷II二、填空题(共4小题,每小题4.0分,共16分)13.如图,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是________.【答案】10【解析】在原图中,AC=6,BC=4×2=8,∠AOB=90°,∴AB==10.14.如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.【答案】4【解析】由三视图知,由4块木块组成.如图.15.如图,E,F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把所有可能的序号都填上)【答案】②③【解析】其中②可以是四边形BFD1E在正方体的面ABCD或面D1DCC1上的正投影.③可以是四边形BFD1E 在正方体的面BCC1B1上的正投影.四边形BFD1E在正方体任何一个面上的正投影都不是①④.16.如图所示,桌面上放着一个半球,则它的三视图中,与其他两个视图不同的是________.(填“正视图”“侧视图”或“俯视图”)【答案】俯视图【解析】该半球的正视图与侧视图均为半圆,而俯视图是一个圆,所以俯视图与其他两个视图不同.三、解答题(共7小题,每小题8.0分,共56分)17.用斜二测画法画边长为4 cm的水平放置的正三角形(如图)的直观图.【答案】(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴建立平面直角坐标系.(2)画出对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=OA,连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.18.根据图①②③所示的几何体的三视图,想象其实物模型,画出示意图.【答案】三视图对应的几何体如下图所示.19.如图是同一个圆柱的不同放置,阴影面为正面,分别画出它们的三视图.【答案】三视图如图所示.(1)(2)20.说出下面的三视图表示的几何体的结构特征.【答案】几何体为三棱台,结构特征如下图:21.画出一个正三棱台的直观图.(尺寸:上、下底面边长分别为1 cm,2 cm,高为2 cm)【答案】(1)作水平放置的下底面等边三角形的直观图△ABC,其中O为△ABC的重心,BC=2 cm,线段AO与x轴的夹角为45°,AO=2OD.(2)过O作z轴,使∠xOz=90°,在z轴上截取OO′=2 cm,作上底面等边三角形的直观图△A′B′C′,其中B′C′=1 cm,连接AA′,BB′,CC′,得正三棱台的直观图.。
高二数学立体几何试题答案及解析
高二数学立体几何试题答案及解析1.如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为()A.B.C.D.【答案】C【解析】∵底面,∴而底面是正方形,∴∴面,则∴就是二面角的平面角在中,∵,是中点∴,即二面角的大小为,故选C2.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()【答案】B【解析】略3.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥中,底面为矩形,平面,点在线段上,平面.(1)求证:平面;(2)若,,求二面角的大小.【答案】(1)详见解析;(2)详见解析.【解析】(1)要证线与面垂直,即证垂直于平面内的两条相交直线,根据已知的线与面垂直,得到线性垂直,得证;(2)法一:根据前问所证,平面,易证底面是正方形,所以可以根据三垂线定理做出二面角的平面角,即设的交点为,过点作于点,连,易证为二面角的平面角,在直角三角形内求得角;法二:以为原点建立平面直角坐标系,根据向量法,求两个平面的法向量,利用法向量夹角的余弦值计算二面角的余弦值.试题解析:解:(1)证明:∵,∴.同理由,可证得.又,∴.(2)解法一:设的交点为,过点作于点,连易证为二面角的平面角由(1)知为正方形,在中,,二面角的大小为解法二:分别以射线,,为轴,轴,轴的正半轴建立空间直角坐标系.由(1)知,又,∴.故矩形为正方形,∴.∴.∴.设平面的一个法向量为,则,即,∴,取,得.∵,∴为平面的一个法向量.所以.设二面角的平面角为,由图知,则二面角的大小为【考点】1.线与面垂直的判定;2.二面角的计算;3.几何法与向量法求二面角.4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.(本小题12分)已知三棱柱中,底面,,,分别为的中点.(1)求证://平面;(2)求证:;(3)求三棱锥A-BCB的体积.1【答案】(1)见解析:(2)见解析;(3)【解析】(1)欲证//平面,AB中点G,连DG,CG,只需证明是平行四边形,∥即可;(2)证明面面垂直采用证明线面垂直,通过证明因为底面为等腰三角形,,又因为,所以可证得;(3)转化顶点所求三棱锥的体积为,即可求得试题解析:(I)取AB中点G,连DG,CG,在三棱柱中,底面ABC ,是矩形.∵D,E分别为AB1,CC1的中点,∴,是平行四边形,∥∵GC平面ABC,平面ABC,∴DE//平面ABC .(II)三棱柱中,底面ABC,∴中点,又,∴(III)由(II)得,在,,【考点】1.证明线面平行;2.证明面面垂直;3.求体积6.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离7.已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥;②若∥,则∥;③若⊥,则⊥;④若⊥,则⊥;其中正确结论的个数是( )A.0B.1C.2D.3【答案】A【解析】若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题•错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题‚错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题ƒ错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;【考点】直线与直线、平面与平面的平行与垂直的命题判断.8.已知,,则的最小值.【答案】【解析】,因此当时取最小值【考点】空间向量模9.截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C.球D.圆台【答案】C【解析】圆柱的截面可以是矩形,圆锥的截面可以是三角形,圆台的截面可以是梯形,值有球的截面都是圆,故选C.【考点】几何体的截面图形.10.一个正方体的展开图如图所示,为原正方体的顶点,则在原来的正方体中()A.B.C.与所成的角为D.与相交【答案】C【解析】把展开图还原为立体图形,如下图正方体,可见与是异面直线,它们甩成的角为60°.【考点】多面体的展开图,两直线的位置关系.11.在三棱锥中,已知,则三棱锥外接球的表面积为.【答案】【解析】设中点为,由于,则点到点的距离相等,因此是三棱锥外接球的直径,由题意,是等边三角形,,所以,.【考点】几何体与外接球,球的表面积.【名师】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.12.如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于()A. B. C. D.【答案】D【解析】为了便于解析,可设三棱锥为正三棱锥,为正三棱锥的高;为正三棱锥有高,因为底面相同,则它们的体积比为高之比,已知三棱锥的体积为2,所以三棱锥的体积为:(1),由题意可知,且,所以由平行得到,所以,(面BCG所在的平面图如左下角简图),同理,,则,所以,那么,亦即,设,那么,则,而,所以,则,所以,所以,又,所以,(2),且,所以:(3),由(2)×(3)得到:代入到(1)得到:三棱锥的体积就是.【考点】1.简单几何体体积;2.三角形相似比的应用.【方法点晴】此题主要考查三角形相似比在求简单几何体体积中应用方面的内容,属于中高档题.根据题意可借助正三棱锥(或正四面体)模型来帮助思考,值得注意的是所求三棱锥体积的高与原三棱锥的高往往是不在同一直线上的,当然这两个高的比值也是解决此问题的关键点,需要借助这两高与垂线之间的比值进行转换,在此过程中多次使用了相似三角形的相似比,从而问题可得解决.13.如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.【答案】(1)见解析;(2)450(3)【解析】(1)要证明BD⊥平面PAC,只需证BD垂直于平面PAC两条相交直线即可,由ABCD为正方形,可得BD⊥AC,易得PA⊥平面ABCD,可得BD⊥PA ,结论得证.(2)由PA⊥面ABCD可得AD为PD在平面ABCD的射影,又CD⊥AD,由三垂线定理的逆定理可得 CD⊥PD,可得∠PDA为二面角P—CD—B的平面角.易得∠PDA=450.(3)由,求得点C到平面PBD的距离试题解析:(1)在Rt△BAD中,AD=2,BD=,∴AB=2,ABCD为正方形,因此BD⊥AC.∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA .又∵PA∩AC=A∴BD⊥平面PAC.(2)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CD⊥AD,∴CD⊥PD,知∠PDA为二面角P—CD—B的平面角.又∵PA=AD,∴∠PDA=450.(3)∵PA=AB=AD=2,∴PB=PD=BD=,设C到面PBD的距离为d,由,有,即,得【考点】线面垂直,二面角及点到平面的距离.【方法点睛】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求.两种方法各有利弊,在解题中可根据情况灵活选用.14.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)详见其解析;(2)存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据线面垂直的判定定理和性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标,再由三点共线即可求出点坐标,最后计算并验证其是否为0即可得出所证的答案;(2)首先设出面的法向量为,然后由即可得出,又因为面的法向量,再由公式即可得出的值,进而得出点的坐标,即可得出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;…6分(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、线线垂直的判定定理;2、空间向量法求解立体几何问题.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______________.【答案】【解析】设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.【考点】1、圆锥侧面展开图面积;2、圆锥轴截面性质.16.已知一个高度不限的直三棱柱,,点是侧棱上一点,过作平面截三棱柱得截面,给出下列结论:①是直角三角形;②是等边三角形;③四面体为在一个顶点处的三条棱两两垂直的四面体.其中有不可能成立的结论的个数是()A.0B.1C.2D.3【答案】B【解析】本题考察在空间点线面的位置关系,在直三棱柱中,数形结合,作图求解,①和②找出一个例子即可证明其存在性,③需分类讨论,利用直三棱柱的性质以及底面三边长AB=4,BC=5,CA=6条件判断.如图,做直三棱柱ABC-A1B1C1,AB=4,BC=5,CA=6,(1)不妨取AD=6,AE=10,DE=8,则△ADE是直角三角形,①可能成立;(2)不妨令AD=AE=DE=a(a>6),则△ADE是等边三角形,②可能成立;(3)假设四面体APDE为在一个顶点处的三条棱两两垂直的四面体,当A为直角顶点时,在直三棱柱ABC-A1B1C1中,PA⊥底面ABC,则 E,D分别与C,B重合,此时,∠EAD不是直角,与假设矛盾,假设不成立,当P为直角顶点时,可得PD∥AB,PE∥AC,由等角定理知则∠EPD不可能是直角,与假设矛盾,假设不成立,当E或D点为直角顶点时,不妨选E为直角顶点,则DE⊥EP,DE⊥EA,EP∩EA═A,EP⊂平面,EA⊂平面,则平面与平面垂直,则直三棱柱中,可证∠ACB为二面角的平面角,∠ACB═90°,与题意矛盾,假设不成立.综上③错误.故选:C.【考点】命题的真假判断17.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.18.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.19.在直三棱柱中,,,则直线与平面所成角的正弦值为()A.B.C.D.【答案】C【解析】在直三棱柱中,,可以证得,因此直线与平面所成角为,在中,,因此【考点】直线与平面所成的角;20.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱锥组成的,其直观图如下:所以该几何体的体积为:.故选A.【考点】1.三视图;2.几何体的体积.21.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线()A.垂直B.异面C.平行D.相交【答案】A【解析】由题意得可以分两种情况讨论:①当直尺所在直线与地面垂直时,则地面上的所有直线都与直尺垂直,则底面上存在直线与直尺所在直线垂直;②当直尺所在直线若与地面不垂直时,则直尺所在的直线必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,则得到地面上总有直线与直尺所在的直线垂直.∴教室内有一直尺,无论怎样放置,在地面总有这样的直线与直尺所在直线垂直. 【考点】空间中直线与直线之间的位置关系22. (2015秋•淮南期末)已知正方体的棱长为1,则正方体的外接球的体积为 . 【答案】.【解析】正方体的外接球的直径是正方体的体对角线,由此能求出正方体的外接球的体积. 解:∵正方体棱长为1, ∴正方体的外接球的半径R=, ∴正方体的外接球的体积V=()3=.故答案为:.【考点】球的体积和表面积.23. 在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于 ( ) A .B .C .D .【答案】B 【解析】取的中点,连接,,那么异面直线所成角就是,根据勾股定理,,,所以,故选B .【考点】异面直线所成角24. 如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1. 【答案】见解析【解析】(1)利用ABC ﹣A 1B 1C 1为直三棱柱,证明CC 1⊥AC ,利用AB 2=AC 2+BC 2,说明AC ⊥CB ,证明AC ⊥平面C 1CB 1B ,推出AC ⊥BC 1.(2)设CB 1∩BC 1=E ,说明E 为C 1B 的中点,说明AC 1∥DE ,然后证明AC 1∥平面CDB 1. 解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱, ∴CC 1⊥平面ABC ,AC ⊂平面ABC , ∴CC 1⊥AC∵AC=3,BC=4,AB=5, ∴AB 2=AC 2+BC 2,∴AC ⊥CB 又C 1C∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B , ∴AC ⊥BC 1(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点又D为AB中点,∴AC1∥DEDE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.25.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.26.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.【答案】,【解析】由两两垂直,分别以所在的直线为轴建立如图所示的空间直角坐标系,设,则,所以,其中平面的一个法向量为,所以与平面所成角的正弦值为,所以;又向量与所成角的余弦值为,又,所以异面直线与所成角的余弦值是.【考点】空间向量的运算及空间角的求解.27.平行六面体中,底面是边长为1的正方形,侧棱的长为2,且,则的长为 .【答案】【解析】由题意得,在平行六面体中,因为,,,且,所以,所以.【考点】空间向量的运算.28.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A.B.C.D.【答案】A【解析】试题分析:设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可.解:设长方体的高为1,连接B1A、B1C、AC∵B1C和C1D与底面所成的角分别为600和450,∴∠B1CB=60°,∠C1DC=45°∴C1D=,B1C=,BC=,CD=1则AC=∵C1D∥B1A∴∠AB1C为异面直线B1C和DC1所成角由余弦定理可得cos∠AB1C=故选A【考点】异面直线及其所成的角.29.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 .【答案】【解析】设圆锥的底面半径为,,解得,根据勾股定理,圆锥的高等于,所以圆锥的体积.【考点】旋转体的体积30.已知A、B、C三点不共线,若点M与A、B、C四点共面, 对平面ABC外一点O,给出下列表达式:其中x,y是实数,则【答案】【解析】A、B、C三点不共线,点M与A、B、C四点共面,则对平面ABC外一点O,满足,所以,所以【考点】空间向量的基本定理及其意义31.在正方体中,、分别是、的中点。
高二数学立体几何试题答案及解析
高二数学立体几何试题答案及解析1.一个球的Л体积为,则此球的表面积为.【答案】【解析】因为球的体积公式:,所以=所以R=1,由表面积公式S=4=2.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1B.C.D.2【答案】C【解析】略3.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角4.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD 的体积为_____________.【答案】【解析】矩形外接圆的直径为对角线长。
棱锥的体积为【考点】棱锥外接球问题5.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可得其还原图是半个圆锥,由题可得其底面圆半径为1,母线长为3,所以其体积为。
故选A。
【考点】由三视图求面积、体积。
6.(本小题满分12分)已知如图,四边形是直角梯形,,,平面,,点、、分别是、、的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)先证明平面∥平面,由面面平行可得线面平行;(Ⅱ)建立直角坐标系,由空间微量公式计算即可.试题解析:(Ⅰ)证明:∵点、、分别是、、的中点,∴∥,∥.∵平面,平面,平面,平面,∴∥平面,∥平面.∵,∴平面∥平面∵平面,∴∥平面.(Ⅱ)解:根据条件,直线,,两两垂直,分别以直线,,为建立如图所示的空间直角坐标系.设,∵,∴∴.设分别是平面和平面的一个法向量,∴,∴,即,.不妨取,得.∴.∵二面角是锐角,∴二面角的余弦值是.【考点】1.线面平行、面面平行的判定与性质;2.空间向量的应用.7.一个几何体的三视图如图所示,已知这个几何体的体积为,则()A.B.C.D.【答案】B【解析】根据题中所给的三视图,可知该几何体为底面为边长为和的长方形,顶点在底面上的摄影是左前方的顶点,所以有,解得,故选B.【考点】根据所给的几何体的三视图,还原几何体,求其体积及其他量.8.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,【考点】1.线面垂直的判定定理;2.二面角;9.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值为()A.B.C.D.【答案】B【解析】设该棱柱各棱长为a,底面中心为O,则A1O平面ABC.在三角形A1AO中,可得.设AB中点为D,可证,AD A1D.在直角三角形ADA1中,AA1=a,AD=,解得,.故与底面所成角的正弦值为.故选B.10.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________.【答案】【解析】【考点】圆锥体积11.如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF= .则下列结论中正确的个数为①AC⊥BE;②EF∥平面ABCD;③三棱锥A﹣BEF的体积为定值;④的面积与的面积相等,A.4B.3C.2D.1【答案】B【解析】①中AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;④由图形可以看出,B到线段EF的距离与A到EF的距离不相等,故△AEF的面积与△BEF的面积相等不正确【考点】1.正方体的结构特点;2.空间线面垂直平行的判定与性质12.设为两个不重合的平面,为两条不重合的直线,给出下列四个命题:①若,则;[②若,则;③若则;④若与相交且不垂直,则与一定不垂直.其中,所有真命题的序号是.【答案】①③【解析】②中两平面平行或垂直;④中两直线可能相交,平行或异面,可能出现异面直线垂直的情况;①③由线面垂直平行的判定与性质可知结论正确【考点】空间线面垂直平行的判定与性质13.一个的长方体能装卸8个半径为1的小球和一个半径为2的大球,则的最小值为()A.B.C.D.8【答案】B【解析】在的面上放4个小球,在在上面放一个大球,4个小球每个都与相邻两个相切,大球与四个小球都相切,记4个小球的球心依次为,大球球心为,则为正四棱锥,底面边长为2,侧棱长为3,其高为,对应上面再放4个小球,因此的最小值为,故选B.【考点】长方体与球.14.如图,在四面体中,,,点分别是的中点(1)求证:平面平面;(2)当,且时,求三棱锥的体积【答案】(1)见解析;(2).【解析】(1)证明面面垂直应证线面垂直,首先根据图形分析需要证明面即可说明平面平面;(2)解决本题关键是找出底面上的高,由(1)很容易可以得到高为,由此可以计算三棱锥的体积.试题解析:(1)证明:∵中,分别是的中点,.,.中,,是的中点,.,面,平面平面;(2)解:,是的中点,,,,∴平面,,,,,,.【考点】空间几何体的垂直、平行、体积问题.15.如图,已知四棱锥的底面为菱形,,,.(1)求证:;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】(1)用几何法证明线线垂直的主要思路是证明线面垂直,则线线垂直,所以首先根据所给的条件能够确定是等腰直角三角形,是等边三角形,然后取的中点,连接,最后证明平面;(2)根据上一问的结论,根据勾股定理,证明,从而可以以为原点建立空间直角坐标系,分别求两个平面的法向量,利用公式求解.试题解析:(1)证明:取的中点,连接.∵,∴又四边形是菱形,且,∴是等边三角形,∴又,∴,又,∴(2)由,,易求得,,∴,以为坐标原点,以,,分别为轴,轴,轴建立空间直坐标系,则,,,,∴,,设平面的一个法向量为,则,,∴,∴,,∴设平面的一个法向量为,则,,∴,∴,,∴∴【考点】1.线与线的位置关系;2.二面角.16.如图,在正三棱锥中,.分别为棱.的中点,并且,若侧棱长,则正三棱锥的外接球的体积为__________.【答案】【解析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积.∵M,N分别为棱SC,BC的中点,∴MN∥SB,∵三棱锥S-ABC为正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM,而AM∩AC=A,∴MN⊥平面SAC,∴SB⊥平面SAC ∴∠ASB=∠BSC=∠ASC=90°以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径.【考点】球的体积与表面积【方法点睛】一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.17.如图,在三棱锥中,△和△都为正三角形且,,,,分别是棱,,的中点,为的中点.(1)求异面直线和所成的角的大小;(2)求证:直线平面.【答案】(1);(2)见解析.【解析】(1)通过构造中位线,得到,即为异面直线和所成的角,由已知数据求之即可;(2)要证平面,可在平面中构造一条直线与平行即可,连接交于点,连接,证明即可.试题解析:(1)∵,分别是,的中点,∴,∴为异面直线和所成的角.在△中,可求,,,故,即异面直线和所成的角是.(2)连接交于点,连接,∵为的中点,为的中点,∴为△的重心,∴.∵为的中点,为的中点,∴,∴,∴,∵面,面,∴面.【考点】1.异面直线所成的角;2.线线、线面平行的判定与性质.18.如图1,已知正方体ABCD-A1B1ClD1的棱长为a,动点M、N、Q分别在线段上,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的正视图面积等于()A.B.C.D.【答案】B【解析】由俯视图可知为的中点,与重合,与点重合.所以此时三棱锥的正视图为三角形,其面积为.故B正确.【考点】三视图.【思路点晴】本题主要考查的是三视图,属于中档题.应先根据三棱锥的俯视图确定四点的位置,还原出三棱锥的立体图,根据其立体图可得其正视图,从而可求得正视图的面积.19.如图,在四棱锥中,底面是正方形,侧棱底面,,是的中点.则与底面所成的角的正切值为________.【答案】【解析】设底面边长为1,取中点,连接,,所以底面,那么为与底面所成的角,,,所以.【考点】线面角【思路点睛】主要考察了线面角的求法,属于基础题型,根据线面角的定义,线与射影所成角,所以此题的关键是求在平面内的射影,所以根据底面,取中点,得底面,再连接,为与底面所成的角,根据正切公式求解.20.在四棱锥中,底面,,,,,是的中点.(1)证明:;(2)证明:平面;(3)(限理科生做,文科生不做)求二面角的余弦值.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明异面直线垂直,一般的思路是证明线面垂直,线在面内,所以线线垂直的思路,所以根据条件转化为先证明平面,而要证明平面,得先证明,条件所给,易证;(2)证明线面垂直的思路是证明线与平面内的两条相交直线垂直,则线面垂直,根据上一问已证明,所以只需再证明,根据条件需证明,问题会迎刃而解;(3)由题可知两两垂直,建立空间直角坐标系,设,那就可以写出各点的坐标,并分别求两个平面的法向量与,利用公式,并观察是钝二面角.试题解析:(1)证明:底面,.又面,面,.(2)证明:,是等边三角形,,又是的中点,,又由(1)可知,面(3)解:由题可知两两垂直,如图建立空间直角坐标系,设,则.设面的一个法向量为,即取则,即设面的一个法向量为,即取则即,由图可知二面角的余弦值为.【考点】1.线线垂直,线面垂直的证明;2.二面角;3.向量法.21.如图,已知圆柱的高为,是圆柱的三条母线,是底面圆的直径,.(1)求证://平面;(2)求二面角的正切值.【答案】(1)证明见解析;(2).【解析】(1)先利用垂直关系建立空间直角坐标系,写出相关点的坐标,通过证明的方向向量和平面的法向量垂直进行证明;(2)先求出两个平面的法向量,利用空间向量求出其二面角的余弦值,再利用同角三角函数基本关系式求解.试题解析:由是直径,可知,故由可得:,以点为坐标原点建立空间直角坐标系(如图)则(1)由可得平面的一个法向量又又平面平面(2)由可得平面的一个法向量,由可得平面的一个法向量设二面角为,则所以二面角的正切值为.【考点】1.线面平行的判定;2.二面角;3.空间向量在立体中的应用.22.(2015秋•黄冈校级期末)如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)()A. B. C. D.【答案】A【解析】在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α,平面α与平面ABCD有一个公共点D,则它们有且只有一条过该点的公共直线.取特殊点B,可排除选项B,故选A.【考点】轨迹方程.23.(2015秋•内江期末)若一个几何体的正视图是一个三角形,则该几何体不可能是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】B【解析】圆柱的正视图可能是矩形,可能是圆,不可能是三角形.解:圆锥的正视图有可能是三角形,圆柱的正视图可能是矩形,可能是圆,不可能是三角形,棱锥的正视图有可能是三角形,三棱柱放倒时正视图是三角形,∴在圆锥、圆柱、棱锥、棱柱中,正视图是三角形,则这个几何体一定不是圆柱.故选:B.【考点】简单空间图形的三视图.24.已知两条不重合的直线和两个不重合的平面、,有下列命题:①若,,则;②若,,,则;③若是两条异面直线,,,,则;④若,,,,则.其中正确命题的个数是()A.B.C.D.【答案】B【解析】①不正确,还可能;②正确,,,又,;③不正确,还可能相交;④由面面垂直的性质定理可知④正确.综上可得②④正确.故B正确.【考点】1线面位置关系;2面面位置关系.25.如图,在三棱锥P﹣ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.(Ⅰ)证明:AB⊥PC;(Ⅱ)证明:平面PAB∥平面FGH.【答案】见解析【解析】(Ⅰ)根据线面垂直的性质定理证明AB⊥面PEC,即可证明:AB⊥PC;(Ⅱ)根据面面平行的判定定理即可证明平面PAB∥平面FGH.解:(Ⅰ)证明:连接EC,则EC⊥AB又∵PA=PB,∴AB⊥PE,∴AB⊥面PEC,∵BC⊂面PEC,∴AB⊥PC(Ⅱ)连结FH,交于EC于O,连接GO,则FH∥AB在△PEC中,GO∥PE,∵PE∩AB=E,GO∩FH=O∴平面PAB∥平面FGH【考点】平面与平面平行的判定;空间中直线与直线之间的位置关系.26.以正方体的顶点D为坐标原点,如图建立空间直角坐标系,则与共线的向量的坐标可以是()A.B.C.D.【答案】D【解析】不妨令正方体的边长为1,则由图可知.,与共线的向量的坐标为.故D正确.【考点】空间向量共线问题.27.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=" 2AD" ="2CD" =2.E是PB的中点.(I)求证;平面EAC⊥平面PBC;(II)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.【答案】(I)证明见解析;(II).【解析】对于问题(I),可以先证明平面,再证明,然后即可证明所需结论;对于问题(II),首先建立以为坐标原点的空间坐标系,然后再求出相应点的坐标,再由题设条件求出的长以及平面的法向量,最后利用向量的夹角公式,就可以得到直线与平面所成角的正弦值.试题解析:(I),,,,,错误!未指定书签。
(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测题(有答案解析)
一、选择题1.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( ) A .35B .35C .45D .45-2.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .22C .12-D .123.在棱长为2的正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且1(02)AG λλ=<<,则点G 到平面1D EF 的距离为( )A .23B .2C .22λD .254.如图,在长方形ABCD 中,3AB =,1BC =,点E 为线段DC 上一动点,现将ADE ∆沿AE 折起,使点D 在面ABC 内的射影K 在直线AE 上,当点E 从D 运动到C ,则点K 所形成轨迹的长度为( )A 3B 23C .3πD .2π 5.将直角三角形ABC 沿斜边上的高AD 折成120︒的二面角,已知直角边43,46AB AC == )A .平面ABC ⊥平面ACDB .四面体D ABC -的体积是86C .二面角A BCD --的正切值是423D .BC 与平面ACD 所成角的正弦值是2176.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD > D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD7.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,2,22,2AB AD PA ===,则异面直线BC 与AE 所成的角的大小为( )A .π6B .π4C .π3D .π28.四棱锥P ABCD -中,(2,1,3),(2,1,0),(3,1,4)AB AD AP =-=-=-,则这个四棱锥的高为( )A .55B .15 C .25D .2559.已知菱形ABCD 中,∠60ABC =︒,沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A --的余弦值为( ).A .2B .12C 3D 510.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA =,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>>11.在正三棱柱(底面是正三角形的直三棱柱)111ABC A B C -中,2AB =,E ,F 分别为11AC 和11A B 的中点,当AE 和BF 所成角的余弦值为710时,AE 与平面11BCC B 所成角的正弦值为( ) A .15 B .15 C .5 D .5 12.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个二、填空题13.如图所示,在正四棱柱1111ABCD A BC D -中,12AA =,1AB BC ==,动点P 、Q 分别在线段1C D 、AC 上,则线段PQ 长度的最小值是______.14.在正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,M 为棱11A B (含端点)上的任一点,则直线ME 与平面1D EF 所成角的正弦值的最小值为_________. 15.如图,正方体1111ABCD A BC D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面为S ,则下列命题正确的是__________(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 的交点R 满足114C R =;④当314CQ <<时,S 为五边形; ⑤当1CQ =时,S 的面积为6.16.已知(1,2,1),(2,2,2)A B -,点P 在z 轴上,且PA PB =,则点P 的坐标为____________.17.如图,已知边长为1的正'A BC ∆的顶点'A 在平面α内,顶点,B C 在平面α外的同一侧,点','B C 分别为,B C 在平面α内的投影,设''BB CC ≤,直线'CB 与平面''A CC 所成的角为ϕ.若'''A B C ∆是以角'A 为直角的直角三角形,则tan ϕ的最小值__________. 18.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,,,M E F 分别为,,PQ AB BC 的中点,则直线ME 与平面ABCD 所成角的正切值为________;异面直线EM 与AF 所成角的余弦值是________.19.已知在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为_____.20.正三棱锥底面边长为1,侧面与底面所成二面角为45°,则它的全面积为________三、解答题21.在几何体111ABC A B C -中,点1A 、1B 、1C 在平面ABC 内的正投影分别为A 、B 、C ,且AB BC ⊥,114AA BB ==,12AB BC CC ===,E 为1AB 的中点.(1)求证://CE 平面111A B C ; (2)求二面角11B AC C --的大小.22.已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,,,,E F G O 分别是,,,PC BC PD AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小. 23.如图,在四棱锥P ABCD -中,6π∠=CAD ,且321,2AD CD PA ABC ===和PBC 均是等边三角形,O 为BC 的中点.(I )求证:PO ⊥平面ABCD ; (Ⅱ)求CB 与平面PBD 所成角的正弦值.24.如图,在四棱锥P ABCD -中,90BAD ∠=,//AD BC , PA AD ⊥,PA AB ⊥,122PA AB BC AD ====.(Ⅰ)求证://BC 平面PAD ;(Ⅱ)求平面PAB 与平面PCD 所成锐二面角的余弦值.25.如图,已知四棱锥P ABCD -的底面是菱形,对角线AC ,BD 交于点O ,4OA =,3OB =,4OP =,OP ⊥底面ABCD ,设点M 是PC 的中点.(1)直线PB 与平面BDM 所成角的正弦值. (2)点A 到平面BDM 的距离.26.如图,四边形PABC 中,90,23,4PAC ABC PA AB AC ︒∠=∠====,现把PAC ∆沿AC 折起,使PA 与平面ABC 成60︒角,点P 在平面ABC 上的投影为点O (O 与B 在CA 同侧)(1)证明://OB 平面PAC ;(2)求直线PB 与平面PAC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值. 【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||4cos 5||||55AB BC AB BC θ⋅===⋅⋅.∴异面直线1AB 与1BC 所成角的余弦值为45.故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.2.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.D解析:D 【分析】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点G 到平面1D EF 的距离 . 【详解】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系, 则()()()()12,,2,0,0,2,2,0,1,2,2,1G D E F λ,()()()12,0,1,0,2,0,0,,1ED EF EG λ=-==,设平面1D EF 的法向量(),,n x y z =, 则12020n ED x z n EF y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,2n =,∴点G 到平面1D EF 的距离为 2255EG n d n⋅===,故选D. 【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.4.C解析:C 【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度. 【详解】由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是12, 如图当E 与C 重合时,4=12, 取O 为AD′的中点,得到△OAK 是正三角形.故∠K0A=3π,∴∠K0D'=23π, 其所对的弧长为1223π⨯=3π, 故选:C 【点睛】本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K 的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变,属于中档题目.5.C解析:C 【分析】先由图形的位置关系得到CDB ∠是二面角C AD B --的平面角,120CDB ∠=,故A不正确;B 由于11132684sin120423323D ABC A BCD BCD V V S AD --⎛⎫==⋅=⨯⨯= ⎪⎝⎭故得到B 错误;易知AFD ∠为二面角A BC D --的平面角,4242tan 4217AD AFD DF ∠===∠BDC 为B ﹣AD ﹣C 的平面角,即∠BDC=120°,作DF ⊥BC 于F ,连结AF ,sin ∠BCO=BOBC. 【详解】 沿AD 折后如图,AD BC ⊥,易知CDB ∠是二面角C AD B --的平面角,120CDB ∠=,12,4,42,CD BD AD ===由余弦定理得2222BC CD BD CD =+-cos120BD ⋅,可得47BC =过D 作DF BC ⊥于F ,连接AF ,则AF BC ⊥,由面积相等得11sin12022CD BD DF BC ⋅=⋅,可得421DF =. 根据AD BC ⊥,易知CDB ∠是二面角C AD B --的平面角, 120CDB ∠=故A 平面ABC 与平面ACD 不垂直,A 错;B 由于11132684sin12042332D ABC A BCD BCD V V S AD --⎛⎫==⋅=⨯⨯⨯= ⎪⎝⎭,B 错; C 易知AFD ∠为二面角A BC D --的平面角,4242tan 421AD AFD DF ∠===C 对;D 故如图,由题意可知∠BDC 为B ﹣AD ﹣C 的平面角,即∠BDC=120°,作DF ⊥BC 于F ,连结AF ,AF=4217,BD=4,DC=8,AD=4,过O 作BO 垂直BO ⊥CO 于O ,则∠BCO 就是BC 与平面ACD 所成角,3OD=2,2247BO CO +sin ∠BCO=232147BO BC ==. 选.C 【点睛】本题考查了平面的翻折问题,考查了面面垂直的证明,线面角的求法,面面角的求法以及四面体体积的求法,求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.6.D解析:D由题意逐一考查所给的说法是否正确即可. 【详解】因为空间任两向量平移之后可共面,所以空间任意两向量均共面,选项A 错误; 因为a b =仅表示a 与b 的模相等,与方向无关,选项B 错误;因为空间向量不研究大小关系,只能对向量的长度进行比较,因此也就没有AB CD >这种写法,选项C 错误;∵0AB CD +=,∴AB CD =-,∴AB 与CD 共线,故AB //CD ,选项D 正确. 本题选择D 选项. 【点睛】本题主要考查向量平移的性质,向量模的定义的理解,向量共线的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】分析:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,求得(0,22,0),(1,2,1)BC AE ==,利用向量的夹角公式,即可求解.详解:以A 点为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则(2,0,0),(2,22,0),(0,0,2),(0,0,0),(1,2,1)B C P A E , 则(0,22,0),(1,2,1)BC AE ==, 设异面直线BC 和AE 所成的角为θ, 则2cos ,224BC AE BC AE BC AE⋅===⋅⋅, 所以异面直线BC 和AE 所成的角为4π,故选B.点睛:本题考查了异面直线所成的角的求解,其中把异面直线所成的角转化为向量所成的角,利用向量的夹角公式求解是解答的关键,对于对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解直线的方向向量和平面的法向量,利用向量的夹角公式求解.8.A【分析】求出平面ABCD 的法向量n ,计算法向量n 与AP 的夹角得出AP 与平面ABCD 的夹角,从而可求出P 到平面ABCD 的距离. 【详解】解:设平面ABCD 的法向量为(n x =,y ,)z ,则n AB n AD⎧⊥⎨⊥⎩,∴23020x y z x y -+=⎧⎨-+=⎩,令1x =可得2y =,0z =,即(1n =,2,0), cos ,||||5n AP n AP n AP ∴<>==设AP 与平面ABCD 所成角为α,则sin α=,于是P到平面ABCD 的距离为||sin AP α=,即四棱锥P ABCD - 故选:A . 【点睛】本题考查了空间向量在立体几何中的应用,属于基础题.9.D解析:D 【分析】取AC 的中点E ,分别以EA ,ED ,EB 为x 轴,y 轴,z 轴建立空间直角坐标系,利用空间向量求二面角B CD A --的余弦值. 【详解】解:如图取AC 的中点E ,分别以EA ,ED ,EB为x 轴,y 轴,z 轴建立空间直角坐标系,令棱形ABCD 的边长为2,则()1,0,0A ,()1,0,0C -,()D,(B 设平面BCD 的法向量为(),,n x y z=,(1,0,BC =-,(BD =330x y z ⎧--=⎪-=令z =y =3x =-即(3,3,n =-平面ACD 的法向量为()0,0,1m = 令二面角B CD A --的夹角为θ3cos 1n m n mθ===⨯ 因二面角B CD A --为锐二面角5cos θ=故选D【点睛】本题考查求二面角二余弦值,关键是准确的建立空间直角坐标系,属于中档题.10.D解析:D 【分析】过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案. 【详解】解:因为1AB AC ==,12BC AA ==222AB AC BC +=,即AB AC ⊥ 过点C 作//Cy AB ,以C 为原点,CA 为x 轴,Cy 为y 轴,1CC 为z 轴,建立空间直角坐标系, 则(1F ,022),1(2O ,12,0),(0E ,02,1(1B ,12), 111(,2)22OB =,112(,22OE =--,1122(,22OF =-,12EB =,2)EF =,设平面1OB E 的法向量(),,m x y z =,则111·2022112·022m OB x y z m OE x y ⎧=++=⎪⎪⎨⎪=--+=⎪⎩,取1x =,得()1,1,0m →=-,同理可求平面1OB F 的法向量(52,2,3)n =--,平面OEF 的法向量272(,,3)p =-,平面1EFB 的法向量2(,2,3)2q =--. ∴461cos 61||||m n m n α==,434cos 34||||m p m p β==,46cos 46||||m q m q γ==. γαβ∴>>.故选:D .【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.11.B解析:B 【分析】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,由AE 和BF 所成角的余弦值为710,求出12t AA ==.由此能求出AE 与平面11BCC B 所成角α的正弦值. 【详解】设1AA t =,以B 为原点,过B 作BC 的垂线为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则3331(3,1,0),,,(0,0,0),,22A E t B F t ⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭,3(AE =-,12,)t ,3(BF =12,)t , AE ∵和BF 所成角的余弦值为710,2221||||72|cos ,|10||||11t AE BF AE BF AE BF t t -∴<>===++, 解得2t =.∴3(AE =-,12,2), 平面11BCC B 的法向量(1,0,0)n =,AE ∴与平面11BCC B 所成角α的正弦值为:3||152sin 10||||5AE n AE n α===. 故选:B .【点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.B解析:B 【分析】①||||||a b a b -=+共线,反之不成立,即可判断出结论; ②利用基底的定义即可判断出真假;③|()||||||||cos ,|a b c a b c a b =<>,即可判断出真假. 【详解】①||||||a b a b a -=+⇒,b 共线,反之不成立,||||||a b a b -=+是a ,b 共线的充分不必要条件,因此不正确;②若{a ,b ,}c 是空间的一组基底,假设,,a b b c c a +++共面, 则存在唯一一组实数,x y ,使=()()a b x b c y c a ++++成立, 即()a b xb x y c ya +=+++, 所以1,1,0x y x y ==+=,显然无解, 假设不成立,即,,a b b c c a +++不共面,则{a b +,b c +,}c a +是空间的另一组基底,正确;③|()|||||||cos ,a b c a b c a b =<>,而cos ,a b <>不一定等于1, 因此不正确.其中正确的命题有一个. 故选:B .【点睛】本题考查了向量共线、共面定理、数量积运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题13.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法计算出异面直线的公垂线的长度即为所求【详解】由题意可知线段长度的最小值为异面直线的公垂线的长度如下图所示以点为坐标原点所在直线分解析:13【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法计算出异面直线1C D 、AC 的公垂线的长度,即为所求. 【详解】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D , 所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =, 设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x y y z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min23DA n PQn⋅==. 故答案为:23. 【点睛】关键点点睛:解本题的关键在于将PQ 长度的最小值转化为异面直线AC 、1C D 的距离,实际上就是求出两条异面直线的公垂线的长度,利用空间向量法求出两条异面直线间的距离,首先要求出两条异面直线公垂线的一个方向向量的坐标,再利用距离公式求解即可.14.【分析】建立直角坐标系设正方体边长为2求出平面的法向量为直线与平面所成角为因为所以当时取到最小值代入即可【详解】解:如图建立直角坐标系设正方体边长为2则002设平面的法向量为由得令故0由设直线与平面解析:25【分析】建立直角坐标系,设正方体边长为2,求出平面DEF 的法向量为m ,直线ME 与平面1D EF 所成角为α,sin cos ,m EM α==,因为[0a ∈,2],所以当2a =时,取到最小值,代入即可. 【详解】解:如图,建立直角坐标系,设正方体边长为2,AM a =, 则(2E ,0,1),(2M ,a ,2),(0D ,0,2),(2F ,2,1), 设平面DEF 的法向量为(m x =,y ,)z ,1(0,2,0),(2,0,1)EF ED ==-,由0m EF ⋅=,10m D E ⋅=,得020y x z =⎧⎨-+=⎩,令2z =,1x =,故(1m =,0,2),由(0,,1)EM a =,设直线ME 与平面1D EF 所成角为α,sin cos ,m EM α==,因为[0a ∈,2],所以当2a =时,sin α25=, 故答案为:25.【点睛】考查立体几何中的最值问题,本题利用向量法求线面所成的角,基础题.15.①②④【解析】①项时为而时线段上同理存在一点与平行此时为四边形且是梯形故命题①为真;②项是等腰梯形故命题②为真;③项当时如图所示∵点是的中点∴∴∴与的交点满足故命题③为假④项如图所示为五边形故命题④解析:①②④ 【解析】 ①项,12CQ =时,S 为APQD , 而102CQ <<时,线段1DD 上同理,存在一点,与PQ 平行, 此时,S 为四边形,且是梯形,故命题①为真;②项,1AP D Q =,1AD PQ ,1APQD 是等腰梯形,故命题②为真;③项当34CQ =时,如图所示,0AP DC ⋂=, ∵点P 是BC 的中点,∴CO CD AB ==, ∴1113C R C Q CO QC ==, ∴S 与11CD 的交点R 满足113C R =, 故命题③为假.④项,如图所示,S 为五边形,故命题④为真;⑤项,如图所示,S 为菱形,面积为22152622222⎛⎫⎛⎫⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭,故命题⑤为假.综上所述,命题正确的是:①②④.16.【解析】设P(00z)由|PA|=|PB|得1+4+(z−1)2=4+4+(z−2)2解得z=3故点P 的坐标为(003)解析:()003,, 【解析】设P(0,0,z),由|PA|=|PB|,得1+4+(z−1)2=4+4+(z−2)2,解得z=3,故点P 的坐标为(0,0,3).17.【解析】如图建系设则可得且故又因为故又故又因为且故故答案为 解析:22【解析】如图建系,设()()0,,,,0,B b m C c n ,则()()222210,,,0,11cos 600b m c n b m c n m n⎧+=+=⎪=⋅⎨⎪<≤⎩,可得12mn =且0m n <≤,故22m ≤,又因为221c n +=,故1n <,又12mn =, 故12m >,又因为212tan 1,22b m m ϕ==-<≤且,故 2tan 2ϕ≥,故答案为22. 18.【详解】试题分析:由两两垂直分别以所在的直线为轴建立如图所示的空间直角坐标系设则所以其中平面的一个法向量为所以与平面所成角的正弦值为所以;又向量与所成角的余弦值为又所以异面直线与所成角的余弦值是考点230【详解】试题分析:由,,AB AD AQ 两两垂直,分别以,,AB AD AQ 所在的直线为,,x y z 轴建立如图所示的空间直角坐标系,设2AB =,则(0,0,0),(1,0,0),(2,1,0),(0,1,2)A E F M ,所以(1,1,2),(2,1,0)EM AF =-=,其中平面ABCD 的一个法向量为(0,0,1)n =,所以ME与平面ABCD 所成角的正弦值为6sin EM n EM n α⋅==⋅,所以tan 2α=EM 与AF 所成角的余弦值为cos EM AF EM AFβ⋅=⋅30=(0,]2πβ∈,所以异面直线EM 与AF 30考点:空间向量的运算及空间角的求解.19.【分析】建立空间直角坐标系得到相关点的坐标后求出直线AE 的方向向量=(011)和平面A1ED1的法向量然后利用向量的共线可得直线AE 与平面A1ED1垂直于是得所求角为【详解】以D 为原点以DADCDD 解析:90【分析】建立空间直角坐标系,得到相关点的坐标后,求出直线AE 的方向向量AE =(0,1,1)和平面A 1ED 1的法向量()0,1,1n =,然后利用向量的共线可得直线AE 与平面A 1ED 1垂直,于是得所求角为90. 【详解】以D 为原点,以DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系, 则A (1,0,0),E (1,1,1),A 1(1,0,2),D 1(0,0,2), 于是AE =(0,1,1),1AE =(0,1,-1),11A D =(-1,0,0). 设平面A 1ED 1的法向量为(),,n x y z =,则1110,0,n A E y z n A D x ⎧⋅=-=⎪⎨⋅=-=⎪⎩得,0,y z x =⎧⎨=⎩令1z =,得()0,1,1n =. 所以AE ∥n ,故直线AE 与平面A 1ED 1垂直,即所成角为90°. 故答案为90° 【点睛】本题考查空间位置关系的向量解法,将几何问题转化为数的运算的问题处理,解题的关键是建立适当的空间直角坐标系、正确地求出直线的方向向量和平面的法向量,由于解题时需要进行数的运算,因此还要注意计算的准确性.20.【解析】分析:设正三棱锥P-ABC 的侧棱长为2aPO 为三棱锥的高做PD 垂直于AB 连OD 则PD 为侧面的高OD 为底面的高的三分之一在三角形POD 中构造勾股定理列出方程得到斜高即可详解:设正三棱锥P-AB【解析】分析:设正三棱锥P-ABC 的侧棱长为2a,PO 为三棱锥的高,做PD 垂直于AB ,连OD ,则PD 为侧面的高,OD 为底面的高的三分之一,在三角形POD 中构造勾股定理,列出方程,得到斜高即可.详解:设正三棱锥P-ABC 的侧棱长为2a,PO 为三棱锥的高,做PD 垂直于AB ,连OD ,则PD 为侧面的高,OD 为底面的高的三分之一,在三角形POD中OD ==⇒=故全面积为:1111122⨯⨯⨯⨯点睛:这个题目考查了正三棱锥的表面积的求法,其中涉及到体高,斜高和底面的高的三分之一构成的常见的模型;正三棱锥还有一特殊性即对棱垂直,这一性质在处理相关小题时经常用到.三、解答题21.(1)证明见解析;(2)56π. 【分析】(1)建立空间直角坐标系,证明平面111A B C 法向量与向量CE 垂直. (2)求二面角两个半平面的法向量所成角即可. 【详解】(1)因为点1B 在平面ABC 内的正投影为B ,所以1B B BA ⊥,1B BBC ,又AB BC ⊥,如图建立空间直角坐标系B xyz -,()0,0,0B ,()2,0,0A ,()0,2,0C ,()12,0,4A ,()10,0,4B ,()10,2,2C ,()1,0,2E ,设平面111A B C 的法向量()1,,n x y z =,()112,0,0A B =-,()110,2,2B C =-, 即20,220,x y z -=⎧⎨-=⎩取1y =,得1(0,1,1)n =,又()1,2,2CE =-,()10112210CE n ⋅=⨯+⨯-+⨯=, 所以1CE n ⊥,又CE ⊄平面111A B C 所以//CE 平面111A B C ;(2)设平面111A B C 的法向量()2,,n x y z =,()12,0,4B A =-,()110,2,2B C =-,即240,220,x z y z -=⎧⎨-=⎩取1y =,得()22,1,1n =, 同理可求平面1ACC 的法向量()31,1,0n =, 所以2323233cos ,2n n n n n n ⋅==⋅,由图知二面角11B AC C --的平面角是钝角, 所以二面角11B AC C --的平面角是56π. 【点睛】关键点睛:利用题设垂直条件,建立空间直角坐标系. 22.(Ⅰ)证明见解析;(Ⅱ)3π.【分析】(Ⅰ)通过证明PO AD ⊥和PO CD ⊥,结合线面垂直的判定定理证明出PO ⊥平面ABCD ;(Ⅱ)先求解出平面EFG 和平面ABCD 的法向量,然后求解出法向量夹角的余弦值,由此确定出锐二面角的余弦值,从而锐二面角的大小可求. 【详解】(Ⅰ)因为PAD △是正三角形,O 是AD 的中点,所以PO AD ⊥, 又因为CD ⊥平面PAD ,PO ⊂平面PAD ,所以PO CD ⊥,AD CD D =,,AD CD ⊂平面ABCD ,所以PO ⊥面ABCD ;(Ⅱ)如图,以O 点为原点分别以,,OA OG OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,4,0),(0,0,23)O A B C D G P--,(1,2,3),(1,0,3)E F --,(0,2,0),(1,2,3)EF EG =-=-,设平面EFG 的法向量为(,,),m x y z =因为00m EF m EG ⎧⋅=⎨⋅=⎩,所以20230y x y z -=⎧⎪⎨+-=⎪⎩,令1z =,则(3,0,1)m =, 又平面ABCD 的法向量(0,0,1)n =, 设平面EFG 与平面ABCD 所成锐二面角为θ , 所以||1cos 2||||311m n m n θ⋅===+⋅.所以平面EFG 与平面ABCD 所成锐二面角为3π.【点睛】思路点睛:向量方法求解二面角的余弦值的步骤:(1)建立合适空间直角坐标系,写出二面角对应的两个半平面中相应点的坐标; (2)设出法向量,根据法向量垂直于平面中任意方向向量,求解出半平面的一个法向量;(注:若半平面为坐标平面,直接取法向量亦可)(3)计算(2)中两个法向量夹角的余弦值,结合立体图形中二面角的实际情况,判断二面角是钝角还是锐角,从而得到二面角的余弦值. 23.(Ⅰ)证明见解析;(Ⅱ)3913. 【分析】(Ⅰ)根据题中的边长以及垂直关系,可求出,OA OP ,利用勾股定理判断OP OA ⊥,再根据等边三角形三线重合,判断OP BC ⊥,即可证明PO ⊥平面ABCD ;(Ⅱ)根据垂直关系,以O 为坐标原点,建立空间直角坐标系,利用向量的坐标公式求CB 与平面PBD 所成角的正弦值. 【详解】(Ⅰ)证明:在ACD △中,由已知得3AC =,ABC PBC 均为边长为3的等边三角形,且O 为BC 的中点 ,OA BC OP BC ∴⊥⊥,且32OA OP ==. 在PAO 中,已知322PA =, 则有222,PO OA PA OP OA +=∴⊥. 又,OA BC O OA ⋂=⊂平面,ABCD BC ⊂平面,ABCD OP ∴⊥平面ABCD .(Ⅱ)以O 为坐标原点,,,OA OC OP 分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系,则3330,0,,0,,2P B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,3D ⎛⎫ ⎪ ⎪⎝⎭. (0,3,0)(1,3,0)BC BD ∴==,,3333)2BP ⎛⎫== ⎪ ⎪⎝⎭.设平面PBD 的法向量为(,,)n x y z =,则00n BP n BD ⎧⋅=⎨⋅=⎩即00x y ⎧=⎪⎨=⎪⎩,令1z =.则3y x ==. ∴平面PBD 的一个法向量为(3,3,1)n =-,39sin |cos ,|BCn θ∴=<>=.sin θ∴= 【点睛】方法点睛:1.利用面面垂直的性质定理,得到线面垂直,进而确定线面角中的垂足,明确斜线在平面内的射影,即可确定线面角;2.在构成线面角的直角三角形中,可利用等体积法解垂线段的长度h ,而不必画出线面角,利用sin h θ= /斜线段长,进行求角;3.建立空间直角坐标系,利用向量法求解,设a 是直线l 的方向向量,n 是平面的法向量,利用公式sin cos ,a n θ=<>求解. 24.(Ⅰ)证明见解析;(Ⅱ)6【分析】(Ⅰ)解法1.利用线面平行的判定定理证明; 解法2.以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,利用空间向量证明直线BC 与平面PAD 的法向量垂直,从而证明结论.(Ⅱ)建立空间直角坐标系后,后利用空间向量的坐标运算求得两平面的法向量的坐标,进而计算. 【详解】 (Ⅰ)证明:解法1. 因为//BC ADBC ⊄平面PAD AD ⊂平面PAD 所以//BC 平面PAD解法2.因为PA AD ⊥,PA AB ⊥,AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C , 平面PAD 的法向量为(1,0,0)t, (0,2,0)BC = ,因为 0120000t BC ⋅=⨯+⨯+⨯= ,BC ⊄平面PAD ,所以//BC 平面PAD ;(Ⅱ)解:因为PA AD ⊥,PA AB ⊥AD AB ⊥, 所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C所以平面PAB 的法向量为(0,1,0)n = , 设平面PCD 的法向量为(,,)m x y z =(2,2,2)PC =-,(0,4,2)PD =- ,所以2220042020x y z x ym PC m PC y z z y m PD m PD ⎧⎧+-==⎧⎧⊥⋅=⇒⇒⇒⎨⎨⎨⎨-==⊥⋅=⎩⎩⎩⎩ , 令1(1,1,2)y m ==得 ,16cos ,616n m n m n m⋅<>===⨯ 设平面PAB 与平面PCD 所成角为θθ,为锐角, 所以6cos θ=. 【点睛】本题考查利用空间向量证明线面垂直和求二面角问题,关键是平面的法向量的求解和夹角余弦值的计算,注意所求为两平面所成的锐二面角的余弦值,因此对两平面的法向量所成角的余弦值与两平面所成锐角的余弦值要注意区分与联系. 25.(1)225;(2)22 【分析】(1)根据题意可知OA ,OB ,OP 两两垂直,建立空间直角坐标系,根据题所给的长度可算出面BDM 的法向量和PB 的坐标,再根据线面夹角的向量法,代入公式可得最后答案.(2)根据(1)可知AM 的坐标和面BDM 的一个法向量n 坐标,根据公式n nAM ⋅,即可求出点A 到平面BDM 的距离. 【详解】(1)∵四边形ABCD 为菱形,AC BD ∴⊥,又OP ⊥面ABCD ,OA ∴,OB ,OP 两两垂直,∴以OA 为x 轴,OB 为y 轴,OP 为z 轴建立如图所示的空间直角坐标系O xyz -,根据题可知4OA =,3OB =,4OP =,且M 为PC 中点,(4,0,0)A ∴,(0,3,0)B ,(0,3,0)D -,(0,0,4)P ,(4,0,0)C -,(2,0,2)M -, (0,3,4)PB ∴=-,(2,3,2)BM =--,(0,6,0)BD =-,设面BDM 的法向量为(),,n x y z =,00n BM n BD ⎧⋅=∴⎨⋅=⎩,232060x y z y --+=⎧∴⎨-=⎩,0y ∴=,令1x =,则1z =,()1,0,1n ∴=,22cos 5||||25n PB n PB n PB ⋅∴〈⋅〉===⋅⋅,∴直线PB 与平面BDM 所成角的正弦值为25; (2)由(1)可知(6,0,2)AM =-,面BDM 的一个法向量为(1,0,1)n =, ∴点A 到平面BDM 的距离|||cos |22||2n AM d AM n AM n ⋅=⋅〈⋅〉=== ∴点A 到平面BDM 的距离为22 【点睛】方法点睛:(1)求直线PB 与平面BDM 所成角的正弦值用向量法:建立空间直角坐标系、求出PB 和平面BDM 的法向量n 的坐标、根据公式cos ||||n PBn PB n PB ⋅〈⋅〉=⋅求解;(2)求点A 到平面BDM 的距离用向量法:建立空间直角坐标系、在平面BDM 上找一点如M 点、求出AM 的坐标和面BDM 的一个法向量n 坐标、根据公式|||cos |AM n AM ⋅〈⋅〉求解.26.(1)证明见解析;(2)24. 【分析】(1)连接AO ,证明CA ⊥平面PAO ,说明PAO ∠是PA 与平面ABC 的角,通过证明//OB AC ,推出//OB 平面PAC .(2)建立直角坐标系求解【详解】解:(1)连AO ,因为PO ⊥平面ABC ,得PO CA ⊥. 又因为CA PA ⊥,POPA P =,PO ⊂平面PAO ,PA ⊂平面PAO所以CA ⊥平面PAO ,AO ⊂平面PAO ,所以CA AO ⊥ 因为PAO ∠是PA 与平面ABC 的角,60PAO ∠=︒. 因为23PA =,得3OA =.在OAB 中,903060OAB ∠=︒-︒=︒,故有OB OA ⊥, 从而有//OB AC ,OB ⊄平面PAC ,AC ⊂平面PAC 所以//OB 平面PAC .(2)以,,OB OA OP 所在直线分别为x 轴、y 轴、z 轴建立坐标系, 则(0,0,3)P ,(0,3,0)A ,(3,0,0)B ,3,0)C(4,0,0),(0,3,3),(3,0,3)AC PA PB ∴==-=- 设平面PAC 的法向量(,,)n x y z =则40330n AC x n PA y z ⎧⋅==⎪⎨⋅=-=⎪⎩得(0,3,1)n = 2sin cos ,232||||n PB n PB n PB α⋅∴=<>==⨯⋅ 即直线PB 与平面PAC 所成角的正弦值为24.【点睛】本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。
高二数学第二章《立体几何》单元测试题-人教版
学号 姓名 成绩一、选择题(本大题共10小题,每小题5分,共50分) 1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角5、若直线l αa α⊂l a l αl a l a l a 中正确的个数有A 、1B 、2C 、3D 、47、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个9、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于 A 、34B 、35C、7D、710、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为 A 、2V B 、3V C 、4V D 、5V QPC'B'A'C BAB 1C 1A 1D 1B ACD二、填空题(本大题共4小题,每小题5分,共20分);11、设b a ,是两条直线,βα,是两个平面,则下列命题成立的是 ;(1),,//;(2)//,;(3),//;(4),,a b a b b a a a a a b a b αααααββαββααβαβ⊥⊥⊄⊥⊥⊥⊥⊥⊥⊥⊥则则则则12、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 ; 13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 ;14、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)三、解答题(本大题共3小题,每小题10分,共30分)15、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (12分)16、已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点.求证:(1)C 1O 1A (01).AE AFAC ADλλ==<< 1 412. 平行 13. 菱形 14. AC 垂直BD 三、F E DBAC D 1OD BAC 1B 1A 1CH G F ED BA C15. 略16. 略6 17. (II)7 )。
高中数学人教a版(2019)必修第二册《 立体几何初步》测试卷
人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A B 2C .3D .322.下列说法正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台3.已知直角三角形的两直角边分别为1则该几何体的体积为( )A .4πB .3πC .2πD .π4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A .2B .1C .2D .87.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥P A B C D-的侧面积为()A .B .4C .D .10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 212.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π15.如图:正三棱锥A B C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 ,侧面积是 .17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是 .18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为 .19.已知正四面体SA B C-的棱长为16转动,则该长方体的长和宽形成的长方形的面积的最大值为 . 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 .21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 .22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 .23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C DA B C D -截成两部分,则截面与11B C C B 的交线段长为 . 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D 所成的角的正切值是 ,点D 到平面1A C D 的距离为 . 25.在三棱锥PA B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C∠=︒,则A B C ∠为 .三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷参考答案与试题解析一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )AB 2C .3D .32【分析】证明E FB C⊥,E FA D⊥,得出截面四边形与A D ,B C 都平行,从而截面为矩形,设Q 为截面与A C 的交点,A Q A Cλ=,用λ表示出截面的面积,根据二次函数性质求出最大值.【解答】解:连接A F ,D F ,2A B A C B D C D ====,F 是B C 的中点,B C A F∴⊥,B CD F⊥,又A FD F F=,B C ∴⊥平面A D F ,又E F⊂平面A D F ,A D ⊂平面A D F ,B C E F∴⊥,B CA D⊥,又B CA D ==2A F D F ∴==,F是A D 的中点,E F A D∴⊥,E F ⊥平面α,//B C α∴,//A D α,设α与棱锥的截面多边形为M N P Q , 则////B C P Q M N ,////A DM Q P N,又B CA D⊥,故P QM Q⊥,∴截面四边形M N P Q 是矩形,设(01)A Q A Cλλ=<<,则P Q B Cλ=,1M Q C Q A DA Cλ==-,P Q ∴=,)Q Mλ=-,∴截面矩形M N P Q 的面积为2136(1)6()22λλλ-=--+,∴当12λ=时,截面面积取得最大值32.故选:D .【点评】本题考查了平面的性质,考查线面平行与垂直的性质,属于中档题. 2.下列说法正确的是()A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 【分析】举反例判断A ,B ,D 错误,根据棱锥侧棱交于一点判断C .【解答】解:对于A ,棱台的上下底面互相平行,侧面都是四边形,但棱台不是棱柱,故A 错误;对于B ,当旋转轴为直角边时,所得几何体为圆锥,当旋转轴为斜边时,所得几何体为两个圆锥的组合体,故B 错误;对于C ,由于棱锥的所有侧棱都交于一点,故棱锥的侧面都是三角形,故C 正确; 对于D ,当平面与棱锥的底面不平行时,截面与棱锥底面间的几何体不是棱台,故D 错误. 故选:C .【点评】本题考查了空间几何体的结构特征,属于基础题.3.已知直角三角形的两直角边分别为1则该几何体的体积为()A .4πB .3πC .2πD .π【分析】几何体的体积是由上下两个圆锥的体积组成的,它们的底面半径相同,都是直角三角形斜边上的高,利用圆锥体积公式,即可求得结论.【解答】解:如图,1A C =,BC =2A B=,斜边的高为:122⨯÷=,以A C 为母线的圆锥体积213()32A Oπ=, 以B C 为母线的圆锥体积213()32B Oπ=,∴绕斜边旋转一周形成的几何体的体积等于213()322A B ππ=.故选:C .【点评】本小题主要考查圆锥的体积公式以及几何旋转体的知识等基础知识,考查运算求解能力,考查空间想象力,得到这个立体图形是由两个圆锥组成,以及圆锥体积公式求出是解决问题的关键.4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+【分析】设圆锥的母线为l ,底面半径为r ,高为h ;根据题意列方程求出r 的值,再计算圆柱和圆锥的侧面积之和.【解答】解:设圆锥的母线为l ,底面半径为r ,高为h ;所以4r lππ=,解得1r =,h ==又圆柱的侧面积为22r hπ⋅=,所以制作这样一个粮仓的用料面积为(4)π+.故选:D .【点评】本题考查了圆柱与圆锥的侧面积计算问题,也考查了空间想象能力,是基础题. 5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .【分析】结合S =原图直观图,可得答案.【解答】解:由已知直观图O A B C '''的面积为4,∴原来图形的面积4S=⨯=,故选:C .【点评】本题考查的知识点是斜二测画法,熟练掌握水平放置的图象S =原图观图,是解答的关键.6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A 2B .1C .2D .8【分析】求出直观图面积后,根据S S =原图直观图可得答案.【解答】解:三角形的直观图中点D 是B C 的中点,且2A B B C ==,A B ,B C 分别与y '轴、x '轴平行,122452A B C S s in ∴=⨯⨯⨯︒=直观图,又4S S ===原图直观图,A C D∴∆在原图中的对应三角形的面积为:122S =原图.故选:C .【点评】本题考查的知识点是平面图形的直观图,其中熟练掌握原图面积与直观图面积关系公式S S =原图直观图是解答本题的关键.7.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .【分析】先确定直观图中的线段长,再确定平面图形中的线段长,从而求得平面图形的面积. 【解答】解:直观图中,45A D C∠=︒,2A BB C ==,D CB C⊥,A D ∴=4D C=,∴原来的平面图形上底长为2,下底为4,高为∴该平面图形的面积为1(24)12+⨯=.故选:C .【点评】本题考查了斜二测画法直观图与平面图形的面积计算问题,是基础题. 8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .【分析】根据斜二测画法所得的直观图是平面图形,原面积与直观图的面积比为1,由此求出直观图的面积.【解答】解:水平放置的正方形的面积与斜二测画法所得的直观图是一个四边形,两者面积之比为1,由边长为2的正方形的面积为4,所以这个四边形的直观图面积为4÷=.故选:B .【点评】本题考查了斜二测画法中水平放置的平面图形与原图形面积比问题,是基础题.9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥PA B C D-的侧面积为()A .B .4C .D .【分析】利用勾股定理计算侧面三角形的高,再计算侧面积.【解答】解:设P 在底面A B C D 上的射影为O ,则O 为底面正方形A B C D 的中心, 取C D 的中点E ,连接O E ,则112O EA B ==,P E ∴==,P C P D=,P E C D∴⊥,∴正四棱锥PA B C D-的侧面积为14422P C DS ∆=⨯⨯⨯=,故选:D .【点评】本题考查棱锥的结构特征与侧面积计算,属于基础题. 10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π【分析】首先根据勾股定理求得底面半径,则可以得到底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的母线长为5,高为4,底面半径是:3,则底面周长是6π, 则圆锥的侧面积是:165152ππ⨯⨯=,底面积为9π,则表面积为15924πππ+=.故选:B .【点评】考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 2【分析】过P 作P M ⊥底面A B C D E F ,取O 为球心,设A B a=,P Mh=,求解直角三角形可得226a h h=-,求出正六棱锥的底面积,代入棱锥体积公式,再由基本不等式求最值.【解答】解:如图,过P 作P M⊥底面A B C D E F ,取O 为球心,设A Ba=,P Mh=,在R t D O M ∆中,222(3)3ha-+=,226a h h∴=-,(06)h <<,∴正六棱锥的体积为2116322Vh=⨯⨯⨯23122(6)(122)()12443h h hh h h h ++-=-=⋅-=…当且仅当122hh=-,即4h=时上式等号成立.故该球名为如果获得六棱锥的体积的最大值为1.故选:C .【点评】本题考查球内接多面体体积最值的求法,考查空间中线线、线面、面面间的位置关系、训练利用基本不等式求最值等基础知识,是中档题.12.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m【分析】由题意可得正四棱锥的底面边长与高,代入棱锥体积公式求解. 【解答】解:如图, 四棱锥P A B C D-,P O⊥底面A B C D ,21P Om=,34A Bm=,则3134342180923P A B C DV m-=⨯⨯⨯=,故选:A .【点评】本题考查棱锥体积的求法,是基础的计算题.13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π【分析】扩展几何体为长方体,求解外接球的半径,然后求解该“鞠”的表面积. 【解答】解:因为A BC D=,B DA C=,A DB C=,所以可以把A ,B ,C ,D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径.设该长方体的长、宽、高分别为x ,y ,z , “鞠”的半径为R ,则2222(2)R x y z=++. 因为2225x y+=,2236x z+=,2249y z+=,所以21105584R ==,所以2455SR ππ==.故选:A .【点评】本题考查空间几何体的外接球的表面积的求法,考查转化思想以及计算能力. 14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π【分析】当此四棱锥体积取得最大值时,四棱锥为正四棱锥,根据该四棱锥的最大体积为6,确定球的半径为R ,从而可求球的体积.【解答】解:如图,可得A C =2A BA C ==,此四棱锥的体积最大值212(1)(1)(1)633A B C D V S R RR =+=-+= 整理可得:3219R RR +--=,即可得2(2)(35)0RRR -++=.解得2R=.则球O 的体积等于343233Rππ=,故选:A .【点评】本题考查球内接多面体,球的表面积,解题的关键是确定球的半径,再利用公式求解.15.如图:正三棱锥AB C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .【分析】首先,展开三棱锥,然后,两点间的连接线C C '即是截面周长的最小值,然后,求解其距离即可.【解答】解:把正三棱锥AB C D-的侧面展开,两点间的连接线C C '即是截面周长的最小值. 正三棱锥AB C D-中,30B A D∠=︒,所以A CA C ⊥',2A B=,C C ∴'=∴截面周长最小值是C C '=.故选:D .【点评】本题重点考查了空间中的距离最值问题,属于中档题.注意等价转化思想的灵活运用.二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 2 ,侧面积是 .【分析】根据圆锥底面的周长等于扇形的弧长,列方程求出圆锥的底面半径. 利用扇形的面积求出圆锥的侧面积. 【解答】解:设圆锥底面的半径为r ,则120226360r ππ=⨯⨯,解得2r=,所以该圆锥的底面半径是2. 圆锥的侧面积是2120612360S ππ=⋅⋅=圆锥侧.故答案为:2,12π.【点评】本题考查了圆锥的侧面展开图是扇形的应用问题,是基础题. 17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是O D B D A B B O<<< .【分析】利用直观图,求出原图对应的边长,写出结果即可. 【解答】解:设22A D ''=,则直观图的平面图形为:A B =B O=4B D=,2O D=.原三角形中A B ,B O ,B D ,O D 由小到大的顺序O D B D A B B O<<<.故答案为:O DB D A B B O<<<.【点评】本题考查斜二测平面图形的直观图的画法,以及数据关系,基本知识的考查. 18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为4+【分析】根据题意画出图形,结合图形得出原来的平面图形的上底与下底、高和腰长,即可求出它的周长. 【解答】解:根据题意画出图形,如图所示;原来的平面图形是直角梯形,上底是1,下底是1+2=,所以它的周长是1214+++=++.故答案为:4+【点评】本题考查了平面图形的直观图的画法与应用问题,是基础题19.已知正四面体SA B C-的棱长为1,如果一个高为6的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为 124.【分析】计算棱锥内切球的半径,令长方体体对角线长小于或等于内切球的直径,根据基本不等式求出长方体底面积的最大值.【解答】解:设S 在平面A B C 上的射影为O ,则O 为A B C ∆的中心,延长A O 交B C 于D ,则D 为B C 的中点,正四面体棱长为1,2A D ∴=,233A OA D ==,3S O ∴==,∴正四面体的体积为11113322312S A B C A B C V S S O -∆==⨯⨯⨯=,表面积为144122A B C S S ∆==⨯⨯⨯=表,设正四面体SA B C-的内切球半径为R ,则1312R ⨯=,解得12R=设长方体的长和宽分别为x ,y ,=626R =,22112xy ∴+…,221224xy x y +∴剟,当且仅当12xy ==时取等号.故答案为:124【点评】本题考查棱锥与球的位置关系,考查基本不等式的应用,属于中档题. 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 3 .【分析】证明A BQ A⊥,C DQ D⊥,由C Q DB Q A∠=∠,结合C DB=,可得Q DA=,由平面解析几何知识求得Q 到A D 建立的最大值,再由棱锥体积公式求解. 【解答】解:底面A B C D 是直角梯形,//A B C D,A BA D⊥,C DA B∴⊥,又P A ⊥平面A B C D ,P A ⊂平面P A D ,∴平面P A D ⊥平面A B C D ,则A B⊥平面P A D ,C D⊥平面P A D , 连接Q A ,Q D ,则A B Q A⊥,C DQ D⊥,由C Q DB Q A∠=∠,得tan tan C Q DB Q A∠=∠,则A B C D Q AQ D=,2C D B=,Q D A=,2A D =,在平面P A D 内,以D A 所在直线为x 轴,D A 的垂直平分线为y 轴建立平面直角坐标系,则(1,0)D -,(1,0)A ,设(,)Q x y ,由Q DA=,得222Q D Q A=,即2222(1)2(1)2xyx y++=-+,整理得:22610x y x +-+=,取1x =,可得2y=,得Q 在P A D ∆内距离A D 的最大值为2,此时Q 在P A 上,11222A B C S A B A D ∆=⨯⨯=⨯⨯=,∴三棱锥QA B C -的体积最大值为1233V =⨯=.3【点评】本题考查多面体体积最值的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 92π .【分析】以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥P A B C-的外接球,由此能求出三棱锥PA B C-的外接球的体积.【解答】解:在三棱锥PA B C-中,P A⊥平面A B C ,A CB C⊥,∴以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥PA B C-的外接球,∴三棱锥P A B C-的外接球的半径1322R=⋅=,∴三棱锥PA B C-的外接球的体积为:334439()3322S Rπππ==⨯=.故答案为:92π.【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是基础题. 22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π, 设圆锥的侧面展开后的扇形圆心角为α, 根据底面周长等于展开后扇形的弧长得,23πα=,解得:23πα=, 23A V A π∴∠'=,则13π∠=,过C 作C FV A⊥,C为V B 的三等分点,3B V =,1V C ∴=, 160∠=︒,30V C F ∴∠=︒,12F V ∴=,22234C FC V V F∴=-=,3A V =,12F V =,52A F ∴=,在R t A F C ∆中,利用勾股定理得:2227A C A FF C=+=,则A C=【点评】考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决. 23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C D A B C D -截成两部分,则截面与11B C C B 的交线段长为103.【分析】首先利用平行线的相交的应用和成比例问题的应用,求出C P 的长,进一步利用勾股定理的应用求出结果. 【解答】解:如图所示:过点F 作//F H A E交11A D 于H ,易知11D H=,所以点H 为11A D 的四等分点, 所以11114D H A D =过点E 作//E PA H交1C C 于点P ,则△1A A H P C E ∆∽, 所以11A A C P A HC E=,解得83C P=.所以截面与11B C C B的交线段长为103P E ==.故答案为:103.【点评】本题考查的知识要点:截面的交线,平行线成比例,主要考查学生的运算能力和转换能力及思维能力,属于基础题, 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D点D 到平面1A C D 的距离为 .【分析】以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1B D 与C D 所成的角的正切值和点D 到平面1A C D 的距离.【解答】解:以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系, 则(2B ,2,0),1(0D ,0,2),(0C ,2,0),(0D ,0,0),1(2B D =-,2-,2),(0C D=,2-,0),设异面直线1B D 与C D 所成角为θ, 则11||c o s ||||1243B D CD B D C D θ===,sin θ∴==,s in ta n c o s θθθ==∴异面直线1B D 与C D(2A ,0,0),(2A C=-,2,0),1(2A D =-,0,2),(2A D=-,0,0),设平面1A C D 的法向量(n x=,y ,)z ,则1220220n A C x y n A D x z ⎧=-+=⎪⎨=-+=⎪⎩,取1x=,得(1n =,1,1),∴点D 到平面1A C D的距离为||2||33n A D dn ===.3【点评】本题考查异面直线所成角的正切值、点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 25.在三棱锥P A B C-中,P A ⊥平面A B C ,45P B A ∠=︒,60P B C ∠=︒,则A B C ∠为4π.【分析】作P M B C⊥于点M ,连接A M ,设A Bx=,由已知可求P A x=,利用勾股定理可求P B =,利用三角函数的定义可求2B M =,由已知利用线面垂直的判定和性质可得B M A M⊥,进而可求c o s 2B M A B CA B∠==,结合A B C ∠为三角形内角,可求A B C∠的值.【解答】解:如图,作P M B C⊥于点M ,连接A M ,设A B x=,因为在三棱锥P A B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C ∠=︒,所以P Ax=,P B==,因为60P B C ∠=︒,P MB C⊥,所以12c o s 22B M P B P B C x=∠==,因为P A ⊥平面A B C ,B M⊂平面A B C ,所以B M A P⊥,又P MB C⊥,P MA P P=,所以B M ⊥平面P A M ,又AM⊂平面P A M,所以B M A M⊥,所以2c o s 2x B M A B CA Bx∠===,由于A B C ∠为三角形内角, 所以4A B C π∠=.故答案为:4π.【点评】本题主要考查了勾股定理,三角函数的定义,线面垂直的判定和性质在解三角形中的应用,考查了数形结合思想和转化思想,作辅助线P M B C⊥于点M 是解题的关键,属于中档题.三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.【分析】所得几何体为圆锥中挖去一个圆柱,然后利用公式求出即可. 【解答】解:所形成几何体是一个圆锥挖去一个圆柱,由题意可知圆柱的底面半径为322,圆锥底面半径为3,母线为6,所以32222S π=⨯⨯=圆柱侧,233627S πππ=⨯+⨯⨯=圆锥表,所以所求几何体的表面积为272SS S π=+=+圆锥表圆柱侧.【点评】本题主要考查旋转体的表面积计算,属于基础题. 27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.【分析】(1)取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,证明A M N G是平行四边形,//M N A G,推出//M N平面P A D ,得到//M NA G,证明A GP C⊥,A G P D⊥,推出A G⊥平面P D C ,得到M N⊥平面P D C ,然后证明平面M P C ⊥平面P C D ,(2)利用B M N CN M B CV V --=,转化求解点B 到平面M N C 的距离.【解答】(1)证明:取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,//N G C D∴,12N GC D=,//A MC D,12A MC D=,A M N G ∴是平行四边形,//M NA G,A G ⊂平面P A D ,M N ⊂/平面P A D ,//M N ∴平面P A D//M N A G∴,P M M C ==,N 为P C 中点,M N P C∴⊥,即A GP C⊥, G为P D 的中点,A P A D=,A G P D∴⊥,且P DPC P=,A G ⊥平面P D C ,M N ∴⊥平面P D C ,M N ⊂平面M P C ,∴平面M P C⊥平面P C D ,(2)解:1132B M N CN M B C M B CV V S P A--∆==,1222M B C S B C B M ∆==1222M N CS M N N C ∆==,则点B 到平面M N C 的距离为122hP A ==.【点评】本题考查平面与平面垂直以及直线与平面平行的判断定理的应用,空间点线面距离的求法,等体积法的应用,是中档题. 28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.【分析】(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.利用向量法能求出异面直线E F 与1A D 所成角的余弦值.(2)求出面D E F 的法向量,利用向量法能求出直线1A D 与平面D E F 所成角的正弦值. 【解答】解:(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则(1E ,1,0),(0F ,12,(1A ,0,0),1(0D ,0则(1E F=-,0,)2,1(1A D =-,0,直线E F 与1A D 所成角为θ,则115||c o s 14||||744EF A D E F A D θ===.故异面直线E F 与1A D 14.(2)(1D E=,1,0),(0D F=,12,1(1A D =-,0,设面D E F 的法向量为(nx=,y ,)z ,则0302D E n x y D F n y ⎧=+=⎪⎨=+=⎪⎩,令2z=,可得(3,2)n=-,设直线1A D与平面D E F 所成角为θ,则11||3s in 20||||410A D n A D n θ===,所以直线1A D 与平面D E F 20.【点评】本题考查异面直线所成角的余弦值、线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.【分析】根据线面垂直的判定定理证明m ⊥平面A B C ,再得出m A B⊥.【解答】证明:m A C⊥,mB C⊥,A C ⊂平面A B C ,B C⊂平面A B C ,且A C B CC =,m ∴⊥平面A B C ,又A B ⊂平面A B C , m A B∴⊥.【点评】本题考查了线面垂直的判定定理,线面垂直的性质,属于基础题.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.【分析】(1)由已知利用平面与平面垂直的性质可得E D A C⊥,再由四边形A B C D 是正方形,得A CB D⊥,利用直线与平面垂直的判定可得A C⊥平面B D E ;(2)取E B 中点G ,连接O G ,F G ,证明A O G F 为平行四边形,可得//A C F G,再由直线与平面平行的判定可得//A C 面E FB ;(3)证明A B⊥平面A D E F ,求出三棱锥B D E F-的体积,结合O 为B D 的中点,可得四面体B O E F 的体积.【解答】证明:(1)平面A B C D⊥平面A D E F ,平面A B C D ⋂平面A D E FA D=E D A D ⊥,E D⊂平面A D E F ,E D ∴⊥面A B C D ,得E D A C⊥,又四边形A B C D 是正方形,A C B D∴⊥,又B DE D D=,A C ∴⊥平面B D E ;证明:(2)取E B 中点G ,连接O G ,F G ,O,G 分别为B D ,B E 的中点,//O GD E∴,12O GD E=,又//A F D E,12A F D E=,//A F O G ∴且A FO G=,则四边形A O G F 为平行四边形,得//A CF G,A C ⊂/平面E F B ,F G ⊂平面E F B ,//A C ∴面E FB ;解:(3)平面A B C D⊥平面A D E F ,A B A D⊥,A B ∴⊥平面A D E F .//A F D E,90A D E ∠=︒,22D ED A A F ===,D E F∴∆的面积为122D E FS E D A D ∆=⨯⨯=,∴四面体B D E F 的体积11422333D E F VS A B ∆=⨯=⨯⨯=,又O 是B D 中点,∴12O D E F B D E FV V --=,则1223B O E FB D E F V V -==.【点评】本题考查直线与平面平行、直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,是中档题.。
空间向量与立体几何 单元测试-2022-2023学年高二上学期数学
空间向量与立体几何测试一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1—→-D 1C 1—→等于( )A.AD 1—→B.AC 1—→C.AD →D.AB →2.若直线l 的方向向量为a ,平面α的法向量为μ,则能使l ∥α的是( )A .a =(1,0,0),μ=(-2,0,0)B .a =(1,3,5),μ=(1,0,1)C .a =(0,2,1),μ=(-1,0,1)D .a =(1,-1,3),μ=(0,3,1)3.(2022·江苏如东·高三期末)已知三棱锥P -ABC 的外接球半径为4,底面ABC 中,AC =6,∠ABC =60°,则三棱锥P -ABC 体积的最大值是( )A .183B .543C .24πD 16324+ 4.(2022·江苏无锡·高三期末)正方体1111ABCD A B C D -中,M 是正方形ABCD 的中心,则直线1B M 与平面11A C B 所成角的正弦值为( )A .13B 3C 6D 22 5.(2022·江苏苏州·6的母线长为( )A .22B .3C .26D .426.(2022·广东罗湖·高三期末)在正方体1111ABCD A B C D -中,O 为正方形ABCD 的中点,P 为1AA 的中点,则直线PO 与1AD 所成的角为( )A .2πB .3πC .4πD .6π7.(2022·广东揭阳·高三期末)已知圆柱的轴截面为正方形,其外接球为球O ,则圆柱的表面积与球O 的表面积之比为( )A .3:4B .1:2C .32D .不能确定7.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A 3λB 2C 2λD 5 8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫ ⎪⎝⎭B .133,,224⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .447,,333⎛⎫ ⎪⎝⎭二、选择题:本题共4小题,每小题5分,共20分。
高二数学立体几何试题
高二数学立体几何试题1.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.B.C.D.【答案】B【解析】略2.长方体的底面是边长为的正方形,若在侧棱上至少存在一点,使得,则侧棱的长的最小值为()A.B.C.D.【答案】B【解析】以D为原点,分别为轴建立坐标系,设侧棱长为b,则,所以侧棱长的最小值为【考点】1.向量法求解立体几何问题;2.二次方程根的判定3.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,【考点】1.线面垂直的判定定理;2.二面角;4.如图,四棱锥中,四边形是正方形,若分别是线段的中点.(1)求证:||底面;(2)若点为线段的中点,平面与平面有怎样的位置关系?并证明。
【答案】(1)见解析;(2)平行【解析】(1)证明GF平行于平面ABC内的一条直线AC即可;(2)首先判断平面∥平面,然后结合有关几何体的性质与所给条件证明面面平行即可.试题解析:(1)证明:连接,由是线段的中点得为的中点,∴为的中位线,又平面,平面∴平面(2)平面∥平面,证明如下:∵分别为,的中点,∴为的中位线,∴∥又∵,∴∥,又平面,∴平面∥平面【考点】线面平行的判定与性质;面面平行的判定与性质5.多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为()A.B.C.D.6【答案】C【解析】用割补法可把几何体分割成三部分,如图:棱锥的高为2,底面边长为4,2的矩形,棱柱的高为2.可得【考点】由三视图求面积、体积6.点A(2,3,5)关于坐标平面的对称点B的坐标是A.(2,3,-5)B.(2,-3,5)C.(-2,3,5)D.(-2,-3,5)【答案】A【解析】空间点关于平面的对称点的坐标不变,坐标互为相反数,因此B的坐标是,故选A【考点】空间点的坐标7.如图所示,在棱长为2的正四面体中,是棱的中点,若是棱上一动点,则的最小值为A.B.C.D.【答案】B【解析】将翻折到同一平面内,的最小值为为的长,在中,由余弦定理可得【考点】1.翻折问题;2.空间距离8.如图在直三棱柱中已知AB=BC=1,,,D是上的点,且(1)求AD与C1B1所成的角的大小;(2)求二面角的余弦值.【答案】(1);(2)二面角的余弦值为.【解析】(1)异面直线所成的角常常通过作平行线将其转化为平面角,然后再三角形内求解.本题过D作DE平行BC交于点E,连接DE,AD,从而将所求转化为DE与AD所成的角,即,最后求解即可.(2)求二面角的大小常常是利用三垂线定理或其逆定理作出其平面角,然后在三角形内求解即可.当然作平面角的方法很多应根据题目条件选择适当的方法.试题解析:如上图所示过D作DE平行BC交于点E,连接DE,AD易知四边形为平行四边形,即DE平行且等于所以有AD与C1B1所成的角就为DE与AD所成的角,即,又为直三棱柱.知道=在Rt由勾股定理知=同理可得AD= ;又=1;在三角形ADE中由余弦定理解得;所以=(2)由题易知BC垂直平面从而直线垂直平面,作垂直于AD交AD的延长线于F,连接,由三垂线定理的逆定理知,从而为二面角的平面角,在中应用余弦定理得=,于是,故所求二面角的余弦值为【考点】•异面直线所成的角;‚求二面角.【方法点睛】求二面角的平面角的方法:一、定义法,即在二面角的棱上任取一点,并过该点在两个半平面内作棱的垂线,则这两条垂线的夹角即为二面角的平面角,然后在三角形内求解即可.二、利用三垂线定理或其逆定理作出二面角的平面角,然后求解,该法的应用是最多的(本题即为该解法).三、垂面法,即找到一个与二面角的棱垂直的平面,该平面与两个半平面的交线所围成的角即为二面角的平面角,然后求解.9.已知两条相交直线,平面,则与平面的位置关系是()A.平面B.平面C.平面D.与平面相交,或平面【答案】D【解析】直线显然不可能在平面内,平行与相交都有可能,故选D.【考点】直线与平面的位置关系.10.已知是两条不同直线,是两个不同平面,则下列命题正确的是()A.若垂直与同一平面,则平行B.若平行于同一平面,则平行C.若不平行,则内不存在与平行的直线D.若不平行,则不可能垂直与同一平面【答案】D【解析】若垂直与同一平面,则可能平行也可能相交,A错;若平行于同一平面,则平行、相交、异面都有可能,B错;若相交时,则内与交线平行的直线与平行,C错;则垂直与同一平面,则与平行,D正确,故选D.【考点】面面、线面、线线间的位置关系.11.设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,如图:则其外接球的半径为球的表面积为;故选B.【考点】球内接多面体.【方法点晴】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.解决本题的关键在于能想象出空间图形,并能准确的判断其外接球的求心就是上下底面中心连线的中点.12.一只蚂蚁从棱长为1cm的正方体的表面上某一点出发,走遍正方体的每个面的中心的最短距离,那么的最大值是__________.【答案】【解析】欲求d的最大值,先将起始点定在正方体的一个顶点A点,再将正方体展开,找到6个面的中心点,经观察可知蚂蚁爬行最短程为6个正方体的棱长+展开图形中半个正方形对角线的长.欲求d的最大值,先将起始点定在正方体的一个顶点A点,正方体展开图形为:则蚂蚁爬行最短程的最大值【考点】平面展开-最短路径问题【方法点睛】折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现。
高二数学立体几何试题
高二数学立体几何试题1.如图所示,正方形和矩形所在平面相互垂直,是的中点.(I)求证:;(Ⅱ)若直线与平面成45o角,求异面直线与所成角的余弦值.【答案】(I)证明:在矩形中,∵平面平面,且平面平面∴∴(Ⅱ)由(I)知:∴是直线与平面所成的角,即设取,连接∵是的中点∴∴是异面直线与所成角或其补角连接交于点∵,的中点∴∴∴异面直线与所成角的余弦值为【解析】略2.二面角α-l-β为60°,A、B是棱l上的两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为()A.2a B.C.a D.【答案】A【解析】此题考查二面角的知识;如下图所示:过点作平面垂线,垂足为,连接,且,所以,在中,可以求出,;四边形是直角梯形,可求出斜腰,所以在中,,选A3.(本题12分)如图,长方体中,,,点为的中点。
(1)求证:直线∥平面;(2)求证:平面平面;(3)求证:直线平面。
【答案】略【解析】(1)设AC和BD交于点O,连PO,由P,O分别是,BD的中点,故PO//,所以直线∥平面--(4分)(2)长方体中,,底面ABCD是正方形,则AC BD又面ABCD,则AC,所以AC面,则平面平面 -----------------------(9分)(3)PC2=2,PB12=3,B1C2=5,所以△PB1C是直角三角形。
PC,同理PA,所以直线平面。
---------------------(12分)4.是平面外一点,平面,垂足为,若两辆互相垂直,则是的()A.垂心B.内心C.重心D.外心【答案】A【解析】,,;又,,,;同理,可证,即是的垂心.【考点】1.空间中垂直关系的互化;2.三角形的四心.5.长方体的表面积为11,十二条棱长度之和为24,则这个长方体的一条对角线长为()A.B.C.5D.6【答案】C【解析】由题可知,设长方体的长、宽、高分别为a,b,c,由题可得,4(a+b+c)=24…①,2ab+2bc+2ac=11…②,由①的平方减去②可得a2+b2+c2=25,这个长方体的一条对角线长为;【考点】棱柱的结构特征6.棱长均为的三棱锥,若空间一点满足则的最小值为( )A.B.C.D.【答案】A【解析】∵空间一点P满足,∴点P在平面ABC内.因此当SP⊥平面ABC,P为垂足时,取得最小值.∵三棱锥S-ABC的棱长均为3,∴点P为底面ABC的中心.如图:∴在Rt△APS中,;故选A.【考点】1.向量在几何中的应用;2.平面向量的基本定理及其意义.7.如图,二面角的大小是45°,线段.,与所成的角为30°.则与平面所成的角的正弦值是.【答案】【解析】过点A做AO垂直平面于点O,作AC垂直直线于点C,连接CO、BO.,则,,即为与平面所成的角.设 AO=a,则,所以.【考点】二面角、直线与平面所成的角.8.已知一个几何体的三视图如图所示(单位:cm),那么这个几何体的侧面积是()A.B.C.D.【答案】C【解析】由三视图知,该几何体是:底面为上底长为1,下底为是2,高为1的直角梯形且高为1的直棱柱.所以该几何体的侧面积为.故选C.【考点】由三视图求其直观图的侧面积.9.已知是两条不同的直线,为三个不同的平面,则下列命题中错误的是()A.若则B.若,则C.若则D.若,则【答案】C【解析】对于选项,由线面垂直的判定定理及其性质定理可得,选项是正确的;对于选项,直接由线面垂直的性质定理可得,垂直于同一平面的两直线平行,即选项是正确的;对于选项,若则或与相交,即选项是错误的;对于选项,由直线与平面平行的性质定理和面面平行的判定定理可得选项是正确的.故应选.【考点】1、线面平行的判定定理和性质定理;2、线面垂直的判定定理和性质定理.10.已知是两条不同直线,、β、γ是三个不同平面.下列命题中正确的是.(1).若⊥γ,β⊥γ,则//β(2).若⊥,⊥,则//(3).若//,//,则//(4).若//,//β,则//β【答案】(2)【解析】(1)中可能平行,可能相交;(2)中由线面垂直的性质可知垂直于同一平面的两直线平行;(3)中两直线可能平行,相交或异面;(4)中可能平行,可能相交【考点】空间线面平行垂直的位置关系11.如图:已知四棱柱的底面是菱形,该菱形的边长为1,,.(1)设棱形的对角线的交点为,求证://平面;(2)若四棱柱的体积,求与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)连接交于点G,连接GC,得到,利用线面平行的判定定理即可得证;(2)通过体积公式求出高的值,由得到,利用面面垂直的性质定理作出与平面所成角的平面角,再结合已有数据求出最终结果。
(易错题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测题(含答案解析)
一、选择题1.已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A .85B .97C .12D .2302.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .213.如图为一正方体的平面展开图,在这个正方体中,有以下结论:①AN GC ⊥,②CF 与EN 所成的角为60︒,③BD //MN ,④二面角E BC N --的大小为45︒,其中正确的个数是( )A .1B .2C .3D .44.阅读材料:空间直角坐标系O ﹣xyz 中,过点P (x 0,y 0,z 0)且一个法向量为=(a ,b ,c )的平面α的方程为a (x ﹣x 0)+b (y ﹣y 0)+c (z ﹣z 0)=0;过点P (x 0,y 0,z 0)且一个方向向量为d =(u ,v ,w )(uvw≠0)的直线l 的方程为000x x y y z z u v w---==,阅读上面材料,并解决下面问题:已知平面α的方程为x+2y ﹣2z ﹣4=0,直线l 是两平面3x ﹣2y ﹣7=0与2y ﹣z+6=0的交线,则直线l 与平面α所成角的大小为( ) A .arcsin 1414 B .arcsin 421C .arcsin51442D .arcsin123773775.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π6.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③7.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A .3B .2C .1D .32-8.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等; ③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形 ( ) A .1B .2C .3D .410.如图,在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .11+22+a b c B .1122a b c -+ C .1122-++a b c D .1122+-a b c 11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A 5B .23C 5D 512.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.如图,已知正三棱柱111ABC A B C -中,12AB AA ==,,M N 分别为1,CC BC 的中点,点P 在直线11A B 上且满足111().A P A B R λλ=∈若平面PMN 与平面ABC 所成的二面角的平面角的大小为45,则实数λ的值为______.14.如图,在矩形ABCD 中,4,2AB AD ==,E 为AB 的中点.将ADE 沿DE 翻折,得到四棱锥1A DEBC -.设1AC 的中点为M ,在翻折过程中,有下列三个命题:①总有BM ∥平面1A DE ; ②线段BM 的长为定值;③存在某个位置,使DE 与1AC 所成的角为90°. 其中正确的命题是_______.(写出所有正确命题的序号)15.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H.且D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.16.正四棱锥S ABCD -的八条棱长都相等,SB 的中点是E ,则异面直线AE ,SD 所成角的余弦为__________.17.已知空间向量(1,0,0)a =,13(,,0)22b =,若空间向量c 满足2c a ⋅=,52c b ⋅=,且对任意,x y R ∈,()()00001(,)c xa yb c x a y b x y R -+≥-+=∈,则c =__________. 18.如图所示,三棱锥O ABC -中,OA a =,OB b =,OC c =,点M 在棱OA 上,且2OM MA =,N 为BC 中点,则MN =__________.(用a ,b ,c 表示)19.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.20.已知平行六面体中,则____.三、解答题21.如图,平面ABCDE ⊥平面CEFG ,四边形CEFG 为正方形,点B 在正方形ACDE 的外部,且5,4AB BC AC ===.(1)证明:AD CF ⊥.(2)求平面BFG 与平面ABCDE 所成锐二面角的余弦值.22.如图所示,在多面体ABCDE 中,//DE AB ,AC BC ⊥,平面DAC ⊥平面ABC ,24BC AC ==,2AB DE =,DA DC =,点F 为BC 的中点.(1)证明:EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60︒,求平面DCE 与平面ADC 所成的锐二面角的余弦值.23.在多面体ABCDE 中,平面ACDE ⊥平面ABC ,四边形ACDE 为直角梯形,//CD AE ,AC AE ⊥,AB BC ⊥,1CD =,2AE AC ==,F 为DE 的中点,且点E 满足4EB EG =.(1)证明://GF 平面ABC .(2)当多面体ABCDE 的体积最大时,求二面角A BE D --的余弦值.24.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.25.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AB BC CA AA ===,D 为AB 的中点.(1)求证:1//BC 平面1DAC ;(2)求平面1DAC 与平面11AAC C 所成的锐二面角....的余弦值. 26.如图,在多面体EF ABCD -中,AD //BC ,CD //EF ,1AD DC DE ===,2BC EF ==,2CDE CDA π∠=∠=.(1)若M 为EF 中点,求证:CD ⊥BM ; (2)若二面角A DC E --的平面角为3π,求直线AE 与平面EFB 所成角的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用空间向量基本定理表示出AC ',然后平方后转化为数量积的运算求得. 【详解】记a AB =,b AD =,c AA '=,则43cos900a b ⋅=⨯⨯︒=,同理152b c ⋅=,10a c ⋅=,由空间向量加法法则得AC a b c '=++,∴22222()222AC a b c a b c a b b c a c'=++=+++⋅+⋅+⋅222154352210852=+++⨯+⨯=, ∴85AC '=85AC '=. 故选:A . 【点睛】方法点睛:本题考查求空间线段长,解题方法是空间向量法,即选取基底,用基底表示出向量,然后利用向量模的平方等于向量的平方转化为向量的数量积进行计算.2.C解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.3.C解析:C 【分析】根据题意画出正方体直观图,建立空间直角坐标系,计算0AN GC ⋅=,由此判断①正确.根据线线角的知识,判断②正确.根据线线的位置关系,判断③错误.根据二面角的知识,判断④正确. 【详解】画出正方体的直观图,如下图所示,设正方体边长为2,以,,DA DC DG 分别为,,x y z 轴建立空间直角坐标系.则()()()()2,0,0,0,2,2,0,0,2,0,2,0A N G C ,所以()()2,2,20,2,20AN GC ⋅=-⋅-=,所以AN GC ⊥,故①正确.由于//EN AC ,所以CF 与EN 所成的角为FCA ∠,而在FAC ∆中,AF FC CA ==,也即FAC ∆是等边三角形,故60FCA ∠=,所以②正确.由于//EN AC ,而AC 与BD 相交,故,BD MN 不平行,③错误.由于,EB BC FB BC ⊥⊥,所以EBF ∠即是二面角E BC N --的平面角.EBF ∆是等腰直角三角形,所以45EBF ∠=,故④正确. 综上所述,正确的命题个数为3个. 故选:C.【点睛】本小题主要考查空间线线、面面的位置关系有关命题的真假性判断,属于中档题.4.B解析:B 【分析】先根据两个平面的方程,求出平面交线的方向向量,结合已知平面的方程确定平面的法向量,然后求解. 【详解】平面α的法向量为n =(1,2,﹣2),联立方程组3270260x y y z --=⎧⎨-+=⎩,令x =1,得y =﹣2,z =2,令x =3,得y =1,z =8,故点P (1,﹣2,2)和点Q (3,1,8)为直线l 的两个点,∴PQ =(2,3,6)为直线l 的方向向量, ∵44cos ,3721||||PQ n PQ n PQ n ⋅-<>===-⨯ ,∴直线l 与平面α所成角的正弦值为421,【点睛】本题主要考查直线和平面所成角的正弦,属于信息提供题目,理解题中所给的信息是求解关键.5.D解析:D【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可.【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M ,据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.如图,在正方体ABCD﹣A1B1C1D1中,A1H⊥平面AB1D1,垂足为H,连接A1C,可得A1C⊥AB1,A1C⊥AD1,即有A1C⊥平面AB1D1,直线A1H与直线A1C重合,直线A1H与该正方体各棱所成角相等,均为2①正确;直线A1H与该正方体各面所成角相等,均为arctan22,故②正确;过直线A1H的平面截该正方体所得截面为A1ACC1为平行四边形,故③正确;垂直于直线A1H的平面与平面AB1D1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D.【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.7.D解析:D【分析】由DB ED FE BF=++,利用数量积运算性质展开即可得到答案【详解】BD ED FE BF=++,22222221112 BD BF FE ED BF FE FE ED BF ED∴=+++++=++故32BD=-故选D【点睛】本题是要求空间两点之间的距离,运用空间向量将其表示,然后计算得到结果,较为基础.8.D解析:D【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O出发的三个向量表示的,所以将待求向量用从O出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果.详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题. 9.A解析:A【解析】分析:紧扣正四棱锥的概念,即可判定命题的真假.详解:由题意,当四棱锥P ABCD -的底面ABCD 为一个矩形时,设AC BD O ⋂=且PO ⊥底面ABCD ,此时可得PA PB PC PD ===,而四棱锥此时不是正四棱锥,所以①不正确的,同时各个侧面与底面所成的角也不相等,所以③不正确的;因为四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,而直角梯形ABCD 没有外接圆,所以底面不可能是直角梯形,所以④不正确;设四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,所以各条测量与底面ABCD 的正弦值都相等,所以②正确的, 综上,故选A.点睛:本题主要考查了正四棱锥的概念,我们把底面是正方形,且顶点在底面上的射影是底面正方形的中心的四棱锥,叫做正四棱锥,其中紧扣正棱锥的概念是解答的关键. 10.C解析:C【分析】根据空间向量的运算法则,化简得到11122BM AB AD AA =-++,即可求解. 【详解】由题意,根据空间向量的运算法则,可得1111112BM BB B M AA B D =+=+ 1111111111111()()222222AA A D A B AA AD AB AB AD AA a b c =+-=+-=-++=-++. 故选:C.【点睛】在空间向量的线性运算时,要尽可能转化为平行四边形或三角形中,运用平行四边形法则、三角形法则,以及利用三角形的中位线、相似三角形等平面几何的性质,把未知向量转化为已知向量有直接关系的向量来解决.11.A解析:A【分析】先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解.【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-,∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=, ∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为5 故选:A.【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题. 12.B解析:B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值.【详解】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=, 22225||(3)6916BP x z x x ∴=-+=-+225488191625255x ⎛⎫=-+ ⎪⎝⎭, ||5tan ||3AB BP θ∴=, tan θ∴的最大值为53. 故选:B .【点睛】本题主要考查的是线面所成角,解题的关键是找到线面所成角的平面角,是中档题.二、填空题13.【分析】从二面角的大小入手利用空间向量求解【详解】以N 为坐标原点NCNA 所在直线分别为x 轴y 轴建立空间直角坐标系如图则由可得设为平面的一个法向量则即令可得易知平面ABC 的一个法向量为因为平面与平面所 解析:2-【分析】从二面角的大小入手,利用空间向量求解.【详解】以N 为坐标原点,NC,NA 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图则()()()()()10,0,0,1,0,1,1,0,0,3,0,3,2N M B A A - ,由111A P A B λ=可得()11111133,2NP NA A P NA A B NA AB λλλλ=+=+=+=-, ()1,0,1NM =,设(),,n x y z =为平面PMN 的一个法向量,则00n NM n NP ⎧⋅=⎨⋅=⎩,即)03120x z x y z λλ+=⎧⎪⎨--+=⎪⎩, 令1z =-,可得()()321,,131n λλ⎛⎫+=- ⎪ ⎪-⎝⎭,易知平面ABC 的一个法向量为()0,0,1m =. 因为平面PMN 与平面ABC 所成的二面角的平面角的大小为45, 所以1cos45n m n m n ⋅︒==,即2n =,所以21211231λλ+⎛⎫++= ⎪-⎝⎭,解得2λ=-. 【点睛】本题主要考查空间向量的应用,利用二面角求解参数.二面角的求解和使用的关键是求解平面的法向量,把二面角转化为向量的夹角问题.14.①②【分析】取D 的中点N 连接MNEN 根据四边形MNEB 为平行四边形判断①②假设DE ⊥C 得出矛盾结论判断③【详解】取D 的中点N 连接MNEN 则MN 为△CD 的中位线∴MN ∥CD 且MN=CD 又E 为矩形ABC解析:①②【分析】取1A D 的中点N ,连接MN ,EN ,根据四边形MNEB 为平行四边形判断①,②,假设DE ⊥1A C 得出矛盾结论判断③.【详解】取1A D 的中点N ,连接MN ,EN ,则MN 为△1A CD 的中位线,∴MN ∥12CD ,且MN=12CD 又E 为矩形ABCD 的边AB 的中点,∴BE ∥12CD ,且BE=12CD ∴MN ∥BE ,且MN=BE 即四边形MNEB 为平行四边形,∴BM ∥EN ,又EN ⊂平面A 1DE ,BM ⊄平面A 1DE ,∴BM ∥平面1A DE ,故①正确;由四边形MNEB 为平行四边形可得BM =NE ,而在翻折过程中,NE 的长度保持不变,故BM 的长为定值,故②正确;取DE 的中点O ,连接1A O ,CO ,由1A D =1A E 可知1A O ⊥DE ,若DE ⊥1A C ,则DE ⊥平面1A OC ,∴DE ⊥OC ,又∠CDO =90°﹣∠ADE =45°,∴△OCD 为等腰直角三角形,故而CD 2=OD , 而OD 12=DE 2=,CD =4,与CD 2=OD 矛盾,故DE 与1A C 所成的角不可能为90°. 故③错误.故答案为①②.【点睛】本题考查命题真假,线面平行的判定,线面垂直的判定与性质,空间想象和推理运算能力,属于中档题.15.【解析】【分析】利用平面可以得到从而为中点同理可得为中点再根据三棱锥为正三棱锥得到故四边形为矩形从而可计算其面积【详解】因为故在底面上的射影为底面三角形的外心又为等边三角形故在底面上的射影为底面三角 解析:452【解析】【分析】利用SB 平面DEFH 可以得到DHSB ,从而H 为SA 中点,同理可得F 为SC 中点,再根据三棱锥S ABC -为正三棱锥得到AC SB ⊥,故四边形HDEF 为矩形,从而可计算其面积.【详解】因为SA SB SC ==,故S 在底面上的射影为底面三角形的外心,又ABC ∆为等边三角形,故S 在底面上的射影为底面三角形的中心,所以三棱锥S ABC -为正三棱锥,所以SB AC ⊥.因SB 平面DEFH ,SB ⊂平面ABS ,平面ABS平面DEFH DH =,故SB DH ,因AD DB =,故AH HS =,1,2DH BS DH BS =,同理1,2EF BS EF BS =, 故,DH EF DH EF =,所以四边形DEFH 为平行四边形,又由,D E 为中点可得DEAC ,故DH DE ⊥,故四边形DEFH 为矩形. 又153,2DE DH ==,故矩形DEFH 的面积为452. 【点睛】 (1)正三棱锥中,对棱是相互垂直的,且顶点在底面的投影是底面正三角形的中心. (2)通过线面平行可以得到线线平行,注意利用线面平行这个条件时,要合理构建过已知直线的平面(该平面与已知平面有交线).16.【解析】以正方形的中心为原点平行于的直线为轴平行于的直线为轴为轴建立如图所示空间直角坐标系设四棱锥棱长为则所以∴故异面直线所成角的余弦值为 解析:33【解析】以正方形ABCD 的中心O 为原点,平行于AB 的直线为x 轴,平行于AD 的直线为y 轴, SO 为z 轴建立如图所示空间直角坐标系O xyz -,设四棱锥S ABCD -棱长为2,则(1,1,0)A --,(1,1,0)B -,2)S ,(1,1,0)D -,112,,222E ⎛- ⎝⎭,所以312,22AE ⎛= ⎝⎭,(1,1,2)SD =--,∴311cos,AE SD-+-==故异面直线AE,SD所成角的余弦值为3.17.【分析】设空间向量由已知条件可得的值由对任意得:进而得到答案【详解】解:空间向量设空间向量空间向量又由对任意则故故答案为:【点睛】本题考查的知识点是空间向量的数量积运算空间向量的模属于中档题解析:【分析】设空间向量(),,c m n z=,由已知条件可得m、n的值,由对任意x,y R∈,00|()||()|1c xa yb c x a y b-+-+=得:||1z=,进而得到答案.【详解】解:空间向量(1,0,0)a=,13(,22b=,设空间向量(),,c m n z=,2c a⋅=,52c b⋅=,2m∴=,1522m =2m∴=,3n=,∴空间向量()2,3,c z=,又由对任意x,y R∈,()()001c xa yb c x a y b-+≥-+=,则||1z=,故(22c=+=故答案为:【点睛】本题考查的知识点是空间向量的数量积运算,空间向量的模,属于中档题.18.【解析】解析:211322a b c-++【解析】MN MA AB BN=++11()32OA OB OA BC =+-+ 21()32OA OB OC OB =-++- 211322OA OB OC =-++ 211322a b c =-++. 19.2【解析】因为向量所以则解之得应填答案解析:2【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2第二章 单元测试题
学号 姓名 成绩
一、选择题(本大题共10小题,每小题5分,共50分) 1、线段AB 在平面α内,则直线AB 与平面α的位置关系是
A 、A
B α⊂ B 、AB α⊄
C 、由线段AB 的长短而定
D 、以上都不对 2、下列说法正确的是
A 、三点确定一个平面
B 、四边形一定是平面图形
C 、梯形一定是平面图形
D 、平面α和平面β有不同在一条直线上的三个交点
3、垂直于同一条直线的两条直线一定
A 、平行
B 、相交
C 、异面
D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45o 角
D 、11AC 与1B C 成60
o
角
5、若直线l //平面α,直线a α⊂,则l 与a 的位置关系是
A 、l //α
B 、l 与a 异面
C 、l 与a 相交
D 、l 与a 没有公共
点
6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有
A 、1
B 、2
C 、3
D 、4
7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与
EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上
C 、点P 必在平面ABC 内
D 、点P 必在平面ABC 外
8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,
a ∥
b ,则a ∥M ;③若a ⊥
c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有
A 、0个
B 、1个
C 、2个
D 、3个
9、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于
B 1
C 1
A 1
D 1
B A
C
D
A 、
34
B
、
35
C
、
7
D 、
7
10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和
CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为 A 、
2V B 、3V C 、4V D 、5
V
二、填空题(本大题共4小题,每小题5分,共20分);
11、设b a ,是两条直线,βα,是两个平面,则下列命题成立的是 ;
(1),,//;(2)//,;(3),//;(4),,a b a b b a a a a a b a b αααααββαββααβαβ
⊥⊥⊄⊥⊥⊥⊥⊥⊥⊥⊥则则则则
12、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 ; 13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 ;
14、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件
_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)
三、解答题(本大题共3小题,每小题10分,共30分)
15、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (12分)
Q
P
C'
B'
A'C B
A
H G F E
D B
A C
16、已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点.
求证:(1)C 1O//面AB 1D 1; (2 )1A C ⊥面AB 1D 1.
17、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,
∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AF
AC AD
λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)
F
E
D
B
A
C
D 1O
D
B A
C 1
B 1
A 1
C
参考答案:
一、
ACDDD B(AC)BDB 二、
11. 1 4
12. 平行
13. 菱形
14. AC垂直BD
三、
15. 略
16. 略
6
17. (II)
7。