范德瓦尔斯方程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考资料1:
荷兰物理学家范德瓦耳斯(Johannes Diderik Van der Waals,1837—1923)改进了气体的状态方程,把分子间的作用力和分子的有限体积放进方程中去。他论证了,分子间距离较远时,它们间必定存在吸引力,这一作用附加到容器壁施加的压强上去。他进一步提供论据,假设附加产生的压强反比于气体比容的平方。还有,由于分子占有体积,它们可利用的空间必须减少,或者说得更明白些,减少的总体积就正比于分子在相互接触时所占有的体积。于是一摩尔真实气体的状态方程变成(p+an2/V2)(V-nb)=RT。 这简单方程包含两个常数,即a和b,对于每一种物质它们可由实验确定。R是普适气体数学。1873 年在博士论文《论气态和液态的连续性》中考虑了分子体积和分子间吸力的影响,推出了著名的物态方程:(p+a/V2)(V-b)=RT 后来人们称之为范德瓦耳斯方程。他还导出了b 是分子体积的4 倍。这个方程不仅能解释安德纽斯的实验结果及J.汤姆生的见解,而且能从常数a、b 值计算出临界参数,这对“永久气体”液化的理论起了指导作用。
参考资料2:
下面以理想气体状态方程为基础,推导范氏方程。若把气体视为由体积无限小、相互之间无作用力的分子组成,这种模型便是理想气体模型,与其相对应的状态方程是:p=kT/V.若抛弃前一个的假设,把组成气体的分子视为有一定大小的刚性球(其半径称为范德瓦尔斯半径),用b 表示这些“球”的体积,上面的方程便改写为:p=kT/(V-b).在这里,每个分子的“占有体积”v 被所谓“排斥体积”v - b 代替,反映了分子在空间中不能重叠。若气体被压缩至体积接近分子体积之和(即分子间空隙v - b 趋向于0),那么其压强将趋于无穷大。下一步,我们考虑原子对之间的引力。引力的存在会使分子的平均亥姆霍兹自由能下降,减少量正比于流体的密度。但压强的大小满足热力学关系...
式中A* 为每个分子的亥姆霍兹自由能。由此得到,引力使压强减小的量正比于1/v2。记该比例常数为a,可得...这便是范氏方程。(注:由于笔者自身水平有限,“。。。”处笔者不会输入,建议参考基维百科。)

综述:范德瓦耳斯方程的产生是这样的:先由范德瓦耳斯提出假设,再通过计算证明假设的成立,因此当初方程的产生并不是由于数学推导,而是一种经验性的假设,通过计算,符合事实,便成为一个结论。更简单的理解是:根据理想气体状态方程pV=nRT,由于真是气体压强和体积的测定相对于真实气体存在误差,因此要对压强和体积进行修正。体积上的修正很容易理解,就是理想气体体积减去分子占有体积就是真实气体

运动所占有的体积,而对于压强的修正,理解是这样的:分子间的吸引力会对气体对外表现出的压强产生减弱,因此在真实气体的基础上加上由于吸引减弱的压力才是理想气体表现出的压力。而这个分子间的吸引力的大小,是与分子的密度有关的。而在分子间吸引力相同的情况下,分子密度越大,吸引力对压力的削减也越强,因此在压强出的修正方面,是加上分子密度平方的正比。


范德华方程是范德瓦耳斯方程的另一种翻译,简称范氏方程,是荷兰物理学家范德瓦耳斯(van der Waals,又译“范德华”、“凡德瓦耳”)于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点在于将被理想气体模型所忽略的的气体分子自身大小和分子之间的相互作用力考虑进来,以便更好地描述气体的宏观物理性质。

范德华方程常用的形式(N=摩尔数)

在一般形式的范氏方程中,常数a和b 因气体/流体种类而异,但我们可以通过改变方程的形式,得到一种适用于所有气体/流体的普适形式。

按照下面的方式定义约减变量(亦称折合变量,就是把变量转换成其无量纲形式),其中下标R 表示约减变量,下标C 表示原变量的临界值:pR=p/pC,vR=v/vC,Tr=T/Tc式中pC=a/27b2,vC=3b,kTc=8a/27b

用约减变量代替原变量,范氏方程形式变为如图所示

这就是范氏方程的不变形式,即这一形式不会因应用流体种类改变而改变。

上述方程的不变性质亦称对应态原理



相关文档
最新文档