浙江省高考数学一轮复习:13 导数与函数的单调性
导数与函数的单调性课件高三数学一轮复习
![导数与函数的单调性课件高三数学一轮复习](https://img.taocdn.com/s3/m/fa05e503814d2b160b4e767f5acfa1c7aa0082db.png)
【例1】
(1)(2022·北京高考·节选) 已知函数f(x)=exln(1+x),设g
(x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;
目录
解
(1)g(x)=f'(x)=ex
则g'(x)=ex
ln(1 + ) +
2
1+
ln(1 + ) +
1
−
(1+)2
1
(2)当方程f'(x)=0可解时,解出方程的实根,依照实根把函数的定义域划
分为几个区间,确定各区间f'(x)的符号,从而确定单调区间;
(3)若导函数对应的方程、不等式都不可解,根据f'(x)的结构特征,利用图
象与性质确定f'(x)的符号,从而确定单调区间.
提醒 若所求函数的单调区间不止一个,这些区间之间不能用“∪”及“或”
2≤0恒成立,
1
2
即a≥ 2 - 恒成立.
1
所以a≥G(x)max,而G(x)=
1
因为x∈[1,4],所以
∈
1
,1
4
2
− 1 -1,
,
7
所以G(x)max=- (此时x=4),
16
7
所以a≥- ,即a的取值范围是
16
7
− , +∞
16
.
目录
|解题技法|
已知单调性求解参数范围的步骤
(1)对含参数的函数f(x)求导,得到f'(x);
(x)=x-sin x在R上单调递增,故B满足题意;由f(x)=xex得f'(x)=(1+
2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值
![2023届高考数学一轮复习讲义:第7讲 函数的单调性与最值](https://img.taocdn.com/s3/m/a1ea0492a1116c175f0e7cd184254b35eefd1a1e.png)
第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有,那么就称函数f(x)在区间D上是增函数当x1<x2时,都有,那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是或,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得(1)∀x ∈I ,都有 ; (2)∃x 0∈I ,使得结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.[举一反三]1.(2022·全国·高三专题练习)函数222x x y -++=的单调递增区间是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞-D .递增区间是(1,1)-4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x =B .()ln y x =-C .12xy =D .1y x=-6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.7.(2022·全国·高三专题练习)函数216y x x =-+_____. 8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;10.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b ac << B .a b c << C .c a b << D .a c b <<2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)[举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7-D .()(),77,-∞-⋃+∞6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,17.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭ D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >-B .1b >-C .1b ≥-D .2a <-10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______.11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________.13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.16.(2022·全国·高三专题练习)已知函数()f x x .(1)若1a ,求函数的定义域;(2)是否存在实数a,使得函数()f x在定义域内具有单调性?若存在,求出a的取值范围第7讲函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D 当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 (1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M(1)∀x ∈I ,都有f (x )≥M ; (2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值➢考点1 函数的单调性[名师点睛]确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接. (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 1.(2022·全国·高三专题练习)函数2()23f x x x -- ) A .(,1]-∞ B .[3,)+∞ C .(,1]-∞-D .[1,)+∞【答案】B 【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥, 所以函数2()23f x x x =--(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数2()23f x x x =--[3,)+∞.故选:B.2.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【解】任取1x 、2(11)x ∈-,,且12x x <,(11)1()(1)11a x f x a x x -+==+--,则:21121212()11()()(1)(1)11(1)(1)a x x f x f x a a x x x x --=+-+=----,当0a >时,12())0(f x f x ->,即12()()f x f x >,函数()f x 在(11)-,上单调递减; 当0a <时,12())0(f x f x -<,即12()()f x f x <,函数()f x 在(11)-,上单调递增. [举一反三]1.(2022·全国·高三专题练习)函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 【答案】C 【解析】令220x x -++≥,解得12x -≤≤, 令22t x x =-++,则y =∵函数22t x x =-++在区间112⎡⎤-⎢⎥⎣⎦,上单调递增,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,y =内递增,∴根据复合函数的单调性可知,函数y =112⎡⎤-⎢⎥⎣⎦,.故选:C2.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( ) A .(),2-∞ B .()2,+∞ C .()2,2- D .()2,6-【答案】C 【解析】 令13log y u=,2412u x x =-++.由24120u x x =-++>,得26x -<<.因为函数13log y u=是关于u 的递减函数,且()2,2x ∈-时,2412u x x =-++为增函数,所以()213log 412y x x =-++为减函数,所以函数()213log 412y x x =-++的单调减区间是()2,2-.故选:C.3.(2022·全国·高三专题练习)已知函数()2f x x x x =-+,则下列结论正确的是( ) A .递增区间是(0,)+∞ B .递减区间是(,1)-∞- C .递增区间是(,1)-∞- D .递增区间是(1,1)-【答案】D 【解析】因为函数222,0()22,0x x x f x x x x x x x ⎧-+≥=-+=⎨+<⎩,作出函数()f x 的图象,如图所示:由图可知,递增区间是(1,1)-,递减区间是(,1)-∞-和()1,+∞. 故选:D .4.(2022·全国·高三专题练习)已知函数()f x 的图象如图所示,则函数()()12log g x f x =的单调递增区间为( )A .(],3-∞-,[]0,3B .[]3,0-,[)3,+∞C .(),5-∞-,[)0,1D .(]1,0-,()5,+∞【答案】C 【解析】因为12log y x=在()0,∞+上为减函数,所以只要求()y f x =的单调递减区间,且()0f x >.由图可知,使得函数()y f x =单调递减且满足()0f x >的x 的取值范围是()[),50,1-∞-.因此,函数()()12log g x f x =的单调递增区间为(),5-∞-、[)0,1.故选:C.5.(2022·广西柳州·三模)下列函数在(),0∞-上是单调递增函数的是( ) A .tan y x = B .()ln y x =-C .12xy =D .1y x=-【答案】D 【解析】选项A. 函数tan y x =在(),0∞-上只有单调增区间,但不是一直单调递增,故不满足; 选项B. 由复合函数的单调性可知函数()ln y x =-在(),0∞-上单调递减,故不满足;选项C. 函数1122xx y ⎛⎫== ⎪⎝⎭在(),0∞-上单调递减,故不满足;选项D. 函数1y x=-在(),0∞-上单调递增,故满足,故选:D6.(2022·全国·高三专题练习)函数y =|-x 2+2x +1|的单调递增区间是_________ ;单调递减区间是_________.【答案】 (12,1)-,(12,)++∞ (,12)-∞-,(1,12)【解析】作出函数y =|-x 2+2x +1|的图像,如图所示,观察图像得,函数y =|-x 2+2x +1|在(12,1)-和(12,)++∞上单调递增,在(,12)-∞和(1,12)上单调递减,所以原函数的单调增区间是(1,(1)+∞,单调递减区间是(,1-∞,(1,12).故答案为:(1-,(1)++∞;(,1-∞,(1,12)7.(2022·全国·高三专题练习)函数1y =_____. 【答案】[3,6] 【解析】226060x x x x -+≥⇒-≤,解得06x ≤≤,令()()22639x x x x μ=-+=--+,对称轴为3x =,所以函数()x μ在(),3-∞为单调递增;在[)3,+∞上单调递减.所以函数1y =[3,6]. 故答案为:[3,6]8.(2022·福建·三模)写出一个同时具有下列性质①②③的函数()f x =________. ①定义域为R ;②值域为(,1)-∞;③对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.【答案】1()12xf x =-(答案不唯一) 【解析】 1()12x f x =-,定义域为R ;102x>,1()112x f x =-<,值域为(,1)-∞; 是增函数,满足对任意12,(0,)x x ∈+∞且12x x ≠,均有()()12120f x f x x x ->-.故答案为:1()12xf x =-(答案不唯一). 9.(2022·全国·高三专题练习)已知函数f (x )1x=+lg 4xx -.判断并证明函数f (x )的单调性;【解】由题意,040x x x ≠⎧⎪-⎨>⎪⎩,解得04x <<故f (x )的定义域为(0,4) 令441x u x x -==-,lg y u =,由于41u x=-在(0,4)单调递减,lg y u =在(0,)+∞单调递增,因此4lgxy x-=在(0,4)单调递减,又1y x =在(0,4)单调递减,故f (x )1x =+4lgx x -在(0,4)上单调递减,证明如下: 设0<x 1<x 2<4,则: ()()()()121221121122122144411lg lg lg 4x x x x x x f x f x x x x x x x x x -----=+--=+-, ∵0<x 1<x 2<4,∴x 2﹣x 1>0,x 1x 2>0,4﹣x 1>4﹣x 2>0,12214114x xx x -->,>, ∴()()()()1212211221214401lg 044x x x x x x x x x x x x ----->,>,>, ∴f (x 1)>f (x 2),∴f (x )在(0,4)上单调递减11.(2022·全国·高三专题练习)已知定义域为实数集R 的函数()11222xx f x +-=+.判断函数f (x )在R 上的单调性,并用定义证明.【解】由题意11211()22212x x x f x +-==-+++, 令1112,2xu y u =+=-+,由于12x u =+在R 上单调递增,112y u=-+在(0,)+∞单调递减,由复合函数单调性可知f (x )在R 上为减函数. 证明:设∀x 1,x 2∈R ,且x 1<x 2,所以f (x 1)﹣f (x 2)()()211212112212121212x x x x x x -=-=++++,由于x 1<x 2,y =2x 在R 上单增 所以21220x x ->,且2x >0 所以f (x 1)>f (x 2), 所以f (x )在R 上单调递减.➢考点2 函数单调性的应用1.(2022·重庆巴蜀中学高三阶段练习)已知函数()()e e 2x xx f x --=,则21log3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .a c b <<【答案】A【解析】()f x 的定义域为R , 因为()()()e e ee ()22x xxx x x f x f x ------===,所以()f x 为偶函数,所以()()2221log log 3log 33a f f f ⎛⎫==-= ⎪⎝⎭,443322c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,当0x >时,()()()ee e e 2xx x xx f x ---++'=,因为0x >,所以e1,0e 1xx -><<,所以e e 0x x -->,(e e )0x x x -+>,所以()0f x '>,所以()f x 在(0,)+∞上单调递增,因为2x y =在R 上单调递增,且340143-<<<,所以43013402222-<<<<,即433402122-<<<<,因为2log y x =在(0,)+∞上为增函数,且234<<,所以222log 2log 3log 4<<,即21log 32<<,所以4334202log 32-<<<,所以()433422log 32f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即b a c <<,故选:A2.(2022·广东深圳·高三期末)已知函数()1e ,111,1x x f x x x x-⎧≤⎪=⎨-+>⎪⎩,则()f x 的最大值为______.【答案】1 【解析】解:(],1x ∈-∞时,()1x f x e -=单调递增,()()1111f x f e -==≤;()1,x ∈+∞时,()1+1f x x x=-单调递减,()11+111f x <-=.所以()f x 的最大值为1. 故答案为:1.3.(2022·河北唐山·二模)已知函数()f x ()()21f x f x >-,则x 的取值范围是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C 【解析】解:()f x 定义域为R , 又()()-=-f x f x ,所以()f x 是奇函数,当0x =时,()00f =,当0x >时,()=f x ()f x 在()0,∞+上递增, 所以()f x 在定义域R 上递增,又()()21f x f x >-,所以21x x >-,解得13x >,故选:C4.(2022·全国·高三专题练习)已知函数1()ax f x x a-=-在(2,)+∞上单调递减,则实数a 的取值范围是( ) A .(-∞,1)(1-⋃,)+∞ B .(1,1)-C .(-∞,1)(1-⋃,2]D .(-∞,1)(1-⋃,2)【答案】C 【解析】解:根据题意,函数221()11()ax a x a a a f x a x a x a x a--+--===+---, 若()f x 在区间(2,)+∞上单调递减,必有2102a a ⎧->⎨⎩,解可得:1a <-或12a <,即a 的取值范围为(-∞,1)(1-⋃,2], 故选:C . [举一反三]1.(2022·辽宁朝阳·高三开学考试)已知函数()f x 是定义在R 上的偶函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x ->-,记(2)(3)(1),,23f f a f b c -===,则( )A .c a b <<B .a b c <<C .c b a <<D .b c a <<【答案】B 【解析】依题意,12,(0,)x x ∀∈+∞,12x x ≠,122112121212()()()()00f x f x x f x x f x x x x x x x -->⇔>--, 于是得函数()f x x 在(0,)+∞上单调递增,而函数()f x 是R 上的偶函数,即(2)(2)22f f b -==,显然有(1)(2)(3)123f f f <<,因此得:a b c <<, 所以a b c <<. 故选:B2.(2022·重庆·模拟预测)设函数()()()32200x xx f x x x -⎧-+>⎪=⎨-≤⎪⎩,若ln 2a =,0.23b =,0.3log 2c =,则( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f a f c f b >>D .()()()f c f a f b >>【答案】D 【解析】解:因为()()()32200x x x f x x x -⎧-+>⎪=⎨-≤⎪⎩,又2x y =在()0,∞+上单调递增,2x y -=在()0,∞+上单调递减,则()22xx g x -=-+在()0,∞+上单调递减且()002002g -+==,又()3h x x =-在(),0∞-上单调递减且()3000h =-=,所以()f x 在R 上单调递减,又因为0.20331>=,即1b >,0ln1ln 2lne 1=<<=,即01a <<,0.30.3log 2log 10<=,即0c <,所以b a c >>,所以()()()f b f a f c <<; 故选:D3.(2022·全国·高三专题练习)函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为( ) A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C 【解析】设1x t ,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.4.(2022·重庆八中模拟预测)已知函数()1y f x =-是定义在R 上的偶函数,且()f x 在(),1-∞-单调递减,()00f =,则()()210f x f x +<的解集为( )A .()(),20,-∞-⋃+∞B .()2,0-C .312,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭D .31,22⎛⎫-- ⎪⎝⎭【答案】C【解析】因为函数()1y f x =-是定义在R 上的偶函数,所以()y f x =的图象关于直线1x =-对称.因为()f x 在(),1-∞-上单调递减,所以在()1,-+∞上单调递增. 因为()00f =,所以()()200f f -==.所以当()(),20,x ∈-∞-⋃+∞时,()0f x >;当()2,0x ∈-时,()0f x <.由()()210f x f x +<,得20,2210.x x x ⎧-⎨-<+<⎩或或20,212210.x x x -<<⎧⎨+-+⎩或解得312,,022x ⎛⎫⎛⎫∈--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:C5.(2022·河北·模拟预测)设函数()()212,1,2,1,x x f x x x ⎧++<⎪=⎨-≥⎪⎩则不等式()()340f f x +->的解集为( ) A .()1,1- B .()(),11,-∞-⋃+∞ C .()7,7- D .()(),77,-∞-⋃+∞【答案】A 【解析】解:因为()()212,12,1x x f x x x ⎧++<⎪=⎨-≥⎪⎩,所以()36f =-,()()233126f -=-++=,则()()340f f x +->,即()()()4363f x f f ->-==-,()f x 的函数图象如下所示:由函数图象可知当3x >-时()6f x <且()f x 在(),3∞--上单调递减,所以()()43f x f ->-等价于43x -<-,即1x <,解得11x -<<,即()1,1x ∈-; 故选:A6.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( ) A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1【答案】B 【解析】因为分段函数()f x 在R 上的单调函数,由于22y x ax =-开口向上,故在1≥x 上单调递增,故分段函数()f x 在在R 上的单调递增,所以要满足:0212112a aa a>⎧⎪-⎪-≤⎨⎪-≤-⎪⎩,解得:203a <≤ 故选:B7.(2022·全国·高三专题练习)函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( )A .[)3,-+∞B .[)3,+∞C .(],5-∞D .(],3-∞-【答案】D 【解析】解:函数2()2(1)3f x x m x =-+-+的图像的对称轴为2(1)12m x m -=-=--, 因为函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,所以14m -≥,解得3m ≤-, 所以m 的取值范围为(],3-∞-, 故选:D8.(2022·全国·高三专题练习)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( ) A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭【答案】B 【解析】由题意可知,()313y a x a =-+在(),1-∞上为减函数,则310a -<, 函数21y x =-+在[)1,+∞上为减函数,且有()3130a a -+≥,所以,310610a a -<⎧⎨-≥⎩,解得1163a ≤<.综上所述,实数a 的取值范围是11,63⎡⎫⎪⎢⎣⎭.故选:B.9.(多选)(2022·全国·高三专题练习)函数()21x af x x -=+在区间()b +∞,上单调递增,则下列说法正确的是( ) A .2a >- B .1b >- C .1b ≥- D .2a <-【答案】AC 【解析】 ()22211x a a f x x x -+==-++, ()f x 在区间()b +∞,上单调递增,20a ∴+>,2a >-∴,由()f x 在区间()1+∞-,上单调递增, 1b.故选:AC10.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a 的范围是_______. 【答案】(2,4]- 【解析】 函数5()3x f x x a +=-+,定义域为(,3)(3,)x a a ∈-∞-⋃-+∞,又322()133x a a a f x x a x a -++++==+-+-+,因为函数5()3x f x x a +=-+在(1,)+∞上是减函数,所以只需23a y x a +=-+在(1,)+∞上是减函数,因此2031a a +>⎧⎨-≤⎩,解得24a -<≤.故答案为:24a -<≤11.(2022·全国·高三专题练习)已知函数f (x )m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________. 【答案】(-∞,0)∪(1,4] 【解析】由题意可得4-mx ≥0,x ∈(0,1]恒成立,所以m ≤4()xmin =4.当0<m ≤4时,4-mx 单调递减,所以m -1>0,解得1<m ≤4; 当m <0时,4-mx 单调递增,所以m -1<0,解得m <1,所以m <0. 故实数m 的取值范围是(-∞,0)∪(1,4]. 故答案为: (-∞,0)∪(1,4].12.(2022·全国·高三专题练习)已知函数()f x 满足:①(0)0f =;②在[13],上是减函数;③(1)(1)f x f x +=-.请写出一个满足以上条件的()f x =___________. 【答案】22x x -+ 【解析】由(1)(1)f x f x +=-可得()f x 关于1x =对称,所以开口向下,对称轴为1x =,且过原点的二次函数满足题目中的三个条件, 故答案为:22x x -+13.(2022·全国·高三专题练习)已知y =f (x )是定义在区间(-2,2)上单调递减的函数,若f (m -1)>f (1-2m ),则m 的取值范围是_______.【答案】1223⎛⎫- ⎪⎝⎭,【解析】由题意得:-2-12-21-22-11-2m m m m <<⎧⎪<<⎨⎪<⎩,,,解得12-<m <23.故答案为:1223⎛⎫- ⎪⎝⎭,14.(2022·全国·高三专题练习)若函数2()4f x x ax =-+在[]1.3内不单调,则实数a 的取值范围是__________. 【答案】13(,)22【解析】解:由题意得2()4f x x ax =-+的对称轴为2x a =,因为函数()f x 在[]1.3内不单调,所以123a <<,得1322a <<.故答案为:13(,)22.15.(2022·全国·高三专题练习)已知函数()y f x =是定义在R 的递减函数,若对于任意(0x ∈,1]不等式2(31)(1)(2)f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【解】因为函数()y f x =是定义在R 的递减函数,所以2(31)(1)(2)f mx f mx x f m ->+->+对(0x ∈,1]恒成立2231112mx mx x mx x m ⎧-<+-⇔⎨+-<+⎩在(0x ∈,1]恒成立.整理,当(0x ∈,1]时,2222(1)1mx x m x x ⎧<-⎨-<+⎩恒成立, (1)当1x =,2102m <⎧⎨<⎩,所以12m <;(2)当(0,1)x ∈时,222211x m xx m x ⎧-<⎪⎪⎨+⎪>⎪-⎩恒成立,1,2xy y x ==-都在(0,1)x ∈上为减函数22122x x y x x -∴==-在(0,1)x ∈上为减函数, ∴22122x x ->,222x m x-∴<恒成立⇔12m ≤. 结合当1x =时,12m <①又2222212(1)(1)21,01(1)(1)x x x x x x y y x x x +--+--'===<-++,当(0,1)x ∈ 故211x y x +=-在(0,1)x ∈上是减函数,∴2111x x +<--.211x m x +∴>-恒成立1m ⇔≥-② ∴①、②两式求交集1[1,)2m ∈-由(1)(2)可知当[1m ∈-,1)2时,对任意(0x ∈,1]时,2(31)(1)(2)f mx f mx x f m ->+->+恒成立.16.(2022·全国·高三专题练习)已知函数()f x x . (1)若1a =,求函数的定义域;(2)是否存在实数a ,使得函数()f x 在定义域内具有单调性?若存在,求出a 的取值范围. 【解】(1)()f x x ,∴|1|10x +-≥,解得(,2][0,)x ∈-∞-+∞; 所以函数的定义域为(,2][0,)x ∈-∞-+∞.(2)当x a ≥-,211()24f x x x ⎫===-+⎪⎭,在1[,)4+∞递减,此时需满足14a -≥,即14a -≤时,函数()f x 在[,)a -+∞上递减;当x a <-,()f x x x ,在(,2]a -∞-上递减, ∵104a ≤-<,∴20a a ->->,即当14a -≤时,函数()f x 在(,)a -∞-上递减;综上,当14a -≤时,函数()f x 在定义域R 上连续,且单调递减.所以a 的取值范围是1,4⎛⎤-∞- ⎥⎝⎦。
2021年新高考数学一轮专题复习第05讲-函数的单调性与最值(讲义版)
![2021年新高考数学一轮专题复习第05讲-函数的单调性与最值(讲义版)](https://img.taocdn.com/s3/m/ea0eac2cd4d8d15abe234ebd.png)
【例
2-1】(2020·安徽省六安一中高一月考)若函数
f
x
2x2 1
3 x2
,则
f
x
的值域为(
)
A. ,3
B. 2,3
C. 2,3
D.3,
【答案】C 【分析】
利用分子分离法化简 f x ,再根据不等式的性质求函数的值域.
【详解】
f
x
2x2 3 1 x2
2(x2 1) 1 1 x2
2
1
1 x
考点一 确定函数的单调性(区间)
【例 1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数 f(x)在[a,b]上是增函数,
对于任意的 x1,x2∈[a,b](x1≠x2),下列结论不正确的是( )
A.
f
x1
x1
f x2
x2
>0
B.f(a)<f(x1)<f(x2)<f(b)
C.(x1-x2) [f(x1)-f(x2)]>0
取到.
(2)开区间上的“单峰”函数一定存在最大值(或最小值). 2.函数 y=f(x)(f(x)>0)在公共定义域内与 y=-f(x),y= 1 的单调性相反.
f(x) 3.“对勾函数”y=x+a(a>0)的增区间为(-∞,- a),( a,+∞);单调减区间是[- a,0),
x (0, a].
三、 经典例题
的最大值为( )
A.-2
B.-3
C.-4
D.-6
10.(2020·安徽省六安一中高一月考)已知函数 f (x) log 1 (3x2 ax 5) 在 (1, ) 上是减函数,则实数 a
2
高三一轮复习2021版 第三章 第2讲 第1课时 导数与函数的单调性
![高三一轮复习2021版 第三章 第2讲 第1课时 导数与函数的单调性](https://img.taocdn.com/s3/m/deed8d91376baf1ffc4fadcf.png)
第2讲导数在研究函数中的应用第1课时导数与函数的单调性条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f (x)在(a,b)内是常数函数[提醒](1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)对函数划分单调区间时,需确定导数等于零的点、函数的不连续点和不可导点;(3)如果一个函数具有相同单调性的单调区间不止一个,那么单调区间之间不能用“∪”连接,可用“,”隔开或用“和”连接;(4)区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.判断正误(正确的打“√”错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.() 答案:(1)×(2)√(3)√函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数解析:选D.因为f′(x)=-sin x-1<0.所以f(x)在(0,π)上是减函数,故选D.函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是()解析:选 C.根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.(教材习题改编)函数f(x)=e x-x的单调递增区间是________.解析:因为f(x)=e x-x,所以f′(x)=e x-1,由f′(x)>0,得e x-1>0,即x>0.答案:(0,+∞)已知f(x)=x3-ax在[1,+∞)上是增函数,则实数a的最大值是________.解析:f′(x)=3x2-a≥0,即a≤3x2,又因为x∈[1,+∞),所以a≤3,即a的最大值是3.答案:3利用导数判断或证明函数的单调性讨论函数f(x)=(a-1)ln x+ax2+1的单调性.【解】f(x)的定义域为(0,+∞),f′(x)=a-1x+2ax=2ax2+a-1x.①当a≥1时,f′(x)>0,故f(x)在(0,+∞)上单调递增;②当a≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减;③当0<a<1时,令f′(x)=0,解得x=1-a2a,则当x∈(0,1-a2a)时,f′(x)<0;当x∈( 1-a2a,+∞)时,f′(x)>0,故f(x)在(0,1-a2a)上单调递减,在(1-a2a,+∞)上单调递增.(2019·温州模拟)设函数f (x )=x ln(ax )(a >0).设F (x )=12f (1)x 2+f ′(x ),讨论函数F (x )的单调性.解:f ′(x )=ln(ax )+1,所以F (x )=12(ln a )x 2+ln(ax )+1,函数F (x )的定义域为(0,+∞),F ′(x )=(ln a )x +1x =(ln a )x 2+1x.①当ln a ≥0,即a ≥1时,恒有F ′(x )>0,函数F (x )在(0,+∞)上是增函数; ②当ln a <0,即0<a <1时,令F ′(x )>0,得(ln a )x 2+1>0,解得0<x < -1ln a ; 令F ′(x )<0,得(ln a )x 2+1<0,解得x > -1ln a. 所以函数F (x )在⎝⎛⎭⎫0,-1ln a 上为增函数, 在⎝⎛⎭⎫-1ln a ,+∞上为减函数.求函数的单调区间(1)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1)B .(0,1)C .(1,+∞)D .(0,+∞)(2)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ),求函数f (x )的单调区间.【解】 (1)选B.y =12x 2-ln x ,y ′=x -1x =x 2-1x=(x -1)(x +1)x (x >0).令y ′<0,得0<x <1, 所以单调递减区间为(0,1).(2)f ′(x )=x 2+2x +a 开口向上,Δ=4-4a =4(1-a ).①当1-a ≤0,即a ≥1时,f ′(x )≥0恒成立, f (x )在R 上单调递增.②当1-a >0,即a <1时,令f ′(x )=0, 解得x 1=-2-4(1-a )2=-1-1-a ,x 2=-1+1-a ,令f ′(x )>0,解得x <-1-1-a 或x >-1+1-a ;令f ′(x )<0,解得-1-1-a <x <-1+1-a , 所以f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞);f (x )的单调递减区间为(-1-1-a ,-1+1-a ).综上所述:当a ≥1时,f (x )在R 上单调递增; 当a <1时,f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞),f (x )的单调递减区间为(-1-1-a ,-1+1-a ).1.已知函数f (x )=exx -m .则函数y =f (x )在x ∈(m ,+∞)上的单调递减区间为________,单调递增区间为________.解析:f ′(x )=e x (x -m )-e x (x -m )2=e x (x -m -1)(x -m )2,当x ∈(m ,m +1)时,f ′(x )<0, 当x ∈(m +1,+∞)时,f ′(x )>0,所以f (x )在(m ,m +1)上单调递减,在(m +1,+∞)上单调递增. 答案:(m ,m +1) (m +1,+∞)2.设函数f (x )=12x 2-m ln x ,求函数f (x )的单调区间.解:函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=(x +m )(x -m )x,当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上:当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).利用导数研究函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.主要命题角度有:(1)函数y =f (x )与y =f ′(x )图象的相互判定; (2)已知函数单调性求参数的取值范围; (3)比较大小或解不等式.角度一 函数y =f (x )与y =f ′(x )图象的相互判定 (1)(2017·高考浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )(2)设函数y =f (x )的图象如图,则函数y =f ′(x )的图象可能是( )【解析】 (1)原函数先减再增,再减再增,且x =0位于增区间内,故选D. (2)由y =f (x )图象可知,当x ∈(-∞,x 1)时,y =f (x )单调递增,所以f ′(x )>0. 当x ∈(x 1,x 2)时,y =f (x )单调递减,所以f ′(x )<0. 当x ∈(x 2,+∞)时,y =f (x )单调递增,所以f ′(x )>0. 所以y =f ′(x )的图象在四个选项中只有D 符合. 【答案】 (1)D (2)D角度二 已知函数单调性求参数的取值范围(1)(2019·浙江省高中学科基础测试)若函数f (x )=2x +ax(a ∈R )在[1,+∞)上是增函数,则实数a 的取值范围是( )A .[0,2]B .[0,4]C .(-∞,2]D .(-∞,4] (2)函数f (x )=kx -ln x 在区间(1,+∞)上单调递减,则k 的取值范围是________.【解析】 (1)由题意得f ′(x )=2-ax 2≥0在[1,+∞)上恒成立,则a ≤(2x 2)min =2,所以a ≤2,故选C.(2)因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x ,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x 在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x <1,故k ≤0.【答案】 (1)C (2)(-∞,0] 角度三 比较大小或解不等式(2019·宁波市效实中学月考)定义在R 上的函数f (x )的导函数是f ′(x ),若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f ⎝⎛⎭⎫1e (e 为自然对数的底数)、b =f (2)、c =f (log 28),则a 、b 、c 的大小关系为________(用“<”连接).【解析】 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,得f ′(x )>0,所以函数在(-∞,1)上单调递增,又f (x )=f (2-x ),得函数f (x )的图象关于直线x =1对称,所以函数f (x )图象上的点距离直线x =1越近函数值越大,又log 28=3,所以log 28>2-1e >2>1,得f (2)>f ⎝⎛⎭⎫1e >f (log 28),故c <a <b .【答案】 c <a <b(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.[提醒] (1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________.解析:设g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,所以当x >0时,g ′(x )>0,即g (x )在(0,+∞)上单调递增,又g (2)=f (2)2=0,所以f (x )>0的解集为(-2,0)∪(2,+∞).故填(-2,0)∪(2,+∞).答案:(-2,0)∪(2,+∞)利用导数研究函数单调性的方法(1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解,并注意函数f (x )的定义域.(2)含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.(3)已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.利用导数研究函数的单调性应注意4点 (1)求单调区间应遵循定义域优先的原则.(2)注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.(3)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (4)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.[基础达标]1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(-∞,1)D .(1,+∞) 解析:选D.由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是( ) A .增函数 B .减函数 C .先增后减D .先减后增解析:选A.在(0,2π)上有f ′(x )=1-cos x >0恒成立,所以f (x )在(0,2π)上单调递增. 3.(2019·台州市高三期末质量评估)已知函数f (x )=13ax 3+12ax 2+x (a ∈R ),下列选项中不可能是函数f (x )图象的是( )解析:选D.因f ′(x )=ax 2+ax +1,故当a <0时,判别式Δ=a 2-4a >0,其图象是答案C 中的那种情形;当a >0时,判别式Δ=a 2-4a >0,其图象是答案B 中的那种情形;判别式Δ=a 2-4a ≤0,其图象是答案A 中的那种情形;当a =0,即y =x 也是答案A 中的那种情形,应选答案D.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A.因为f (x )=x sin x ,所以f (-x )=(-x )sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又x ∈⎝⎛⎭⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3.所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A. 5.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞) 解析:选B.由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B.6.(2019·温州七校联考)对于R 上可导的任意函数f (x ),若满足(x -3)f ′(x )≤0,则必有( )A .f (0)+f (6)≤2f (3)B .f (0)+f (6)<2f (3)C .f (0)+f (6)≥2f (3)D .f (0)+f (6)>2f (3)解析:选A.由题意知,当x ≥3时,f ′(x )≤0,所以函数f (x )在[3,+∞)上单调递减或为常数函数;当x <3时,f ′(x )≥0,所以函数f (x )在(-∞,3)上单调递增或为常数函数,所以f (0)≤f (3),f (6)≤f (3),所以f (0)+f (6)≤2f (3),故选A.7.函数f (x )=(x -3)e x 的单调递增区间是________.解析:因为f (x )=(x -3)e x ,则f ′(x )=e x (x -2),令f ′(x )>0,得x >2,所以f (x )的单调递增区间为(2,+∞).答案:(2,+∞)8.已知函数f (x )=ax +ln x ,则当a <0时,f (x )的单调递增区间是________,单调递减区间是________.解析:由已知得f (x )的定义域为(0,+∞).因为f ′(x )=a +1x =a ⎝⎛⎭⎫x +1a x,所以当x ≥-1a时f ′(x )≤0,当0<x <-1a 时f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎫0,-1a ,单调递减区间为⎝⎛⎭⎫-1a ,+∞. 答案:⎝⎛⎭⎫0,-1a ⎝⎛⎭⎫-1a ,+∞ 9.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)10.(2019·浙江省名校协作体高三联考)已知函数f (x )=x 2e x ,若f (x )在[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意得,f ′(x )=e x (x 2+2x ),所以f (x )在(-∞,-2),(0,+∞)上单调递增,在(-2,0)上单调递减,又因为f (x )在[t ,t +1]上不单调,所以⎩⎪⎨⎪⎧t <-2t +1>-2或⎩⎨⎧t <0t +1>0,即实数t的取值范围是(-3,-2)∪(-1,0).答案:(-3,-2)∪(-1,0)11.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.故函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5).12.(1)设函数f (x )=x e 2-x +e x ,求f (x )的单调区间.(2)设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.718 28…),若函数f (x )在区间⎣⎡⎦⎤1e ,e 上单调递减,求a 的取值范围.解:(1)因为f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞).(2)由题意可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x -a ≤0在⎣⎡⎦⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎡⎦⎤1e ,e 上恒成立.令g (x )=ln x +1x. 因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1. x ⎝⎛⎭⎫1e ,1 (1,e) g ′(x )- + g (x )g ⎝⎛⎭⎫1e =ln 1e +e =e -1,g (e)=1+1e ,因为e -1>1+1e,所以g (x )max =g ⎝⎛⎭⎫1e =e -1. 故a ≥e -1.[能力提升]1.(2019·丽水模拟)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).则下面四个图象中,y =f (x )的图象大致是( )解析:选C.由条件可知当0<x <1时,xf ′(x )<0,所以f ′(x )<0,函数递减.当x >1时,xf ′(x )>0,所以f ′(x )>0,函数递增,所以当x =1时,函数取得极小值.当x <-1时,xf ′(x )<0,所以f ′(x )>0,函数递增,当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,函数递减,所以当x =-1时,函数取得极大值.符合条件的只有C 项.2.(2019·浙江新高考冲刺卷)已知定义在R 上的偶函数f (x ),其导函数f ′(x ).当x ≥0时,恒有x 2f ′(x )+f (-x )≤0,若g (x )=x 2f (x ),则不等式g (x )<g (1-2x )的解集为( ) A .(13,1) B .(-∞,13)∪(1,+∞)C .(13,+∞) D .(-∞,13) 解析:选A.因为定义在R 上的偶函数f (x ),所以f (-x )=f (x )因为x≥0时,恒有x2f′(x)+f(-x)≤0,所以x2f′(x)+2xf(x)≤0,因为g(x)=x2f(x),所以g′(x)=2xf(x)+x2f′(x)≤0,所以g(x)在[0,+∞)上为减函数,因为f(x)为偶函数,所以g(x)为偶函数,所以g(x)在(-∞,0)上为增函数,因为g(x)<g(1-2x)所以|x|>|1-2x|,即(x-1)(3x-1)<0<x<1,选A.解得133.已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是________.解析:依题意得,当x>0时,f′(x)>0,f(x)是增函数;当x<0时,f′(x)<0,f(x)是减函数.又f(-3)=f(5)=1,因此不等式f(x)<1的解集是(-3,5).答案:(-3,5)4.(2019·绍兴、诸暨高考模拟)已知函数f(x)=x3-3x,函数f(x)的图象在x=0处的切线方程是________;函数f(x)在区间[0,2]内的值域是________.解析:函数f(x)=x3-3x,切点坐标(0,0),导数为y′=3x2-3,切线的斜率为-3,所以切线方程为y=-3x;3x2-3=0,可得x=±1,x∈(-1,1),y′<0,函数是减函数,x∈(1,+∞),y′>0函数是增函数,f (0)=0,f (1)=-2,f (2)=8-6=2,函数f (x )在区间[0,2]内的值域是[-2,2].答案:y =-3x [-2,2]5.已知函数g (x )=13x 3-12ax 2+2x . (1)若g (x )在(-2,-1)内为减函数,求实数a 的取值范围;(2)若g (x )在区间(-2,-1)内不单调,求实数a 的取值范围. 解:(1)因为g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数,所以g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,所以⎩⎪⎨⎪⎧g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3, 即实数a 的取值范围为(-∞,-3].(2)因为g (x )在(-2,-1)内不单调,g ′(x )=x 2-ax +2,所以g ′(-2)·g ′(-1)<0或⎩⎪⎨⎪⎧-2<a 2<-1,Δ>0,g ′(-2)>0,g ′(-1)>0.由g ′(-2)·g ′(-1)<0,得(6+2a )·(3+a )<0,无解.由⎩⎪⎨⎪⎧-2<a 2<-1,Δ>0,g ′(-2)>0,g ′(-1)>0,得⎩⎪⎨⎪⎧-4<a <-2,a 2-8>0,6+2a >0,3+a >0, 即⎩⎪⎨⎪⎧-4<a <-2,a >22或a <-22,a >-3,解之得-3<a <-22,即实数a 的取值范围为(-3,-22).6.设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)讨论函数f (x )的单调性.解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞), 此时f ′(x )=2(x +1)2, 可得f ′(1)=12,又f (1)=0, 所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2. 当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增; 当a <0时,令g (x )=ax 2+(2a +2)x +a ,Δ=(2a +2)2-4a 2=4(2a +1).①当a =-12时,Δ=0, f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减. ②当a <-12时,Δ<0,g (x )<0, f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0时,Δ>0, 设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a, x 2=-(a +1)-2a +1a .由于x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a >0,所以当x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 当x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增,当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时, f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a , ⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.。
2013高考数学(理)一轮复习课件:3-2
![2013高考数学(理)一轮复习课件:3-2](https://img.taocdn.com/s3/m/7feff031ccbff121dd36835b.png)
则切线方程为 y-(-2)=(3x2 0-8x0+5)(x-2),
3 又切线过(x0,x0 -4x2 0+5x0-4)点, 3 2 则x0 -4x2 + 5 x - 2 = (3 x 0 0 0-8x0+5)(x0-2),
考向一 求曲线切线的方程 【例1】►已知函数f(x)=x3-4x2+5x-4. (1)求曲线f(x)在x=2处的切线方程; (2)求经过点A(2,-2)的曲线f(x)的切线方程. [审题视点] 由导数几何意义先求斜率,再求方程,注意点是
否在曲线上,是否为切点.
解 (1)f′(x)=3x2-8x+5 f′(2)=1,又f(2)=-2 ∴曲线f(x)在x=2处的切线方程为 y-(-2)=x-2,即x-y-4=0.
三个步骤 求函数单调区间的步骤: (1)确定函数f(x)的定义域; (2)求导数f′(x); (3)由f′(x)>0(f′(x)<0)解出相应的x的范围. 当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0 时,f(x)在相应的区间上是减函数,还可以列表,写出函数的 单调区间.
双基自测 1.(2011· 山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的 纵坐标是( A.-9 C.9 解析 由已知y′=3x2,则y′|x=1=3 切线方程为y-12=3(x-1), 即y=3x+9. 答案 C ). B.-3 D.15
).
3.(2012· 长沙一中月考)若点P是曲线y=x2-ln x上任意一点, 则点P到直线y=x-2的最小值为( A.1 2 C. 2 解析 ). B. 2 D. 3 1 1 由已知y′=2x- x ,令2x- x =1,解得x=1.曲线y=x2
2013届高考数学一轮复习课件 单调性
![2013届高考数学一轮复习课件 单调性](https://img.taocdn.com/s3/m/d72a2e3bee06eff9aef807fd.png)
2.下列函数中,满足“对任意 x1,x2∈(0,+∞),当 x1<x2 时都 有 f(x1)>f(x2)”的是( C ) A.y=log2x 1 C.y=log3x B.y=ex D.y=x3
2
1 3.已知函数 f(x)为 R 上的减函数, 则满足 f(|x |)<f(1)的实数 x 的取值范围是( A.(-1,1) C.(-1,0)∪(0,1) ) B.(0,1) D.(-∞,-1)∪(1,+∞)
2 ( x1 x2 )[ f x1 f x2 ] 0 f x 在区间[a,b]上是 增函数; ( x1 x2 )[ f x1 f x2 ] 0 f x 在区间[a,b]
上是减函数.
2.单调函数及单调区间 如果函数y f x 在区间D上是增函数(或减函数),我 们就说f x 在这个区间上具有严格的单调性,区间D 叫做f x 的增区间(或减区间),统称为单调区间. 3.复合函数的单调性复合函数 y f g x 由内、外两层(分别是u g x 和y f u )函 数构成,其单调性可按⑥ __________ 的原则进行判 断,即内、外两层函数在公共定义域上,若同是增函
1 【解析】 因为 f(x)在 R 上为减函数, 且 f(|x |)<f(1),
4.若函数 f(x)=x2+2(a-1)x+2 在区间(-∞,4] 上是减函数,则实数 a 的取值范围是( A.a≤-3 C.a≤3 B.a≥-3 D.a≥3 )
2a-1 【解析】 由二次函数单调性可知, - 2 ≥4, 所以 a≤-3,故选 A.
函数的单调性
理解函数的单调性及其几何意义,掌握判
断函数单调性的基本方法,并能利用函数的单
高考数学一轮复习-用导数研究函数的单调性ppt课件
![高考数学一轮复习-用导数研究函数的单调性ppt课件](https://img.taocdn.com/s3/m/9adba826f342336c1eb91a37f111f18582d00c18.png)
恒成立,即 ≥
恒成立,又 =
在 , +∞ 上单调递减,故
< ,所以
+
+
+
≥ ,当 = 时,导数不恒为0.故选D.
02
研考点 题型突破
题型一 不含参数的函数的单调性
典例1 函数y = xln x(
D )
A.是严格增函数
B.在
1
0,
e
上是严格增函数,在
1
, +∞
e
上是严格减函数
为 , .故选A.
(2)函数f x
[解析] 函数
或 =
2
x2
0,
= x 的增区间为________.
ln 2
2
⋅ − ⋅ ⋅
= ,则′ =
,当
.
.令′ = ,解得 =
∈ −∞, 时,′ < ,函数 单调递减,当 ∈ ,
(2)已知函数f x = ex − e−x − 2x + 1,则不等式f 2x − 3 >
3
, +∞
1的解集为_________.
2
[解析] = − − − + ,其定义域为,
∴ ′ = + − − ≥ ⋅ − − = ,当且仅当 = 时取“=”,∴ 在
在 a, b 上单调递减,则当x ∈ a, b 时,f′ x ≤ 0恒成立.
2.若函数f x 在 a, b 上存在增区间,则当x ∈ a, b 时,f′ x > 0有解;若函数f x
在 a, b 上存在减区间,则当x ∈ a, b 时,f′ x < 0有解.
2023年新高考数学一轮复习4-2 应用导数研究函数的单调性(知识点讲解)解析版
![2023年新高考数学一轮复习4-2 应用导数研究函数的单调性(知识点讲解)解析版](https://img.taocdn.com/s3/m/e7a3a8b9f424ccbff121dd36a32d7375a417c68a.png)
专题4.2 应用导数研究函数的单调性(知识点讲解)【知识框架】【核心素养】考查利用导数求函数的单调区间或讨论函数的单调性以及由函数的单调性求参数范围,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)导数与函数的单调性1.在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数.'()0()f x f x ≤⇔在(,)a b 上为减函数.2.利用导数研究函数的单调性的方法步骤:①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0)解出相应的x 的取值范围,当f ′(x)>0时,f(x)在相应区间上是增函数;当f ′(x)<0时,f(x)在相应区间上是减增函数.特别提醒:讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.【常考题型剖析】题型一:判断或证明函数的单调性例1.(2017·山东·高考真题(文))若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是( )A .()2xf x -= B .()2f x x = C .()-3xf x = D .()cos f x x =【答案】A 【解析】 【详解】对于A,令()e 2x x g x -=⋅,11()e (22ln )e 2(1ln )022x x x x xg x ---'=+=+>,则()g x 在R 上单调递增,故()f x 具有M 性质,故选A.例2.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.例3.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+,导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在⎣⎦上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+,则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【总结提升】1.利用导数研究函数的单调性的关键在于准确判定导数的符号,易错点是忽视函数的定义域.2.当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.讨论的标准有以下几种可能:(1)f ′(x )=0是否有根;(2)若f ′(x )=0有根,求出的根是否在定义域内; (3)若在定义域内有两个根,比较两个根的大小. 题型二:求函数的单调区间例4.(2012·辽宁·高考真题(文))函数y=12x 2-㏑x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞)【答案】B 【解析】 【详解】对函数21ln 2y x x =-求导,得211x y x x x='-=-(x>0),令210{0x x x -≤>解得(0,1]x ∈,因此函数21ln 2y x x =-的单调减区间为(0,1],故选B例5.(2016·北京·高考真题(理))设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2)()f x 的单调递增区间为(,)-∞+∞. 【解析】 【详解】试题分析:(Ⅰ)根据题意求出,根据(2)22,(2)1f e f e =+=-'求a,b 的值即可;(Ⅱ)由题意判断的符号,即判断1()1x g x x e -=-+的单调性,知g(x)>0,即>0,由此求得f(x)的单调区间.试题解析:(Ⅰ)因为()a x f x xe bx -=+,所以()(1)a x f x x e b -=-+'. 依题设,(2)22,{(2)1,f e f e =+=-'即222222,{1,a a eb e e b e --+=+-+=- 解得2,e a b ==.(Ⅱ)由(Ⅰ)知2()x f x xe ex -=+. 由21()(1)x x f x e x e --=-+'及20x e ->知,与11x x e --+同号.令1()1x g x x e -=-+,则1()1x g x e -=-+'. 所以,当时,,在区间上单调递减; 当时,,在区间上单调递增. 故是在区间上的最小值,从而.综上可知,,.故的单调递增区间为.【总结提升】1.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间f ′(x )的符号,从而确定单调区间.(3)若导函数的方程、不等式都不可解,根据f ′(x )结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.温馨提醒:所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.2.解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. 题型三: 利用函数的单调性解不等式例6.(2015·全国·高考真题(理))设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f xg x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =.所以()()0f x g x x=>可得01x <<,此时()0f x >,又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,例如()()xf x f x '-,想到构造()()f xg x x=.一般:(1)条件含有()()f x f x '+,就构造()()x g x e f x =,(2)若()()f x f x -',就构造()()xf xg x e =,(3)()()2f x f x +',就构造()()2x g x e f x =,(4)()()2f x f x -'就构造()()2xf xg x e =,等便于给出导数时联想构造函数.例7.(2017·江苏·高考真题)已知函数()3x x 1f x =x 2x+e -e-,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________.【答案】1[1,]2-【解析】 【详解】因为31()2e ()ex x f x x x f x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又2(1)(2)0f a f a -+≤,即2(2)(1)f a f a ≤-,所以221a a ≤-,即2210a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【总结提升】比较大小或解不等式的思路方法(1)根据导数计算公式和已知的不等式构造函数,利用不等关系得出函数的单调性,即可确定函数值的大小关系,关键是观察已知条件构造出恰当的函数.(2)含有两个变元的不等式,可以把两个变元看作两个不同的自变量,构造函数后利用单调性确定其不等关系.题型四:利用函数的单调性比较大小 例8.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】 由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A例9.(2007·陕西·高考真题(理))已知f (x )是定义在(0,+∞) 上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ). A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )【答案】A【解析】 【详解】因为xf ′(x )≤-f (x ),f (x )≥0,所以()f x x ⎡⎤⎢⎥⎣⎦′=2'()()xf x f x x -≤22()f x x -≤0, 则函数()f x x在(0,+∞)上单调递减.由于0<a <b ,则()()f a f b a b≥,即af (b )≤bf (a ) 例10.(2013·天津·高考真题(文))设函数()2x f x e x =+-,2()ln 3g x x x =+-若实数,a b 满足()0f a =,()0g b =则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A 【解析】 【详解】试题分析:对函数()2x f x e x =+-求导得()=1x f x e '+,函数单调递增,()()010,110f f e =-=+,由()0f a =知01a <<,同理对函数2()ln 3g x x x =+-求导,知在定义域内单调递增,(1)-20g =<,由()0g b =知1b >,所以()0()g a f b <<.例11.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 【总结提升】1.在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.2.构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→()[]'x f x e. 题型五:根据函数的单调性求参数范围例12.(2014·全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .例13.(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞例14.(2014·全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【总结提升】由函数的单调性求参数的取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围. 题型六:利用导数研究函数的图象例15.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D.例16.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.例17.(2017·浙江·高考真题)函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【答案】D 【解析】 【详解】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.【规律方法】函数图象的辨识主要从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 题型七:与函数单调性相关的恒成立问题例18.(2022·广东·执信中学高三阶段练习)已知函数 ()e xf x x =-,则 ()f x 的单调递增区间为________; 若对任意的()0,x ∞∈+, 不等式 ln 2e 1xx ax+-≥恒成立, 则实数 a 的取值范围为________.【答案】 (0,)+∞(填[)0,∞+亦可) 1(,]2-∞【解析】 【分析】求出函数导数,利用导数求函数单调区间,不等式恒成立可分离参数后求函数()e ln x g x x x x =⋅--的最小值,令ln t x x =+换元后可根据单调性求最值. 【详解】 ()1x f x e =-',令()0f x '>,可得()f x 的单调递增区间(0,)+∞ (或[)0+∞,亦可); ln 2e 1x x ax+-≥可化为2e ln x a x x x ≤⋅--. 令()e ln x g x x x x =⋅--=ln e e ln x x x x ⋅--=ln e (ln )x x x x +-+, 设ln t x x =+,则()e =-t h t t ,由()e xf x x =-在[)0+∞,上单调递增可知, 0()(0)e 01h t h ≥=-=,则21a ≤, 故解得12a ≤.故答案为:(0,)+∞(填[)0,∞+亦可);12a ≤例19.(2022·全国·高三专题练习)已知函数()()e ln xf x m x m =+∈R ,若对任意正数12,x x ,当12x x >时,都有()()1212f x f x x x ->-成立,则实数m 的取值范围是______. 【答案】[)0,∞+ 【解析】 【分析】令()()g x f x x =-,进而原题等价于()g x 在()0,∞+单调递增,从而转化为()e 10x mg x x'=+-≥,在()0,∞+上恒成立,参变分离即可求出结果.【详解】由()()1212f x f x x x ->-得,()()1122f x x f x x ->- 令()()g x f x x =-,∴()()12g x g x > ∴()g x 在()0,∞+单调递增,又∵()()e ln xg x f x x m x x =-=+-∴()e 10xmg x x'=+-≥,在()0,∞+上恒成立,即()1e x m x ≥- 令()()1e x h x x =-,则()()e 110xh x x '=-++<∴()h x 在()0,∞+单调递减,又因为()()01e 00h =-⨯=,∴0m ≥.故答案为:[)0,∞+.例20.(2010·全国·高考真题(理))设函数()21x f x e x ax =---.(1)若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥恒成立,求a 的取值范围.【答案】(1) f (x )在(-∞,0)单调减少,在(0,+∞)单调增加;(2) a 的取值范围为(-∞,12]. 【解析】 【分析】 (1)a =0时,()1x f x e x=--,()1x f x e '=-.分别令f ′(x )<0,f ′(x )>0可求()f x 的单调区间;(2求导得到)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立.故问题转化为f ′(x )≥x -2ax =(1-2a )x ,从而对1-2a 的符号进行讨论即可得出结果. 【详解】 (1)a =0时,()1x f x e x=--,()1x f x e '=-.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加 (2)()12x f x e ax'-=-.由(1)知1x e x ≥+,当且仅当x =0时等号成立.故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0.由1x e x ≥+ (x ≠0)得1x e x -≥- (x ≠0),从而当a >时,f ′(x )< 1x e -+2a (1x e --)=x e - (1x e -)(x e -2a ),故当x ∈(0,ln2a )时, f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0, 综上可得a 的取值范围为(-∞,]. 【规律方法】处理此类问题,往往利用“构造函数法”、“分离参数法”.。
高三一轮复习函数的单调性
![高三一轮复习函数的单调性](https://img.taocdn.com/s3/m/8c7ce09168dc5022aaea998fcc22bcd126ff42f6.png)
高三总复习 数学 (大纲版)
高三总复习 数学 (大纲版)
3.函数fx=ax-1+logaxa>0且a≠1在12上的最大值与 最小值之和为a则a的值为________.
高三总复习 数学 (大纲版)
解析:函数y=ax-1和y=logax在公共定义域内具有相 同的单调性在12区间上的最值对应着函数的最值故a1-1+ loga1+a2-1+loga2=1+a+loga2=a可得loga2=-1求得
答案 B
高三总复习 数学 (大纲版)
拓展提升 此题应用了分类讨论的思想并用求导的方 法来讨论其单调性.
高三总复习 数学 (大纲版)
已知y=loga2-ax在01上是x的减函数则a的取值范围是
A.01 C.02
B.12 D.2+∞
高三总复习 数学 (大纲版)
解析:a是对数的底数所以a>0设gx=2-ax则gx在区 间01上是减函数.
高三总复习 数学 (大纲版)
4.如果二次函数 f(x)=x2-(a-1)x+5 在区间(12,1) 上是增函数,求 f(2)的取值范围.
高三总复习 数学 (大纲版)
解:二次函数 f(x)在区间(12,1)上是增函数, 由于其图象(抛物线)开口向上, 故其对称轴 x=a-2 1或与直线 x=12重合或位于直线 x=21 的左侧,于是a-2 1≤12,解得 a≤2, 故 f(2)=-2a+11≥-2×2+11=7,即 f(2)≥7.
2023年新高考数学大一轮复习专题15 单调性问题(原卷版)
![2023年新高考数学大一轮复习专题15 单调性问题(原卷版)](https://img.taocdn.com/s3/m/5dffd421e97101f69e3143323968011ca300f7b0.png)
专题15单调性问题【考点预测】知识点一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); (2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. (7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); (5)导数图像定区间; 【方法技巧与总结】1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性. 注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.【题型归纳目录】题型一:利用导函数与原函数的关系确定原函数图像 题型二:求单调区间题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围 题型四:不含参数单调性讨论 题型五:含参数单调性讨论 情形一:函数为一次函数 情形二:函数为准一次函数 情形三:函数为二次函数型 1.可因式分解 2.不可因式分解型情形四:函数为准二次函数型 题型六:分段分析法讨论 【典例例题】题型一:利用导函数与原函数的关系确定原函数图像例1.(2022·陕西·汉台中学模拟预测(文))设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .例2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-例3.(2022·安徽马鞍山·三模(理))已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列结论正确的是( )A .()()()f b f c f a >>B .()()()f b f c f e >=C .()()()f c f b f a >>D .()()()f e f d f c >>【方法技巧与总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间例4.(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)例5.(2021·西藏·林芝市第二高级中学高三阶段练习(理))函数()()3e xf x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,例6.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.【方法技巧与总结】求函数的单调区间的步骤如下: (1)求()f x 的定义域 (2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围例7.(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-例8.(2021·河南·高三阶段练习(文))已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭例9.(2022·全国·高三专题练习)若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =( ) A .-12B .-10C .8D .10例10.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______.例11.(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.例12.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.例13.(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.例14.(2022·全国·高三专题练习(文))若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上存在单调递减区间”,则实数a 的取值范围为________.例15.(2020·江苏·邵伯高级中学高三阶段练习)若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.例16.(2022·全国·高三专题练习(文))已知函数f (x )=3xa-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则实数a 的取值范围是________.【方法技巧与总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围. (3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解. 题型四:不含参数单调性讨论例17.(2022·山东临沂·三模)已知函数()21ln ax f x x-=,其图象在e x =处的切线过点()22e,2e .(1)求a 的值;(2)讨论()f x 的单调性;例18.(2022·天津·模拟预测)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;例19.(2022·天津市滨海新区塘沽第一中学三模)已知函数()()ln 1x a x a f x x+++=(1)若函数()f x 在点()()e,e f 处的切线斜率为0,求a 的值.(2)当1a =时.设函数()()()xf x G x f x '=,求证:()y f x =与()y G x =在[]1,e 上均单调递增;例20.(2022·浙江·杭州高级中学模拟预测)已知函数()()ln ln e1,,0x af x x a x a a +=+-+>->. 当1a =时,求()f x 的单调区间题型五:含参数单调性讨论 情形一:函数为一次函数例21.(2022·江西·二模(文))己知函数()ln 1(),()e 1x f x ax x a R g x x =++∈=-. 讨论()f x 的单调性;例22.(2022·北京八十中模拟预测)已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例23.(2022·广东·模拟预测)已知函数()ln(1)(),()22f x x mx m g x x n =--∈=+-R . 讨论函数()f x 的单调性;情形二:函数为准一次函数例24.(2022·全国·模拟预测(文))设函数()1ln a xf x x+=,其中R a ∈. 当0a ≥时,求函数()f x 的单调区间;例25.(2022·江苏·华罗庚中学三模)已知函数()()2e 3x R f x ax a =-+∈ ,()ln e x g x x x =+(e 为自然对数的底数,25e 9<). 求函数()f x 的单调区间;例26.(2022·云南师大附中模拟预测(理))已知函数()()21ln 12f x x x ax a x =-+-,其中0a .讨论()f x 的单调性;例27.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-. 讨论()f x 的单调性;情形三:函数为二次函数型 1.可因式分解例28.(2022·全国·模拟预测)已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k . 讨论()f x 的单调性;例29.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例30.(2022·安徽师范大学附属中学模拟预测(文))已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;例31.(2022·浙江省江山中学模拟预测)函数2()ln 1(,0)x f x x a R a a=-+∈≠.讨论函数()y f x =的单调性;例32.(2022·广东·潮州市瓷都中学三模)已知函数()()()322316R f x x m x mx x =+++∈.讨论函数()f x 的单调性;例33.(2022·湖南·长沙县第一中学模拟预测)已知函数()()()21ln 2a f x x a x x a R =+--∈. 求函数()f x 的单调区间;例34.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈ (1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.2.不可因式分解型例35.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x . 讨论函数()f x 的单调性;例36.(2022·天津南开·三模)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明. 情形四:函数为准二次函数型例37.(2022·安徽·合肥市第八中学模拟预测(理))设函数23ln 2()2,()2,e e x xx x f x ax ax g x ax a x =+-=++∈R . 讨论()f x 的单调性;例38.(2022·全国·二模(理))已知函数()()2x e 2e xf x a ax =+++.讨论()f x 的单调性;例39.(2022·安徽·合肥一六八中学模拟预测(理))已知函数()e e x x f x ax -=--(e 为自然对数的底数),其中R a ∈.试讨论函数()f x 的单调性;例40.(2022·浙江·模拟预测)已知函数()()2e 2e x x f x a a x =+--.讨论()f x 的单调性;题型六:分段分析法讨论例41.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()12211ln x f x a x x x a -+=+-++-(0a >,且1a ≠)求函数()f x 的单调区间;【方法技巧与总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.【过关测试】 一、单选题1.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-2.(2022·全国·哈师大附中模拟预测(理))已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( )A .B .C .D .3.(2022·江西师大附中三模(理))下列函数中既是奇函数又是增函数的是( )A .1()f x x x=-B .122()xxf x ⎛+⎫⎪⎝⎭= C .3()tan f x x x =+ D .)()lnf x x =4.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞6.(2022·江西宜春·模拟预测(文))“函数sin y ax x =-在R 上是增函数”是“0a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2022·江西宜春·模拟预测(文))已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2eD .()0,e8.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是( )A .ln()1a b +>B .ln()0-<a bC .122a b +<D .3222a b +< 二、多选题9.(2022·广东·信宜市第二中学高三开学考试)已知()ln x f x x =,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+ B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解 10.(2022·全国·模拟预测)已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12 B .1 C .2 D .311.(2022·全国·高三专题练习)下列函数在区间(0,+∞)上单调递增的是( )A .y =x ﹣(12)x B .y =x +sin x C .y =3﹣x D .y =x 2+2x +112.(2022·广东·模拟预测)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 三、填空题13.(2022·山西运城·模拟预测(理))若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________.14.(2022·重庆八中模拟预测)写出一个具有性质①②③的函数()f x =____________.①()f x 的定义域为()0,+∞;②()()()1212f x x f x f x =+;③当()0,x ∈+∞时,()0f x '>.15.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.16.(2022·江西萍乡·二模(文))已知函数()f x 是R 上的奇函数,且()33f x x x =+,若非零正实数,m n 满足()()20f m mn f n -+=,则11m n+的小值是_______.四、解答题17.(2022·北京工业大学附属中学三模)已知函数()ln R k f x x k k x =--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.18.(2022·青海·大通回族土族自治县教学研究室二模(文))已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.19.(2022·全国·高三专题练习)已知函数2()(1)=--x f x k x e x ,其中k ∈R.当k 2≤时,求函数()f x 的单调区间;20.(2022·全国·高三专题练习)已知函数()e x f x ax -=+.讨论()f x 的单调性;21.(2022·全国·高三专题练习)已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;22.(2022·全国·高三专题练习)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>.。
导数与函数的单调性(高三一轮复习)
![导数与函数的单调性(高三一轮复习)](https://img.taocdn.com/s3/m/f33f493cb42acfc789eb172ded630b1c58ee9b64.png)
例1 (1)(多选)下列选项中,在(-∞,+∞)上单调递增的函数有( BD )
A.f(x)=x4
B.f(x)=x-sin x
C.f(x)=xex
D.f(x)=ex-e-x
数学 N 必备知识 自主学习 关键能力 互动探究 (2)函数y=f′(x)的图象如图所示,则函数y=f(x)的大致图象是( A )
∞),∴a≤2.又a>0,∴0<a≤2.
解法二:y′=1-
a2 x2
,依题意知1-
a2 x2
≥0,即a2≤x2在x∈[2,+∞)上恒成立,
∵x∈[2,+∞),∴x2≥4,∴a2≤4,又a>0,∴0<a≤2.
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
关键能力 互动探究
命题点1 不含参函数的单调性
数学 N 必备知识 自主学习 关键能力 互动探究
— 6—
基|础|自|测
1.思考辨析(正确的打“√”,错误的打“×”) (1)如果函数f(x)在某个区间内恒有f′(x)≥0,则f(x)在此区间内单调递增.( ×) (2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函 数.( √ ) (3)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内不具有单调 性.( √ )
— 16 —
思维点睛►
讨论函数f(x)单调性的步骤 (1)确定函数f(x)的定义域. (2)求导数f′(x),并求方程f′(x)=0的根. (3)利用f′(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论 f′(x)的正负,由符号确定f(x)在该区间上的单调性.
数学 N 必备知识 自主学习 关键能力 互动探究
高考数学总复习考点知识及题型专题讲义13 导数与函数的单调性
![高考数学总复习考点知识及题型专题讲义13 导数与函数的单调性](https://img.taocdn.com/s3/m/5f5c098e16fc700abb68fcf6.png)
高考数学总复习考点知识及题型专题讲义十三 导数与函数的单调性知识梳理1.函数的单调性与导数在区间(a ,b )内,函数的单调性与其导数的正负有如下关系:如果f ′(x )>0,那么函数y =f (x )为该区间上的增函数;如果f ′(x )<0,那么函数y =f (x )为该区间上的减函数.二者关系:(1)f ′(x )>0(或<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件,这是因为f ′(x )>0能推出f (x )为该区间上的增函数,但反之不一定.如函数f (x )=x 3在R 上单调递增,但f ′(x )=3x 2≥0,所以f ′(x )>0是f (x )为增函数的充分不必要.(2)f ′(x )≥0(或≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件(f ′(x )=0不恒成立).典例剖析题型一 利用导数证明函数的单调性例1 求证函数y =x +1x在[1, +∞)内为增函数. 解析 y ′=1-1x 2=x 2-1x 2 当x >1时,x 2-1>0,∴y ′>0,∴函数y =x +1x在[1, +∞)内为增函数. 变式训练 求证函数y =x 3+x 2+x 在R 上是增函数.解析 y ′=3x 2+2x +1=3(x +13)2+23显然对任意x ∈R ,均有y ′>0,∴函数y =x 3+x 2+x 在R 上是增函数.题型二 求函数的单调区间例2 已知函数f (x )=ln x +k e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解析 (1)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x(1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).变式训练 (1)函数f (x )=x ln x的单调递减区间是________. (2) 已知函数f (x )=4x -x 4,x ∈R ,则f (x )的单调递增区间为________.答案 (1) (0,1),(1,e) (2) (-∞,1)解析 (1) f ′(x )=ln x -1ln 2x ,令f ′(x )<0,得⎩⎪⎨⎪⎧ln x -1<0,ln x ≠0,∴0<x <1或1<x <e , 故函数的单调递减区间是(0,1)和(1,e).(2)解 由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增,所以,f (x )的单调递增区间为(-∞,1). 解题要点 求可导函数单调区间的一般步骤和方法(1)确定函数f (x )的定义域;(2)求导数y ′=f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.题型三 由函数的单调性求参数范围问题例3 已知函数f (x )=x 3-ax -1.(1) 若a =3时,求f (x )的单调区间;(2) 若f (x )在实数集R 上单调递增,求实数a 的取值范围.解析 (1) 当a =3时,f (x )=x 3-3x -1,∴ f ′(x )=3x 2-3,令f ′(x )>0即3x 2-3>0,解得x >1或x <-1,∴ f (x )的单调增区间为(-∞,-1)、(1,+∞),同理可求f (x )的单调减区间为(-1,1).(2) f ′(x )=3x 2-a .∵ f (x )在实数集R 上单调递增,∴ f ′(x )≥0恒成立,即3x 2-a ≥0恒成立,∴ a ≤(3x 2)min .∵ 3x 2的最小值为0,∴ a ≤0.变式训练 已知函数f (x )=e x -ax -1.(1)求f (x )的单调增区间;(2)是否存在a ,使f (x )在(-2,3)上为减函数,若存在,求出a 的取值范围,若不存在,请说明理由.解析 f ′(x )=e x -a ,(1)若a ≤0,则f ′(x )=e x -a ≥0,即f (x )在R 上单调递增,若a >0,令e x -a ≥0,则e x ≥a ,x ≥ln a .因此当a ≤0时,f (x )的单调增区间为R ,当a >0时,f (x )的单调增区间为[ln a ,+∞).(2)∵f ′(x )=e x -a ≤0在(-2,3)上恒成立.∴a ≥e x 在x ∈(-2,3)上恒成立.∴e -2<e x <e 3,只需a ≥e 3.当a =e 3时,f ′(x )=e x -e 3<0在x ∈(-2,3)上恒成立,即f (x )在(-2,3)上为减函数,∴a ≥e 3. 故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数.解题要点 已知函数的单调性求参数范围可以转化为不等式恒成立问题,由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少,否则漏解.题型四 函数存在单调区间或不单调求参数范围问题例4 设f (x )=-13x 3+12x 2+2ax .若f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间,求a 的取值范围. 解析 f ′(x )=-x 2+x +2a由题意知f ′(x ) >0在⎝⎛⎭⎫23,+∞上有解,即-x 2+x +2a >0,2a >x 2-x ,令g (x )=x 2-x ,g (x )>g ⎝⎛⎭⎫23=-29.即a >-19. ∴a 的取值范围为⎝⎛⎭⎫-19,+∞. 变式训练 已知函数f (x )=2x 2-ax +ln x 在其定义域上不单调,求实数a 的取值范围. 解析 函数f (x )的定义域为(0,+∞),因为f (x )=2x 2-ax +ln x ,所以f ′(x )=4x -a +1x =1x(4x 2-ax +1). 由函数f (x )在区间(0,+∞)上不单调可知,f ′(x )=0有两个正解,即4x 2-ax +1=0有两个正解,设为x 1,x 2.故有⎩⎨⎧Δ=(-a )2-4×4×1>0,x 1+x 2=a 4>0,x 1x 2=14>0,解得a >4.所以实数a 的取值范围为(4,+∞).解题要点 函数在区间D 上存在单调递增区间,即在区间D 上f ′(x ) >0能成立,分离变量后可求参数范围.需注意,a >f (x )能成立,只需a >f (x )min ,a <f (x )能成立,则a <f (x )max .当堂练习1.函数f (x )=(x -3)e x 的单调递增区间是________.答案 (2,+∞)解析 由题意知,f ′(x )=e x +(x -3)e x =(x -2)e x .由f ′(x )>0得x >2.2.函数f (x )=x 2-2ln x 的单调减区间是________.答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x(x >0). ∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数;当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.3. 若函数y =cos x +ax 在⎣⎡⎦⎤-π2,π2上是增函数,则实数a 的取值范围是________. 答案 [1,+∞)解析 y ′=-sin x +a ,若函数在⎣⎡⎦⎤-π2,π2上是增函数,则a ≥sin x 在⎣⎡⎦⎤-π2,π2上恒成立,所以a ≥1,即实数a 的取值范围是[1,+∞).4.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.答案 单调递增解析 在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增.5.函数f (x )=e x -x 的单调递增区间是________.答案 (0,+∞)解析 ∵f (x )=e x -x ,∴f ′(x )=e x -1,由f ′(x )>0,得e x -1>0,即x >0.课后作业一、 填空题1.函数y =x 2(x -3)的单调递减区间是________.答案 (0,2)解析 y ′=3x 2-6x ,由y ′<0,得0<x <2.2.函数y =(3-x 2)e x 的单调递增区间是________.答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3),由y ′>0⇒x 2+2x -3<0⇒-3<x <1,∴函数y =(3-x 2)e x 的单调递增区间是(-3,1).3.函数f (x )=x +eln x 的单调递增区间为________.答案 (0,+∞)解析 函数定义域为(0,+∞),f ′(x )=1+e x>0,故单调增区间是(0,+∞). 4.函数f (x )=x ln x ,则________.①在(0,+∞)上是增加的 ②在(0,+∞)上是减少的③在(0,1e )上是增加的 ④在(0,1e)上是减少的 答案 ④ 解析 因为函数f (x )=x ln x ,所以f ′(x )=ln x +1,f ′(x )>0,解得x >1e ,则函数的单调增区间为(1e ,+∞),又f ′(x )<0,解得0<x <1e ,则函数的单调减区间为(0,1e),故选④. 5.函数f (x )=x -ln x 的单调递减区间为________.答案 (0,1)解析 函数的定义域是(0,+∞),且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).6.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的________条件. 答案 充分不必要解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.7.若函数y =a (x 3-x )的单调递减区间为(-33,33),则实数a 的取值范围是________. 答案 a >0解析 y ′=a (3x 2-1),解3x 2-1<0,得-33<x <33. ∴f (x )=x 3-x 在(-33,33)上为减函数. 又y =a (x 3-x )的单调递减区间为(-33,33), ∴a >0. 8.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________. 答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x≤0时,有0<x ≤3,即在(0,3]上函数f (x )是减函数,∴a -1>0,a +1≤3,解得1<a ≤2.9.函数f (x )=x ln x的单调递减区间是________. 答案 (0,1),(1,e)解析 f ′(x )=ln x -1ln 2x ,令f ′(x )<0,得⎩⎪⎨⎪⎧ln x -1<0,ln x ≠0,∴0<x <1或1<x <e ,故函数的单调递减区间是(0,1)和(1,e).10.若函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________. 答案 [-3,+∞)解析 f ′(x )=3x 2+a ,f (x )在区间(1,+∞)上是增函数,则f ′(x )=3x 2+a ≥0在(1,+∞)上恒成立,即a ≥-3x 2在(1,+∞)上恒成立.∴a ≥-3.11.已知函数y =-13x 3+bx 2-(2b +3)x +2-b 在R 上不是单调减函数,则b 的取值范围是________.答案 b <-1或b >3解析 y ′=-x 2+2bx -(2b +3),要使原函数在R 上单调递减,应有y ′≤0恒成立, ∴Δ=4b 2-4(2b +3)=4(b 2-2b -3)≤0,∴-1≤b ≤3,故使该函数在R 上不是单调减函数的b 的取值范围是b <-1或b >3.二、解答题12.(2015天津文节选)已知函数f (x )=4x -x 4,x ∈R .求f (x )的单调区间;解析 由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增;当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞).13.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间. 解析 因为f ′(x )=-1x 2+1x =x -1x2, 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:x(0,1) 1 (1,+∞) f ′(x )- 0 + f (x )极小值 所以x =1时,f (x f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).。
第一轮复习14---导数与函数的单调性、极值、最值
![第一轮复习14---导数与函数的单调性、极值、最值](https://img.taocdn.com/s3/m/f6877649b307e87101f696b6.png)
1 - k e; k 2时,最小值为
1 2 1 0 a 1时,极大值- a a ln a, 极小值 - ; 2 2 a 1时,无极值; 1 1 2 a 1时,极大值- , 极小值 - a a ln a。 2 2
极值最值 已知函数f x ax2 1a 0 , g x x 3 bx. 当a 3, b 9时,若函数f x g x 在区间 k ,2上的最大值为28,求k的取值范围。
含参数的单调区间
1 3 设函数f x x 1 a x 2 4ax 24a, 3 其中常数a R, 求f x 的单调区间。
含参数的单调区间
已知函数f x e a R,减区间为 。
ln a,,减区间为 , ln a。 a 0时,增区间为
求最值: 求出极值,与端点值比 较。
极值最值
e 设f x , 其中a为正实数. 2 1 ax 4 若a , 求f x 的极值点。 3
3 1 x1 是极小值点, x2 是极大值点。 2 2
x
极值最值
1 2 设a 0,函数f x x a 1x a1 ln x . 2 求函数f x 的极值。
'
是减少的。该区间为函 数的减区间。
单调区间
1 3 设函数f x x 1 a x 2 4ax 24a, 3 其中常数a 1, 求f x 的单调减区间。
2,2a
含参数的单调区间--界点讨论法
界点选取原则: 1,开口 2,△ 3,根的大小 4,根与定义域的关系
单调性下的取值范围
y f x 是区间上的增函数 y f x 是区间上的减函数 f x 0在区间上恒成立。
高考数学第一轮知识点总复习 第二节 导数的应用(Ⅰ)
![高考数学第一轮知识点总复习 第二节 导数的应用(Ⅰ)](https://img.taocdn.com/s3/m/1b2ab2fef111f18582d05a59.png)
解 (1)由已知f′(x)=3 -a,x2 ∵f(x)在(-∞,+∞)上是单调增函数, ∴f′(x)=3 -ax≥2 0在(-∞,+∞)上恒成立, 即a≤3 x在2 x∈R上恒成立. ∵3 x≥2 0,∴只需a≤0. 又a=0时,f′(x)=3 ≥x20,f(x)= -1在x3R上是增函数, ∴a≤0. (2)由f′(x)=3 -ax≤2 0在(-1,1)上恒成立,得a≥3 在x∈x2(-1,1)上恒成立. ∵-1<x<1,∴3 <3,∴只需a≥3. 当a≥3时,f′(x)=x32 -a在x∈(-1,1)上恒有f′(x)<0, 即f(x)在(-1,1)上为x减2 函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.
学后反思 利用导数研究函数的单调性比用函数单调性的定义要方便, 但应注意f′(x)>0 [或f′(x)<0]仅是f(x)在某个区间上为增函数(或减函数)的充分条 件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应 是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子区 间内都不恒等于0.这就是说, 函数f(x)在区间上的增减性并不排斥在区间内个别点处有f′(x0)=0. 因此,在已知函数f(x)是增函数(或减函数)来求参数的取值范围时, 应令f′(x)≥0[或f′(x)≤0]恒成立,解出参数的取值范围(一般可用 不等式恒成立理论求解),然后检验参数的取值能否使f′(x)恒等于0, 若能恒等于0,则参数的这个值应舍去,若f′(x)不恒为0,则由f′(x)≥0 [或f′(x)≤0]恒成立解出的参数的取值范围.
2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)
![2023年高考数学总复习第三章 导数及其应用第2节:导数与函数的单调性(教师版)](https://img.taocdn.com/s3/m/b0483a90970590c69ec3d5bbfd0a79563c1ed4c2.png)
2023年高考数学总复习第三章导数及其应用第2节导数与函数的单调性考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.利用导数研究函数的单调性,并会解决与之有关的方程(不等式)问题.1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.利用导数求函数单调区间的基本步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.3.单调性的应用若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上不变号.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数在(a,b)内单调递减与函数的单调递减区间为(a,b)是不同的.()(4)函数f(x)=x-sin x在R上是增函数.()答案(1)×(2)√(3)√(4)√解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.2.(易错题)函数f(x)=x+ln(2-x)的单调递增区间为()A.(-∞,1)B.(-∞,2)C.(1,+∞)D.(2,+∞)答案A解析由f(x)=x+ln(2-x),得f′(x)=1-12-x=1-x2-x(x<2).令f′(x)>0,即1-x2-x>0,解得x<1.∴函数f(x)=x+ln(2-x)的单调递增区间为(-∞,1).3.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是()答案D解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.R答案B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,故选B.5.(易错题)若函数f(x)=13x3-32x2+ax+4的单调递减区间为[-1,4],则实数a的值为________.答案-4解析f′(x)=x2-3x+a,且f(x)的单调递减区间为[-1,4],∴f′(x)=x2-3x+a≤0的解集为[-1,4],∴-1,4是方程f′(x)=0的两根,则a=(-1)×4=-4.6.(2021·青岛检测)已知函数f(x)=sin2x+4cos x-ax在R上单调递减,则实数a 的取值范围是________.答案[3,+∞)解析f′(x)=2cos2x-4sin x-a=2(1-2sin2x)-4sin x-a=-4sin2x-4sin x+2-a=-(2sin x+1)2+3-a.由题设,f′(x)≤0在R上恒成立.因此a≥3-(2sin x+1)2恒成立,则a≥3.考点一不含参函数的单调性1.函数f(x)=x+3x+2ln x的单调递减区间是()A.(-3,1)B.(0,1)C.(-1,3)D.(0,3)答案B 解析法一函数的定义域是(0,+∞),f ′(x )=1-3x 2+2x ,令f ′(x )=1-3x 2+2x<0,得0<x <1,故所求函数的单调递减区间为(0,1),故选B.法二由题意知x >0,故排除A 、C 选项;又f (1)=4<f (2)=72+2ln 2,故排除D选项.故选B.2.函数f (x )=(x -3)e x 的单调递增区间为________.答案(2,+∞)解析f (x )的定义域为R ,f ′(x )=(x -2)e x ,令f ′(x )>0,得x >2,∴f (x )的单调递增区间为(2,+∞).3.已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________.答案0,π6,5π6,π解析f ′(x )=1-2sin x ,x ∈(0,π),令f ′(x )=0,得x =π6或x =5π6,当0<x <π或5π<x <π时,f ′(x )>0,∴f (x )0,π6,5π6,π.感悟提升确定函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.考点二讨论含参函数的单调性例1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数f (x )的定义域为(0,+∞),f′(x)=ax-(a+1)+1x=ax2-(a+1)x+1x=(ax-1)(x-1)x.(1)当0<a<1时,1a>1,∴x∈(0,1)f′(x)>0;x f′(x)<0,∴函数f(x)在(0,1)(2)当a=1时,1a=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;(3)当a>1时,0<1a<1,∴x(1,+∞)时,f′(x)>0;x f′(x)<0,∴函数f(x)(1,+∞).综上,当0<a<1时,函数f(x)在(0,1)减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)(1,+∞).感悟提升 1.含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f(x)=x3,f′(x)=3x2≥0(f′(x)=0在x=0时取到),f(x)在R上是增函数.训练1已知f (x )=a (x -ln x )+2x -1x 2,a >0,讨论f (x )的单调性.解f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3=a (x -1)x 3x -2a x +2a (1)当0<a <2时,2a>1,当x (0,1)∪2a,+∞时,f ′(x )>0,当x 1,2a 时,f ′(x )<0.(2)当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )递增.(3)当a >2时,0<2a <1,当x 0,2a ∪(1,+∞)时,f ′(x )>0,当x 2a,1时,f ′(x )<0.综上所述,当0<a <2时,f (x )在(0,1)2a ,+∞内递增,在1,2a 内递减.当a =2时,f (x )在(0,+∞)内递增;当a >2时,f (x )0,2a (1,+∞)2a,1.考点三根据函数单调性求参数值(范围)例2(经典母题)已知x =1是f (x )=2x +bx +ln x 的一个极值点.(1)求函数f (x )的单调递减区间;(2)设函数g (x )=f (x )-3+ax,若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围.解(1)f (x )=2x +bx+ln x ,定义域为(0,+∞).∴f ′(x )=2-b x 2+1x =2x 2+x -bx2.因为x=1是f(x)=2x+bx+ln x的一个极值点,所以f′(1)=0,即2-b+1=0.解得b=3,经检验,适合题意,所以b=3.所以f′(x)=2x2+x-3x2,令f′(x)<0,得0<x<1.所以函数f(x)的单调递减区间为(0,1).(2)g(x)=f(x)-3+ax=2x+ln x-ax(x>0),g′(x)=2+1x+ax2(x>0).因为函数g(x)在[1,2]上单调递增,所以g′(x)≥0在[1,2]上恒成立,即2+1x+ax2≥0在[1,2]上恒成立,所以a≥-2x2-x在[1,2]上恒成立,所以a≥(-2x2-x)max,x∈[1,2].因为在[1,2]上,(-2x2-x)max=-3,所以a≥-3.所以实数a的取值范围是[-3,+∞).迁移在本例(2)中,若函数g(x)在区间[1,2]上不单调,求实数a的取值范围.解∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-+18在(1,2)内有解,易知该函数在(1,2)上是减函数,∴a=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).感悟提升 1.已知函数的单调性,求参数的取值范围,应用条件f′(x)≥0(或f′(x)≤0),x∈(a,b)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f′(x)不恒等于0的参数的范围.2.如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.3.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.训练2(1)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是()A.13,+∞ B.-∞,13C.13,+∞ D.-∞,13(2)(2022·郑州调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案(1)C(2)(1,2]解析(1)由y =x 3+x 2+mx +1是R 上的单调函数,所以y ′=3x 2+2x +m ≥0恒成立,或y ′=3x 2+2x +m ≤0恒成立,显然y ′=3x 2+2x +m ≥0恒成立,则Δ=4-12m ≤0,所以m ≥13.(2)易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x.又x >0,令f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,a -1>0,a +1≤3,解得1<a ≤2.考点四与导数有关的函数单调性的应用角度1比较大小例3(1)已知函数f (x )=x sin x ,x ∈R ,则π5f (1),f -π3的大小关系为()A.-π3f (1)>π5B.f (1)>-π3π5C.π5f (1)>-π3D.-π3π5>f (1)(2)已知y =f (x )是定义在R 上的奇函数,且当x <0时不等式f (x )+xf ′(x )<0成立,若a =30.3·f (30.3),b =log π3·f (log π3),c =log 319·则a ,b ,c 的大小关系是()A.a >b >cB.c >b >aC.a >c >bD.c >a >b答案(1)A(2)D解析(1)因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以又当x f ′(x )=sin x +x cos x >0,所以函数f (x )f (1)<f (1)> A.(2)设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ),又当x <0时,f (x )+xf ′(x )<0,∴x <0时,g ′(x )<0,g (x )在(-∞,0)上单调递减.由y =f (x )在R 上为奇函数,知g (x )在R 上为偶函数,∴g (x )在(0,+∞)上是增函数,∴c =g (-2)=g (2),又0<log π3<1<30.3<3<2,∴g (log π3)<g (30.3)<g (2),即b <a <c .角度2解不等式例4已知f (x )在R 上是奇函数,且f ′(x )为f (x )的导函数,对任意x ∈R ,均有f (x )>f ′(x )ln 2成立,若f (-2)=2,则不等式f (x )>-2x -1的解集为()A.(-2,+∞)B.(2,+∞)C.(-∞,-2)D.(-∞,2)答案D解析f (x )>f ′(x )ln 2⇔f ′(x )-ln 2·f (x )<0.令g(x)=f(x)2x,则g′(x)=f′(x)-f(x)·ln22x,∴g′(x)<0,则g(x)在(-∞,+∞)上是减函数.由f(-2)=2,且f(x)在R上是奇函数,得f(2)=-2,则g(2)=f(2)22=-12,又f(x)>-2x-1⇔f(x)2x>-12=g(2),即g(x)>g(2),所以x<2.感悟提升 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f(x)与f′(x)的不等关系时,常构造含f(x)与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.训练3(1)已知函数f(x)=3x+2cos x.若a=f(32),b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<cB.c<b<aC.b<a<cD.b<c<a(2)(2021·西安模拟)函数f(x)的导函数为f′(x),对任意x∈R,都有f′(x)>-f(x)成立,若f(ln2)=12,则满足不等式f(x)>1e x的x的取值范围是()A.(1,+∞)B.(0,1)C.(ln2,+∞)D.(0,ln2)答案(1)D(2)C解析(1)由题意,得f′(x)=3-2sin x.因为-1≤sin x≤1,所以f′(x)>0恒成立,所以函数f(x)是增函数.因为2>1,所以32>3.又log 24<log 27<log 28,即2<log 27<3,所以2<log 27<32,所以f (2)<f (log 27)<f (32),即b <c <a .(2)对任意x ∈R ,都有f ′(x )>-f (x )成立,即f ′(x )+f (x )>0.令g (x )=e x f (x ),则g ′(x )=e x [f ′(x )+f (x )]>0,所以函数g (x )在R 上单调递增.不等式f (x )>1e x 即e xf (x )>1,即g (x )>1.因为f (ln 2)=12,所以g (ln 2)=e ln 2f (ln 2)=2×12=1.故当x >ln 2时,g (x )>g (ln 2)=1,所以不等式g (x )>1的解集为(ln 2,+∞).1.如图是函数y =f (x )的导函数y =f ′(x )的图像,则下列判断正确的是()A.在区间(-2,1)上f (x )单调递增B.在区间(1,3)上f (x )单调递减C.在区间(4,5)上f (x )单调递增D.在区间(3,5)上f (x )单调递增答案C解析在区间(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数f (x )=ln x -ax (a >0)的单调递增区间为()D.(-∞,a)答案A解析函数f(x)的定义域为(0,+∞),f′(x)=1x-a,令f′(x)=1x-a>0,得0<x<1a,所以f(x)3.函数y=f(x)的图像如图所示,则y=f′(x)的图像可能是()答案D解析由函数f(x)的图像可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足. 4.(2021·德阳诊断)若函数f(x)=e x(sin x+a)在R上单调递增,则实数a的取值范围为()A.[2,+∞)B.(1,+∞)C.[-1,+∞)D.(2,+∞)答案A解析因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数f(x)在R上单调递增,需使f′(x)≥0恒成立,即sin x+a+cos x≥0恒成立,所以a≥-sin x-cos x.因为-sin x-cos x=-2sin所以-2≤-sin x-cos x≤2,所以a≥ 2.5.(2021·江南十校联考)已知函数f(x)=ax2-4ax-ln x,则f(x)在(1,4)上不单调的一个充分不必要条件可以是()A.a>-12B.0<a<116C.a>116或-12<a<0 D.a>116答案D解析f′(x)=2ax-4a-1x=2ax2-4ax-1x,令g(x)=2ax2-4ax-1,则函数g(x)=2ax2-4ax-1的对称轴方程为x=1,若f(x)在(1,4)上不单调,则g(x)在区间(1,4)上有零点.当a=0时,显然不成立;当a≠0>0,(1)=-2a-1<0,(4)=16a-1>0,<0,(1)=-2a-1>0,(4)=16a-1<0,解得a>116或a<-12.∴a>116是f(x)在(1,4)上不单调的一个充分不必要条件.6.已知函数y=f(x+1)是偶函数,当x∈(1,+∞)时,函数f(x)=sin x-x,设a=b=f(3),c=f(0),则a,b,c的大小关系为()A.b<a<cB.c<a<bC.b<c<aD.a<b<c答案A解析由函数y=f(x+1)是偶函数,可得函数f(x)的图像关于直线x=1对称,则a=b=f(3),c=f(0)=f(2),又当x∈(1,+∞)时,f′(x)=cos x-1≤0,所以f(x)=sin x-x在(1,+∞)上为减函数,所以b<a<c,故选A.7.若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值范围为________.答案(-3,0)∪(0,+∞)解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,≠0,=36+12a >0,解得a >-3且a ≠0.8.(2022·哈尔滨调研)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.答案1解析f ′(x )=4x -1x =(2x -1)(2x +1)x(x >0),令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.-1≥0,-1<12<k +1,解之得1≤k <32.9.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案(-∞,-2)∪(0,2)解析令φ(x )=f (x )x,∵当x >0时,f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)上为减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数,由数形结合知x∈(-∞,-2)时,f(x)>0.故x2f(x)>0的解集为(-∞,-2)∪(0,2).10.已知函数f(x)=ln x+ke x(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求实数k的值;(2)求函数f(x)的单调区间.解(1)f′(x)=1x-ln x-ke x(x>0).又由题意知f′(1)=1-ke=0,所以k=1.(2)由(1)知,f′(x)=1x-ln x-1e x(x>0).设h(x)=1x-ln x-1(x>0),则h′(x)=-1x2-1x<0,所以h(x)在(0,+∞)上单调递减.由h(1)=0知,当0<x<1时,h(x)>0,所以f′(x)>0;当x>1时,h(x)<0,所以f′(x)<0.综上f(x)的单调增区间是(0,1),减区间为(1,+∞).11.讨论函数g(x)=(x-a-1)e x-(x-a)2的单调性.解g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①当a>ln2时,x∈(-∞,ln2)∪(a,+∞)时,f′(x)>0,x∈(ln2,a)时,f′(x)<0;②当a=ln2时,f′(x)≥0恒成立,∴f(x)在R上单调递增;③当a<ln2时,x∈(-∞,a)∪(ln2,+∞)时,f′(x)>0,x∈(a,ln2)时,f′(x)<0,综上,当a>ln2时,f(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减;当a=ln2时,f(x)在R上单调递增;当a<ln2时,f(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.12.已知a=ln33,b=e-1,c=3ln28,则a,b,c的大小关系为()A.b>c>aB.a>c>bC.a>b>cD.b>a>c答案D解析依题意,得a=ln33=ln33,b=e-1=ln ee,c=3ln28=ln88.令f(x)=ln xx(x>0),则f′(x)=1-ln xx2,易知函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.所以f(x)max=f(e)=1e=b,且f(3)>f(8),即a>c,所以b>a>c.13.(2021·成都诊断)已知函数f(x)是定义在R上的偶函数,其导函数为f′(x).若x>0时,f′(x)<2x,则不等式f(2x)-f(x-1)>3x2+2x-1的解集是________.答案1解析令g(x)=f(x)-x2,则g(x)是R上的偶函数.当x>0时,g′(x)=f′(x)-2x<0,则g(x)在(0,+∞)上递减,于是在(-∞,0)上递增.由f(2x)-f(x-1)>3x2+2x-1得f(2x)-(2x)2>f(x-1)-(x-1)2,即g (2x )>g (x -1),于是g (|2x |)>g (|x -1|),则|2x |<|x -1|,解得-1<x <13.14.(2021·全国乙卷)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.解(1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞(1+1-3a 3,+∞)上单调递增,在.(2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .=(1+a )x ,=x 3-x 2+ax +1,=1,=1+a=-1,=-1-a .所以曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,1+a)和(-1,-1-a).。
高考数学一轮复习考点知识专题讲解18---利用导数解决函数的单调性问题
![高考数学一轮复习考点知识专题讲解18---利用导数解决函数的单调性问题](https://img.taocdn.com/s3/m/0c1e32d7a26925c52dc5bf49.png)
在(a,b)上的任何子区间内都不恒为零.
一、思考辨析(正确的打“√”,错误的打“×”) (1)若函数 f(x)在(a,b)内单调递增,那么一定有 f′(x)>0.( ) (2)如果函数 f(x)在某个区间内恒有 f′(x)=0,则 f(x)在此区间内没有单调性.( ) (3)在(a,b)内 f′(x)≤0 且 f′(x)=0 的根有有限个,则 f(x)在(a,b)内是减函数.( ) [答案] (1)× (2)√ (3)√
考点 2 含参数函数的单调性
研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面
①二次项系数讨论,②根的有无讨论,③根的大小讨论,
பைடு நூலகம்
④根在不在定义域内讨论.
(2)讨论时要根据上面四种情况,找准参数讨论的分类.
(3)讨论完必须写综述. 已知函数 f(x)=12x2-2a ln x+(a-2)x,当 a<0 时,讨论函数 f(x)的单调性.
-4-/8
(3)函数在某个区间存在单调区间可转化为不等式有解问题.
已知函数 f(x)=ln x,g(x)=12ax2+2x(a≠0).
(1)若函数 h(x)=f(x)-g(x)存在单调递减区间,求 a 的取值范围;
(2)若函数 h(x)=f(x)-g(x)在[1,4]上单调递减,求 a 的取值范围. [解] (1)h(x)=ln x-12ax2-2x,x∈(0,+∞),
考点 4 利用导数比较大小或解不等式
用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题转化
为利用导数研究函数单调性的问题,再由单调性比较大小或解不等式.
常见构造的辅助函数形式有: (1)f(x)>g(x)→F(x)=f(x)-g(x); (2)xf′(x)+f(x)→[xf(x)]′;
2023版高考数学一轮总复习第二章函数导数及其应用第二讲函数的单调性与最值课件
![2023版高考数学一轮总复习第二章函数导数及其应用第二讲函数的单调性与最值课件](https://img.taocdn.com/s3/m/a2c1ea1cbfd5b9f3f90f76c66137ee06eff94ea6.png)
3.判断并证明函数 f(x)=ax2+1x(其中 1<a<3)在 x∈[1,2] 上的单调性.
解:f(x)在[1,2]上单调递增,证明如下. 设 1≤x1<x2≤2,则 f(x2)-f(x1)=ax22+x12-ax21-x11= (x2-x1)ax1+x2-x11x2, 由 1≤x1<x2≤2,得 x2-x1>0,2<x1+x2<4,
所以 a=f-12=f52.
当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于 函数 f(x)在(1,+∞)上单调递减,所以 b>a>c.
答案:D
考向 2 解函数不等式 通性通法:求解含“f ”的函数不等式的解题思路 先利用函数的相关性质将不等式转化为 f(g(x))>f(h(x))
[例 2]已知函数 f(x)的图象向左平移 1 个单位长度后关
于 y 轴对称,当 x2>x1>1 时,[f(x2)-f(x1)]·(x2-x1)<0 恒成立,
设 a=f-12,b=f(2),c=f(3),则 a,b,c 的大小关系为(
)
A.c>a>b C.a>c>b
B.c>b>a D.b>a>c
解析:由于函数 f(x)的图象向左平移 1 个单位长度后 得到的图象关于 y 轴对称,故函数 y=f(x)的图象关于直线 x=1 对称,
A.对于函数 f(x),x∈D,若对任意 x1,x2∈D,且 x1≠x2 有(x1-x2)[f(x1)-f(x2)]>0,则函数 f(x)在区间 D 上单调递增
B.函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞) C.对于函数 y=f(x),若 f(1)<f(3),则 f(x)为增函数 D.函数 y=f(x)在[1,+∞)上单调递增,则函数 f(x)是 增函数
高考数学一轮复习考点知识专题讲解15---导数与函数的单调性
![高考数学一轮复习考点知识专题讲解15---导数与函数的单调性](https://img.taocdn.com/s3/m/93b4c2b2dc3383c4bb4cf7ec4afe04a1b071b0a3.png)
高考数学一轮复习考点知识专题讲解导数与函数的单调性考点要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).知识梳理1.函数的单调性与导数的关系条件恒有结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在区间(a,b)上单调递增f′(x)<0f(x)在区间(a,b)上单调递减f′(x)=f(x)在区间(a,b)上是常数函数2.利用导数判断函数单调性的步骤第1步,确定函数的定义域;第2步,求出导数f′(x)的零点;第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.若函数f(x)在(a,b)上单调递增,则x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则x∈(a,b)时,f′(x)≤0恒成立.2.若函数f(x)在(a,b)上存在单调递增区间,则x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则x∈(a,b)时,f′(x)<0有解.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内单调递减.(√)(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.(×)(4)函数f(x)=x-sin x在R上是增函数.(√)教材改编题1.f′(x)是f(x)的导函数,若f′(x)的图象如图所示,则f(x)的图象可能是()答案C解析由f′(x)的图象知,当x∈(-∞,0)时,f′(x)>0,∴f(x)单调递增;当x ∈(0,x 1)时,f ′(x )<0,∴f (x )单调递减; 当x ∈(x 1,+∞)时,f ′(x )>0, ∴f (x )单调递增.2.函数f (x )=(x -2)e x 的单调递增区间为________. 答案(1,+∞)解析f (x )的定义域为R ,f ′(x )=(x -1)e x , 令f ′(x )=0,得x =1, 当x ∈(1,+∞)时,f ′(x )>0; 当x ∈(-∞,1)时,f ′(x )<0, ∴f (x )的单调递增区间为(1,+∞).3.若函数f (x )=13x 3-32x 2+ax +4的单调递减区间为[-1,4],则实数a 的值为________.答案-4解析f ′(x )=x 2-3x +a ,且f (x )的单调递减区间为[-1,4],∴f ′(x )=x 2-3x +a ≤0的解集为[-1,4],∴-1,4是方程f ′(x )=0的两根, 则a =(-1)×4=-4.题型一 不含参数的函数的单调性 例1(1)函数y =4x 2+1x的单调递增区间为()A .(0,+∞) B.⎝ ⎛⎭⎪⎫12,+∞C .(-∞,-1) D.⎝ ⎛⎭⎪⎫-∞,-12答案B解析由y =4x 2+1x,得y ′=8x -1x2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调递增区间为⎝⎛⎭⎪⎫12,+∞. (2)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为__________________. 答案⎝ ⎛⎭⎪⎫0,π6,⎝⎛⎭⎪⎫5π6,π 解析f ′(x )=1-2sin x ,x ∈(0,π). 令f ′(x )=0,得x =π6或x =5π6, 当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0, 当5π6<x <π时,f ′(x )>0, ∴f (x )在⎝ ⎛⎭⎪⎫0,π6和⎝⎛⎭⎪⎫5π6,π上单调递增,在⎝ ⎛⎭⎪⎫π6,5π6上单调递减.教师备选 若函数f (x )=ln x +1e x,则函数f (x )的单调递减区间为________. 答案(1,+∞)解析f (x )的定义域为(0,+∞),f ′(x )=1x-ln x -1e x,令φ(x )=1x-ln x -1(x >0),φ′(x )=-1x 2-1x<0,φ(x )在(0,+∞)上单调递减,且φ(1)=0, ∴当x ∈(0,1)时,φ(x )>0, 当x ∈(1,+∞)时,φ(x )<0,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.思维升华确定不含参的函数的单调性,按照判断函数单调性的步骤即可,但应注意一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.跟踪训练1(1)函数f (x )=x 2-2ln x 的单调递减区间是() A .(0,1) B .(1,+∞) C .(-∞,1) D .(-1,1) 答案A解析∵f ′(x )=2x -2x=2(x +1)(x -1)x(x >0),令f ′(x )=0,得x =1,∴当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.(2)函数f (x )=(x -1)e x -x 2的单调递增区间为________,单调递减区间为________. 答案(-∞,0),(ln2,+∞)(0,ln2) 解析f (x )的定义域为R ,f ′(x )=x e x -2x =x (e x -2), 令f ′(x )=0,得x =0或x =ln2,当x 变化时,f ′(x ),f (x )的变化情况如下表,∴f (x )的单调递增区间为(-∞,0),(ln2,+∞),单调递减区间为(0,ln2). 题型二 含参数的函数的单调性例2已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x=(ax -1)(x -1)x.令f ′(x )=0,得x =1a或x =1.①当0<a <1时,1a>1,∴x ∈(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )>0;x ∈⎝⎛⎭⎪⎫1,1a 时,f ′(x )<0, ∴函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;②当a =1时,1a=1,∴f ′(x )≥0在(0,+∞)上恒成立, ∴函数f (x )在(0,+∞)上单调递增; ③当a >1时,0<1a<1,∴x ∈⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减. 综上,当0<a <1时,函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.延伸探究若将本例中参数a 的范围改为a ∈R ,其他条件不变,试讨论f (x )的单调性? 解当a >0时,讨论同上; 当a ≤0时,ax -1<0, ∴x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0,∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.综上,当a ≤0时,函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <1时,函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.教师备选已知函数f (x )=x -2x+a (2-ln x ),a >0.讨论f (x )的单调性.解由题知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2,g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增.②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根,x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增, 在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.跟踪训练2讨论下列函数的单调性.(1)f(x)=x-a ln x;(2)g(x)=13x3+ax2-3a2x.解(1)f(x)的定义域为(0,+∞),f′(x)=1-ax=x-ax,令f′(x)=0,得x=a,①当a≤0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.②当a>0时,x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,∴f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.综上,当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)g(x)的定义域为R,g′(x)=x2+2ax-3a2=(x+3a)(x-a),当a=0时,g′(x)≥0,∴g(x)在R上单调递增.当a>0时,x∈(-∞,-3a)∪(a,+∞)时,g′(x)>0,g(x)单调递增,x∈(-3a,a)时,g′(x)<0,g(x)单调递减.当a<0时,x∈(-∞,a)∪(-3a,+∞)时,g′(x)>0,g(x)单调递增,x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 题型三 函数单调性的应用 命题点1比较大小或解不等式例3(1)已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为() A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1)答案A解析因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3.又当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以 f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5.(2)已知函数f (x )=e x -1ex -2x +1,则不等式f (2x -3)>1的解集为________.答案⎝ ⎛⎭⎪⎫32,+∞解析f (x )=e x -1ex -2x +1,定义域为R ,f ′(x )=e x +1e x -2≥2e x ·1ex -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32,∴原不等式的解集为⎝ ⎛⎭⎪⎫32,+∞.命题点2根据函数的单调性求参数的范围例4已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上单调递增,则实数a 的取值范围为________. 答案⎣⎢⎡⎭⎪⎫43,+∞解析由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83,∴2a ≥83,即a ≥43.延伸探究在本例中,把“f (x )在区间⎣⎢⎡⎦⎥⎤13,2上单调递增”改为“f (x )在区间⎣⎢⎡⎦⎥⎤13,2上存在单调递增区间”,求a 的取值范围. 解f ′(x )=x +2a -1x,若f (x )在⎣⎢⎡⎦⎥⎤13,2上存在单调递增区间,则当x ∈⎣⎢⎡⎦⎥⎤13,2时,f ′(x )>0有解,即2a >-x +1x有解,∵x ∈⎣⎢⎡⎦⎥⎤13,2,∴⎝ ⎛⎭⎪⎫-x +1x min =-2+12=-32,∴2a >-32,即a >-34,故a 的取值范围是⎝ ⎛⎭⎪⎫-34,+∞.教师备选1.若函数f (x )=e x (sin x +a )在区间⎝ ⎛⎭⎪⎫-π2,π2上单调递增,则实数a 的取值范围是()A .(1,+∞) B.[2,+∞) C .[1,+∞) D.(-2,+∞) 答案C 解析由题意得f ′(x )=e x (sin x +a )+e x cos x=e x ⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫x +π4+a ,∵f (x )在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,∴f ′(x )≥0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,又e x >0,∴2sin ⎝ ⎛⎭⎪⎫x +π4+a ≥0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,x +π4∈⎝ ⎛⎭⎪⎫-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫x +π4∈⎝ ⎛⎦⎥⎤-22,1,∴2sin ⎝⎛⎭⎪⎫x +π4+a ∈(-1+a ,2+a ], ∴-1+a ≥0,解得a ≥1,即a ∈[1,+∞).2.(2022·江西鹰潭一中月考)若函数f (x )=ax 3+x 恰有3个单调区间,则a 的取值范围为________. 答案(-∞,0)解析由f (x )=ax 3+x ,得f ′(x )=3ax 2+1.若a ≥0,则f ′(x )>0恒成立,此时f (x )在(-∞,+∞)上为增函数,不满足题意; 若a <0,由f ′(x )>0得 --13a<x <-13a, 由f ′(x )<0,得x <--13a或x >-13a,即当a <0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫--13a,-13a , 单调递减区间为⎝⎛⎭⎪⎫-∞,--13a ,⎝⎛⎭⎪⎫-13a ,+∞,满足题意. 思维升华 根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增(减)函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f ′(x )≤0),且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.跟踪训练3(1)已知定义域为R 的连续函数f (x )的导函数为f ′(x ),且满足f ′(x )m (x -3)<0,当m <0时,下列关系中一定成立的是() A .f (1)+f (3)=2f (2) B .f (0)·f (3)=0 C .f (4)+f (3)<2f (2) D .f (2)+f (4)>2f (3) 答案D 解析由f ′(x )m (x -3)<0,得m (x -3)f ′(x )<0,又m <0,则(x -3)f ′(x )>0,当x >3时,f ′(x )>0,f (x )单调递增; 当x <3时,f ′(x )<0,f (x )单调递减;所以f (2)>f (3),f (4)>f (3), 所以f (2)+f (4)>2f (3).(2)(2022·安徽省泗县第一中学质检)函数f (x )=ln xx在(a ,a +1)上单调递增,则实数a的取值范围为________. 答案[0,e -1] 解析由函数f (x )=ln x x,得f ′(x )=1-ln xx 2(x >0),由f ′(x )>0得0<x <e ,由f ′(x )<0得x >e.所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 又函数f (x )=ln xx在(a ,a +1)上单调递增,则(a ,a +1)⊆(0,e),则⎩⎨⎧a ≥0,a +1≤e,解得0≤a ≤e-1.课时精练1.函数f (x )=x ln x +1的单调递减区间是() A.⎝ ⎛⎭⎪⎫-∞,1e B.⎝ ⎛⎭⎪⎫1e ,+∞C.⎝⎛⎭⎪⎫0,1e D .(e ,+∞)答案C解析f (x )的定义域为(0,+∞),f ′(x )=1+ln x , 令f ′(x )<0,得0<x <1e,所以f (x )的单调递减区间为⎝⎛⎭⎪⎫0,1e .2.下列函数中,在(0,+∞)上单调递增的是() A .f (x )=2sin x cos x B .g (x )=x 3-x C .h (x )=x e xD .m (x )=-x +ln x 答案C解析h (x )=x e x ,定义域为R ,∴h ′(x )=(x +1)e x ,当x >0时,h ′(x )>0, ∴h (x )在(0,+∞)上单调递增.3.(2022·渭南调研)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).下面四个图象中y =f (x )的图象大致是()答案C解析列表如下:x (-∞,-1) (-1,0)(0,1)(1,+∞)xf′(x)-+-+f′(x)+--+f(x)单调递增单调递减单调递减单调递增故函数f(x)的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).故函数f(x)的图象是C选项中的图象.4.(2022·遵义质检)若函数f(x)=-x2+4x+b ln x在区间(0,+∞)上是减函数,则实数b的取值范围是()A.[-1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-2,+∞)答案C解析∵f(x)=-x2+4x+b ln x在(0,+∞)上是减函数,∴f′(x)≤0在(0,+∞)上恒成立,即f′(x)=-2x+4+bx≤0,即b ≤2x 2-4x ,∵2x 2-4x =2(x -1)2-2≥-2,∴b ≤-2.5.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln2),则a ,b ,c 的大小关系是() A .a >c >b B .a >b >c C .b >a >c D .c >b >a 答案A解析f (x )的定义域为R ,f ′(x )=cos x -sin x -2 =2cos⎝ ⎛⎭⎪⎫x +π4-2<0, ∴f (x )在R 上单调递减,又2e >1,0<ln2<1,∴-π<ln2<2e , 故f (-π)>f (ln2)>f (2e ), 即a >c >b .6.如果函数f (x )对定义域内的任意两实数x 1,x 2(x 1≠x 2)都有x 1f (x 1)-x 2f (x 2)x 1-x 2>0,则称函数y =f (x )为“F 函数”.下列函数是“F 函数”的是() A .f (x )=e x B .f (x )=x 2 C .f (x )=ln x D .f (x )=sin x 答案B解析依题意,函数g (x )=xf (x )为定义域上的增函数. 对于A ,g (x )=x e x ,g ′(x )=(x +1)e x ,当x ∈(-∞,-1)时,g ′(x )<0,∴g (x )在(-∞,-1)上单调递减,故A 中函数不是“F 函数”; 对于B ,g (x )=x 3在R 上单调递增,故B 中函数为“F 函数”; 对于C ,g (x )=x ln x ,g ′(x )=1+ln x , 当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,故C 中函数不是“F 函数”;对于D ,g (x )=x sin x ,g ′(x )=sin x +x cos x , 当x ∈⎝ ⎛⎭⎪⎫-π2,0时,g ′(x )<0,故D 中函数不是“F 函数”.7.(2022·长沙市长郡中学月考)已知函数f (x )=13x 3+mx 2+nx +1的单调递减区间是(-3,1),则m +n 的值为________. 答案-2解析由题设,f ′(x )=x 2+2mx +n , 由f (x )的单调递减区间是(-3,1), 得f ′(x )<0的解集为(-3,1), 则-3,1是f ′(x )=0的解,∴-2m =-3+1=-2,n =1×(-3)=-3, 可得m =1,n =-3,故m +n =-2.8.(2021·新高考全国Ⅱ)写出一个同时具有下列性质①②③的函数f (x ):________. ①f (x 1x 2)=f (x 1)f (x 2);②当x ∈(0,+∞)时,f ′(x )>0;③f ′(x )是奇函数.答案f (x )=x 4(答案不唯一,f (x )=x 2n (n ∈N *)均满足)解析取f (x )=x 4,则f (x 1x 2)=(x 1x 2)4=x 41x 42=f (x 1)f (x 2),满足①,f ′(x )=4x 3,x >0时有f ′(x )>0,满足②,f ′(x )=4x 3的定义域为R ,又f ′(-x )=-4x 3=-f ′(x ),故f ′(x )是奇函数,满足③.9.已知函数f (x )=12x 2-2a ln x +(a -2)x . (1)当a =-1时,求函数f (x )的单调区间;(2)若函数g (x )=f (x )-ax 在(0,+∞)上单调递增,求实数a 的取值范围. 解(1)当a =-1时,f (x )=12x 2+2ln x -3x ,则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x(x >0). 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.所以f (x )的单调递增区间为(0,1)和(2,+∞),单调递减区间为(1,2).(2)g (x )=f (x )-ax 在(0,+∞)上单调递增,则g ′(x )=f ′(x )-a =x -2a x-2≥0在x ∈(0,+∞)上恒成立.即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. 所以x 2-2x -2a ≥0在x ∈(0,+∞)上恒成立,所以a ≤12(x 2-2x )=12(x -1)2-12恒成立. 令φ(x )=12(x -1)2-12,x ∈(0,+∞), 则其最小值为-12,故a ≤-12. 所以实数a 的取值范围是⎝⎛⎦⎥⎤-∞,-12. 10.(2022·宜春质检)已知函数f (x )=x 3-6ax .(1)当a =-1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求函数y =f (x )的单调区间.解(1)当a =-1时,f (x )=x 3+6x ,则f ′(x )=3x 2+6,所以f (1)=7,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -7=9(x -1),即9x -y -2=0.(2)函数f (x )=x 3-6ax 的定义域为R , f ′(x )=3x 2-6a =3(x 2-2a ).当a ≤0时,对任意的x ∈R ,f ′(x )≥0且不恒为零,此时函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间;当a >0时,由f ′(x )<0, 可得-2a <x <2a ,由f ′(x )>0,可得x <-2a 或x >2a ,此时函数f (x )的单调递增区间为(-∞,-2a ),(2a ,+∞),单调递减区间为(-2a ,2a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间; 当a >0时,函数f (x )的单调递增区间为(-∞,-2a ),(2a ,+∞),单调递减区间为(-2a ,2a ).11.若函数h (x )=ln x -12ax 2-2x 在[1,4]上存在单调递减区间,则实数a 的取值范围为() A.⎣⎢⎡⎭⎪⎫-716,+∞B .(-1,+∞) C .[-1,+∞) D.⎝ ⎛⎭⎪⎫-716,+∞ 答案B解析因为h (x )在[1,4]上存在单调递减区间,所以h ′(x )=1x-ax -2<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解, 而当x ∈[1,4]时,1x 2-2x =⎝ ⎛⎭⎪⎫1x -12-1, ⎝ ⎛⎭⎪⎫1x 2-2x min =-1(此时x =1), 所以a >-1,所以a 的取值范围是(-1,+∞).12.设函数f (x )=x sin x +cos x +x 2,若a =f (-2),b =f (ln2),c =f (e),则a ,b ,c的大小关系为()A.b<a<c B.c<a<bC.b<c<a D.a<b<c答案C解析f(-x)=(-x)sin(-x)+cos(-x)+(-x)2=x sin x+cos x+x2=f(x),∴f(x)为偶函数,∴a=f(-2)=f(2),又f′(x)=x cos x+2x=x(cos x+2),当x>0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增,又2>e>ln2,∴f(2)>f(e)>f(ln2),即b<c<a.13.(2022·韩城质检)设a>0,若函数f(x)=1+ln xx在区间⎝⎛⎭⎪⎫a,a+23上不单调,则a的取值范围是________.答案13<a<1解析函数f(x)=1+ln xx,f′(x)=-ln xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,因为函数f(x)=1+ln xx在区间⎝⎛⎭⎪⎫a,a+23上不单调,则a <1<a +23,解得13<a <1. 14.已知函数f (x )=x 5+10x +sin x ,若f (t )+f (1-3t )<0,则实数t 的取值范围是________.答案⎝ ⎛⎭⎪⎫12,+∞ 解析因为函数f (x )的定义域为R ,f (-x )=(-x )5+10(-x )+sin(-x )=-(x 5+10x +sin x )=-f (x ),所以f (x )为奇函数;又因为f ′(x )=5x 4+10+cos x >0,所以函数f (x )在R 上单调递增;又因为f (t )+f (1-3t )<0,所以f (t )<-f (1-3t )=f (3t -1),所以3t -1>t ,即t >12.15.(2022·河北衡水中学月考)下列不等式成立的是________.(填序号)①2ln 32<32ln2; ②2ln 3<3ln 2;③5ln4<4ln5;④π>elnπ.答案①④解析设f (x )=ln x x (x >0),则f ′(x )=1-ln xx 2,所以当0<x <e 时,f ′(x )>0,函数f (x )单调递增;当x >e 时,f ′(x )<0,函数f (x )单调递减.因为32<2<e , 所以f ⎝ ⎛⎭⎪⎫32<f (2), 即2ln 32<32ln2,故①正确; 因为2<3<e ,所以f (2)<f (3), 即2ln 3>3ln 2,故②不正确;因为e<4<5,所以f (4)>f (5),即5ln4>4ln5,故③不正确;因为e<π,所以f (e)>f (π),即π>elnπ,故④正确.16.(2022·宁夏银川一中质检)已知函数f (x )=a e x x. (1)若a >0,求f (x )的单调区间;(2)若对∀x 1,x 2∈(1,3),x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<2恒成立,求实数a 的取值范围. 解(1)f (x )的定义域为{x |x ≠0},f′(x)=a e x(x-1)x2,∵a>0,∴当x∈(-∞,0)∪(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(-∞,0),(0,1),单调递增区间为(1,+∞).(2)不妨令x1>x2,∴f(x1)-f(x2)x1-x2<2,可化为f(x1)-f(x2)<2(x1-x2),即f(x1)-2x1<f(x2)-2x2,即函数g(x)=f(x)-2x在区间(1,3)上单调递减,又∵g′(x)=f′(x)-2=a e x(x-1)x2-2,∴a e x(x-1)x2-2≤0在(1,3)上恒成立,当x∈(1,3)时,不等式a e x(x-1)x2-2≤0可化为a≤2x2(x-1)e x,令h(x)=2x2(x-1)e x,则h′(x)=4x(x-1)e x-2x3e x (x-1)2e2x=-2x3+4x2-4x (x-1)2e x=-2x(x2-2x+2) (x-1)2e x=-2x [(x -1)2+1](x -1)2e x<0在区间x ∈(1,3)上恒成立, ∴函数h (x )=2x 2(x -1)e x 在区间x ∈(1,3)上单调递减, ∴h (x )min =h (3)=2×32(3-1)e 3=9e 3,∴a ≤9e 3,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,9e 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省高考数学一轮复习:13 导数与函数的单调性
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)函数的定义域为开区间,导函数在内的图象如图所示,则函数
在开区间内有极小值点()
A . 1个
B . 2个
C . 3个
D . 4个
2. (2分) (2020高二下·九台期中) 函数的单调递减区间为()
A . (-∞,0)
B . (1,+∞)
C . (0,1)
D . (0,+∞)
3. (2分) (2020高二下·北京期中) 函数的增区间是()
A .
B .
C .
D .
4. (2分) (2016高二下·绵阳期中) 函数f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()
A .
B .
C .
D .
5. (2分)函数在[0,3]上的最大值和最小值分别是()
A . 5,-15
B . 5,-4
C . -4,-15
D . 5,-16
6. (2分) (2019高二下·余姚期中) 已知可导函数,则当时,
大小关系为()
A .
B .
C .
D .
7. (2分)若函数恰有三个单调区间,则实数a的取值范围为()
A .
B .
C .
D .
8. (2分) (2020高三上·双鸭山开学考) 定义在(1,+∞)上的函数f(x)满足x2 +1>0(为函数f(x)的导函数),f(3)=,则关于x的不等式f(log2x)﹣1>logx2的解集为()
A . (1,8)
B . (2,+∞)
C . (4,+∞)
D . (8,+∞)
9. (2分)函数的单调递减区间是()
A .
B .
C .
D .
10. (2分) (2019高二上·建瓯月考) 分别是定义在R上的奇函数和偶函数,当时,
,且则不等式的解集为()
A . (-∞,-2)∪(2,+∞)
B . (-2,0)∪(0,2)
C . (-2,0)∪(2,+∞)
D . (-∞,-2)∪(0,2)
11. (2分) (2019高二下·吉林期末) 已知定义在上的连续奇函数的导函数为,当时,
,则使得成立的的取值范围是()
A .
B .
C .
D .
12. (2分) (2015高一上·扶余期末) 实数x,y满足y=2x2﹣4x+1,(0≤x≤1),则的最大值为()
A . 4
B . 3
C . 2
D . 1
二、填空题 (共5题;共5分)
13. (1分) (2020高二下·吉林开学考) 函数的单调减区间为________.
14. (1分) (2019高三上·杭州期中) 设,曲线与曲线有且仅有一个公共点,则实数a的值是________.
15. (1分) (2017高二下·菏泽开学考) 函数f(x)=xlnx(x>0)的单调递增区间是________.
16. (1分)若函数在其定义域的一个子区间上不是单调函数,则实数的取值范围________.
17. (1分) (2019高二下·南宁期中) 已知向量,若函数在区间
上存在增区间,则t 的取值范围为________.
三、解答题 (共5题;共40分)
18. (5分) (2018高三上·大连期末) 已知函数 .
(1)时,求在上的单调区间;
(2)且,均恒成立,求实数的取值范围.
19. (10分) (2018高二下·如东月考) 已知函数,
(1)当时,求函数的单调区间;
(2)若函数在区间上有1个零点,求实数的取值范围;
(3)是否存在正整数,使得在上恒成立?若存在,求出k的最大值;若不存在,说明理由.
20. (5分)(2016·天津模拟) 已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若∀x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex﹣1f(x)≥x.
21. (10分) (2019高三上·射洪月考) 已知函数,
(1)讨论在上的单调性.
(2)当时,若在上的最大值为,讨论:函数在内的零点个数.
22. (10分) (2017高二上·集宁期末) 已知f(x)=ax3+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=x.
(1)求y=f(x)的解析式;
(2)求y=f(x)的单调递增区间.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共5题;共5分)答案:13-1、
考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
三、解答题 (共5题;共40分)答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、
答案:19-2、答案:19-3、
考点:
解析:
答案:20-1、答案:20-2、
答案:20-3、考点:
解析:
答案:21-1、
答案:21-2、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:。