初中数学浙教版八年级上册1.6 尺规作图 同步练习

合集下载

1.6 尺规作图 浙教版八年级数学上册同步练习(含解析)

1.6 尺规作图 浙教版八年级数学上册同步练习(含解析)

第1章 三角形的初步知识1.6 尺规作图基础过关全练知识点1 基本作图1.(2022浙江义乌绣湖教育集团期中)用直尺和圆规作一个角等于已知角的示意图如下,说明∠A'O'B'=∠AOB的依据是( )A.SSSB.SASC.ASAD.AAS2.(2022浙江宁波春晓中学期中)观察下列作图痕迹,所作CD为△ABC的边AB上的中线的是( )A B C D3.(2022浙江绍兴柯桥联盟学校期中)如图,在△ABC中,按以下步骤作图:①分别以点BBC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于和C为圆心,以大于12点D,连结BD.若AC=6,AD=2,则BD的长为( )A.2B.3C.4D.6知识点2 按要求进行尺规作图4.(2022浙江台州和合教育联盟期中)已知△ABC(AB<AC<BC),用尺规作图的方法在BC 上取一点P,使PA+PC=BC,下列选项正确的( )A B C D5.(2022浙江杭州之江实验中学期中)如图是作△ABC的作图痕迹,则此作图的已知条件是( )A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角能力提升全练6.(2022浙江宁波海曙期中)以下尺规作图中,点D为线段BC边上一点,一定能得到线段AD=BD的是( )A B C D7.(2020湖北襄阳中考)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DEB.AB=AEC.∠EDC=∠BACD.∠DAC=∠C8.(2022浙江温州期中)如图,若∠α=38°,根据尺规作图的痕迹,则∠AOB的度数为 .9.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径作弧,交AB于点M,MN的长为半径作弧,两弧在∠BAC的内部相交交AC于点N,分别以M,N为圆心,以大于12于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连结DF,则△CDF的周长为 .10.(2022浙江慈溪期中)如图,已知△ABC,P为AB上一点,请用尺规作图的方法在AC上找一点Q,使得AQ+PQ=AC(保留作图痕迹,不写作法).11.(2022浙江杭州之江实验中学期中)如图,在Rt△ABC中,∠C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.①作出AB的垂直平分线MN,MN与AB交于点D,与BC交于点E;②过点B作BF垂直于AE,垂足为F;(2)推理证明:求证AC=BF.素养探究全练12.[数学抽象](2022独家原创)郑州“7.20”特大暴雨灾害发生后,公路抢修队发现三条两两相交于A、B、C三点的公路(如图所示)遭到了破坏,现计划迅速建立抢修站,要求抢修站到三条公路的距离相等,则可供选择的位置P有几个?用尺规作图在图中标出抢修站点P的位置.答案全解全析基础过关全练1.A 由作图可知OD=OC=O'D'=O'C',CD=C'D',∴△DOC≌△D'O'C'(SSS),∴∠A'O'B'=∠AOB.故选A.2.D 选项A,CD⊥AB,但不一定平分AB,故不符合题意;选项B,CD为△ABC的角平分线,故不符合题意;选项C,不符合基本作图过程,故不符合题意;选项D,点D为AB的中点,所以CD为△ABC边AB上的中线,故D符合题意.故选D.3.C 由作图可知,MN是线段BC的垂直平分线,∴BD=CD=AC-AD=6-2=4.故选C.4.B 作AB的垂直平分线,交BC于点P,连结PA,则PA=PB,∵BC=PB+PC,∴PA+PC=BC,选项B符合题意.故选B.5.C 观察作图痕迹可得,已知线段AB,∠CAB=α,∠CBA=β.故选C.能力提升全练6.D 选项A中,AD为BC边上的高;选项B中,AD为∠BAC的平分线;选项C中,D点为BC的中点,∴AD为BC边上的中线;选项D中,点D为AB的垂直平分线与BC的交点,则DA=DB.故选D.7.D 由作图可知,∠DAE=∠DAB,∠DEA=90°,∴∠DEA=∠B,又∵AD=AD,∴△ADE≌△ADB,∴DB=DE,AB=AE,∵∠DEA=∠B=90°,∴∠BAC+∠C=90°,∠EDC+∠C=90°,∴∠EDC=∠BAC,故A,B,C中的结论均正确.∠DAC与∠C的大小关系不能确定,故D中的结论错误.故选D.8.76°解析 由尺规作图可知∠AOB=2∠α,∵∠α=38°,∴∠AOB=76°.9.12解析 根据作图可得∠BAD=∠CAD,在△ABD 和△AFD 中,AB =AF ,∠BAD =∠FAD ,AD =AD ,∴△ABD ≌△AFD(SAS),∴AF=AB=5,BD=DF,∴CF=AC-AF=8-5=3,∴△CDF 的周长=DF+DC+FC=BD+DC+FC=BC+FC=9+3=12.10.解析 如图,点Q 即为所求.11.解析 (1)①如图,DE 即为所作.②如图,BF 即为所作.(2)证明:∵ED 垂直平分AB,∴EA=EB,∵BF ⊥AE,∴∠BFE=90°,在△ACE 和△BFE 中,∠C =∠BFE ,∠AEC =∠BEF ,AE =BE ,∴△ACE ≌△BFE(AAS),∴AC=BF.素养探究全练12.解析 4处,如图所示,点P,P 1,P 2,P 3即为抢修站的位置.。

1.6 尺规作图 浙教版八年级数学上册题型讲练(含解析)

1.6 尺规作图 浙教版八年级数学上册题型讲练(含解析)

3.作三角形:知三边、知两边夹角、知两角夹边、知一边及该边上的高作法:有规定名称时需格外注意字母的标注注意务必考虑三角形的各要素(类比于三角形全等的判定条件)(2022秋·浙江宁波·八年级慈溪市上林初级中学校考期中)1.如图,用直尺和圆规作出的角平分线,在作角平分线过程中,用到的三角形全等的判定方法是()A.B.C.D.(2022秋·浙江宁波·八年级校联考期末)2.如图,已知,以点B为圆心,适当长为半径作弧,分别交于D,P;作一条射线,以点F圆心,长为半径作弧l,交于点H;以H为圆心,长为半径作弧,交弧于点Q;作射线.这样可得,其依据是()A.B.C.D.题型01 尺规作一个角等于已知角(2023秋·河北张家口·八年级统考期末)3.如图,通过尺规作图得到的依据是()A.SSS B.SAS C.ASA D.AAS(2023秋·八年级课时练习).如图,已知,,以为圆心,适当长为半径画弧,交于点,交于点N,再以点N为圆心,长为半径画弧,两弧交于点.则(2023春·河南郑州·七年级校考期中)5.如图,线段,交于点.(1)尺规作图:以点为顶点,射线为一边,在的上方作,使.(要求:不写作法,但保留作图痕迹并写出结论)(2)判断与的位置关系,并说明理由.题型02 过直线外一点作这条直线的平行下面四个图是小明用尺规过点作边的平行线所留下的作图痕迹,....(1)过点P作直线c,使得;(2)在直线c上作点Q,使得,连接题型03 尺规作图——作三角形(2023秋·八年级课时练习).请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的图形的全等这一章的知识,说明画出的依据是(A.B...(2023春·七年级单元测试)10.已知,现将绕点B逆时针旋转,使点落在射线上,求作.作法:在上截,以点为圆心、为半径作弧,以点为圆心、为半径作弧,两弧在射线右侧交于点,则即为所求.此作图确定三角形的依据是:(2023春·山东青岛·七年级统考期末)11.(1)下面的方格图是由边长为个小正方形拼成的,的顶点均在小正方形的顶点上.①作出关于直线轴对称的;②的面积___________已知:如图所示.求作:,使.04 结合尺规作图的全等问题.根据下列已知条件.能唯一画出的是(.,,.,,.,,.,2023秋·八年级单元测试)请仔细观察用直尺和圆规作一个角等于已知角的示意图,所学的图形的全等这一章的知识,说明画出的依据是(2023·浙江·八年级假期作业)14.如图,的顶点A、B、C都在小正方形的顶点上,试在方格纸上按下列要求画格点三角形(三角形的顶点在格点上),只需画出一个即可:(1)在图(1)中画出与全等的三角形,且有条公共边:(2)在图(2)中画出与全等的三角形,且有一个公共顶点:(3)在图(3)中画出与全等的三角形,且有一个公共角.题型05 作角平分线(2023秋·全国·八年级专题练习)15.如图,已知,按照以下步骤作图:①以点O为圆心,任意长为半径画弧,分别交,于点C,D;②分别以点C,D为圆心,以大于的长为半径画弧,两弧交于点E;③连接,,,.下列结论错误的是()A.B.C.D.(2023春·山东菏泽·七年级校联考阶段练习)16.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交,于点为圆心,大于的长为半径画弧,两弧交于点,作射线,交边于点,若,,则的面积是(2023春·河南信阳·八年级校联考阶段练习)17.如图,是等腰三角形,是边上的高.(1)尺规作图:作的角平分线,交于点(2)若,求的度数.题型06 作垂线(2023春·河北保定18.如图,已知钝角,依下列步骤尺规作图,并保留作图痕迹.:以为圆心,为半径画弧:以为圆心,为半径画弧:连接,交延长线于点;下列叙述错误的是()A.垂直平分线段.平分..八年级校联考期中).如图,在中,,观察图中尺规作图的痕迹,则的周长.(2023春·辽宁沈阳·七年级沈阳市第一三四中学校考期中)20.如图,每个小方格都是边长为的正方形,、、三点都是格点(每个小方格的顶点叫做格点).(1)找出格点,画出的平行线;(2)找出格点,画的垂线,垂足为;(3)图中满足要求的格点共可以找出个;(4)线段的长是点到直线的距离..作,使.作,使.以点为圆心,线段的长为半径作弧.以点为圆心作弧(2023春·福建宁德·七年级统考期末)22.已知,求作:,使得.如图是小明的作图痕迹,他作图的依据是()A.B.C.D.(2023春·山东威海·六年级统考期末)23.如图,已知,用尺规以为一边在的外部作.对于弧,下列说法正确的是()A.以点M为圆心,的长为半径B.以点N为圆心,的长为半径C.以点O为圆心,的长为半径D.以点N为圆心,的长为半径(2023秋·河北石家庄·七年级校考期末)24.下面是课本中“作一个角等于已知角”的尺规作图过程.已知:求作:一个角,使它等于作法:如图(1)作射线;(2)以为圆心,任意长为半径作弧,交于,交于;(3)以为圆心,为半径作弧,交于;(4)以为圆心,为半径作弧,交前面的弧于;(5)连接作射线,则就是所求的作的角;.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明的(填,,,中的一种)(2023·浙江·八年级假期作业)26.如图,在中,,以为圆心、一定长度为半径画圆弧,交,于点D,E,分别以点D,E为圆心、大于长度为半径画圆弧,两条圆弧相交于点,连接交于点,,,则为(2023·辽宁阜新·校考一模)27.如图,在中,利用尺规在射线,射线上分别截取,,使;分别以D,E为圆心、以大于的长为半径作弧,两弧在内交于点F;作射线,在射线上取一点G,过点作射线,若,射线上一动点,则的最小值为.(2023秋·全国·八年级专题练习)28.如图,在中,.以点为圆心,任意长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧在的内部相交于点,作射线交边于点,若,的面积为,则线段的长为(2023春·陕西榆林·八年级校考期末)29.如图,已知,请用尺规作图的方法在边上求作一点,连接,使得是以为底的等腰三角形.(保留作图痕迹,不写作法)(2023·全国·七年级假期作业)30.已知:及边上一点C.求作:,使得.要求:尺规作图,保留作图痕迹,不写作法(说明:作出一个即可).B能力提升(2023春·安徽宿州·七年级校考期中)31.下列作图属于尺规作图的是()A.用量角器画出,使B.借助没有刻度的直尺和圆规作,使C.用三角尺画D.用三角尺过点P作的垂线(2023秋·浙江·八年级专题练习)32.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是( )A.B.C.D.(2023秋·甘肃天水·八年级校考期末)33.如图,通过尺规作图得到的依据是()A.SSS B.SAS C.ASA D.AAS(2023秋·全国·八年级专题练习)34.如图,已知,按照以下步骤作图:①以点O为圆心,任意长为半径画弧,分别交,于点C,D;②分别以点C,D为圆心,以大于的长为半径画弧,连接,,,.下列结论错误的是(A..C..(2023·吉林松原·校联考三模)35.如图,在的两边、上分别截取、,使;再分别以点M、N为圆心,以大于的长为半径作圆弧,两弧交于点E,过点E作,若,则点E到直线的距离是(2023春·山东青岛·七年级统考期末)36.如图,在中,,分别交,于点M,N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点O,作射线,交于点,已知,,则的长为(2023·山东·九年级专题练习)37.如图,在中,以点为圆心,任意长为半径作弧,分别交,于点,;分别以点,为圆心,大于的长为半径作弧,两弧交于点;作射线交于点,若,,的面积为,则的面积.(2023春·四川成都·八年级成都嘉祥外国语学校校考期中)38.已知,,以为圆心任意长为半径画弧分别交、于点、,再分别以点、为圆心,大于为半径画弧交于点,射线交于点已知,,则的面积为(2023春·甘肃张掖·七年级校考期末)39.如图,有分别过A、B两个加油站的公路相交于点,现准备在内部建一个油库,要求油库的位置点、B两个加油站的距离相等,而且点P条公路的距离也相等.请用尺规作图作出点(2023春·辽宁沈阳·七年级沈阳市第一三四中学校考期中)40.如图,每个小方格都是边长为的正方形,、、三点都是格点(每个小方格的顶点叫做格点).(1)找出格点,画出的平行线;找出格点,画的垂线,垂足为;图中满足要求的格点共可以找出个;的长是点到直线的距离..如图,在中,分别以点为圆心,大于的长为半径画弧,两弧相交,作直线,交于点,交于点E,连接.若的周长为,的周长为20,则AE的长为()A.3B(2023春·河南平顶山·七年级统考期末)42.如图,已知和上一点过点作”,其作图依据是(A....(2023春·贵州毕节·八年级统考期末)43.如图,在中,,按下列步骤作图:步骤1:以点为圆心、小于的长为半径作弧,分别交于点;步骤2:分别以点为圆心、大于的长为半径作弧,两弧交于点;:作射线交于点.则的度数为(A....(2023春·河南驻马店七年级统考期中)44.如图,在中,为边上任意一点,按以下步骤作图:以任意长为半径作弧,分别交于点为圆心,以长为半径作弧,交于点E;E为圆心,以长为半径作弧,在内部交前面的;④作射线交于点.若,则(A.B...(2023春·四川成都·八年级校考期中)45.如图,已知的周长为,,分别以点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的周长为.(2023春·辽宁沈阳·八年级校考期中).如图,在中,按以下步骤作图:为圆心的长为半径作弧,两弧相交于点,,,则(2023秋·河南省直辖县级单位47.如图,为锐角,,点在射线上(点与点不重合),点到射线的距离为,若取某一确定值时,的形状、大小是唯一确定的,则的取值范围是.(2023春·四川成都·七年级统考期末)48.如图,在中,,按以下步骤作图:①以B为圆心,以任意长为半径作弧,分别交,于点为圆心,以大于的长为半径作弧,两弧在内交于点作射线,交于点.若,则点到直线的距离是(2023秋·河南周口·八年级校考期末)49.已知:如图相交于点O,,,平分交于点E,平分交于点F.(1)请用尺规作图补出图中的线段(不写作法,保留作图痕迹)(2)求证:.(2023春·山东淄博·七年级统考期末)50.如图,已知.(1)尺规作图:在线段的下方,以点D为顶点,作(不写作法,保留作图痕迹);(2)在(1)的条件下,请说明;(3)若,平分,求的度数.参考答案:1.A【分析】如图,根据题意可得:,,,进一步即可根据判定,可得,从而可得答案.【详解】解:如图,由作图可知:,,,(),,即是的平分线.所以用到的三角形全等的判定方法是.故选:A.【点睛】本题考查了尺规作角平分线以及全等三角形的判定与性质,属于基本题型,正确理解题意、熟练掌握基础知识是解题的关键.2.A【分析】根据题意得出,,利用证明,根据全等三角形的性质即可得出.【详解】解:如图,连接,,根据题意得,,,在和中,,∴,∴,故选:A.【点睛】此题考查了全等三角形的判定与性质,熟记全等三角形的判定与性质是解题的关键.3.A【分析】根据作图过程利用可以证明,进而可得结论.【详解】解:根据作图过程可知,在和中,,∴,∴(全等三角形的对应角相等).故选:A.【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握基本作图方法.4.60【分析】由题意得:,根据平行线的性质可得,进而可得答案.【详解】解:∵,,∴,由题意得:,∴,故答案为:60【点睛】本题考查了尺规作一个角等于已知角和平行线的性质,熟练掌握平行线的性质、得出是解题的关键.5.(1)作图见详解(2),理由见详解【分析】(1)以点为圆心,以任意长(此次为线段的长)为半径画弧,以同样的半径,以点为圆心画弧,连接,以点为圆心,以为半径画弧,由此即可求解;(2)根据平行线的判定和性质即可求解.【详解】(1)解:①如图所示,以点为圆心,以任意长(此次为线段的长)为半径画弧交,于点,②同理,以点为圆心,以线段的长为半径画弧交于点,③连接,以点为圆心,以为半径画弧,与②中的弧交于点,连接并延长至点,∵,∴,∴作即可得,∴即为所求图形.(2)解:,理由如下:∵,∴,∵,∴,∴.【点睛】本题主要考查平行线的作法,平行线的判定和性质,掌握以上知识的综合运用是解题的关键.6.A【分析】根据平行线的判定,结合尺规作图方法即可判断.【详解】解:若要过点C作AB的平行线,则应过点C作一个角等于已知角,由作图可知,选项A符合题意,故选A.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的判定.7.50【分析】由作图可知:∠DAE=∠B,推出AE//BC,利用平行线的性质即可解决问题.【详解】解:由作图可知:∠DAE=∠B,∴AE//BC,∴∠EAC=∠C=50°,故答案为:50.【点睛】本题考查了平行线的判定和性质,掌握知识点是解题关键.8.(1)见解析(2)见解析【分析】(1)以点O为圆心,任意长为半径画弧,交b于点A,交a于点B,再半径不变,以点P为圆心画弧,交b于点C,以点C为圆心,长为半径画弧,与前弧相交于点D,过点P、D作直线c即可;(2)作线段的垂直平分线交直线c于点Q即可.【详解】(1)解:如图,直线c即为所作;由尺规基本作图可知:,∴.(2)解:如图,点Q即为所要作的点.由作法可知:垂直平分,∴.【点睛】本题考查尺规作图,解题关键是熟练掌握平行线的判定,线段垂直平分线的性质,作一角等于已知角,作线段垂直平分线等基本作图.9.D【分析】由作法得,,,得到三角形全等,由全等三角形的对应角相等可知.【详解】解:由作法得,,,依据可判定,则.故选:D.【点睛】本题主要考查了全等三角形的判定和基本作图,关键是掌握全等三角形的判定定理.10.##边边边【分析】根据作图步骤可知,,,,由此即可求解.【详解】解:根据作图步骤可知,,,∴故答案为:【点睛】此题考查了全等三角形的判定,解题的关键是掌握全等三角形的判定方法.11.(1)①见解析;②;(2)见解析【分析】(1)①先根据轴对称图形的性质找到A、B、C对应点的位置,然后顺次连接即可;②利用割补法求解即可;(2)先作射线,在射线上截取,再分别以为圆心,以的长为半径画弧,二者交于点D,连接,则即为所求.【详解】解:(1)①如图所示,即为所求;②由题意得,;(2)先作射线,在射线上截取,再分别以为圆心,以的长为半径画弧,二者交于点D,连接,则即为所求;【点睛】本题主要考查了画轴对称图形,画全等三角形,割补法求三角形面积等等,熟知相关作图方法是解题的关键.12.C【分析】根据全等三角形的判定定理逐个判断即可.【详解】解:A.由,则不能画出三角形,故不符合题意;B.不符合全等三角形的判定定理,不能画出唯一的一个三角形,故不符合题意;C.符合全等三角形的判定定理“”,能画出唯一的一个三角形,故符合题意;D.不符合全等三角形的判定定理,不能画出唯一的一个三角形,故不符合题意;故选:C.【点睛】本题考查了构成三角形的条件,全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.13.【分析】由作法易得,得到三角形全等,由全等三角形的对应角相等可知.【详解】解:由作法得,依据可判定,则.故答案为:.【点睛】本题主要考查了全等三角形的判定和基本作图,关键是掌握全等三角形的判定定理.14.(1)见解析(2)见解析(3)见解析【分析】(1)可根据全等三角形判定中的边边边()为依据作图;(2 )(3)可根据全等三角形的判定中的边角边()为依据作图.【详解】(1)解:如图1,即为所求(答案不唯一),;(2)解:如图2,即为所求,;(3)解:如图3,即为所求,.【点睛】本题考查的是作图-复杂作图,熟知全等三角形的作法是解答此题的关键.15.B【分析】利用基本作图可知,为的平分线,又,,可得出,从而可得出;由,,得出垂直平分,根据已知条件不能判断,进而可以解决问题.【详解】解:由作图步骤可得:是的角平分线,则,故C选项正确,不合题意;又,,,,故A正确,不合题意;,,垂直平分,则,故D选项正确,不合题意;没有条件能得出,故B选项错误,符合题意;故选:B.【点睛】本题考查了作图基本作图,全等三角形的判定与性质以及等腰三角形的性质,熟练掌握基本作图的步骤是解题的关键.16.18【分析】过D点作于H,如图,由作法得平分,根据角平分线的性质得到,然后利用三角形面积公式计算.【详解】解:过D点作于H,如图,由作法得平分,∵,∴,∴的面积= .故答案为:18.【点睛】本题考查了作图——作已知角的角平分线,角平分线的性质,利用角平分线的性质求出中边上的高是解题的关键.17.(1)见解析(2)【分析】(1)利用作已知角的角平分线作图解题即可;(2)根据角平分线的定义可得,根据垂直的定义可以得到,然后利用三角形的外角性质解题即可求解.【详解】(1)如图所示.(2)∵BE平分,,∴.∵AD是BC边上的高,∴,∴,∴.【点睛】本题考查作图—作交的平分线,三角形的外角性质,掌握基本尺规作图是解题的关键.18.B【分析】根据已知作法可知、,则点B、C在的垂直平分线上,据此判断即可.【详解】解:如图:连接,,∵以C为圆心,为半径画弧①,∴,∵以B为圆心,为半径画弧②∴,∴点B、C在的垂直平分线上,是边上的高,∴垂直平分线段,,,A、C、D结论正确,无法证明平分,故B结论错误,故选:B.【点睛】本题考查了尺规作图,常见的尺规作图有①作一条线段等于已知线段,②作一个角等于已知角,③作已知线段的垂直平分线,④作已知角的角平分线,⑤过一点作已知直线的垂线.19.【分析】由尺规作图痕迹可知,所作直线为线段的垂直平分线,根据线段垂直平分线的性质可得,进而可得,即可得出答案.【详解】解:由尺规作图痕迹可知,所作直线为线段的垂直平分线,,,,,的周长为.故答案为:.【点睛】本题考查作图-复杂作图、线段垂直平分线的性质,熟练掌握线段垂直平分线的性质以及作图方法是解答本题的关键.20.(1)见解析(2)见解析(3)2(4)【分析】(1)根据网格即可找出格点,画出的平行线;(2)根据网格即可找出格点,画的垂线,垂足为;(3)根据网格即可得图中满足要求的格点的个数;(4)根据点到直线的距离定义即可解决问题.【详解】(1)解:如图,点即为所求;(2)解:如图,点,点即为所求;(3)解:图中满足要求的格点共2个;故答案为:2;(4)解:线段的长是点到直线的距离.故答案为:.【点睛】本题考查了作图应用与设计作图,点到直线的距离,平行线的判定与性质,掌握点到直线的距离定义是解决本题的关键.21.D【分析】根据基本尺规作图的概念逐项分析即可.【详解】解:A. 作,使,此选项描述准确;B. 作,使,作一个角等于已知角的倍数是常见的尺规作图,此选项描述准确;C. 以点A为圆心,线段a的长为半径作弧,此选项描述准确;D. 画弧既需要圆心,还需要半径,缺少半径长,此选项描述不准确;故选:D.【点睛】本题考查的知识点是尺规作图,主要内容有:作线段等于已知线段;作角等于已知角;作角的平分线;作线段的垂直平分线(中垂线)或中点;过直线外一点作直线的垂线.22.D【分析】根据判断三角形全等即可.【详解】解:由作图可知,,,∴,故选:D.【点睛】本题考查作图-复杂作图,全等三角形的判定等知识,解题的关键是读懂图象信息,利用所学知识解决问题.23.B【分析】利用作一个角等于已知角的方法进行判断.【详解】解:弧是以N点为圆心,为半径所画的弧.故选:B.【点睛】本题考查尺规作图,熟知作一个角等于已知角的基本作图步骤是解答本题的关键.24.C【分析】根据作一个角等于已知角的方法解决问题即可.【详解】解:(4)错误.应该是以为圆心,为半径作弧,交前面的弧于;故选:C.【点睛】本题考查作图-复杂作图,作一个角等于已知角,解题的关键是熟练掌握五种基本作图,属于中考常考题型.25.【分析】利用可证得,那么.【详解】解:由作图知,∴,∴,所以利用的条件为,故答案为:.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.26.18【分析】利用基本作图得到平分,利用角平分线的性质得到M点到的距离为4,然后根据三角形面积公式计算的面积.【详解】解:由题可知,平分,如图,过M作于点N,根据角平分线性质得,故.【点睛】本题考查了角平分线的尺规作图和性质,熟练掌握角平分线的性质是解题关键.27.1【分析】过点G作于M.由作图可知平分,由角平分线的性质定理得到,根据垂线段最短即可得到的最小值.【详解】解:如图,过点G作于M.由作图可知,平分,∵射线,,∴,根据垂线段最短可知,GP的最小值为1,故答案为:1.【点睛】此题考查了角平分线的作图和性质、垂线段最短等知识,熟练掌握角平分线性质定理是解题的关键.28.5【分析】先根据尺规作图描述得出为的角平分线,再根据角平分线的性质得到点到的距离,进而求出三角形的面积.【详解】由作法得平分,如图所示,过点D作于E,∵,根据角平分线的性质,得,的面积.∴,故答案为:.【点睛】本题考查角平分线的性质,解决本题的关键是熟知角平分线的性质并灵活应用.29.见解析【分析】由题得:,点D在线段的垂直平分线上,作线段的垂直平分线于线段相交即可得点D;【详解】解:如图,即为所求.【点睛】本题考查尺规作图-作线段的垂直平分线及垂直平分线的性质,根据题意,明确点D 即为线段的垂直平分线与线段的交点是解题的关键30.见解析【分析】根据作一个角等于已知角的作法,作即可.【详解】解:如图,即为所求.【点睛】本题考查了作图—复杂作图,解题关键是掌握作一个角等于已知角的尺规作图.31.B【分析】根据尺规作图的有关操作步骤求解.【详解】解:尺规作图是指:只利用没有刻度的直尺和圆规进行作图,故选:B【点睛】本题考查了尺规作图的有关操作步骤,理解尺规作图的有关操作步骤是解题的关键.32.C【分析】根据图形,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.33.A【分析】根据作图过程利用可以证明,进而可得结论.【详解】解:根据作图过程可知,在和中,,∴,∴(全等三角形的对应角相等).故选:A.【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握基本作图方法.34.B【分析】利用基本作图可知,为的平分线,又,,可得出,从而可得出;由,,得出垂直平分,根据已知条件不能判断,进而可以解决问题.【详解】解:由作图步骤可得:是的角平分线,则,故C选项正确,不合题意;又,,,,故A正确,不合题意;,,垂直平分,则,故D选项正确,不合题意;没有条件能得出,故B选项错误,符合题意;故选:B.【点睛】本题考查了作图基本作图,全等三角形的判定与性质以及等腰三角形的性质,熟练掌握基本作图的步骤是解题的关键.35.2【分析】直接利用角平分线的作法得出点E在的平分线上,再利用角平分线的性质即可得出答案.【详解】解:在的两边、上分别截取、,使;再分别以点M、N为圆心,以大于的长为半径作圆弧,两弧交于点E,点E在的平分线上,过点E作于点C,,点E到直线的距离是2.故答案为:2.【点睛】本题考查了基本作图及角平分线的性质,正确得出点E在的平分线上是解题关键.36.4【分析】过点E作于点F,由题意可知为的平分线,根据角平分线的性质可知.借助可计算的长,再由即可得到答案.【详解】解:过点E作于点F,。

1.6 尺规作图八年级上册数学浙教版

1.6 尺规作图八年级上册数学浙教版
B
[解析]
选项
判断
理由
A
×
射线 是从 向 无限延伸
B

圆心和半径长即可确定弧线的形状
C
×
直线的长度无法测量
D
×
延长线段 至 ,则
知识点2 两种基本尺规作图
1.用尺规作一个角等于已知角
已知: (如图).求作: ,使 .理论依据是:“三边对应相等的两个三角形全等”和“全等三角形的对应角相等”基本尺规作图包括:①作一条线段等于已知线段;②作一个角等于已知角;③作一个角的平分线;④作一条线段的垂直平分线;⑤过一点作已知直线的垂线;⑥过直线外一点作这条
难度
常考题型
考点:尺规作图,通过阅读尺规作图的步骤理解属于哪种基本尺规作图,并结合线段垂直平分线、角平分线的性质等知识进行计算.
选择题、填空题、解答题
考点 尺规作图背景下的有关计算
典例4 [2021·宜昌中考] 如图,在 中, , .
(1) 通过观察尺规作图的痕迹,可以发现直线 是线段 的_____________,射线 是 的_________;
求作: ,使 , , .
作法与示范:
作法
作一条线段 .
分别以点 , 为圆心,以 , 的长为半径作弧,两弧交于点 .
连结 , 就是所求作的三角形.
示范
2.尺规作图的基本要求:只能使用没有刻度的直尺和圆规.
3.直尺和圆规的用途:没有刻度的直尺的主要用途是画直线;圆规的主要用途是画圆、画弧、截取一条线段等于已知线段.
典例1 下列尺规作图的语句正确的是( )A.延长射线 到 B.以点 为圆心,任意长为半径画弧C.作直线 D.延长线段 至 ,使
敲黑板 已知三角形的三条边作该三角形的方法已知三角形的三条边作该三角形的方法:先作出一条边(即先确定三角形的两个顶点),再分别以这条边的两个端点为圆心作弧,这两条弧的交点即该三角形的第三个顶点.

尺规作图初二上册练习题

尺规作图初二上册练习题

尺规作图初二上册练习题在初中数学学习中,尺规作图是一个很重要的章节。

通过尺规作图,我们可以绘制出各种形状的图形,并解决与这些图形相关的问题。

本文将针对初二上册的尺规作图练习题进行讲解和解答。

1. 给定一个线段AB,要求将其平分。

解析:我们可以使用尺规作图的方法来达到平分线段AB的目的。

a) 以A为圆心,以AB为半径画一个弧,再以B为圆心,以BA为半径画一个弧。

b) 这两个弧交于点C,连接AC和BC,则AC和BC为所求平分线段AB的两部分。

2. 给定一个角AOB,要求将其平分。

解析:类似于问题1,我们可以通过尺规作图的方法来平分角AOB。

a) 以O为圆心,以任意半径画一个弧,将OA、OB分别交于点C、D。

b) 以C和D为圆心,相同的半径画两个弧。

这两个弧将会交于一点E。

c) 以O和E为起点,以相同的长度画两条弧,这两条弧将分别交于两点F、G。

d) 连接OF和OG,则OF和OG为所求平分角AOB的两部分。

3. 给定一个线段AB和一点O,要求以点O为圆心,以AB为半径画一个圆。

解析:使用尺规作图可以很方便地以给定的点为圆心,以给定的线段为半径画一个圆。

a) 以点O为圆心,以任意半径作一个弧。

这个弧将会和线段AB 交于两点C、D。

b) 以C和D为圆心,相同的半径分别作两个弧。

这两个弧将会交于两点E、F。

c) 连接OE和OF,则OE和OF为所求的圆的直径。

4. 给定一个角AOB和一点C,要求以点C为圆心,绕过A和B分别画两个弧。

解析:我们可以使用尺规作图的方法绕过给定的两个点分别画出两个弧。

a) 以点C为圆心,以任意半径作一个弧,将OA、OB分别交于点D、E。

b) 以D和E为圆心,相同的半径分别作两个弧。

这两个弧将会交于两点F、G。

c) 连接CF和CG,则CF和CG为所求的两个弧。

通过以上练习题的详细解析,我们对初二上册的尺规作图有了更深入的了解。

通过尺规作图的方法,我们可以解决很多与图形相关的问题,并且可以通过直观的图示帮助我们更好地理解和掌握数学知识。

浙教版八年级上专题1.6 尺规作图-重难点题型(含解析)

浙教版八年级上专题1.6 尺规作图-重难点题型(含解析)

尺规作图4大题型【题型1 作一个角等于已知角】【例1】(2021春•华龙区期末)画图题(要求:保留作图痕迹,不需要写作法)如图,已知∠AOB和OB上一点C.(1)作∠AOB的对顶角∠EOF;(2)在射线OB的下方,作∠OCD,使∠OCD=∠AOB.【变式1-1】(2021春•中原区校级期中)如图,已知∠1,∠2(∠1>∠2),求作∠ABC,使∠ABC=∠1﹣∠2.不写作法,保留作图痕迹.【变式1-2】(2021春•碑林区校级月考)伊顿公馆东区天然气的管道出现了故障,秦华天然气公司工作人员已确定故障点C在道路AB的右侧,且在线路BD方向上,如图所示.又测得∠BAC=∠α(α为如图中的已知角),请你用尺规作图法在下面的示意图中确定出故障点C的位置.(不写作法,只保留作图痕迹)【变式1-3】(2021春•茂南区校级月考)如图,△ABC中,∠ACB>∠ABC.(1)尺规作图:在∠ACB的内部作∠ACD,使∠ACD=∠ABC,射线CD交AB于点D(保留作图痕迹,不写作法);(2)若∠A=60°,∠B=40°,求∠BDC的度数.【题型2 作一条线段的垂直平分线】【例2】(2021春•碑林区校级期中)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)【变式2-1】(2021•碑林区校级模拟)尺规作图:如图,已知△ABC.请在AC边上找一点D,使△ABD的周长等于AB+AC.(保留作图痕迹,不写作法)【变式2-2】(2021春•长安区期末)尺规作图(保留作图痕迹,不写作法):如图,直线m表示一条公路,A、B表示两所大学,要在公路旁修建一个车站P,使车站到两所大学的距离相等.(1)请用尺规在图上找出点P;(2)请说明你作图的依据.【变式2-3】(2020秋•金川区校级期末)如图,电信部门要在S区修建一座发射塔.按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应建在什么位置?在图上标出它的位置.(尺规作图)【题型3 过已知直线外一点作该直线的垂直平分线】【例3】(2020秋•川汇区期中)尺规作图:经过已知直线外一点作这条直线的垂线.已知:直线MN和直线外一点P.求作:MN的垂线,使它经过点P.(1)分步骤写出作图过程;(2)说出所作直线就是求作垂线的理由.【变式3-1】(2021春•碑林区校级期中)尺规作图:在△ABC的边AB上作出点D,使得线段CD最短.【变式3-2】(2020春•黑河期中)对于下面每个三角形,过顶点A画出中线和高.(用尺规规范画图,否则不计分)【变式3-3】(2021春•重庆期中)如图,AB∥CD,点E是CD上一点,∠AEC=52°,EF平分∠AED交AB于点F.(1)过点F作FG⊥CD,垂足为G.(要求:按尺规作图方法在答题卡上完成作图,保留作图痕迹,不写作法)(2)求∠AFE的度数.【题型4 作三角形】【例4】(2021春•沙坪坝区校级期末)作图题(要求:用尺规作图,不写作法,保留作图痕迹).已知:∠α,∠β,线段c(如图所示).求作:△ABC,使∠A=∠α,∠B=∠β,AB=2c.【变式4-1】(2021春•和平区期末)尺规作图:(不写作法,保留作图痕迹)已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠BAC=∠α.【变式4-2】(2020春•市北区期末)已知:线段a,直线l及l外一点A.求作:Rt△ABC,使∠ACB=90°,且顶点B、C在直线l上,斜边AB=a.【变式4-3】(2020秋•曹县期末)如图,已知线段a和∠α,求作Rt△ABC,使∠C=90°,BC=a,∠ABC ∠α(使用直尺和圆规,并保留作图痕迹).尺规作图-重难点题型【题型1 作一个角等于已知角】【例1】(2021春•华龙区期末)画图题(要求:保留作图痕迹,不需要写作法)如图,已知∠AOB和OB上一点C.(1)作∠AOB的对顶角∠EOF;(2)在射线OB的下方,作∠OCD,使∠OCD=∠AOB.【分析】(1)分别延长AO、BO得到它的对顶角;(2)利用基本作图作∠OCD=∠AOB.【解答】解:(1)如图,∠EOF为所作;(2)如图,∠OCD为所作.【变式1-1】(2021春•中原区校级期中)如图,已知∠1,∠2(∠1>∠2),求作∠ABC,使∠ABC =∠1﹣∠2.不写作法,保留作图痕迹.【分析】先作∠ABD=∠1,再作∠COD=∠2,则∠ABC满足条件.【解答】解:如图,∠ABC为所作.【变式1-2】(2021春•碑林区校级月考)伊顿公馆东区天然气的管道出现了故障,秦华天然气公司工作人员已确定故障点C在道路AB的右侧,且在线路BD方向上,如图所示.又测得∠BAC=∠α(α为如图中的已知角),请你用尺规作图法在下面的示意图中确定出故障点C的位置.(不写作法,只保留作图痕迹)【分析】作∠BAC=α,射线AC交BD于C,点C即为所求作.【解答】解:如图,点C即为所求作.【变式1-3】(2021春•茂南区校级月考)如图,△ABC中,∠ACB>∠ABC.(1)尺规作图:在∠ACB的内部作∠ACD,使∠ACD=∠ABC,射线CD交AB于点D(保留作图痕迹,不写作法);(2)若∠A=60°,∠B=40°,求∠BDC的度数.【分析】(1)利用基本作图,作∠ACD=∠B即可;(2)先利用三角形内角和计算出∠ACB的度数,再根据角平分线的定义得到∠ACD的度数,然后根据三角形内角和计算∠BDC的度数.【解答】解:(1)如图,∠ACD为所作;(2)∵∠A=60°,∠B=40°,∴∠ACB=180°﹣∠A﹣∠B=80°,∵CD平分∠ACB,∴∠ACD∠ACB=40°,∴∠BDC=∠A+∠ACD=60°+40°=100°.【题型2 作一条线段的垂直平分线】【例2】(2021春•碑林区校级期中)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)【分析】作线段BC的垂直平分线交AB于点P,点P即为所求作.【解答】解:如图,点P即为所求作.【变式2-1】(2021•碑林区校级模拟)尺规作图:如图,已知△ABC.请在AC边上找一点D,使△ABD的周长等于AB+AC.(保留作图痕迹,不写作法)【分析】作线段BC的垂直平分线交AC于点D,连接BD即可.【解答】解:如图,点D即为所求作.【变式2-2】(2021春•长安区期末)尺规作图(保留作图痕迹,不写作法):如图,直线m表示一条公路,A、B表示两所大学,要在公路旁修建一个车站P,使车站到两所大学的距离相等.(1)请用尺规在图上找出点P;(2)请说明你作图的依据.【分析】(1)作线段AB的垂直平分线MN交直线m于点P,连接PA,PB.(2)根据线段的垂直平分线的性质解决问题即可.【解答】解:(1)如图,点P即为所求.(2)∵MN垂直平分线段AB,∴PA=PB(线段的垂直平分线上的点到线段的两个端点的距离相等).【变式2-3】(2020秋•金川区校级期末)如图,电信部门要在S区修建一座发射塔.按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应建在什么位置?在图上标出它的位置.(尺规作图)【分析】根据角平分线的性质:角平分线上的点到角两边的距离相等;线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,可得答案.【解答】解:作∠mon的角平分线,作AB的垂直平分线,得,∠mon的角平分线与AB的垂直平分线的交点C即为所求得点.【题型3 过已知直线外一点作该直线的垂直平分线】【例3】(2020秋•川汇区期中)尺规作图:经过已知直线外一点作这条直线的垂线.已知:直线MN和直线外一点P.求作:MN的垂线,使它经过点P.(1)分步骤写出作图过程;(2)说出所作直线就是求作垂线的理由.【分析】(1)首先根据题意写出已知求作,进而根据过直线外一点向直线作垂线即可.(2)只要证明直线PF是线段DE的垂直平分线即可;【解答】解:(1)作法:①任意取一点K,使K和P在AB的两旁.②以P为圆心,PK的长为半径作弧,交MN于点D和E.③分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,④作直线PF.直线PF就是所求的垂线.(2)理由:由作图可知:PD=PE,DF=EF,∴直线PF是线段DE的垂直平分线.∴PF⊥MN.【变式3-1】(2021春•碑林区校级期中)尺规作图:在△ABC的边AB上作出点D,使得线段CD最短.【分析】根据垂线段最短过点C作CD⊥AB于点D即可.【解答】解:如图,过点C作CD⊥AB于点D,所以点D即为所求.【变式3-2】(2020春•黑河期中)对于下面每个三角形,过顶点A画出中线和高.(用尺规规范画图,否则不计分)【分析】根据尺规作图即可过每个三角形的顶点A画出中线和高.【解答】解:如图,线段AD、线段AE是每个三角形的高和中线.AD、AE即为所求.【变式3-3】(2021春•重庆期中)如图,AB∥CD,点E是CD上一点,∠AEC=52°,EF平分∠AED 交AB于点F.(1)过点F作FG⊥CD,垂足为G.(要求:按尺规作图方法在答题卡上完成作图,保留作图痕迹,不写作法)(2)求∠AFE的度数.【分析】(1)根据要求作出图形即可.(2)求出∠DEF,利用平行线的性质求解即可.【解答】解:(1)如图,直线FG即为所求作.(2)∵EF平分∠AED,∴∠AEF=∠DEF(180°﹣∠AEC)=64°,∵CD∥AB,∴∠AFE=∠DEF=64°.【题型4 作三角形】【例4】(2021春•沙坪坝区校级期末)作图题(要求:用尺规作图,不写作法,保留作图痕迹).已知:∠α,∠β,线段c(如图所示).求作:△ABC,使∠A=∠α,∠B=∠β,AB=2c.【分析】作射线AM,在射线AM上截取AB,使得AB=2c,在AB的上方作∠EAB=α,∠FBA=β,AE交BF于点C.【解答】解:如图,△ABC即为所求.【变式4-1】(2021春•和平区期末)尺规作图:(不写作法,保留作图痕迹)已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠BAC=∠α.【分析】作∠MAN=α,在射线AM上截取AB,使得AB=c,以B为圆心,c为半径作弧交AN 于C,C′,连接BC,BC′,△ABC或△ABC′即为所求.【解答】解:如图,△ABC或△ABC′即为所求.【变式4-2】(2020春•市北区期末)已知:线段a,直线l及l外一点A.求作:Rt△ABC,使∠ACB =90°,且顶点B、C在直线l上,斜边AB=a.【分析】先过点A作直线l的垂线,垂足为C,再以点A为圆心,线段a的长为半径画弧交直线l 于点B,即可得Rt△ABC.【解答】解:如图,Rt△ABC即为所求.【变式4-3】(2020秋•曹县期末)如图,已知线段a和∠α,求作Rt△ABC,使∠C=90°,BC=a,∠ABC∠α(使用直尺和圆规,并保留作图痕迹).【分析】根据已知条件先作∠C=90°,BC=a,再作∠ABC∠α即可.【解答】解:如图所示,Rt△ABC即为所求.。

浙教版数学八年级上册1.6《尺规作图》基础练习

浙教版数学八年级上册1.6《尺规作图》基础练习

1.6 尺规作图
一、判断题
1.尺规作图是指用刻度尺和圆规作图()
2.尺规中的尺是指没有刻度的直尺()
3.用直尺和三角板过直线外一点作已知直线的平行线是尺规作图()
4.最基本的尺规作图是作线段和角()
二、填空题
1.已知线段AB,求作:线段A′B′,使A′B′=AB.
作法:(1)作射线A′C′.
(2)以点A′为圆心,以____________交A′C′于点B′,_________就是所作的线段.
2.已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:(1)作射线O′A′
(2)以点O为圆心,以_________长为半径画弧交OA于点C,交OB于点D.
(3)以点O′为圆心,以_________长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以_________长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′,∠A′O′B′就是所求作的角.。

浙教版初中数学八年级上册 1.6 尺规作图 课件 教学课件

浙教版初中数学八年级上册 1.6 尺规作图  课件  教学课件
1.6 尺规作图
在几何作图中,我们用没有刻度的直尺 和圆规作图,简称尺规作图。
尺规作图源于希腊,一些古希腊人认为,几 何作图也应像体育竞赛那样,对作图工具作明确 的规定,否则就不易显示谁的逻辑思维能力更强。
尺规作图以它特有的魅力,使无数人沉湎其中。
试着用刻度尺作下图
已知:线段a,b,c求作:△ABC,使BC=a,AC=b,AB=c
聪明的你,能解决这些难题吗? 也许你就是下一个数学家哦!
当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来的,习惯是养成的,我的 成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
脚踏实地过好每一天,最简单的恰恰是最难的。拿梦想去拼,我怎么能输。只要学不死,就往死里学。我会努力站在万人中央成为别人的光。行为决定性格, 性格决定命运。不曾扬帆,何以至远方。人生充满苦痛,我们有幸来过。如果骄傲没有被现实的大海冷冷拍下,又怎么会明白要多努力才能走到远方。所有的 豪言都收起来,所有的呐喊都咽下去。十年后所有难过都是下酒菜。人生如逆旅,我亦是行人。驾驭命运的舵是奋斗,不抱有一丝幻想,不放弃一点机会,不 停止一日努力。失败时郁郁寡欢,这是懦夫的表现。所有偷过的懒都会变成打脸的巴掌。越努力,越幸运。每一个不起舞的早晨,都是对生命的辜负。死鱼随 波逐流,活鱼逆流而上。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的既然选择远方,就注定风雨兼程。漫漫长路,荆棘丛生,待我用双手踏 平。不要忘记最初那颗不倒的心。胸有凌云志,无高不可攀。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海绵才能吸收新的 源泉。感恩生命,感谢她给予我们一个聪明的大脑。思考疑难的问题,生命的意义;赞颂真善美,批判假恶丑。记住精彩的瞬间,激动的时刻,温馨的情景, 甜蜜的镜头。感恩生命赋予我们特有的灵性。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。一切伟大的行动和思想,都有一个微不足道 的开始。在你发怒的时候,要紧闭你的嘴,免得增加你的怒气。获致幸福的不二法门是珍视你所拥有的、遗忘你所没有的。骄傲是胜利下的蛋,孵出来的却是 失败。没有一个朋友比得上健康,没有一个敌人比得上病魔,与其为病痛暗自流泪,不如运动健身为生命添彩。有什么别有病,没什么别没钱,缺什么也别缺 健康,健康不是一切,但是没有健康就没有一切。什么都可以不好,心情不能不好;什么都可以缺乏,自信不能缺乏;什么都可以不要,快乐不能不要;什么 都可以忘掉,健身不能忘掉。选对事业可以成就一生,选对朋友可以智能一生,选对环境可以快乐一生,选对伴侣可以幸福一生,选对生活方式可以健康一生。 含泪播种的人一定能含笑收获一个有信念者所开发出的力量,大于个只有兴趣者。忍耐力较诸脑力,尤胜一筹。影响我们人生的绝不仅仅是环境,其实是心态 在控制个人的行动和思想。同时,心态也决定了一个人的视野、事业和成就,甚至一生。每一发奋努力的背后,必有加倍的赏赐。懒惰像生锈一样,比操劳更 消耗身体。所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道挫折其实就是迈向成功所应缴的学 费。在这个尘世上,虽然有不少寒冷,不少黑暗,但只要人与人之间多些信任,多些关爱,那么,就会增加许多阳光。一个能从别人的观念来看事情,能了解 别人心灵活动的人,永远不必为自己的前途担心。当一个人先从自己的内心开始奋斗,他就是个有价值的人。没有人富有得可以不要别人的帮助,也没有人穷 得不能在某方面给他人帮助。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。今天做别人不 愿做的事,明天就能做别人做不到的事。到了一定年龄,便要学会寡言,每一句话都要有用,有重量。喜怒不形于色,大事淡然,有自己的底线。趁着年轻, 不怕多吃一些苦。这些逆境与磨练,才会让你真正学会谦恭。不然,你那自以为是的聪明和藐视一切的优越感,迟早会毁了你。无论现在的你处于什么状态, 是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。世界上那些最容易的事情中,拖延时间最不费力。崇高的理想就像生长在高山上的鲜 花。如果要搞下它,勤奋才能是攀登的绳索。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。海浪的品格,就是无数次被礁石击碎又无数闪地扑向礁 石。人都是矛盾的,渴望被理解,又害怕被看穿。经过大海的一番磨砺,卵石才变得更加美丽光滑。生活可以是甜的,也可以是苦的,但不能是没味的。你可

1.6+尺规作图+课件+2024—2025学年浙教版八年级数学上册+

1.6+尺规作图+课件+2024—2025学年浙教版八年级数学上册+


CD=CD (公共边),
规 作
O
B ∴ ΔACD≌ΔBCD (SSS).
∴ ∠ACD=∠BCD
AC=BC(作法),
图 方 法
D
∵ ∠ACD=∠BCD(已求),
CD=CD (公共边), ∴ ΔACO≌ΔBCO (SAS).即可求证
①假设图形 ②分析作法 ③作出图形 ④验证作法
当堂练习
直线l表示一条公路,点A和点B表示两个村庄.现要在公路上建一个加油站,并 到两个村庄的距离相等.加油站应建在何处?请在图上标明这个地点,并说明理 由.(画出图形不写作法,保留作图痕迹).
发现2:折痕上任意一点到线段两端距离相等.
例题解析
探究:
探究1:线段垂直平分线是一 条什么线? 是一条直线.
探究2:如何确定一条直线? 可以通过两点确定这直线.
探究3:依据上述特征,你能 利用圆规找到两个点来确定 这条直线吗?
画法:
例题解析
C A
D
步骤:
1.分别以点A,B为圆心,大于线段AB长度一半为半径作弧,相交于点C,D. 2.过点C,D作线段垂直平分线.
B ∴直线CD就是线段AB的垂直平分线
思考1:第一步中为什么要大于线段AB长度一半为半径作弧? 思考2:画出的直线与之前的折痕有怎么样位置关系? 思考3:你能进一步说明为什么所作直线为线段AB垂直平分线吗?
例题解析
A
原理:连结AC,AD,BC,BD.记AB与CD交点O.
AC=BC(作法),
C
∵ AD=BD(作法),
变式1:已知∠α,∠β和线段a,用直尺和圆规 作ΔABC,使∠BAC=∠α,∠ABC=∠β,AC=a.
B
α
β

2017年秋季新版浙教版八年级上学期1.6、尺规作图课件2

2017年秋季新版浙教版八年级上学期1.6、尺规作图课件2

(来自《典中点》)
知1-讲
【例2】 已知线段AB,如图所示.
(1)用直尺和圆规求作线段AB的中点;
(2)用直尺和圆规将线段AB四等分.
导引:(1)求作线段AB的中点可转化为求作线段AB的垂直
平分线,垂直平分线与线段AB的交点O即为所求; (2)在(1)的基础上,分别作OA,OB的垂直平分线即 可.
第1章
三角形的初步知识
1.6
尺规作图
1
2
课堂讲解 课时流程
逐点 导讲练
尺规作图 用尺规作三角形
课堂 小结
作业 提升
据传为了显示谁的逻辑思维能力更强,古希腊人 限制了几 何作图的工具,结果一些普通的画图题让数 学家苦苦思索 了两千多年.尺规作图特有的魅力,使 无数人沉湎其中.
知1-导
知识点
1
尺规作图
1 已知线段AB(如图),用直尺和圆规平分线段AB.
(来自《教材》)
知1-练
乐山)如图,已知线段AB. 2 (中考· (1)用尺规作图的方法作出线段AB的垂直平分线l (保留作图痕迹,不要求写出作法); (2)在(1)中所作的直线l上任意取两点M,N(线段 AB的上方),连结AM、AN、BM、BN.
2.作一条射线O′ A′,以点O′为圆心,(OC长为 半径作弧l,交 O′ A ′于点C ′(图2).
图2
3.以点C′为圆心,CD长为半径作弧,交弧l于点 D'.
知1-讲
4.过点O′,D'作射线 O′ B ′.∠A′O′B′就是所求作的角. 事实上,如图1和图2,连结CD, C′ D′. 在△OCD 与
△ O′ C′ D′中,
∵ OC OC (作法),
OD O D(作法), CD C D(作法).

尺规作图 2021-2022学年浙教版八年级数学上册同步练习(含答案)

尺规作图 2021-2022学年浙教版八年级数学上册同步练习(含答案)

《1.6 尺规作图》课时同步练习2020-2021年数学浙教新版八(上)一.选择题(共14小题)1.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交2.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF3.在下列各题中,属于尺规作图的是()A.利用三角板画45°的角B.用直尺和三角板画平行线C.用直尺画一工件边缘的垂线D.用圆规在已知直线上截取一条线段等于已知线段4.画出△ABC一边上的高,下列画法正确的是()A.B.C.D.5.如图,利用直尺圆规作∠AOB的角平分线OP.则图中△OCP≌△ODP的理由是()A.边边边B.边角边C.角角边D.斜边直角边6.如图,观察图中的尺规作图痕迹,下列说法错误的是()A.∠DAE=∠EAC B.∠C=∠EAC C.AE∥BC D.∠DAE=∠B 7.下列尺规作图分别表示:①作一个角的平分线;②作一个角等于已知角;③作一条线段的垂直平分线.其中作法正确的是()A.①②B.①③C.②③D.①②③8.如图,一位同学用直尺和圆规作出了△ABC中BC边上的高AD,则一定有()A.P A=PC B.P A=PQ C.PQ=PC D.∠QPC=90°9.如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是()A.以点C为圆心、OD的长为半径的弧B.以点C为圆心、DM的长为半径的弧C.以点E为圆心、DM的长为半径的弧D.以点E为圆心、OD的长为半径的弧10.在△ABC中,AC=6、BC=8,AB=10,用尺规作图的方法在BC上确定一点P,设PC =x,下列作图方法中,不能求出PC的长的作图是()A.B.C.D.11.如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC =2∠B,则符合要求的作图痕迹是()A.B.C.D.12.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.13.已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A.15°B.45°C.15°或30°D.15°或45°14.如图,在△ABC中,∠ABC=70°,按如下步骤作图:第一步,以点A为圆心,BC长为半径作弧,再以点C为圆心,AB长为半径作弧,两弧交点记为D,连接AD,CD;第二步,以点D为圆心,CD长为半径作弧,交AD于点E,连接CE.则∠BCE的度数为()A.55°B.60°C.65°D.70°二.填空题(共1小题)15.如图,一块余料ABCD,AD∥BC,现进行如下操作以点B为圆心,适当长为半径作圆弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径作圆弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.连接OG、OH.若∠A =124°,则∠AEB的大小是度.三.解答题(共7小题)16.圣母大学计算机系的史戈宇教授带一家人去旅行,途中汽车被劫走.报警911,警察无作为,汽车上安装的MMS系统,可以提示汽车与手机APP间的直线距离.史教授用“贪心算法”把被盗车辆位置确定在了图中灰色的区域里,这是一个以暴乱和枪击闻名的地区.当史教授开车从E向A的方向行驶时,汽车与手机APP间的直线距离逐渐变小,从A向F的方向行驶时,汽车与手机APP间的直线距离逐渐变大:当史教授开车从F向B的方向行驶时,汽车与手机APP间的直线距离逐渐变小,从B向G的方向行驶时,汽车与手机APP间的直线距离逐渐变大.史教授再次报警后,警察根据史教授确定的被盗汽车的位置,很快找到了被盗汽车.根据你学的数学知识,在图中,画出被盗汽车的位置.17.在一块直角三角形的废料上,要裁下一个半圆形的材料,并且要半圆的直径在斜边AB 上,且充分利用原三角形废料.(1)试画出你的设计(用圆规、直尺作图,不写作法,但要保留作图痕迹.)(2)若AC=4,BC=3,试计算出该半圆形材料的半径.18.如图,方格纸中有一条直线AB和一格点P,(1)过点P画直线PM∥AB;(2)在直线AB上找一点N,使得AN+PN+BN距离和最小.19.利用网格作图:(1)过点C作AB的平行线CD;(2)过点B作AC的垂线,垂足为E;过点C作AB的垂线,垂足为F;(3)点A到BE的距离是线段的长度.20.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并求出这个直角三角形的面积.(要求:三个网格中的直角三角形互不全等)21.如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在所给网格中解答下面问题.(1)图中线段AB的两端点都落在格点(即小正方形的顶点)上,求出AB的长度;(2)再以AB为一边画一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(3)请直接写出符合(2)中条件的等腰三角形ABC的顶点C的个数.22.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点,分别按下列要求画三角形.(1)使三角形的三边长分别为3,,,请在图1中画出这个三角形;(2)使三角形为钝角三角形,且面积为4,在图2中画出一个并标出各边的长.参考答案一.选择题(共14小题)1.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.2.解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.3.解:A、利用三角板画45°的角不符合尺规作图的定义,错误;B、用直尺和三角板画平行线不符合尺规作图的定义,错误;C、用直尺画一工件边缘的垂线不符合尺规作图的定义,错误;D、用圆规在已知直线上截取一条线段等于已知线段符合尺规作图的定义,正确.故选:D.4.解:根据三角形高的定义可判断C选项正确.故选:C.5.解:由作法得OC=OD,CP=DP,而OP=OP,所以根据“SSS”可证明△OCP≌△ODP.故选:A.6.解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故D选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵∠DAE=∠B,∠EAC=∠C,而∠C与∠B大小关系不确定,∴∠DAE与∠EAC大小关系不确定,故A选项错误,故选:A.7.解:①作一个角的平分线的作法正确;②作一个角等于已知角的方法正确;③作一条线段的垂直平分线,缺少另一个交点,故作法错误;故选:A.8.解:由作法得AD垂直平分CQ,所以PQ=PC.故选:C.9.解:由作图可知作图步骤为:①以点O为圆心,任意长为半径画弧DM,分别交OA,OB于M,D.②以点C为圆心,以OM为半径画弧EN,交OA于E.③以点E为圆心,以DM为半径画弧FG,交弧EN于N.④过点N作射线CP.根据同位角相等两直线平行,可得CP∥OB.故选:C.10.解:A、由题意PC=BC﹣PB=BC﹣(AB﹣AC)=8﹣(10﹣6)=4.B、连接P A,由题意P A=PB,设,P A=PB=x.∵AC=6、BC=8,AB=10,∴AB2=AC2+BC2,∴∠ACB=90°,∴P A2=AC2+PC2,∴x2=(8﹣x)2+62,∴x=,∴PC=BC﹣PB=8﹣=.C、作PH⊥AB于H.由题意,P A平分∠BAC,∵PH⊥AB,PC⊥AC,∴PH=PC,设PH=PC=x,∵S△ABC=S△ABP+S△APC,∴•AC•BC=•AB•PH+•AC•PC,∴6×8=10x+6x,∴x=3,∴PC=3,故A,B,C中,PC能确定,故选:D.11.解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.12.解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.13.解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA 的角平分线,则∠BOC=15°或45°,故选:D.14.解:由题意AD=BC,AB=CD,∴四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,∵DE=DC,∴∠DEC=∠DCE=(180°﹣∠ADC)=55°,故选:A.二.填空题(共1小题)15.解:由作图可知:∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∵∠A=124°,∴∠AEB=(180°﹣124°)=28°,故答案为28.三.解答题(共7小题)16.解:如图,连接EF,FG,分别过点A,B作EF,FG的垂线AN,BM,直线AM,BN 交于点P,点P即为被盗汽车的位置.17.解:(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.(2)∵OC平分∠ACB,OE⊥AC,OH⊥BC,∴OE=OH,设OE=OH=r,∵S△ABC=•AC•BC=•AC•r+•BC•r,∴r=.18.解:(1)如图所示:直线PM即为所求;(2)如图所示:点N即为所求.19.解:(1)取格点D,直线直线CD,直线CD即为所求.(2)取格点M,作直线BM交AC于点E,直线BM即为所求,取格点N,作直线CN交AB于F,直线CN即为所求.(3)点A到BE的距离是线段AE的长度故答案为AE.20.解:画二个图供参考:(每个图画对(3分),面积计算正确得(1分),两种情况共8分)易得图1三边长为、、,符合两边和的平方等于第三边的平方,面积为:××=5;图2中三边长分别为、符合两边和的平方等于第三边的平方,面积为:××=3.21.解:(1)由勾股定理,易知;(2)要使△ABC为等腰三角形,且另两边长度均为无理数,①若AB为底边,则顶点在线段AB的中垂线上,易知这种情况不成立.故AB边应为腰.②若AB为腰,经观察可知有C点满足条件,此时,BC的长度也为无理数,如下图所示:(3)4.22.解:(1)如图(1)所示,(2)如图(2)所示。

浙教版-数学-八年级上册-1.6 尺规作图 练习

浙教版-数学-八年级上册-1.6 尺规作图 练习

尺规作图
1.如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
2. 已知:如图,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分线BD,交AC于点D;
(2)作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);
(3)连接DE,求证:△ADE≌△BDE.
3. 某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个
入口A.B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A.B.C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)
4. 电信部门要修建一座电视信号发射塔,如图,按照设计要求,发射塔到两个城镇A.B的
距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置?
在图上标出它的位置.
参考答案
2. 解:(1)(2)如下图所示.
3. 解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线
于点M即可.
4.解:∵发射塔到两个城镇A.B的距离必须相等,
∴发射塔一定在连结AB的线段的垂直平分线上.
∵发射塔到两条高速公路m和n的距离也必须相等,
∴发射塔一定在m和n夹角的角平分线上.
所以作图如下. 发射塔应修建在P点.。

尺规作图练习题及答案初二

尺规作图练习题及答案初二

尺规作图练习题及答案初二尺规作图是几何学中的重要概念,它是通过直尺和圆规进行的一种绘图方式。

尺规作图在初中数学学习中占据着重要地位,它可以帮助学生锻炼观察、分析和解决问题的能力。

下面是一些初二尺规作图练习题及答案,帮助学生更好地理解和掌握这一知识点。

1. 绘制一个直角三角形ABC,已知∠B=90°,AB=5cm,BC=7cm。

求AC的长度。

解答:根据勾股定理,直角边的平方之和等于斜边的平方。

所以我们可以利用这个定理来求解AC的长度。

首先,使用尺规测量出AB的长度,在纸上画出点A和点B,将尺子的一边放在点A上,然后利用圆规画一个半径为5cm的圆,记为⊙A。

接着,将尺子的一边放在点B 上,利用圆规画一个半径为7cm的圆,在圆⊙A上与弧交于点C。

然后,连接AC。

测量AC的长度为8cm,所以AC的长度为8cm。

2. 绘制一个等边三角形ABC,给出三角形的边长为6cm。

解答:要绘制一个等边三角形ABC,我们可以利用圆规和尺子来进行绘制。

首先,在纸上画出一个点A,然后使用尺子来测量出线段AB的长度为6cm。

将圆规的一只脚放在点A上,调整另一只脚的距离为6cm。

然后,固定住圆规的一只脚,以A为圆心,利用圆规画一个弧,与扇形交于点B。

接着,固定住另一只脚,以点B为圆心,利用圆规再次画一个弧,与第一个弧交于点C。

最后,连接线段AC和线段CB,得到一个等边三角形ABC。

3. 绘制一个四边形ABCD,已知AB=3cm,BC=4cm,CD=5cm,∠B=90°,∠C=120°。

解答:根据题目描述,我们可以绘制出一个四边形ABCD。

首先,在纸上画出点A,然后使用尺子测量出线段AB的长度为3cm,画出线段AB。

接下来,将尺子的一只脚放在点B上,固定住另一只脚,以B 为圆心,利用圆规画一个半径为4cm的圆,在圆上分别标记出点C和D。

然后,连接线段CD和线段AD,得到四边形ABCD。

由于∠B=90°,∠C=120°,我们可以利用尺规作图的方法,将∠B平分为两个角,然后将∠C平分为三个角,最后连接线段AC和线段BD,得到所需的四边形ABCD。

浙教版八年级数学上册.6尺规作图同步练习

浙教版八年级数学上册.6尺规作图同步练习
4.(2016•河北)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是( )
A.BH垂直平分线段ADB.AC平分∠BAD
C.S△ABC=BC•AHD.AB=AD
A.直尺的功能是:在两点间连接一条线段,将线段向两方向延长
B.直尺的功能是:可作平角和直角
C.圆规的功能是:以任意长为半径,以任意点为圆心作一个圆
D.圆规的功能是:以任意长为半径,以任意点为圆心作一段弧
8.(2016•开平区一模)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于 EF长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是( 柘城县一模)如图,已知△ABC,∠C=90°,按以下步骤:①分别以A、B为圆心,以大于 的长为半径作弧,两弧相交于两点M、N;②作直线MN交BC于点D.若AC=1.5,∠B=15°.则BD等于()
A.1.5B.2C.2.5D.3
10.(2016•商丘模拟)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于 AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是( )
1.6尺规作图同步练习
一.选择题(共14小题)
1.(2016•曲靖)如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于 AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学浙教版八年级上册1.6 尺规作图同步练习一、单选题(共7题;共14分)1.尺规作图的画图工具是()A. 刻度尺、圆规B. 三角板和量角器C. 直尺和量角器D. 没有刻度的直尺和圆规2.用直尺和圆规作一个角等于已知角,其依据是()A. SSSB. SASC. ASAD. AAS3.下列作图语言中,正确的是()A. 过点P作直线AB的垂直平分线B. 延长射线OA到B点C. 延长线段AB到C,使BC=ABD. 过∠AOB内一点P,作∠AOB的平分线4.在下列各题中,属于尺规作图的是()A. 利用三角板画45°的角B. 用直尺和三角板画平行线C. 用直尺画一工件边缘的垂线D. 用圆规在已知直线上截取一条线段等于已知线段5.如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A. B. C. D.6.用直尺和圆规作一个角的角平分线的示意图如图所示,其中说明的依据是()A. B. C. D.7.用尺规作图,下列条件中可能作出两个三角形的是()A. 已知两边和夹角B. 已知两边及其一边的对角C. 已知两角和夹边D. 已知三条边二、作图题(共12题;共114分)8.如图,已知∠AOB,求作∠ECF,使∠ECF=∠AO B .(要求:尺规作图,保留作图痕迹,不写作法)9.如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得PA+PC=BC(保留作图痕迹,不写作法)10.如图,平面上有线段AB和点C,按下列语句要求画图与填空:(1)作射线AC;(2)用尺规在AB的延长线上截取BD=AC;(3)连接BC,DC;(4)图中以C为顶点的角中,小于平角的角共有________个.11.按要求完成。

根据下列语句画图。

(1)画线段AB=4cm;(2)画∠BAC=60°;(3)在射线AC上截取AD=4cm,连结BD。

用测量工具测量(刻度尺,半圆仪)(4)BD=________cm,∠ABD=________。

12.如图,是的边上的一点.(1)过点画的垂线,交于点;过点画的垂线,垂足为;(2)点到直线的距离是哪条垂线段的长度?(3)请直接写出线段的大小关系.(用“ ”号连接)13.如图,在正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,请分别仅用一把无刻度的直尺画图.(1)在图1中,过点A画AB的垂线AD;(2)在图2中,过点C画AB的平行线CE:(3)在图3中,以点B为顶点,BA为一边,画.14.如图,点D在△ABC的边AC上,过点D作DE∥BC交AB于E,作DF∥AB交BC于F(1)请按题意补全图形(2)请判断∠EDF与∠B的大小关系,并说明理由15.已知线段a,b和∠α,用尺规作△ABC,使AB=α,AC=b,∠A=2∠C(不写作法,保留作图痕迹并标明字母)16.尺规作图,已知△ABC,用直尺和圆规作∠ABC的平分线交AC于点D,作BC边的垂直平分线交AB于点E,交BC边于F.(只要求画出图形,并保留作图痕迹,不必写作法)17.作出下列三角形(1)中,;(2)中,边上的高.18.已知线段a和线段AB(a<AB).(1)以AB为一边,画△ABC,使AC=a,ÐA=50°,用直尺、圆规作出△ABC边BC的垂直平分线,分别与边AB、BC交于点D、E,联结CD;(不写画法,保留作图痕迹)(2)在(1)中,如果AB=5,AC=3,那么△ADC的周长等于________.19.阅读材料后完成.有这样一个游戏,游戏规则如下所述:如图①—图④,都是边长为1的网格图,其中每条实线称为格线,格线与格线的交点称为格点.在图①和图②中,可知.在图③ 和图④中,可知.根据上面的游戏规则,同学们开始闯关吧!第一关:在图⑤的网格图中,所给各点均为格点,经过给定的一点(不包括边框上的点),在图中画出一条与线段AB垂直的线段(或者直线)BC,再画出与线段AB平行的一条线段(或者直线)EF.第二关:在图⑥的网格图中,所给各点均为格点,经过两对给定的点,构造两条互相垂直的直线.(在图中直接画出)答案解析部分一、单选题1.【答案】D【考点】作图—尺规作图的定义【解析】【解答】解:在几何里,把只有没有刻度的直尺和圆规画图的方法称为尺规作图。

故答案为:D【分析】由尺规作图的含义即可得到答案。

2.【答案】A【考点】作图—基本作图【解析】【解答】解:如图,由尺规作图可得OC=O′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以其依据是SSS,故答案为:A.【分析】根据同圆半径相等可得OC=O′C'=OD=O′D',CD=C′D',根据SSS可证△OCD≌△O′C′D′,据此判断即可.3.【答案】C【考点】作图—尺规作图的定义【解析】【解答】解:A、直线没有长度,所以也不存在平分线,A不符合题意;B、射线OA本来就是由O向A无限延伸,只能说反向延长射线OA,B不符合题意;C、线段有具体的长度,可以延长,C符合题意;D、由于两点确定一条直线,如果过∠AOB内一点P,作射线OP,则OP的位置唯一确定,它不一定是∠AOB 的平分线,D不符合题意.故答案为:C【分析】过某一点只能作已知直线的垂线或垂线段,可对A作出判断;射线是向一方无限延伸,只能反向延长射线,可对B作出判断;根据角平分线的定义,可对D作出判断;线段可以延长和反向延长。

观察各选项可作出判断。

4.【答案】D【考点】作图—尺规作图的定义【解析】【解答】解:A、利用三角板画45°的角不符合尺规作图的定义,错误;B、用直尺和三角板画平行线不符合尺规作图的定义,错误;C、用直尺画一工件边缘的垂线不符合尺规作图的定义,错误;D、用圆规在已知直线上截取一条线段等于已知线段符合尺规作图的定义,正确.故答案为:D.【分析】尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.5.【答案】B【考点】三角形的外角性质,线段垂直平分线的性质,作图—基本作图【解析】【解答】解:A、由作图可知AC的垂直平分线交AB于点D,∴AD=DC,∴∠A=∠ACD∴∠CDB=∠A+∠ACD=2∠A,∠ADC=∠B+∠BCD,故A不符合题意;B、由作图可知BC的垂直平分线交AB于点D,∴BD=DC,∴∠B=∠BCD,∠ADC=∠B+∠BCD=2∠B,故B符合题意;C、∠ADC=∠B+∠BCD,故C不符合题意;D、由作图可知BD=BC∴∠BDC=∠BCD,∵∠ADC=∠B+∠BCD,故D不符合题意;故答案为:B.【分析】观察各选项,可知选项A,B分别作AC,BC的垂直平分线,再根据垂直平分线上的点到线段两端点的距离相等,易证线段相等,再利用等边对等角,可证得相关的角相等,然后利用三角形的外角的性质,可得到∠CDB=∠A+∠ACD,就可对A,B作出判断;而C,D只能证得∠CDB=∠A+∠ACD,由此可对C,D作出判断。

6.【答案】A【考点】三角形全等的判定,作图—基本作图【解析】【解答】解:由作法知CO=DO,EO=EO,EC=ED,∴(SSS),故选:A.【分析】根据角平分线的作法可知CO=DO,EO=EO,EC=ED,符合三角形全等的判定方法中的SSS,可证.7.【答案】B【考点】作图—尺规作图的定义,作图—基本作图【解析】【解答】解:A、C、D三个选项分别符合全等三角形的判定方法SAS,ASA,SSS,故能作出唯一三角形;B、只有涉及的两个三角形同为锐角三角形或者钝角三角形时,才能成立。

故答案为:B【分析】根据全等三角形的判定定理进行判断即可,选项A,C,D只能作出一个三角形,选项中已知两边及其一边对角,当两边夹该角时,只能作出一个三角形,当两边没有夹该角时,可以作出两个三角形,所以B选项可能作出两个三角形。

二、作图题8.【答案】解:如图所示:∠ECF即为所求.【考点】角的概念,作图—基本作图【解析】【分析】根据作一个角等于已知角的步骤进行运算即可,以点O为顶点,以任意长为半径画弧,以点M为顶点,以大于二分之一DE的长为半径画弧,即可得到结果。

9.【答案】解:如图,以为圆心,大于长度为半径作弧交于两点,连接交点作直线交与点.【考点】线段垂直平分线的性质【解析】【分析】作的垂直平分线交与,则,所以.10.【答案】(1)解:如图所示,射线AC即为所求;(2)解:如图所示,BD即为所求(3)解:如图所示,线段BC,DC即为所求(4)3【考点】角的概念,作图—复杂作图【解析】【解答】解:(4)图中以C为顶点的角中,小于平角的角有∠ACB、∠ACD、∠BCD这3个,故答案为:3.【分析】(1)根据射线的概念作图可得;(2)延长AB,以点B为圆心、AC长为半径画弧,交AB延长线于点D;(3)连接BC、DC即可;(4)根据角的概念求解可得.11.【答案】(1)解:如图(2)解:如图(3)解:如图(4)4cm;60°【考点】直线、射线、线段,角的概念【解析】【分析】(1)根据题意,画线段AB,即可;(2)根据题意,画∠BAC,即可;(3)根据题意,画线段AD,BD,即可;(4)根据画出的三角形是等边三角形,即可得到答案.12.【答案】(1)解:如图,直线PC、PD为所求;(2)解:由图可知,CP⊥OB,∴点到直线的距离是垂线段PC的长度(3)解:由图可知,.【考点】垂线段最短,作图-垂线【解析】【分析】(1)根据题意,画出图像即可;(2)由图可知,CP⊥OB,即可得到答案;(3)根据两点之间垂线段最短,即可得到答案.13.【答案】(1)解:如图所示,直线AD即为所求;(2)解:如图所示,直线CE即为所求.(3)解:如图所示,即为所求.【考点】余角、补角及其性质,作图-平行线,作图-垂线【解析】【分析】(1)根据垂线的定义作出图形即可;(2)根据平行线的定义作出平行线即可;(3)点B 为顶点,BA为一边,画即可.14.【答案】(1)解:如图,(2)解:∠B=∠EDF,理由如下:∴DE∥BC∴∠B=∠AED(两直线平行,同位角相等)∴DF∥AB∴∠AED=∠EDF(两直线平行,内错角相等)∴∠B=∠EDF【考点】平行线的性质,作图-平行线【解析】【分析】(1)根据题意,过点D作DE∥BC交AB于E,作DF∥AB交BC于F,画出图形。

(2)利用平行线的性质,可证∠B=∠AED,∠AED=∠EDF,据此可证得结论。

15.【答案】解:尺规作图答案不唯一,例如:或△ABC即为所求作三角形【考点】作图—尺规作图的定义【解析】【分析】利用尺规作图的原则,依次得到字母A、B、C,相连即可所求三角形。

相关文档
最新文档