青岛版八年级数学上册《尺规作图》
青岛版八年级数学上册 (尺规作图)教育教学课件
(1)已知两角和它们的夹边作三角形
已知:∠α,∠β,线段a. 求作:△ABC,使BC=a, ∠B=∠ α, ∠C=∠ β
α
β
a
α
β
a
E A
D
B
C
作法: (1)作线段BC=a;
(2)在BC的同侧作∠CBD= ∠α , ∠ BCE= ∠β,记BD与CE 的交点为点A.
△ ABC 就是所求作的三角形.。
∠ADB=∠ADC
A
B
D
C
等腰三角形除了两腰相等以外,你还能发现它的其他 性质吗?
等腰三角形的两个底角相等.
A
已知:△ABC中,AB=AC
试说明:∠B=C
分析:1.如何说明两个角相等? B
C
2.如何构造两个全等的三角形?
A 【解析】作△ABC的高线AD,
则有∠ADB=∠ADC=90°,
在Rt△ABD和Rt△ACD中
复习引入
1.怎样作一条线段等于已知线段? 2.怎样作一个角等于已知角?其具体步骤是什么?
实验探究
1、利用基本作图,已知两角及它们的夹边,例如∠α,∠β和线段a, 如何作△ABC,使∠B=∠α,∠C=∠β,BC=a呢?
利用基本作图1,先作线段BC=a, 便确定了三角形的两个顶点.然后 分别以B,C为角的顶点,BC(或 CB)为一边,在BC同侧分别作角, 两角的另一边的交点就是三角形的 第三个顶点.
由已知∠α, ∠β,利用尺规 可以作出∠A=180 °-
(∠α+∠β),于是问题就转化 成已知两角及夹边作三角形
的问题了
3、请你用尺规完成2中的作图.
挑战自我
已知两边及其中一边的对角,例如已知∠β,线段b和c(图).能作△ABC,使 ∠B=∠β,AB=c,AC=b吗?如果能作,可以作出几个满足上述条件的不同 的三角形?
青岛版数学八上1.3《尺规作图》ppt精品优秀课件2
以AB的长为半径 画弧,
交射线A’ C’于点B’,
A’B’ 就是所求作的线段。
A’
B’
B
范
C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使 A`O`B`= AOB B
O
A
画一画 作法与示范
作法
(1)作射线O′A′:
(2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
歌声像气势飞鸿的激水,不断从声源 扩大到 可远可 近的周 遭。被 沉睡中 人们的 闹钟似 得扰闹 着;刺 饶着早 起人们 的进行 曲一样 ;持续 着喜宴 人们的 激奋曲 。不同 生活宿 命的人 们,被 秋意带 动着不 同的变 迁。如 同悠扬 持续的 歌声, 唤示着 一种缔 结与生 命奥义 相关的 一种联 系或者 价值。 我也曾数十次地感受着秋意带来生活 特别的 感触, 以及带 来了生 活不同 的意义 。在过 去二十 二载的 秋季之 时,不 曾以笔 绘秋, 以文摹 凉。秋 季带给 除了童 年时候 与伙伴 一起嬉 戏的情 景,不 曾认真 的感受 秋真正 的面貌 和内涵 。 我就在电脑前,听着一曲《简单爱》 。凝思 举笔, 灵慧泼 墨。于 秋的感 触中, 牵引的 情绪, 以及秋 的哲学 意义是 怎么样 ?我不 知道怎 样继续 ,才能 构成秋 的一曲 歌谣, 一首诗 颂,一 纸佳文 。
尺规作图
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。 ⑵了解作一个角等于已知角在尺规作图 中的简单应用。
课前预习
•在几何里,把限定用直尺和圆规来画图,称为
其中尺,直规尺作是图
的;
•直尺的功能:没可有以刻在度两点间连接一条线段,
并向一方或两方延伸,因此可作 、
青岛版八年级数学上册第一章全等三角形 尺规作图
1.3尺规作图(1)
学习目标
1.理解利用尺规作一个角等于已知角图的方法和一般 步骤,并会作角。通过用尺规作一个角等于已知角,能 作已知角的和与差.
2.通过用尺规作图活动,明白每一步作法的依据和道 理,保留作图的痕迹.提高几何语言表达能力,发展几 何作图能力及动手能力;求作∠ABC, 使∠ABC =2 -
小结
一、本节课主要学会什么? 1.用尺规作一个角等于已知角,
2.用尺规作已知角的和与差.
二、还有什么困惑?
达标测试:
1. 如图,在∠AOD的内部做射线OB,使 ∠AOB=∠COD. D C
OA
2.已知 和 ( > ) ,
求作∠ABC,
使∠ABC = -
3.已知和 ,求作∠ABC, 使∠ABC = 2 +
布置作业
课本习题,第1,2题。
3、感受数学语言的简洁严谨和数学中符号语言与图 形的和谐统一
回顾思考: 1、什么是尺规作图?我们在七年 级学过哪种基本的尺规作图?
2、写出作一条线段使它等于已知线段 的作图步骤
议一议:
在尺规作图中,直尺和圆规具 有哪些作用?
自主探究:作一个角等于已知角
如图,已知∠AOB,用圆规和直尺
准确地画一个角∠A’O’B’,使
它等于∠AOB
B
O
A
已知:∠AOB。求作:∠A’O’B’ 使∠A’O’B’=∠AOB。
作
法
(1) 作射线O’A’;
(2) 以点O为圆心, 任意长为半径 画弧,
交OA于点C, 交OB于点D;
(3) 以点O’为圆心, 同样(OC)长为半径 画弧,
交O’A’于点C’;
(4) 以点C’为圆心, CD长为半径 画弧, 交前面的弧于点D’ ,
八年级数学上册第1章知识点解读:尺规作图(青岛版)
知识点解读:尺规作图“尺规作图”问题是几何学习的重要内容之一,那么如何学好“用尺规作线段和角”呢?一、理解“尺规作图”的含义1、只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.2、基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1、用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2、用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .三、了解尺规作图题的一般步骤尺规作图题的步骤:1、已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2、求作:能根据题目写出要求作出的图形及此图形应满足的条件;3、作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、典题精析例1 如图,已知线段a 和b (a>b ).求作:线段c ,使c=a -b.解析:作法:(1)作射线AM ;(2)在射线AM 上截取线段AB=a ;(3)在线段AB 上截取AC=b.则线段BC 就是所求作的线段.评注:用尺规作图,首先要弄明白所作的是什么图形,要作这个图形应从哪里入手.一些复杂的图形都是由简单的基本作图得到的.本题就是两次利用“作一条线段等于已知线段”.例2 如图,已知∠α和∠β(∠α>∠β),求作∠AOB ,使∠AOB =∠α-∠β.解析:作法:(1)作射线OA ;(2)以射线OA 为一边作∠AOC=∠α;(3)以O 为顶点,以射线OC 为一边,在∠AOC的内部作∠BOC=∠β.则∠AOB 就是所求作的角.评注:本题同样是两次运用基本图形——“作一个角等于已知角”.值得注意M B αβ A O C βα- ab α β的是作∠BOC时,应在∠AOC的内部,为什么不在∠AOC的外部呢?答案非常明显是两角的和.。
青岛版(五四制)八年级上册数学课件1.3尺规作图(1)
基础训练
1.与角的平分线类似,还有角的三等分线等, 如图,①是OB、OC是∠AOD的三等分线, ②是一块扇形的材料,其中∠AOB=69°.你 能过点O画两条射线,将这块材料分成相同的 3
A
O
A
①②
灿若寒星
2.你能画出红球在第一次反弹后的运动路线吗?
灿若寒星
这节课你学到了什么?
灿若寒星
2.角平分线定义
如图,OC将∠AOB分成 相等的两部分,OC叫做
∠AOB的角平分线.
3.∠AOC,∠BOC,∠AOB这间有什么关系?
灿若寒星
例题讲解
例⒈如图,如果∠AOD=80°,OC是∠AOD 内的一条射线,OB是∠AOC的平分线, ∠AOB=30°.求∠AOC与∠COD的度数.
Zx.xk
灿若寒星
尺规作图(1)
高密市立新中学隋爱华
灿若寒星
情景导入
反入 射射 角角
图1
图2
打台球时,球的反射角总 是等于入射角(如图1).
如图2,红球能否被击入 右下角的袋中?
你能画出红球在第一次反弹 后的运动路线吗?
灿若寒星
数学化认识
1.三角板画角
(1)如果入射角是30°,怎么画 反射角? (2)如果入射角是75°,怎么画 反射角? (3)利用一副三角板,还能画出 哪些度数的角?
(4)如果入射角是任意角呢?
灿若寒星
2.量角器画角
B
⒈如何利用量角器画一个角等于∠AOB呢?
O
A
Z.x.x.K
⒉如果只用圆规和直尺能否解决这个问题?
灿若寒星
3.尺规画角
B
O
A O´
A´
(1)明确探索关键.
(2)“点”的确 定.
青岛版八年级上册课件尺规作图
B D
O
C
A
D′ B ′
O′
A′
例1 已知三边作三角形.
已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法:作线段AB = c;
以A为圆心b为半径作弧, 以B为圆心a为半径作弧与前弧相交于C; 连接AC,BC.
则△ABC就是所求作的三角形.
例3 已知两角及夹边作三角形
青岛版八年级上册课件 尺规作图
2020/8/14
古希腊认为,所有图形都是由直线和圆弧构成的 ,圆是最完美的图形.他们确信仅靠圆规和直尺 就可以绘出图形来.他们还认为,依据少量假设 ,通过逻辑把握的东西最可靠.
1.知识目标 (1)理解尺规作图和基本作图的定义; (2)掌握基本作图的作法,会作一条线段等于已知线段和 作一个角等于已知角; (3)会利用基本作图来进行作图举例(如:已知两边及夹 角、三边或两角及夹边等).
作法:(1)画射线O′A′ O
A
;
(2)以点O 为圆心,以适当长为半径画
弧,交OA 于C ,交OB 于D ;
B
D
O′
O
C
A
A′
(3)以点O′为圆心,以OC 长为半径画弧, 交O′ A′于C′.
(4)以点C′为圆心,以CD 长为半径画弧, 交前一条弧于D′.
(5)经过点D′画射线O′ B′,则∠A′ O′ B′ 就是所要画的角.
3.已知线段a,b,求作线段AB,使AB=a+b 解:作射线AC. 以点A为圆心,以a长为半径画弧,交 AC于点D. 以点D为圆心,以b的长为半径画弧,交 AC于点B. 则线段AB即所求作的线段.
a
b
这节课你有哪些收获?
青岛版-数学-八年级上册-1.3 尺规作图第1课时
(1) 在射线OA , OB ,OC上作线段O A’,OB’ , C
a
OC’,使它们分别与线段a 相等;
(2) 在射线OD上作线段OD’,使OD’
C’
b
等于b;
A A’ O
(3) 依次连接A’,C’,B’,D’,A’.
B’ B你得到了一个怎样的图形? NhomakorabeaD’
与同伴进行交流.
D
【预习思考】 用尺规作一个角等于已知角是尺规作图中的基本作图,你能利用 它作出其他图形吗? 提示:能,如可以作角.
作法:
用尺规作角
(1)作射线O′A′.
(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.
(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′
(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.
【规律总结】 作一个角等于已知角可以归纳为“一线三弧”
已知:线段a. 求作:线段AB,使AB=a.
作法:(1)作一条直线l . (2)在直线l上任取一点A,以点A为圆心,以线段a 的长度为半径
画弧,交直线l于点B线段AB,就是所求作的线段.
做一做
1.如图,已知 线段a 和两条互相垂直的直线AB,CD。
(1) 利用圆规,在射线OA,OB,OC,OD上作线
(4)以点O为______,以m为______画弧交OA,OB分别于C,D.
【解析】
(1)连接A,B两点.
(2)延长线段AB到点C,使BC=AB.
(3)在线段AM上截取AB=a.
(4)以点O为圆心,以m为半径画弧交OA,OB分别于C,D.
答案:(1)A,B
青岛版数学八上1.3《尺规作图》ppt课件2
3.你的确要学的有心计,但是记住,永远记住,在社会上要胜利的唯一的方法永远只是一个,那就是实力,永远不用怀疑。
(3)以点O′为圆心,以OC长为半径画弧, 交O′ A′于点C′; (4)以点C′为圆心,以CD长为半径画弧, 交前面的弧于点D ′ ; (5)过点D ′作射线O ′ B ′ .
示范
• 这样作法正确吗?你应如何检验? • 写出证明∠AOB= A O的B 过程.
随堂练习:
⑴已知∠ AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
以AB的长为半径 画弧,
交射线A’ C’于点B’,
A’B’ 就是所求作的线段。
A’
B’
B
范
C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使 A`O`B`= AOB B
O
A
画一画 作法与示范
作法
(1)作射线O′A′:
(2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
青岛版数学八年级上册1.3《尺规作图》教学设计3
青岛版数学八年级上册1.3《尺规作图》教学设计3一. 教材分析《尺规作图》是青岛版数学八年级上册的教学内容,本节课主要让学生掌握尺规作图的基本方法和步骤,能够运用尺规作图解决一些简单的问题。
教材通过具体的实例和练习,让学生在实际操作中掌握尺规作图的技巧和方法。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识和一些基本的作图方法。
但是,对于尺规作图的概念和步骤可能还不够熟悉,需要通过本节课的学习来进一步巩固和提高。
同时,学生对于实际操作尺规作图可能还存在一定的困难,需要教师在课堂上进行引导和解答。
三. 教学目标1.让学生掌握尺规作图的基本方法和步骤。
2.培养学生运用尺规作图解决实际问题的能力。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.尺规作图的基本方法和步骤。
2.运用尺规作图解决实际问题。
五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够更好地掌握尺规作图的方法和技巧。
六. 教学准备1.准备尺规作图的工具,如直尺、圆规等。
2.准备一些尺规作图的实例和练习题。
3.准备黑板和投影仪,用于展示和讲解。
七. 教学过程1.导入(5分钟)教师通过一个简单的尺规作图实例,引发学生的兴趣,引出本节课的主题。
2.呈现(10分钟)教师通过讲解和示范,向学生介绍尺规作图的基本方法和步骤,让学生在脑海中形成清晰的尺规作图概念。
3.操练(10分钟)学生分组进行尺规作图的练习,教师巡回指导,解答学生的疑问。
4.巩固(5分钟)教师通过一些尺规作图的练习题,让学生巩固所学的知识和技巧。
5.拓展(5分钟)教师通过一些尺规作图的实际问题,让学生运用所学的知识解决实际问题,提高学生的运用能力。
6.小结(5分钟)教师对本节课的内容进行小结,让学生明确所学的知识和技能。
7.家庭作业(5分钟)教师布置一些尺规作图的练习题,让学生课后进行巩固和提高。
青岛版数学八年级上册1.3《尺规作图》教学设计1
青岛版数学八年级上册1.3《尺规作图》教学设计1一. 教材分析《尺规作图》是青岛版数学八年级上册的教学内容,本节课主要让学生了解尺规作图的基本方法和步骤,学会使用尺规作图解决一些简单问题。
通过本节课的学习,学生能够掌握圆的定义、垂径定理、圆的性质等基本知识,为后续学习圆的相关内容打下基础。
二. 学情分析学生在七年级时已经学习了几何图形的性质和判定,对一些基本几何图形有了一定的了解。
但学生在尺规作图方面还比较陌生,需要通过本节课的学习,让学生逐步掌握尺规作图的方法和技巧。
三. 教学目标1.了解尺规作图的基本方法和步骤。
2.学会使用尺规作图解决一些简单问题。
3.掌握圆的定义、垂径定理、圆的性质等基本知识。
4.培养学生的空间想象能力和动手操作能力。
四. 教学重难点1.重难点:尺规作图的方法和步骤。
2.难点:圆的定义、垂径定理、圆的性质的理解和应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究尺规作图的方法。
2.采用案例分析法,通过具体例子讲解尺规作图的步骤。
3.采用合作学习法,让学生分组讨论,共同完成作图任务。
4.采用启发式教学法,教师提问,学生回答,激发学生的思维。
六. 教学准备1.准备尺规作图的工具,如直尺、圆规等。
2.准备相关的几何图形,如圆、三角形等。
3.准备多媒体教学设备,如投影仪、电脑等。
4.准备一些典型的尺规作图题目。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些实际生活中的尺规作图实例,如建筑设计、美术创作等,引导学生对尺规作图产生兴趣,激发学生的学习动机。
2.呈现(10分钟)教师通过讲解和演示,向学生介绍尺规作图的基本方法和步骤,让学生初步了解尺规作图的过程。
3.操练(10分钟)教师给出一些简单的尺规作图题目,让学生分组讨论,共同完成作图任务。
教师在过程中给予适当的指导和提示,帮助学生克服作图中遇到的困难。
4.巩固(5分钟)教师挑选一些学生完成的尺规作图作品,进行展示和评价,让学生互相学习和交流。
青岛版数学八年级上册1.3《尺规作图》参考教案
1.3 尺规作图教案
一、背景介绍及教学资料
本教材是在学生学习了三角形全等的条件的基础上,安排了尺规作图,这样安排符合学生的认知规律,在利用尺规作出三角形后,让学生进行交流、比较.
利用重合的方式观察所作的三角形是否全等.在此基础上,引导学生利用三角形全等的判定条件来说明大家所作的三角形是否全等,进一步说明该作法的合理性.本节充分运用了直观操作与推理相结合的方法,教师要有较好的把握能力.
二、教学设计
[教学内容分析]
本节有四个作图题.第一个作图题是用尺规作一个角等于已知角,是基本的作图题,后三个作图题均是给出条件作三角形,并利用三角形全等条件进行说明作法的合理性.
[教学目标]
1.会用尺规作一个角等于已知角.
2.根据已知条件,能用尺规作出符合条件的三角形.
3.通过与同伴交流作图过程和结果的合理性,体会对问题的说理要有理有据.
4.培养学生数学语言表达能力.
[教学重点、难点]
重点:会根据已知条件作图.
难点:用规范的尺规作图语言来描述作法,并能依据要求作出相应的图形.[教学准备]每个学生准备直尺和圆规.
[教学过程]
教后反思:
本节课以讲故事方式引入尺规作图,激发学生的兴趣,使学生对本节内容产生亲切感.并通过学生解决问题,掌握知识,训练和提高了学生的尺规作图的技能,并且在实践操作过程中,逐步规范作图语言,培养了学生思维的严密性.。
青岛版八年级数学上册:1.3尺规作图(1)教案
青岛版八年级数学上册:1.3尺规作图(1)教案年级科目八年级数学课题 1.3尺规作图主备人审核人备课组长总课时数[来源:学*科*网]5教学目标1、了解尺规作图,掌握尺规的基本作图:画一条线段等于已知线段,画一个角等于已知角。
[来源:学,科,网]2、掌握尺规作图的步骤,会写已知、求作重点难点做一个角等于已知角根据题意写出已知、求作教学过程一、前置练习,积累知识复习回顾:画一条线段等于已知线段。
你有几种画法。
(学生动手操作)二、情境激趣,导入新课在上面几种画法中,哪种方法更精确?古代数学家为了精确作图,提出了用直尺(没有刻度)和圆规作图,这就是尺规作图。
三、自主学习,合作探究 A如图,已知∠AOB,你能用直尺和圆规作一个角∠A’O’B’= ∠AOB吗?学生阅读课本,学习作图的过程,然后动手试一试。
针对学生的作图情况,教师板演,并写出已知求作。
O B四、总结归纳,提升能力在上面的作图过程中,为什么∠A’O’B’= ∠AOB,你能解释一下吗?(指出上面作图过程中的三角形,利用全等三角形的知识,提示一下)做一条线段等于已知线段,做一个角等于已知角,都是基本作图。
学生独立完成学案上的课堂练习部分。
小组内交流答案。
五、当堂检测,达标测试1、学案达标测试[来源学科网]2、如图,用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS) B.(SSS) C.(ASA)D.(AAS)3、如图已知∠ABC,请你用直尺和圆规作图,作一个角,使它等于2∠ABC.(要求用尺规作图,不必写你作法,但是要保留作图时留下的作图痕迹)[来源学科网]教学反思:。
青岛版数学八上13《尺规作图》课件
作法示范
K
N
C
A
B
M
AN与BK相交于作C,法则(2(3:△)(作)作1A)∠∠作BNKCAB线为AB段所==求∠A∠β作αB,的=三c角形
新思维题
拓展练习
如图,在ABC中,BC=5厘
A
米,AC=3厘米, AB=3.5厘
米,∠B=36°,∠C=44°,请你选 择适当数据,画与△ABC全等的三角
B
5厘米
C
形(用三种方法画图,不写做法,但要
从所画的三角形中标出用到的数据)
练习
D 1、利用尺规不能唯一作出的三角形是(
)
A、已知三边
B、已知两边及夹角
C、已知两角及夹边 D、已知两边及其中一边的对角
C 2、利用尺规不可作的直角三角形是 (
)
A、已知斜边及一条直角边 B、已知两条直角边
C、已知两锐角
D、已知一锐角及一直角边
已知:线段a,b,c
a b c
求作:△ABC,使BC=a,AC=b,AB=c
作法
(1)做线段BC=a, (2)以C为圆心, b为半径画弧
(3)以B为圆心, C为半径画弧
两弧相交于点A
C
M (4)连接AB,AC
则△ABC为所求作的三角形
已知三角形的两边及其夹 角,求作三角形
已知:线段a, b, ∠α ,求作:△ABC,使BC= a,
AB= c, ∠ABC =∠α
E
a
b
a
作法与示范
N
D
作法
A E′
B
D′ C
M (1)作∠MBN= ∠α
(2)在射线B M上截取BC= a, 在射线B N上截取BA= b,
青岛版数学八年级上册 1.3 尺规作图(2)课件
1.3 尺规作图(2)
实验与探究
(1)如图,△ABC 中有六个元素,只要已知其中的哪几个元素 就可作出这个三角形呢? 与同学交流。
知道△ABC 的六个元素中的某三 个元素,根据确定三角形的条件, 以下四种情况可作出△ABC: ①已知三边; ②已知两边及其夹角; ③已知两角及其夹边; ④已知两角和其中一角的对边。
已知三角形的三边求作三角形
已知:线段a,b,c
a b
A
c
作法 求作:△ABC,使BC=a,AC=b,AB=c (1)做线段BC=a,
(23)以B为圆心, c为半径画弧
SSS:三边对应相等 的两个三角形全等.
两弧相交于点A (4)连接AB,AC
则△ABC为所求作的三角形
(3)连接AC
M
△ABC为所求作的三角形
挑战自我
已知三条线段a, b, c, 作△ABC,使AB=c, BC=a, AC=b时, 对这三条线段的大小有没有限制?如果有,a, b, c的大小 应满足什么关系? 答:这三条线段应满足三角形的三边关系,即:三角形 的任意两边之和大于第三边,任意两边之差小于第三边。
完成练习T1、2
谢谢观看
利用你学过的基本作图,已知两边及其夹角,例如已知a,c和∠α,
如何作△ABC,使∠B=∠α,AB=c,BC=a呢?与同学交流。
先作 ∠B= ∠α,这样便确定了所 求作的三角形的顶点B以B为线段 的一个端点,在∠B的两边上分 别截取线段AB=c,BC=a,便得 到三角形另外两个顶点A,C,于 是△ABC便可作出。
(2)利用你学过的基本作图,已知三边分别为 a,b,c,
如何作三角形?与同学交流。
利用基本作图 1,可以先作 出一条线段,例如BC = a, 这样便确定了所求作的三 角形的两个顶点B,C,如 何确定第三个顶点A呢?
2022年青岛版八年级上《尺规作图 》精品课件3
等边三角形性质
1.等边三角形的内角都相等吗?为什么?
由已知:AB=AC=BC, ∵AB=AC ∴∠B=∠C (为什么?) 同理 ∠A=∠C ∴∠A=∠B=∠C ∵ ∠A+∠B+∠C=180°
∴ ∠A= ∠B= ∠C=60 °
A
B
C
结论:等边三角形的内角都相等且等于60 °
等边三角形性质
2.等边三角形是轴对称图形吗?若是, 有几条对称轴?
1.等边三角形的内角都相等,且都等于60 °. 2.等边三角形是轴对称图形,有三条对称轴. 3.等边三角形各边上中线,高和所对角的平分线都三 线合一.
(2) 等边三角形的判定:
1.三边相等的三角形是等边三角形. 2.三个内角都等于60 °的三角形是等边三角形. 3.有一个角为60 °的等腰三角形是等边三角形.
其中是等边三角形的有_________
例 1、 如图,等边三角形ABC中三条内角平分线 AD、BE,CF相交于点O。 (1)△AOB,△BOC和△AOC有什么关系?请 说明理由;
(2)求∠AOB,∠BOC,∠AOC的度数。将 △ABC绕O点旋转,问旋转多少度,就能和原来 的三角形重合(只要说出一个旋转度数)?
A
等边三角形的三条对称轴的交点到各边 的距离都相等吗?到各顶点的距离呢? F
E O
B
C
D
1.三边都相等的三角形叫做等__边__三角形.
2.等边三角形的每个内角都等于6_0___度.
3.等边三角形有__3__条对称轴. 4.等边三角形绕中心至少旋转12_0__度.才能和
原来的三角形重合.
(1)等边三角形的性质.
1.作一条线段等于已知线段 2.作一个角等于已知角
如图,我们可以先画射线AB,然后用圆规量出 线段MN的长,再在射线AB上截取AC=MN,线段 AC就是所要画的线段.
青岛版八年级上册数学《尺规作图》(第1课时)
13
谢谢观赏!
14
4
再用刻度尺画一条线段使它等于已知线段a,比较你先后 得到的两条线段,你认为哪种方式绘制的图形是精确的,哪种 方式是近似的? 毫无疑问第一种画图方式比较精确.
5
研究几何图形就离不开画图,人们发现利用刻度尺、量角
器等工具所绘制的图形都只能是近似的.为了精确作图,古
代数学家提出了在画几何图形时,只允许用直尺(没有刻度
③ 以点C′为圆心,以CD为半径作弧,与前弧交于
点Dபைடு நூலகம்;
④ 过点D′作射线O′B′.∠A′O′B′就是所求作的角.
8
通过操作实验说明了什么?你能得出什么结论?
9
最基本、最常用的尺规作图,称为基本作图.
“作一条线段等于已知线段”和“作一个角等于已知角”
都是基本作图.
10
如图,在∠AOD的内部作射线OB,使∠AOB=∠COD.
11
如图,在∠α和∠β,求作∠γ,使∠γ=∠α+∠β.
作图的步骤应是:
①作∠AOB=∠α;
②以AO为一边,在∠AOB的外部,作∠AOC=∠β; 则∠BOC就是求作的∠γ.
12
明确尺规作图的基本类型:最基本、最常用 的尺规作图,称为基本作图. 1.“作一条线段等于已知线段”;
2.作一个角等于已知角;
7
如图,已知∠AOB,你能用直尺和圆规作一个角 ∠A′O′B′,使∠A′O′B′=∠AOB吗? ① 任取一点O′,作射线O′A′;
B D O C B' D' O' C' A' A
② 以点O为圆心,以任意长为半径作弧,交OA于点
C,交OB于点D,以点O′为圆心,以OC为半径作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随堂练习:
⑴已知∠ AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
B
α
β
O
A
⑵已知角α,β(β<α<90°)求作一个角,使它等于α+β.
通过这节课的学习活动你有 哪些收获?
作业巩固
(一)阅读作业:通读
法
•示
•(1) 作射线A’C’ ;
(2) 以点A’为圆心,
以AB的长为半径 画弧,
交射线A’ C’于点B’,
A’B’ 就是所求作的线段。
A’
B’
B
范
C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使 A`O`B`= AOB B
O
A
画一画 作法与示范
作法
(1)作射线O′A′:
尺规作图
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。 ⑵了解作一个角等于已知角在尺规作图 中的简单应用。
课前预习
•在几何里,把限定用直尺和圆规来画图,称 为 尺规作图 . 其中,直尺是 没有刻度 的;
•直尺的功能:可以在两点间连接一条线段, 并向一方或两方延伸,因此可作 线段 、
射线 、 直线 。
圆规的功能:以任意点为圆心,任意长为半径作 一个圆或 一段弧 。
•最基本,最常用的尺规作图,称为 基本作图 .
•一些复杂的尺规作图都是由基本作图组成的.
两种基本作图:
•1、作一条线段等于已知线段 •2、作一个角等于已知角
已知:线段AB.
求作:线段A’ B’,使A’ B’=AB. 作法与示范:
A
•作
第1、2
(2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
(3)以点O′为圆心,以OC长为半径画弧, 交O′ A′于点C′; (4)以点C′为圆心,以CD长为半径画弧, 交前面的弧于点D ′ ; (5)过点D ′作射线O ′ B ′ .
示范
• 这样作法正确吗?你应如何检验? • 写出证明∠AOB=ÐAⅱO B的?过程.