高中生物:《基因的分离定律》相关知识汇总
高中生物选修二知识点总结笔记
高中生物选修二知识点总结笔记一、基因的分离定律1. 遗传学的基本定律遗传学基本定律包括孟德尔的单因素遗传规律、孟德尔的独立性原理和分离定律。
2. 遗传因素的单因素自交和双因素自交(1)单因素自交:性状的遗传规律(2)双因素自交:给出F2代的比例3. 基因的分离(1)孟德尔的第一和第二定律(2)孟德尔的遗传歧义表现(3)基因间互作:复等位基因、多基因等二、基因的自由组合定律1. 独立性假说基因自由组合的实验证明2. 多因素遗传的实例证明三、基因图谱1. 基因定位及图谱绘制的基本概念2. 图谱绘制的方法及过程四、遗传病1. 遗传病的传播及相关疾病2. 人类常见遗传病的分类和特点五、基因工程技术1. 基因工程技术的定义及介绍2. 基因工程技术的应用领域六、克隆技术1. 克隆的概念及原理2. 克隆技术的发展历程及进展七、基因突变1. 基因突变的定义及分类2. 基因突变的原因及影响八、生物进化1. 生物进化的基本概念2. 生物进化的主要证据及机制九、自然选择1. 自然选择的概念及相关理论2. 自然选择的实例和影响十、裙体遗传学1. 裙体遗传学的基本概念2. 裙体遗传学的相关实例十一、生态学基础1. 生态学的概念及研究领域2. 生态系统的结构及生物多样性高中生物选修二是高中生物学教学的一门重要课程,它的核心内容是基因的分离定律、基因的自由组合定律、基因图谱、遗传病、基因工程技术、克隆技术、基因突变、生物进化、自然选择、裙体遗传学以及生态学基础等知识点。
通过学习这门课程,可以深入了解生物遗传、进化和生态学等重要的知识,对于培养学生的科学素养和创新精神有着重要的意义。
通过对这些知识点的系统总结和归纳,可以帮助学生更好地掌握相关知识,提高学习效果。
高中生物选修二知识点的总结,可以帮助学生加深对生物学的理解,为将来的学习和科研打下坚实的基础。
希望学生们认真对待这门课程,通过不懈地努力,取得优异的成绩。
高中生物选修二知识点的总结对于学生来说是非常重要的。
高一生物分离定律的知识点
高一生物分离定律的知识点生物学中的分离定律是指在自然界中或人工选配中,不同基因的互相组合在一代后代中随机分离的规律。
它是遗传学的基石,对于理解基因传递和遗传变异具有重要意义。
下面将介绍生物学高中阶段学习中常见的三个分离定律,分别是孟德尔的第一定律、孟德尔的第二定律和孟德尔的第三定律。
孟德尔的第一定律,又称为单倍体的分离规律,它说明了在杂种的自交后代中,两个等位基因以一定的比例分离。
具体而言,当将一对杂合子自交(即二等分裂),其中每一个杂合子在配子形成过程中,会发生基因的分离和重新组合。
这就是基因承载的遗传信息在生殖过程中的随机分离,在后代中以一定的比例表现出来。
这个规律可以用植物的颜色、形状等性状进行实际观察和验证。
孟德尔的第二定律,又称为染色体的分离规律,它说明了在杂种的第一代自交后代中,两条染色体以一定的比例组合,进而分离。
这个定律强调了基因的位点不是孤立存在的,而是以染色体的形式存在于细胞核中。
在有性生殖过程中,通过减数分裂和受精等步骤,染色体的分离和组合使得不同基因的组合形式随机产生,并表现在后代中。
这个定律可以用果蝇的眼色、翅脉等性状进行实际观察和验证。
孟德尔的第三定律,又称为基因连锁规律,它说明了染色体上距离较近的基因更有可能一起遗传。
这个定律发现了基因在染色体上的相对位置对基因的分离和组合的影响。
较近位置的基因往往会同时分离或同时组合,形成连锁。
然而,由于基因间的重组现象,基因连锁并非绝对,而是有一定的距离限制。
这个定律可以用果蝇的眼色与翅脉的连锁遗传进行实际观察和验证。
以上就是生物学高中阶段学习中常见的三个分离定律,它们为我们理解基因传递和遗传变异提供了重要的理论支持。
通过深入研究分离定律,我们不仅能够解释生物种群中的遗传现象,还可以为品种选育、遗传病治疗等领域提供理论指导。
生物学是一门富有挑战性和发展性的学科,在今后的学习中,我们应该加强对分离定律的理解和应用,以更好地探索生物领域的奥秘。
分离定律知识点总结(必备6篇)
分离定律知识点总结第1篇1.理论解释(1)生物的性状是由遗传因子决定的。
(2)体细胞中遗传因子是成对存在的。
(3)在形成生殖细胞时,成对的遗传因子彼此分离,分别进入不同的配子中,配子中只含有每对遗传因子中的一个。
(4)受精时,雌雄配子的结合是随机的。
2.遗传图解[解惑]F1配子的种类有两种是指雌雄配子分别为两种(D和d),D和d的比例为1∶1,而不是雌雄配子的比例为1∶1。
分离定律知识点总结第2篇1.有性生殖生物的性状遗传基因分离定律的实质是等位基因随同源染色体的分开而分离,而同源染色体的分开是有性生殖生物产生有性生殖细胞的减数分裂特有的行为2.真核生物的性状遗3.细胞核遗传只有真核生物细胞核内的基因随染色体的规律性变化而呈规律性变化。
细胞质内遗传物质数目不稳定,遵循细胞质母系遗传规律。
4.一对相对性状的遗传两对或两对以上相对性状的遗传问题,分离规律不能直接解决,说明分离规律适用范围的局限性。
分离定律知识点总结第3篇①杂合子(Aa)产生的雌雄配子数量不相等。
基因型为Aa的杂合子产生的雌配子有两种,即A∶a=1∶1或产生的雄配子有两种,即A∶a=1∶1,但雌雄配子的数量不相等,通常生物产生的雄配子数远远多于雌配子数。
②符合基因分离定律并不一定就会出现特定的性状分离比(针对完全显性)。
原因如下:a.F2中3∶1的结果必须在统计大量子代后才能得到;若子代数目较少,不一定符合预期的分离比。
b.某些致死基因可能导致性状分离比变化,如隐性致死、纯合致死、显性致死等。
分离定律知识点总结第4篇1.异花传粉的步骤:①→②→③→②。
(①去雄,②套袋处理,③人工授粉)2.常用符号及含义P:亲本;F1:子一代;F2:子二代;×:杂交;⊗:自交;♀:母本;♂:父本。
3.过程图解P纯种高茎×纯种矮茎↓F1 高茎↓⊗F2高茎矮茎比例 3 ∶14.归纳总结:(1)F1全部为高茎;(2)F2发生了性状分离。
分离定律知识点总结第5篇1.掌握最基本的六种杂交组合①DD×DD→DD;②dd×dd→dd;③DD×dd→Dd;④Dd×dd→Dd∶dd=1∶1;⑤Dd×Dd→(1DD、2Dd)∶1dd=3∶1;⑥Dd×Dd→DD∶Dd=1∶1(全显)根据后代的分离比直接推知亲代的基因型与表现型:①若后代性状分离比为显性:隐性=3:1,则双亲一定是杂合子。
高中生物14基因的分离定律(一)孟德尔的杂交实验-知识讲解
基因的分离定律(一)孟德尔的杂交实验编稿:闫敏敏审稿:宋辰霞【学习目标】1、(重点)掌握孟德尔杂交实验成功的原因。
2、理解相关概念:自交、杂交、父本、母本、正交、反交、性状、相对性状、显性性状、隐性性状、性状分离、遗传因子等。
3、(难点)分析孟德尔遗传实验的科学方法。
4、(难点)对分离现象的解释。
【要点梳理】要点一:孟德尔遗传实验的科学方法1、与豌豆有关的基础知识(1)两性花和单性花同一朵花中既有雄蕊又有雌蕊,这样的花成为两性花。
一朵花中只有雄蕊或者只有雌蕊,这样的花成为单性花,玉米、花瓜的花都是单性花。
(2)自花传粉和异花传粉两性花的花粉,落到同一朵花的雌蕊柱头上的过程叫做自花传粉,如豌豆。
一朵花的花粉传到同一植株的另一朵花的柱头上,或一朵花的花粉传到不同植株的另一朵花的柱头上叫做异花传粉。
(3)闭花受粉豌豆花的雄蕊和雌蕊都被花瓣紧紧地包裹着,在花瓣展开之前,雄蕊花药中的花粉就传到了雌蕊柱头上,这种受粉方式成为闭花授粉。
(4)雄蕊和雌蕊雄蕊包括花药和花丝两部分,花药中有花粉。
花药成熟后,花粉散发出来。
雌蕊由柱头、花柱、子房三部分组成。
子房发育成果实,子房中的胚珠发育成种子,胚珠中的受精卵发育成胚,受精的极核发育成胚乳。
(5)父本和母本不同植株的花进行异花传粉时,供应花粉的植株叫做父本,接收花粉的植株叫做母本。
(6)去雄将作为母本的植株在杂交前先去掉为成熟花的全部雄蕊,叫做去雄。
(7)人工异花传粉将母本去雄后,套上纸袋,待花成熟时,再采集另一植株的花粉,撒到已去雄的雌蕊柱头上,再套上纸袋。
2、豌豆做遗传实验材料的优点【高清课堂:基因的分离定律(一)孟德尔的杂交实验 364174 豌豆做遗传实验材料的优点】(1)豌豆是闭花、自花传粉的两性花。
自然情况下豌豆是纯种。
(2)豌豆花大,便于去雄和实施人工异花授粉(杂交)。
(3)豌豆成熟后籽粒都留在豆荚中,便于观察和计数(统计)。
(4)豌豆具有多个稳定的、易于区分的性状。
高中生物备课参考 基因的分离定律
(B)①③④⑤
(C)①③⑤
(D)②④⑥
答案:B
2.在进行豌豆杂交试验时,为避免其自花传粉,孟德尔采取的措施是( )
①花蕾期,不去雄蕊 ②花蕾期,去雄蕊 ③去雄后,套上纸袋④去雄后,不套纸袋 ⑤
待花成熟时,采集另一株植物的花粉涂在去雌蕊的柱头上⑥待花成熟时,拿开纸袋任其在自
然状况下传粉受精
(A)②④⑥ 答案:C
在医学实践中,人们常常利用基因的分离定律对遗传病的基因型和发病概率做出科学的 推断。
①隐性遗传病:禁止近亲结婚。若近亲结婚,后代患隐性遗传病的机会将大大增加。 ②显性遗传病:尽量控制患者生育。由显性基因控制的遗传病,后代的发病率很高。
【例 1】基因型为 AA 的牛与杂种公牛表现有角,杂种母牛与基因型 aa 的牛表现为无角,
高茎 D 基因 矮茎 d 基因
b 体细胞中,控制性状的基因成对存在 纯种高茎 DD 基因 纯种矮茎 dd 基因
c 生物体形成配子时,成对基因分离,进入不同配子
纯种高茎豌豆配子 纯种矮茎豌豆配子
D 基因 d 基因
d 配子结合时,合子中的基因恢复成对 F1 表现型为高茎,基因型为 Dd
④对分离现象解释的验证
进行减数分裂形成配子时,等位基因会随着同源染色体的分离而分离,分别进入到两个配子 中,独立随配子传给后代。
②分离定律的适用条件 a 有性生殖的性状遗传。基因分离定律的实质是等位基因随同源染色体的分开而分离, 而同源染色体的分开是有性生殖生物产生生殖细胞时进行减数分裂特有的行为。 b 真核生物的性状遗传。原核生物和不具有细胞结构的生物不进行减数分裂,所以不适 用分离定律。 c 细胞核遗传。只有真核生物细胞核内的基因随着染色体的规律性变化。细胞质内的遗 传物质数目不稳定,遵循细胞质母系遗传规律。 d 一对相对性状的遗传。两对或两对以上相对性状的遗传问题,分离定律不能直接解决, 说明分离定律适用范围的局限性。 ⑥基因分离定律的解题思路和方法
高中生物分离定律和自由组合定律以及受精作用的关键知识总结
分离定律1.对分离定律理解的两个易错点(1)杂合子(Aa)产生的雌雄配子数量不相等。
基因型为Aa的杂合子产生的雌配子有两种,即A∶a=1∶1或产生的雄配子有两种,即A∶a =1∶1,但雌雄配子的数量不相等,通常生物产生的雄配子数远远多于雌配子数。
(2)符合基因分离定律并不一定就会出现特定的性状分离比(针对完全显性)。
原因如下:①F2中3∶1的结果必须在统计大量子代后才能得到;若子代数目较少,不一定符合预期的分离比。
②某些致死基因可能导致性状分离比变化,如隐性致死、纯合致死、显性致死等。
2.不要认为子代只要出现不同性状即属“性状分离”性状分离是指“亲本性状”相同,子代出现“不同类型”的现象,如红花♀×红花♂→子代中有红花与白花(或子代出现不同于亲本的“白花”),若亲本有两种类型,子代也出现两种类型,则不属于性状分离,如红花♀×白花♂→子代有红花与白花,此不属于“性状分离”。
1.选用豌豆作为实验材料易成功的原因:(1)在传粉方面:表现为两性花,自花传粉,闭花受粉→保证自然状态下都是纯种。
(2)在性状方面:表现为具有易于区分且能稳定地遗传给后代的性状。
(3)在操作方面:表现为花大,便于进行人工异花授粉操作。
2.黄瓜果皮颜色受一对等位基因控制,若选取绿果皮植株与黄果皮植株进行正交与反交,观察F1的表现型。
这一方案不能判断显隐性,原因是如果显性性状是杂合子,后代也会同时出现黄色和绿色。
3.测交的原理是隐性纯合子只产生一种带隐性基因的配子,不能掩盖F1配子中显、隐性基因的表现,因此测交后代表现型及其分离比能准确反映出F1产生的配子的基因型及分离比,从而得知F1的基因型。
4.基因的分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
自由组合定律1.F2出现9∶3∶3∶1的4个条件(1)所研究的每一对相对性状只受一对等位基因控制,而且等位基因要完全显性。
高中生物孟德尔遗传定律基础知识点梳理
高中生物孟德尔遗传定律基础知识点梳理高中生物孟德尔遗传定律基础知识点梳理孟德尔定律由奥地利帝国遗传学家格里哥·孟德尔在1865年发表并催生了遗传学诞生的著名定律。
他揭示出遗传学的两个基本定律——分离定律和自由组合定律,统称为孟德尔遗传规律。
以下是店铺为大家整理的高中生物孟德尔遗传定律基础知识点梳理,供大家参考借鉴,希望可以帮助到有需要的朋友。
孟德尔遗传定律一.基因的分离定律的理解1.细胞学基础:同源染色体分离2.作用时间:有性生殖形成配子时(减数第一次分裂的后期)3.出现特定分离比的条件①所研究的每一对相对性状只受一对等位基因控制,且相对性状为完全显性②每一代不同类型的配子都能发育良好,且不同配子结合机会相等③所有后代都处于比较一致的环境中,且存活率相同④供实验的群体要大,个体数量足够多二.分离定律中的分离比异常的现象①不完全显性②隐性纯合致死③显性纯合致死④配子致死三.基因的自由组合定律的理解1.细胞学基础:非同源染色体上的非等位基因自由组合2.作用时间:有性生殖形成配子时(减数第一次分裂的后期)3.适用范围:两对或更多对等位基因分别位于两对或更多对同源染色体上(基因不连锁)4.自由组合定律中的特殊分离比①9:3:3:1是独立遗传的两对相对性状自由组合出现的表现型比,题干中如果出现附加条件,则可能出现9:3:4、9:6:1等一系列的特殊分离比。
②利用"合并同类项"妙解特殊分离比的解题步骤:看后代可能的配子组合种类,若组合方式是16种,不管以什么样的比例呈现,都符合基因的自由组合定律。
写出正常的分离比,然后对照题中所给信息进行归类例1:水稻的非糯性(A)对糯性(a)为显性,抗锈病(T)对染病(t)为显性,花粉粒长形(D)对圆形(d)为显性,三对等位基因分别位于三对同源染色体上,非糯性花粉遇碘液变蓝,糯性花粉遇碘液变棕色。
现在四种纯合子基因型分别为:①AATTdd ②AAttDD ③AAttdd ④aattdd ,下列说法正确的是()A.若采用花粉鉴定法验证基因的分离定律,应该用①和③杂交所得F1代的花粉B.若采用花粉鉴定法验证基因的自由组合定律,可以观察①和②杂交所得F1代的花粉C.若培育糯性抗病优良品种,应选用①和④亲本杂交D.将②和④杂交后所得的F1的花粉凃在载玻片上,加碘液染色后,均为蓝色例2藏犬毛色黑色基因A对白色基因a为显性,长腿基因B对短腿基因b为显性。
【高中生物】高中生物基因的分离规律知识点归纳
【高中生物】高中生物基因的分离规律知识点归纳名词:1.相对性状:同一物种中同一性状的不同表达类型称为~。
(这个概念有三个要点:相同的物种——豌豆,相同的性状——茎高,不同的表达类型——高茎和短茎)2、显性性状:在遗传学上,把杂种f1中显现出来的那个亲本性状叫做~。
3.隐性性状:在遗传学上,杂种F1中未出现的亲本性状称为~。
4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做~。
5、显性基因:控制显性性状的基因,叫做~。
一般用大写字母表示,豌豆高茎基因用d表示。
6.隐性基因:控制隐性性状的基因,称为~。
它通常用小写字母表达,豌豆矮秆基因用D表达。
7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做~。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因d和d,由于d和d有显性作用,所以f1(dd)的豌豆是高茎。
等位基因分离:d与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
d∶d=1∶1;两种雌配子d∶d=1∶1。
)8.非等位基因:存在于非同源染色体上或同源染色体不同位置并控制不同性状的不同基因。
9、表现型:是指生物个体所表现出来的性状。
10.基因型:指与表型相关的基因组成。
11、纯合体:由含有相同基因的配子结合成的合子发育而成的个体。
可稳定遗传。
12.杂合子:由包含不同基因的配子组成的合子发育而来的个体。
如果分离不能被稳定地遗传,那么它的后代就会被稳定地遗传。
13、测交:让杂种子一代与隐性类型杂交,用来测定f1的基因型。
测交是检验生物体是纯合体还是杂合体的有效方法。
14.基因分离规律:在减数分裂过程中,等位基因随着同源染色体的分离而分离,分别进入两个配子高中英语,通过配子独立传给后代,即~。
15、携带者:在遗传学上,含有一个隐性致病基因的杂合体。
16.隐性遗传病:又称隐性遗传病,因为控制该病的基因是隐性基因。
分离定律的相关知识点总结
分离定律的相关知识点总结1. 分离定律的历史背景分离定律最早是由格里高利·孟德尔在1865年提出的,当时他通过豌豆杂交的实验观察到了一些有趣的现象,比如红花和白花豌豆杂交后,后代的花色呈现出一定的比例,白花的呈现频率总是低于红花的。
这些实验结果最终让孟德尔得出了分离定律的结论。
值得注意的是,当时这些发现并没有引起学术界的广泛关注,直到20世纪初,孟德尔的实验结果才被重新发现并获得了广泛的认可。
这一发现对于后来遗传学的发展产生了深远的影响,成为了遗传学的基石之一。
2. 等位基因和分离定律在理解分离定律之前,我们需要先了解等位基因的概念。
等位基因是指同一基因位点上不同的基因形式。
比如在豌豆的花色基因中,有红色花的等位基因R和白色花的等位基因r。
在分离定律中,我们假设每个个体有两个等位基因,一个来自母亲,一个来自父亲。
当这两个等位基因不同的时候,我们称之为杂合子,当两个等位基因相同的时候,我们称之为纯合子。
根据分离定律,当杂合子进行生殖细胞的形成时,这两个等位基因会分离开来,分别进入不同的生殖细胞。
因此,每个生殖细胞最终只会携带一个等位基因,这也解释了为什么孟德尔在豌豆杂交实验中得到了一定比例的红花和白花后代。
3. 分离定律的遗传规律分离定律描述了等位基因在生殖细胞形成过程中的分离规律,它为后代遗传特质提供了一个简单而有效的规律。
根据分离定律,一个纯合子向子代传递它的等位基因时,每个子代只传递一个等位基因。
当两个纯合子杂交时,它们的等位基因会随机组合,从而产生不同的基因型和表现型。
这个过程被称为孟德尔遗传规律。
4. 分离定律的意义分离定律对于遗传学的发展具有深远的影响。
首先,它提供了一个简单而有效的规律来描述基因的遗传方式。
这一规律为后来的遗传学研究奠定了基础,帮助人们理解了遗传物质是如何在子代中传递的。
其次,分离定律也为人类的育种工作提供了重要的理论基础。
通过遗传学的知识,人类可以更好地培育出一些具有特定特质的生物,比如高产量的作物或者优良的牲畜。
高中生物基因定律知识点
高中生物基因定律知识点高中生物中的基因定律主要包括孟德尔的遗传定律,它们是生物学中最基本的遗传原理。
以下是对这些知识点的概述:1. 孟德尔的遗传第一定律 - 分离定律:孟德尔的分离定律指出,在有性生殖过程中,生物体的性状是由遗传因子(即基因)决定的,而这些基因在生殖细胞中是成对存在的。
在形成生殖细胞时,每一对基因中的一个来自父方,一个来自母方,它们在生殖细胞中分离,并且随机地传递给下一代。
2. 孟德尔的遗传第二定律 - 独立分配定律:独立分配定律说明,不同性状的基因在形成生殖细胞时是独立分配的。
也就是说,一个性状的遗传并不影响另一个性状的遗传。
这个定律适用于那些基因位于不同染色体上的性状。
3. 显性和隐性基因:显性基因是指在杂合子中能够表现出来的基因,而隐性基因则是在杂合子中被显性基因掩盖的基因。
只有当个体的两个等位基因都是隐性时,隐性基因控制的性状才会表现出来。
4. 基因型和表现型:基因型是指个体的遗传组成,即其基因的类型。
表现型则是个体表现出来的性状。
基因型决定了表现型,但环境因素也可以影响表现型。
5. 杂交和自交:杂交是指两个具有不同基因型的个体进行交配。
自交则是指同一基因型的个体进行自我交配。
通过杂交和自交,可以观察到基因的分离和组合。
6. 孟德尔遗传实验:孟德尔通过豌豆植物的杂交实验,发现了遗传的基本规律。
他选择了具有明显性状差异的豌豆进行实验,如花色、豆荚形状等,通过精确的统计分析,得出了遗传定律。
7. 基因的连锁和重组:当两个基因位于同一染色体上时,它们会连锁在一起,并在生殖细胞形成时一起传递。
然而,在某些情况下,染色体可以发生交叉互换,导致基因的重组,这打破了连锁关系。
8. 多基因遗传:有些性状不是由单一基因决定的,而是由多个基因共同作用的结果。
这种遗传方式称为多基因遗传,它导致性状的连续变异,而不是孟德尔遗传中的离散变异。
9. 遗传的现代概念:随着分子生物学的发展,我们对遗传的理解已经超越了孟德尔的定律。
2023年高考生物冲刺复习经典易错知识点总结与例题剖析15 基因分离定律的原理及实验方法含详解
易错点15基因分离定律的原理及实验方法1.有关“基因分离定律原理”(1)杂合子(Aa)产生雌雄配子数量不相等基因型为Aa的杂合子产生雌配子有两种A∶a=1∶1或产生雄配子有两种A∶a=1∶1,但雌雄配子的数量不相等,一般来说,生物产生的雄配子数远远多于雌配子数。
(2)符合基因分离定律并不一定就会出现特定性状分离比①F2中3∶1的结果必须在统计大量子代后才能得到;子代数目较少,不一定符合预期的分离比;②某些致死基因可能导致遗传分离比变化,如隐性致死、纯合致死、显性致死等。
(3)自交≠自由交配①自交强调的是相同基因型个体的交配,如基因型为AA、Aa群体中自交是指:AA×AA、Aa×Aa;②自由交配强调的是群体中所有个体进行随机交配,如基因型为AA、Aa群体中自由交配是指:AA×AA、Aa×Aa、AA♀×Aa♂、Aa♀×AA♂。
(4)鉴定纯合子、杂合子不一定都选测交法:2.有关“两大遗传定律实验方法”(1)看清是探究性实验还是验证性实验,验证性实验不需要分情况讨论直接写结果或结论,探究性实验则需要分情况讨论。
(2)看清题目中给定的亲本情况,确定用自交还是测交。
自交只需要一个亲本即可,而测交则需要两个亲本。
(3)不能用分离定律的结果证明基因是否符合自由组合定律。
因为两对等位基因不管是分别位于两对同源染色体上,还是位于一对同源染色体上,在单独研究时都符合分离定律,都会出现3∶1或1∶1这些比例,无法确定基因的位置,也就无法证明是否符合自由组合定律。
1.玉米的株高受基因A和a控制,其中A控制高茎,a控制矮茎。
适量的赤霉素能够促进植株增高,现有一株纯种矮茎玉米喷洒适量赤霉素后长成高茎,让其与基因型为Aa的高茎玉米杂交,子代中高茎植株占()A.25%B.50%C.75%D.100%2.孟德尔在探索遗传规律时,运用了假说演绎法,下列相关叙述不正确的是()A.提出问题是建立在纯合亲本杂交和F1自交的实验基础上的B.提出的假说之一是“遗传因子在体细胞的染色体上成对存在”C.“F1(Dd)与隐性纯合子(dd)杂交,后代表现型及比例应为1:1”属于演绎推理D.对演绎推理的验证是通过测交实验完成的3.我国科学家袁隆平院士带领科研团队在杂交水稻领域不断创新,使我国成为世界杂交水稻生产强国,让中国人的饭碗端在自己手中。
分离定律全面知识点总结
分离定律全面知识点总结本文将从分离定律的基本原理、实验证据、适用范围、临床意义等方面进行全面的总结和解析。
基本原理分离定律的基本原理可以用以下几点来概括:1. 每个体细胞中都有一对基因(allele)控制着某一特定性状的表达;一个来自父亲,一个来自母亲。
2. 在生殖细胞(配子)形成的过程中,这对基因会分离开来,只有一个基因会被随机地传递给后代。
3. 子代的基因型和表现型会根据传递给它的基因来确定。
如果两个基因是相同的,则表现为纯合子;如果两个基因是不同的,则表现为杂合子。
4. 同时,在受精胚胎的形成过程中,两个来自母亲和父亲的基因会再次组合在一起,产生新的基因型和表现型。
以上是分离定律的四个基本原理,它们为我们解释遗传现象提供了理论基础和解释框架。
实验证据曼德尔通过豌豆杂交实验得出的结果是分离定律的最有力的实验证据。
他通过对不同特征的豌豆品种进行杂交实验,观察到了各种基因型的比例,进而提出了分离定律。
豌豆种子形状和颜色的遗传律本是相互独立的两个性状,即两个性状之间并不存在紧密的联系。
豌豆的种子形状可能是圆形(R)或者是皱形(r),种子颜色可能是黄色(Y)或者是绿色(y)。
曼德尔分别选取了纯合子(RRYY)和(rryy)的豌豆杂交,并观察了它们子代的基因型和表现型。
结果显示在F₁代,全部为杂合子(RrYy),而在F₂代中,基因型和表型的比例正好符合1:2:1的比例。
这个比例正好是RrYy的基因型能够产生的四种配子(RY, Ry, rY, ry)的结果。
这一结果使曼德尔得出结论:在配子形成的过程中,基因是独立分离的。
除了豌豆的实验外,现代遗传学也通过许多其他实验和观察收集了大量的实验证据,验证了分离定律的正确性。
适用范围分离定律是普遍适用于几乎所有的生物物种的遗传学规律。
它在解释基因在性状遗传传递过程中的行为、基因型和表型的组合、新的基因型的形成等方面都发挥着重要的作用。
分离定律不仅适用于经典的孟德尔遗传实验所使用的豌豆等植物,也同样适用于人类、动物及微生物等各种生物。
新教材高中生物基因的分离定律专题讲义(无答案)新人教版必修2
1.1.3 基因的分离定律专题知识点一基因分离定律的特殊现象【知识点梳理】1.基因分离定律中其他特殊情况分析(1)不完全显性:如等位基因A和a分别控制红花和白花,在完全显性时,Aa自交后代中红:白=3:1,在不完全显性时,Aa自交后代中红(AA):粉红(Aa):白(aa)=1:2:1。
特别提醒:完全显性、不完全显性、共显性、镶嵌显性的辨析①完全显性:具有一对相对性状的两个纯合亲本杂交,F1的全部个体都表现出显性性状,并且在表现程度上和显性亲本完全一样。
这充分体现了显性遗传因子的绝对性,即在成对的遗传因子中,只有显性遗传因子可表达出基因产物,而隐性遗传因子的表达受抑制。
完全显性现象在生物界中普遍存在。
②不完全显性:在生物性状的遗传中如果F1的性状表现介于显性和隐性之间,这种显性表现叫不完全显性。
例如紫茉莉的花色遗传中,纯合的红花和白花杂交,F1为粉色花。
③共显性:在生物性状的遗传中,如果两个亲本的性状同时在F1的同一个体上显现出来,这种显性表现叫共显性。
例如红毛马与白毛马交配,F1是两色掺杂的混花毛马(红色和白色的毛发均匀混合,遍布周身)。
④镶嵌显性:双亲的性状在后代的同一个体的不同部位表现出来,形成镶嵌图式,这种显性现象称为镶嵌显性。
镶嵌显性与共显性并没有实质性差异,共显性是在同一组织或同一部位表现双亲各自的特点,而镶嵌显性是在不同的部位分别表现了双亲的特点,其实质是在个体发育过程中一对遗传因子表达的时间不同。
例如大豆有黄色种皮(俗称黄豆)和黑色种皮(俗称黑豆),若用黄豆与黑豆杂交,F1的种皮颜色为黑黄镶嵌(俗称花脸豆)。
(2)复等位基因:复等位基因是指一对同源染色体的同一位置上的基因有多个。
复等位基因尽管有多个,但遗传时仍符合分离定律,彼此之间有显隐性关系,表现特定的性状,最常见的如人类ABO血型的遗传,涉及三个基因——I A、I B、i,组成六种基因型:I A I A、I A i、I B I B、I B i、I A I B、ii。
高一生物必修2基因分离定律知识点
⾼⼀⽣物必修2基因分离定律知识点学习⽣物需要讲究⽅法和技巧,更要学会对知识点进⾏归纳整理。
下⾯是⼩编为⼤家整理的⾼⼀⽣物必修⼆基因分离定律知识点,希望对⼤家有所帮助!⾼⼀⽣物必修2基因分离定律知识点梳理⼀、孟德尔遗传实验的科学⽅法:(⼀)孟德尔成功的原因:1、选⽤豌⾖做实验材料:豌⾖是⾃花传粉、闭花受粉植物,⾃然状态下都是纯种;⽽且相对性状明显,易于观察。
2、由单因素到多因素的研究⽅法。
即先对⼀对相对性状进⾏研究,再对两对或多对相对性状在⼀起的遗传进⾏研究。
(从简单到复杂、先易后难的科学思维⽅式)3、科学地运⽤统计学的⽅法对实验结果进⾏分析。
( 科学的实验分析的习惯)4、孟德尔遗传实验独特的设计思路即科学研究的⼀般过程:(假说-演绎法)观察事实、发现问题—分析问题、提出假说—设计实验、验证假说—归纳综合、揭⽰规律(⼆)孟德尔⽤豌⾖作杂交实验材料的优点:1、豌⾖是⾃花传粉、闭花受粉植物,所以在⾃然状态下,它永远是纯种,避免了天然杂交情况的发⽣,省去了许多实际操作的⿇烦。
2、豌⾖具有许多稳定的不同性状的品种,⽽且性状明显,易于区分。
3、豌⾖花冠各部分结构较⼤,便于操作,易于控制。
4、豌⾖种⼦保留在⾖荚内,每粒种⼦都不会丢失,便于统计。
5、实验周期短,豌⾖是⼀年⽣植物,⼏个⽉就可以得出实验结果。
6、他选⽤豌⾖的七对相对性状的基因都不连锁。
注:⼈⼯授粉的⽅式:去雄(花蕾期)、套袋、⼈⼯授粉、套袋⼆、有关遗传定律的概念、符号归类:(⼀)交配类⒈杂交:指同种⽣物不同品种间的交配。
基因型不同的⽣物体间相互交配的过程。
⒉⾃交:基因型相同的⽣物体间相互交配;植物体中指⾃花受粉和雌雄异花的同株受粉。
是获得纯合⼦的有效⽅法。
⒊测交:就是让杂种⼦⼀代与隐性个体相交,⽤以测定F1的基因型。
⒋回交:让杂种⼦⼀代与亲本杂交。
⒌去雄:杂交试验时,除去成熟花的全部雄蕊,是杂交试验的重要环节。
6.正交与反交:若甲♀╳⼄♂为正交⽅式,则⼄♀╳♂甲就为反交。
基因分离,自由定律知识点总结
基因分离,自由定律知识点总结
基因分离是遗传学中的一个重要概念,也是自由定律的基础之一。
以下是基因分离和自由定律的几个知识点总结:
1.基因分离定律:基因分离定律是指在常染色体遗传中,每个
个体的两个等位基因在生殖过程中会分离,并分别传递给下一代。
这意味着一个个体在产生生殖细胞时,它的两个等位基因会分离到不同的生殖细胞中。
2.孟德尔的自由定律:孟德尔的自由定律与基因分离定律有密
切的关系。
自由定律包括三个方面:一、随机分配定律,即在个体生殖过程中,两个等位基因按照随机的方式分配到生殖细胞中;二、独立组合定律,即不同基因对的组合在生殖过程中是独立的;三、纯合定律,即纯合个体的后代中,表现型会呈现出一个等位基因的性状。
3.遗传连锁:遗传连锁是指两个或多个位于同一染色体上的基
因因为在基因分离过程中往往与染色体区段一起遗传到后代中,形成连锁现象。
但是,如果遗传连锁的基因之间发生了串型重组,也就是两个基因的染色体区段发生了重新组合,就可以打破遗传连锁。
4.基因连锁图:为了描述基因在染色体上分布的情况,科学家
们常常使用基因连锁图。
基因连锁图是基于遗传连锁的知识,在染色体上用连线表示两个基因之间的连锁关系。
连锁距离越短,两个基因在基因分离过程中越容易发生重组。
总之,基因分离是遗传学中重要的概念,它揭示了基因在生殖过程中的传递规律和分布方式。
自由定律是对基因分离的定量和定性描述,有助于我们理解基因的遗传传递与组合方式。
高考生物专题复习《基因的分离定律》真题汇总含答案
高考生物专题复习《基因的分离定律》真题汇总含答案1. (2021·6月浙江月选考)某玉米植株产生的配子种类及比例为YR∶Yr∶yR∶yr=1∶1∶1∶1。
若该个体自交,其F1中基因型为YyRR个体所占的比例为() A.1/16 B.1/8 C.1/4 D.1/2 【答案】B【解析】解法一:亲本是YyRr,由教材知识易得F1中YyRR=1/8。
解法二:棋盘法。
2.(2021·1月浙江选考)某种小鼠的毛色受A Y(黄色)、A(鼠色)、a(黑色)3个基因控制,三者互为等位基因,A Y对A、a为完全显性,A对a为完全显性,并且基因型A Y A Y胚胎致死(不计入个体数)。
下列叙述错误的是()A.若A Y a个体与A Y A个体杂交,则F1有3种基因型B.若A Y a个体与Aa个体杂交,则F1有3种表现型C.若1只黄色雄鼠与若干只黑色雌鼠杂交,则F1可同时出现鼠色个体与黑色个体D.若1只黄色雄鼠与若干只纯合鼠色雌鼠杂交,则F1可同时出现黄色个体与鼠色个体【答案】C【分析】由题干信息可知,A Y对A、a为完全显性,A对a为完全显性,A Y A Y胚胎致死,因此小鼠的基因型及对应毛色表型有A Y A(黄色)、A Y a(黄色)、AA(鼠色)、Aa(鼠色)、aa(黑色),据此分析。
【详解】A、若A Y a个体与A Y A个体杂交,由于基因型A Y A Y胚胎致死,则F1有A Y A、A Y a、Aa共3种基因型,A正确;B、若A Y a个体与Aa个体杂交,产生的F1的基因型及表现型有A Y A(黄色)、A Y a(黄色)、Aa(鼠色)、aa(黑色),即有3种表现型,B正确;C、若1只黄色雄鼠(A Y A或A Y a)与若干只黑色雌鼠(aa)杂交,产生的F1的基因型为A Y a (黄色)、Aa(鼠色),或A Y a(黄色)、aa(黑色),不会同时出现鼠色个体与黑色个体,C 错误;D、若1只黄色雄鼠(A Y A或A Y a)与若干只纯合鼠色雌鼠(AA)杂交,产生的F1的基因型为A Y A(黄色)、AA(鼠色),或A Y A(黄色)、Aa(鼠色),则F1可同时出现黄色个体与鼠色个体,D正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物:《基因的分离定律》相关知识汇总
一、有关遗传定律的基本概念和术语
1. 交配类
(1)杂交:基因型不同的生物体间相互交配的过程。
(2)自交:基因型相同的生物体间相互交配的过程。
自交系是获得纯系的有效方法。
(3)测交:杂交子一代与隐性纯合体相交,用来测定F1的基因型。
2. 性状类
(1)性状:生物体的形态特征和生理特征的总称。
(2)相对性状:同种生物同一性状的不同表现类型。
(3)显性性状:具有相对性状的纯种亲本杂交,F1表现出来的那个亲本性状。
(4)隐性性状:具有相对性状的纯种亲本杂交,F1未表现出来的那个亲本性状。
(5)性状分离:在杂种自交后代中,同时出现显性性状和隐性性状的现象。
(6)完全显性:具有一对相对性状的两个纯合亲本杂交,F1的全部个体,都表现出显性性状,并且在表现程度上和显性亲本一样。
(7)不完全显性:在生物性状遗传中,F1的性状表现介于显性和隐性之间。
(8)共显性:在生物性状遗传中,两个亲本的性状,同时在F1的个体上显现出来,而不只是单一表现出中间性状。
3. 基因类
(1)等位基因:同源染色体的相同位置上控制相对性状的基因。
(2)非等位基因:一般指不同对的等位基因之间的关系。
(3)复等位基因:同源染色体的同一位置上的等位基因的数目在两个以上。
(4)显性基因:控制显性性状的基因,一般用大写字母来表示。
(5)隐性基因:控制隐性性状的基因,一般用小写字母来表示。
4. 个体类
(1)表现型:生物个体所表现出来的性状。
(2)基因型:与表现型有关的基因组成。
表现型=基因型环境条件。
(3)纯合子:由含相同基因的配子结合成的合子发育成的个体。
(4)杂合子:由含不同基因的配子结合成的合子发育成的个体。
二、一对相对性状的遗传试验
1. 试验:
用纯种高茎和纯种矮茎豌豆作亲本杂交,无论是正交还是反交,F1只表现出高茎的性状。
F1自交得到的F2出现性状分离,分离比为高茎:矮茎=3:1。
2. 解释:
(1)在生物的体细胞中,控制性状的基因成对存在。
如纯种高茎豌豆的体细胞中都含有DD基因,矮茎豌豆的基因型是dd。
(2)杂交产生的F1是由D和d两种配子结合而成,基因型是Dd,表现型是高茎。
(3)F1通过减数分裂产生配子时,D和d随同源染色体的分离而分离,最终产生D和d两种雌雄配子,比例为1:1。
(4)两种雌配子和两种雄配子结合机会均等,因此,F2有DD、Dd和dd三种基因组合,它们之间的比例接近1:2:1,在性状表现上高茎与矮茎的比例接近3:1。
3. 验证:
测交。
用F1与隐性亲本杂交,后代表现型和基因型比例都接近1:1,与预期结果相符。
三、基因的分离定律的实质
1. 实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随同源染色体的分开而分离,分别进入两个配子,独立地随着配子遗传给后代。
2. 遗传的基本规律都是进行有性生殖的生物,在进行减数分裂形
成配子时的规律。
四、基因分离定律在实践中的应用
1. 指导杂交育种工作。
2. 优生的指导。
▍ 来源:综合网络。