第1章 第1讲 实 数

合集下载

2022届高三地理(人教版通用)大一轮复习教案:必修2 第一章 第1讲 人口的数量变化与人口的合理容

2022届高三地理(人教版通用)大一轮复习教案:必修2 第一章 第1讲 人口的数量变化与人口的合理容

第一章人口的变化第1讲人口的数量变化与人口的合理容量最新考纲1.不同人口增长模式的主要特点及地区分布。

2.环境承载力与人口合理容量的区分。

思维导图考纲解读1.了解世界人口增长过程及其地区差异。

2.把握不同人口增长模式的主要类型及其特点,比较不同的人口进展模式的地区差异。

3.说出环境人口容量与人口合理容量的区分,理解制约环境人口容量的主要因素。

微专题一人口增长模式1.人口的自然增长(1)总趋势人口数量的总趋势是不断增长(依据:图中曲线上扬)。

(2)农业革命前人口增长缓慢(依据:图1中a段曲线平稳)农业革命期间增长速度加快(依据:图1中b段曲线坡度增大)近100多年来急剧增长(依据:图2中c段曲线坡度最大)(3)空间差异目前,发达国家人口增长缓慢,进展中国家人口增长很快。

特殊提示人口的自然增长中的“增长”,仅指人口数量的变化,而不肯定是数量的增多,也可以是零增长或负增长。

2.人口增长模式及其转变人口增长模式是由诞生率、死亡率和自然增长率三项指标共同构成的。

特殊提示①人口增长模式的转变,由“死”到“生”来实现,生产力进展是关键——“死”是指死亡率下降,“生”是指诞生率下降。

②目前发达国家人口增长模式已进入现代型,20世纪60年月以来,发达国家人口老龄化严峻,死亡率有所上升。

③我国的人口增长模式已是现代型,但因人口基数大,人口增长很快。

④总体来看,世界人口增长模式仍处于由传统型向现代型的过渡阶段。

1.人口增长模式的推断(1)依据生产力水平推断:一般地,农业社会及其以前属于原始型;工业化时期多属于传统型;后工业化时期属于现代型。

(2)依据国家类型推断:绝大多数进展中国家属于传统型,个别进展中国家如中国、古巴等已经属于现代型;发达国家多属于现代型。

(3)依据数值特征推断:诞生率死亡率自然增长率原始型4%左右4%左右4%以下,接近于0,甚至是负值传统型3%左右1%以上2%左右现代型1%左右1%左右1%以下,接近于0,甚至是负值2.分析人口增长快慢缘由的思路影响人口增长快慢的因素是多种多样的,但打算性因素是生产力水平的凹凸,农业革命和工业革命都能促进人口的增长正说明白这个问题,因此分析人口增长快慢缘由的思路如下:考向一人口数量增减的相关计算(2022·江苏地理)1980年我国开头执行一对夫妇只能生育一胎的方案生育政策,2021年启动实施一方是独生子女的夫妇可生育两个孩子的政策。

大学化学第一章1讲解

大学化学第一章1讲解
ΔU = Q + W
解:(1)△U系统=(-60)+(-40)=-100kJ (2)△U系统=(-40)+(+60)=+20kJ (3)△U系统=(+60)+(+40)=100kJ (4)△U系统=(+40)+(-60)=-20kJ
化学反应的反应热 化学反应系统与环境进行能量交换的 主要形式是热,称反应热或热效应。
化学反应动力学 现实性—速率 计算任意反应的∆U、∆H、∆S 、∆G和速率v。
为了便于讨论,我们先介绍以下几 个基本概念: 包括: 系统、 环境、 相、
质量守恒、 能量守恒、 状态 和 状态函数、 热和功
热力学基本概念
◆系统和环境 (system and surroundings) 系统: 作为研究对象的那一
∴ QP =△U +P△V
QP = △U +P△V
上式可化为: QP=(U2-U1)+ P(V2-V1)
即: QP=(U2+P2V2)-(U1+P1V1)
此时,令: H = U +PV 称:焓
则: QP =H2-H1=ΔH
意义:
焓:
符号:H ; H 是状态函数;
无绝对数值;
其值与n 成正比;
单位: kJ。 根据 Q 符号的规定,有:
• 也说明ΔU ,ΔH 可以通过量热实验进行直接测定。
注意下列各组状态函数表示的意义:
1.U , H 当泛指一个过程时状态函数改变量的
表示法
2.rU , r H
指明某一反应而没有指明反应进度即 不做严格的定量计算时,两个状态函
数改变量的表示法
3.rU m , r H m 表示某反应按所给定反应方程式进

(精校版讲义)高中数学必修一 第1章第1讲集合的概念(可直接打印)

(精校版讲义)高中数学必修一 第1章第1讲集合的概念(可直接打印)

目录第一章集合与函数概念 (2)1.1 集合 (2)1.1.1集合的含义与表示 (2)1.1.2集合间的基本关系 (5)1·1·3 集合的基本运算............................... 错误!未定义书签。

1·2 函数及其表示....................................... 错误!未定义书签。

1·3 函数的基本性质..................................... 错误!未定义书签。

1·3·1 单调性与最大(小)值......................... 错误!未定义书签。

1·3·2 奇偶性....................................... 错误!未定义书签。

第二章基本初等函数(I).................................... 错误!未定义书签。

2·1 指数函数........................................... 错误!未定义书签。

2·1·1指数与指数幂的运算........................... 错误!未定义书签。

2·1·2 指数函数及其性质............................. 错误!未定义书签。

2·2 对数函数........................................... 错误!未定义书签。

2·2·1 对数与对数运算............................... 错误!未定义书签。

2·2·2 对数函数及其性质............................. 错误!未定义书签。

人教版高一数学必修一-第一章-知识点与习题讲解

人教版高一数学必修一-第一章-知识点与习题讲解

必修1第一章集合与函数基础知识点整理第1讲 §1。

1。

1 集合的含义与表示¤知识要点:1。

把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3。

通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。

4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数。

解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B 。

解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈。

【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合。

第1讲 实 数

第1讲 实 数

考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
10.(2013· 包头)若|a|=-a,则实数 a 在数轴上的 对应点一定在( B A.原点左侧 B.原点或原点左侧 C.原点右侧 D.原点或原点右侧 解析:∵|a|=-a,∴a 是负数或 0.在数轴上表示 时,在原点或原点左侧.故选 B. )
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点二 近似数、科学记数法 例 2 (2013· 南充 )“一方有难,八方支援.” 2013 年 4 月 20 日四川省芦山县遭遇强烈地震灾害, 我市某
校师生共同为地震灾区捐款 135 000 元用于灾后重建, 把 135 000 用科学记数法表示为 ( A. 1.35×106 C. 1.35×105
考点知识梳理
)
B . 13.5× 105 D. 13.5×104
中考典例精析 基础巩固训练 考点训练
宇轩图书
【点拨】135 000的整数位数是6,∴135 000用科学记数 法表示为1.35×105.故选C.
【答案】 C
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点三
无理数、实数
例 3 (2013· 威海)下列各式化简结果为无理数的是 ( ) A. C. 3 -27 8 B.( 2-1)0 D. -22
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
【点拨】 - 27=- 3, ( 2- 1) = 1, 8= 2 2,
3
0
- 22= 2,- 3,1,2 都是有理数,只有 2 2是无理数, 故 8的化简结果为无理数.故选 C. 【答案】 C

七年级上,第一章第一讲.正负数绝对值相反数

七年级上,第一章第一讲.正负数绝对值相反数

1.1正负数【知识点一】正数和负数为了表示物体的个数或事物的顺序,产生了数1,2,3,...;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。

总之,数是为了满足生产和生活的需要而产生发展起来的。

思考:如何表示温度10℃和零下10℃?讨论:对于这两个温度的表示,如果还按照原来所学的数来表示,可能会让人误解。

现在我们引入另一类的数,我们称之为负数,它用来表示相反的量,符合为‘—’。

有了这类的数,我们就可以表示出思考题中的温度了。

我们把温度10℃和零下10℃分别表示为,10℃和-10℃。

正数:把大于0的数叫做正数。

正数用来表示正方向上的量,如5、2.1、100等,正数前面的符号为‘+’,通常省略不写。

负数:在正数前面加上负号“—”的数叫做负数。

负数用来表示负方向上的量,如-3、-2.3、-100等,负数前面的符合为‘-’,不能省略。

注:零既不是正数,也不是负数。

【典例精析】例1:如果规定东为正方向,如何表示向东行驶5千米和向西行驶5千米。

例2: 规定地平线上方为正,请说出下列数字表示的意义,5、0、-5。

例3:如果以你家所住的上方为正,如何表示你楼上住户的楼层,你家所在的楼层,你楼下的楼层。

【举一反三】1.请表示水位升高5.5米和下降3.6米。

(上升为正)2.下列各数中,哪些是正数?哪些是负数?1、-3.2、π、100、0、0.0001、-10003.“一个数如果不是正数,就是负数”这句话正确吗?为什么?【知识点二】有理数正整数、零和负整数统称整数,正分数和负分数统称分数,整数和分数统称有理数。

学习了负数之后,我们总结一下所学的数的类型: 正整数:如1,2,3,…; 零: 0;负整数: 如-1,-2,-3,...;正分数:如31, 722,4.5(即214);负分数: 如-21,722-,-0.3(即103-),53-.... 上述这几种类型的数,在数学上都可以一个名词来表示,即有理数。

苏教版七年级上 第一章 数学与我们同行 第一讲 生活 数学

苏教版七年级上  第一章 数学与我们同行 第一讲 生活 数学

苏教版七年级上数学与我们同行第1讲生活数学基础巩固:1.观察下列数的规律:2、4、8、16、32、…,则第6个数是()。

A.56B.64C.80D.1282.一只长满羽毛的鸭子大约重( )。

A.50gB.2kgC.20 kgD.50 kg3.如图,小明从家到学校有三条路可走,走第条最近。

4.若大正方形的边长为2,则图中阴影部分的面积为。

5.某洗发水的原价如图所示,则现价为。

6.已知1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,按此规律,1+3+5+…+19= 。

7.用3、4、6、10四个数通过加、减、乘、除算24点,可列式为。

8.张老师的身份证号码是320926************,从中可获得张老师的出生日期是。

9.如图,在高1.5m,宽5m的楼梯表面铺地毯,地毯的长度至少需多少米?10.学校打算用16m 长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围最大?11.如图是某商品包装盒上的一个标签,你能从下面这个标签上看出这个商品的包装盒有多重、体积有多大吗?12.把如图所示的长方形切一刀,再拼成一个平行四边形,画出切割线与拼接图。

13.光明中学七年级有6个班,采用淘汰制进行篮球比赛,共需进行多少场比赛?若采用单循环制呢?若采用主客场制单循环赛制呢?14.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。

有关数据如下表所示:(1) 该风景区认为:调整前后这5个景点门票的平均收费不变,因此平均日总收入持平,风景区是怎样计算的?(2)游客认为:调整前后风景区的平均日总收入相对于调价前增如了9.4%。

游客是怎样计算的?(3)你认为风景区和游客的说法,哪一种较能反映整体实际?拓展提优:15.某粮店出售的三种品牌的面粉袋上,分别标有质量(25±0.1)kg,(25土0.2)kg,(25土0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )。

数学分析教案(华东师大版)第一章实数集与函数

数学分析教案(华东师大版)第一章实数集与函数

第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

第一章实数集及函数

第一章实数集及函数

第一章 实数集与函数(10学时)§1.实数教学目的:使学生把握实数的大体性质.教学重点:(1)明白得并熟练运用实数的有序性、浓密性和封锁性;(2)牢记并熟练运用实数绝对值的有关性质和几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用.学时安排: 2学时教学方式:教学.(部份内容自学)教学程序:引言上节课中,咱们与大伙儿一起探讨了《分析》这门旅程的研究对象、要紧内容等话题.从本节课开始,咱们就大体依照教材顺序给大伙儿介绍这门课程的要紧内容.第一,从大伙儿都较为熟悉的实数和函数开始.[问题] 什么缘故从“实数”开始.答:《数学分析》研究的大体对象是函数,但那个地址的“函数”是概念在“实数集”上的(《复变函数》研究的是概念在复数集上的函数).为此,咱们要先了解一下实数的有关性质.一 实数及其性质 1、实数(,q p q p ⎧⎧≠⎪⎨⎨⎩⎪⎩正分数,有理数为整数且q 0)或有限小数和无限小数.负分数,无理数:用无限不循环小数表示. {}|R x x =--为实数全体实数的集合.[问题] 有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,咱们把“有限小数”(包括整数)也表示为“无穷小数”.为此作如下规定: ,n a 其,,n n a ≠19999n a -;关于正整数0,x a =1).9999;关于负有限小数(包括负整,那么先将y -表示为无穷小数,此刻所得的小数之前加负号.0=0.0000例:2.001 2.0009999→3 2.99992.001 2.0099993 2.9999→-→--→-利用上述规定,任何实数都可用一个确信的无穷小数来表示.但新的问题又显现了:在此规定下,如何比较实数的大小?2.两实数大小的比较1) 概念1 给定两个非负实数01n x a a a =,01n y b b b =. 其中00,a b 为非负整数,,k k a b (1,2,)k =为整数,09,09k k a b ≤≤≤≤.假设有,1,2,k k a b k ==,那么称x 与y 相等,记为x y =;假设00a b >或存在非负整数l ,使得,1,2,,k k a b k l ==,而11l l a b ++>,那么称x 大于y 或y 小于x ,别离记为x y >或y x <.关于负实数x 、y ,假设按上述规定别离有x y -=-或x y ->-,那么别离称为x y =与x y <(或y x >).规定:任何非负实数大于任何负实数.2) 实数比较大小的等价条件(通过有限小数来比较).概念2(不足近似与多余近似):01n x a a a =为非负实数,称有理数01n x a a a =为实数x 的n 位不足近似;110n n n x x =+称为实数x 的n 位多余近似;关于实数01nx a a a =-,其n 位不足近似01110n n n x a a a =--;n 位多余近似01n n x a a a =-. 注:实数x 的不足近似n x 当n 增大时不减,即有012;x x x x ≤≤≤≤ 多余近似n x 当n 增大时不增,即有01x x x x ≥≥≥≥.命题:记01n x a a a =,01n y b b b =为两个实数,那么x y >的等价条件是:存在非负整数n ,使n n x y >(其中n x 为x 的n 位不足近似,n y 为y 的n 位多余近似).命题应用————例1例1.设,x y 为实数,x y <,证明存在有理数r ,知足x r y <<.证.由x y <,知:存在非负整数n ,使得n n x y <.令()12n n r x y =+,那么r 为有理数,且 n n x x r y y ≤<<≤.即x r y <<.3.实数经常使用性质(详见附录Ⅱ.P289-302).● 封锁性(实数集R对,,,+-⨯÷)四那么运算是封锁的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.● 有序性:任意两个实数,a b 必知足以下关系之一:,,a b a b a b <>=.● 传递性;,a b b c a c <>⇒>.● 阿基米德性:,,0a b R b a n N ∀∈>>⇒∃∈使得na b >.● 浓密性:两个不等的实数之间总有另一个实数.● 实数集R与数轴上的点有着一一对应关系.例2.设,a b R ∀∈,证明:假设对任何正数ε,有a b ε<+,那么a b ≤.(提示:反证法.利用“有序性”,取a b ε=-)二 、绝对值与不等式(分析论证的大体工具).1.绝对值的概念实数a 的绝对值的概念为,0||0a a a a a ≥⎧=⎨-<⎩.2. 几何意义:从数轴看,数a 的绝对值||a 确实是点a 到原点的距离.熟悉到这一点超级有效,与此相应,||x a - 表示确实是数轴上点x 与a 之间的距离.3.性质.1)||||0;||00a a a a =-≥=⇔=(非负性);2)||||a a a -≤≤;3)||a h h a h <⇔-<<,||.(0)a h h a h h ≤⇔-≤≤>;4)对任何,a b R ∈有||||||||||a b a b a b -≤±≤+(三角不等式);5)||||||ab a b =⋅;6)||||a a b b =(0b ≠). [练习]P4. 5[课堂小结]:实数:⎧⎨⎩一 实数及其性质二 绝对值与不等式.§2数集和确界原理教学目的:使学生把握确界原理,成立起实数确界的清楚概念。

北师大版八年级数学上册第一章全部课件

北师大版八年级数学上册第一章全部课件
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程

中考数学第一轮复习精品课件第一章 第1讲实数

中考数学第一轮复习精品课件第一章 第1讲实数

C.4.5×105
D.0.45×106
2.数轴上的点 A 到原点的距离是 3,则点 A 表示的数为 ( A ) A.3 或-3 C.-3
B.3
D.6 或-6
3.如果规定收入为正,支出为负.收入 500 元记作+500 元,那么支出 237 元应记作( B ) A.-500 元 C.237 元 B.-237 元 D.500 元
第一章
数与式
第1讲 实数
1.了解无理数和实数的概念,理解实数的意义,能用数轴 上的点表示实数,会比较实数的大小.知道实数与数轴上的点 一一对应. 2.借助数轴理解相反数和绝对值的意义,会求实数的相反 数与绝对值(绝对值符号内不含字母). 3.理解乘方的意义,会用科学记数法表示数,掌握实数的 加、减、乘、除、乘方及简单的混合运算(以三步为主).
4.0 的特殊性.
0 (1)0 的相反数是__________ .
0 (2)0 的绝对值是__________ .
倒 (3)0 没有________ 数.
【学有奇招】 1.对于实数的概念,关键记住无理数的概念.在实数中只 有无限不循环小数是无理数,其他都是有理数.常见的无理数 有三种:①有规律但不循环的数,例如:0.101 001 000 100
π 001…;②π 及其衍生出来的数,例如:3π,2等;③含有根号 2 但开不尽方的数,例如: 2, 5, 2 等. 3
2.有理数的加法运算口诀:同号相加一边倒;异号相加 “大”减“小”,符号跟着大的跑;绝对值相等“零”正好. 注意:“大”减“小”是指绝对值的大小.
1.5 月的某一天,参观上海世博会的人数达到 450 000, 用科学记数法表示这个数为( C ) A.45×104 B. 4.5×106

2015届九年级数学中考复习课件:第一章第1讲

2015届九年级数学中考复习课件:第一章第1讲

(5)平方比较法: ∵由 a>b>0, 可得 a> b, ∴可以把 a
与 b的大小问题转化成比较 a 和 b 的大小问题.
1.(2014· 河南)下列各数中,最小的数是( D ) A.0
1 B.3
1 C.-3
D.-3
2.(2014· 咸宁)下列实数中,属于无理数的是( D ) 1 A.-3 B.3.14 C.3 D. 3
数.掌握常见无理数类型有助于识别无理数.
1 . (1)(2013· 安顺 ) 下列各数中 , 3.14159 , -
3
8,
1 0.131131113…,-π, 25,-7无理数的个数有( B ) A.1 个 B.2 个 C.3 个 D.4 个
(2)(2012· 河北)下列各数中,为负数的是( B ) A.0 B.-2 C.1 1 D.2
第1讲 实数及其运算
要点梳理
1.实数的有关概念
原点 , 正方向 和 单位长度 (1)数轴:规定了____ 的直线
叫做数轴,数轴上所有的点与全体____ 实数 一一对应. (2)相反数:只有符号 ____不同,而 绝对值 相同的 两个数称为互为相反数.a,b互为相反数⇔a+b=
0. ____ 商 , (3)倒数:1除以一个不等于零的实数所得的____
202=________,212=________,222=__________,
232=________,242=________,252=__________. 13=________,23=________,33=__________,
43=________,53=________,63=__________,
x= a
这个数的算术平方根;如果x3=a,那么x叫做a的立

常微分方程第一章课件(1)讲义

常微分方程第一章课件(1)讲义

参 考 书
西华师范大学
《常微分方程》
《常微分方程教程》
由东北师大数学系编
由丁同仁、李承编
高等教育出版社
高等教育出版社
第一章
绪论
西华师范大学
本章分为两节,主要讲两个内容:常微分方程的应用背景及基本概念。 微分方程是一门应用背景很强的学科。诸如物理、化学、生物、医学,社 会学以及其他一些人文科学都有非常广泛的应用(例如:传染病模型,战 争模型等都体现微分方程很好的应用) 限于时间和篇幅,本书仅就《常微分方程》在物理学得几个不同分支 上得一些简单应用作初步的展示,至于它的更深入和广泛的应用,将会在 它的后继课程《数学建模》和《数学物理方程》中作进一步的介绍。

引例2:物体冷却过程的数学模型
西华师范大学
为解决上述问题,即建立物体冷却过程的数学模型,需要热力学的 牛顿冷却定理——物体温度变化速度与温差(物体温度与介质温度的差 )成比例。 将牛顿冷却定律翻译成数学语言,即为:
du k (u u k ) dt
上式即为物体冷却过程的数学模型。
引例2:物体冷却过程的数学模型
牛顿的生平简介
牛顿(Newton) 1642.12.15—1727.3.20 英国数学家
西华师范大学
牛顿是一个农民的儿子,他的父亲在他出生之前就去世了,牛顿是不 足月的遗腹子,他是那样的瘦小,仅三磅重,他母亲说一夸克(约一升)的 杯子就能装下他,他的生命似乎已经绝望了饿,以至于两个到附近为他取药 的妇女担心等不到她们回来牛顿就会死了。结果谁也没有想到他竟然活到 85 岁高龄。而且成为世界上出类拔萃的伟大科学家(这是上帝创造的奇迹)。 牛顿三岁的时候,母亲再嫁,他由外祖母抚养,小时候他对功课不感 兴趣,成绩低劣。被同学瞧不起。某日,一个蛮横不讲理的同学欺辱他,一 脚踢在他的肚子上(此同学的成绩在牛顿之上 ), 使牛顿在精神和肉体上受到 了极大痛苦。自那以后牛顿发奋读书,不久成绩便超过该生,而冠于全部。

人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)

人教版七年级上册数学 第一章《有理数》第1讲  有理数 (答案+解析)

人教版七年级上册数学第一章《有理数》第1讲有理数(答案+解析)数轴。

在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。

概念剖析:①、画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②、数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③、数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④、有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点在原点的左边,与原点的距离是a 个单位长度。

⑤、在数轴上求任意两点a 、b 的距离L,则有公式a b L b a L -=-=或,这两个公式选择那个都一样。

知识点四:相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。

0的相反数是0,互为相反的两个数,在数轴上位于原点的两则,并且与原点的距离相等。

概念剖析:①、“如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数”,不要茫然的认为“如果两个数符号不同,那么其中一个数就叫另一个数的相反数”。

②、显然,数a 的相反数是a -,即a 与a -互为相反数。

要把它与倒数区分开。

③、互为相反数的两个数在数轴上对应的点一个在原点的左边,一个在原点的右边,且离原点的距离相等,也就是说它们关于原点对称。

④、在数轴上离某点的距离等于a 的点有两个。

⑤、如果数a 和数b 互为相反数,则a +b =0;)0(1≠-=ab b a 或)0(1≠-=ab ab ; ⑥、求一个数的相反数,只要在这个数的前面加上“—”即可;例如b a -的相反数是a b -;知识窗口:①一个数前面加上“—”号,该数就成了它的相反数;②一个数前面的符号确定方法:奇数个负号相当于一个负号,偶数个负号相当于一个正号,而与正号的个数无关。

知识点五:绝对值数轴上表示数a 的点与原点的距离叫做数a 的绝对值。

七年级数学上册 第1章1.1 正数和负数例题与讲解 试题

七年级数学上册 第1章1.1 正数和负数例题与讲解  试题

1.1 正数和负数1.相反意义的量(1)生活中存在大量具有相反意义的量生活中,有许许多多具有相反意义的词语,例如向东和向西、西北和东南、向前和向后、向左和向右、上升和下降、零上和零下、收入和支出、盈利和赔本、买进和卖出等.生活中存在着数不清的具有相反意义的量,如前进3 m与后退5 m,收入300元与支出80元等.(2)具有相反意义的量的特点①具有相反意义的量是成对出现的,单独一个量不能成为相反意义的量;②与一个量成相反意义的量不止一个,如与上升2 m成相反意义的量就很多,如:下降1 m,下降0.2 m等;③相反意义的量包含两个要素:一是它们的意义相反;二是它们都具有数量.如前进8 m与前进5 m,上升与下降都不是相反意义的量,因为前者意义不相反,后者缺少数量;④相反意义的量中的两个量必须是同类量,如节约汽油3吨与浪费1吨水就不是具有相反意义的量.(3)应用方法相反意义的量可用正数和负数表示.至于哪一种量为正,可以自由确定,当一个量用正数表示时,与其相反意义的量就用负数表示,反之亦然.习惯上把“前进、上升、零上温度、增加〞等规定为正,而把“后退、下降、零下温度、减少〞等规定为负.谈重点对相反意义的量的理解表示相反意义的量必须具有相反的意义,且数量必须带单位.表示相反意义的量的数值可以不同.【例1-1】添上恰当的词,使前后构成具有相反意义的量.(1)库存增加1 000千克与________500千克;(2)商店买进50支铅笔与________20支铅笔;(3)股票上涨a元与__________b元.解析:所填的词必须使前后的量具有相反的意义.增加与减少、买进与卖出、上涨与下跌分别具有相反的意义.答案:减少卖出下跌【例1-2】 (1)假如零上3 ℃记为+3 ℃,那么-8 ℃表示的意义是__________;(2)假如下降3米记为-3米,那么上升5米应记为__________;(3)假如前进5千米,记为+5千米,那么后退6千米应记为__________;(4)支出10元人民币记账为-10元,那么+20元表示的意义是__________;(5)某仓库运出货物20千克记为-20千克,那么运进35千克货物应记为__________.解析:(1)零上3 ℃记作+3 ℃,即“+〞号表示“零上〞,那么与它相反意义的量“零下〞就记作“-〞;(2)本小题的“-〞号表示“下降〞,因此,“上升〞应记为“+〞,也就是说,具有相反意义的两个量,把其中的一个规定为正时,那么另一个即为负;(3)~(5)小题类似.答案:(1)零下8 ℃(2)+5米(3)-6千米(4)收入20元人民币(5)+35千克析规律正数、负数的实际应用此题中的“零上、上升、前进、收入、运进〞表示的量均为正数,与它们意义相反的量那么都用负数表示.(1)正数的概念:为了表示某一问题中具有相反意义的两种量,我们把其中一种意义的量,如零上温度、高于海平面高度等规定为正的,用原来熟悉的数如1,6,7,9,8 844来表示它们,这样的数叫做正数.正数的前面也可添上正号“+〞,如+1,+5,+16,通常情况下,正数前的正号可略不写.(2)负数的概念:把与正数相反意义的量,如零下温度、低于海平面高度等规定为负的,用在正数前面添上负号“-〞的数,如-3,-14,-155来表示它们,这样的数叫做负数.(3)关于正数和负数的几点说明①正数前面的“+〞号可以略,如+3前面的“+〞号可略不写;负数前面的“-〞号不能略,如负5写作-5.②正数和负数是相对而言的,取决于作为基准的量,但一般情况下,人们习惯这样来规定正数和负数:收入为正,支出为负;零上为正,零下为负;高出海平面高度为正,低于海平面高度为负.③判断一个数是否是负数,关键是看是否正数前面带有“-〞号,而不是看它是否有“-〞号.辨误区 正、负数的意义对于正数和负数的意义,不能简单地理解为带“+〞号的数是正数,带“-〞号的数是负数.而应该理解为“所有大于零的数都是正数,所有小于零的数都是负数〞.【例2】 指出以下各数中,哪些是正数?哪些是负数?-2,+213,315,204,-0.02,+3.65,-517. 分析:根据正数和负数的意义来判断,尤其要弄明白负数的意义:在正数前面加上“-〞号.解:正数是:+213,315,204,+3.65; 负数是:-2,-0.02,-517. 3.零的意义(1)0既不是正数,也不是负数,是我们认识的数中唯一的一个“中性数〞.(2)0比任何正数小,比任何负数大,它是正数与负数的分界.(3)0在计数时表示“没有〞.(4)0是表示具有相反意义量的基准数.此时它不能表示没有.例如:海拔0米的地方表示它与基准的海平面一样高,收支平衡可记作0元. 辨误区 正确判断字母表示的数的性质要特别注意:“大于0〞是正数的本质,当用字母表示数时,不能只看带不带“+〞号,不要误认为“a〞前面是正号就是正数,也不要以为“-a〞前面带有“-〞号就是负数,关键是看这个数是不是大于0.【例3】以下说法正确的选项是( ).A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数解析:根据正数和负数的概念,对选项进展一一分析,排除错误答案.0既不是正数,也不是负数.只有B符合.答案:B4.有理数(1)有理数的概念整数包括正整数、零和负整数;分数包括正分数和负分数;整数和分数统称为有理数.(2)有理数的分类①有理数可以按照它的定义分为整数和分数两类.即②有理数还可以按照性质分为:正有理数、零和负有理数三类.即谈重点 有理数的分类既是正数又是整数的数是正整数,既是负数又是整数的数是负整数,既是正数又是分数的数是正分数,既是负数又是分数的数是负分数.【例4】 把以下各数填在相应的横线上:-35,0.7,80,-1909,-0.88,0,3.14,-7.9,234,13,3,-10. 正整数_______________________________________________________________; 正分数_______________________________________________________________; 负整数_______________________________________________________________; 负分数_______________________________________________________________. 解析:先把有理数分为正数和负数两类,再把正数分为正整数和正分数两类,把负数分为负整数和负分数两类,分别填写上在相应的横线上.答案:80,234,3 0.7,3.14,13 -35,-10 -19095.正确理解具有相反意义的量的意义在实际生活中,常常把零上温度、上升的高度、收入、买入物品等规定为正,而把与它们意义相反的量规定为负,用负数表示.引入负数后,“0〞不再仅仅表示没有,而是正数和负数的分界,具有初始位置的意义.(1)相反意义的量基准明确就是说变化过程方向明确,数量明确,不受其他数的影响,也不用关心起始点,此类问题只要规定好一个方面为正,那么另一个方面为负就可以.(2)相反意义的量基准不明确有些数据型的量,起点不是以0开场的,那么需要把某一个数值视为基准点0,如平均数等,以这个基准值为界,以上的记为“+〞,以下的记为“-〞.把具有相反意义的量的表示方法和取“HY〞(或者“起始〞位置)等知识结合在一起,综合性较强,是近几年中考的热点之一.【例5-1】某项科学研究,以45分钟为一个时间是单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等.依次类推,上午7:00应记为( ).A.3 B.-4解析:此题中的HY是上午10时为0,表示方法是10时以前记为负,10时以后记为正,要求用新规定来表示7:00.7:00到10:00是180分钟,180÷45=4,因为7:00在10:00以前,所以7:00应记为-4.答案:B【例5-2】一个物体可以左右挪动,假设规定向右挪动为正,那么向右挪动10 m应记作__________,向左挪动4 m应记作__________,-8 m表示物体__________,0 m表示物体__________,向左挪动-2 m就是向__________挪动2 m.解析:正、负数可以表示具有相反意义的量,假设向右记为“正〞,那么向左那么记为“负〞;或者者说假设正数表示向“右〞,那么负数表示向“左〞,零表示不动.答案:+10 m -4 m 向左挪动8 m 原地不动右【例5-3】小王骑车向东走了10千米,又向西走了5千米.怎样用正负数表示?解:假设规定向东为正,那么小王骑车向东走了10千米,表示为+10千米,向西走了5千米,可表示为-5千米;假设规定向西为正,那么小王骑车向东走了10千米,表示为-10千米,向西走了5千米,可表示为+5千米.有理数有两种根本的分类方法,一种分类根据定义,另一种分类根据数的符号,即有理数的性质.不管哪种分类形式都要有明确分类的根据,分类时要做到不重不漏,两种分类形式不能混淆.必须弄清楚非负数和非正数的范围.正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.注意:①“小数〞属于分数;“自然数〞属于整数.②在所有含“正〞“负〞字眼的数集中,都不能出现“0”.因为“0”既不是正数也不是负数.【例6】 把以下各数填在相应的括号内:-3,2,-1,-14,-0.58,0,-3.141 592 6,0.618,139,5.23. 整数:{ …};负数:{ …};分数:{ …};非负有理数:{ …};负分数:{ …}.答案:整数:{-3,2,-1,0,…};负数:⎩⎨⎧⎭⎬⎫-3,-1,-14,-0.58,-3.141 592 6,…; 分数:⎩⎨⎧⎭⎬⎫-14,-0.58,-3.141 592 6,0.618,139,5.23,…; 非负有理数:⎩⎨⎧⎭⎬⎫2,0,0.618,139,5.23,…; 负分数:⎩⎨⎧⎭⎬⎫-14,-0.58,-3.141 592 6,….7.正负数在实际生活中的应用(1)在股票交易中的应用日常生活中水位的变化,HY 行情变化,温度升降等都可以用正数和负数表示,不仅能表示出变化的方向,而且还能表示出变化幅度的大小.例如:在HY 上,上涨记为“+〞,下跌记为“-〞,不涨不跌记为“0〞.(2)在产品检测中的应用某一产品质量是否合格,都有一定的指标数值,而实际消费的产品,可能在这一HY上下波动,波动值在规定的范围内称为合格,超出了规定值,那么不合格,某粮店出售的某种品牌的面粉袋上标有质量为(25±0.2) kg的字样,从中可以看出,在这袋面粉中,最多可以超出HY质量0.2 kg,最低低于HY质量0.2 kg,它的HY值是25 kg.一般把产品的HY值记为0,在HY值以上的记为正,以下的记为负.解技巧根据HY数确定正、负数抓住HY数,HY以上记为“+〞,HY以下记为“-〞,即比HY数量多多少记为“+〞的多少,少多少记为“-〞的多少.【例7-1】 HY有风险,HY须慎重,王先生上周五买进某种股票3 000股,每股16元,下表为本周五个交易日的涨跌情况(单位:元):分析:根据股票交易表示法,正数表示上涨,负数表示下跌.解:周一、周二、周五这三天是上涨的,周三、周四是下跌的.【例7-2】某品牌奶粉HY质量是454克,超出2克的记为+2克,假设低于HY质量3克以上,那么视为不合格.现抽取10袋进展检测,结果如下:(2)质量最大的是哪袋,实际质量是多少?(3)质量最小的是哪袋,实际质量是多少?分析:此题是在基准数的根底上波动,所以在基准数的根底上加减.解:(1)有3袋不合格,分别是第4袋、第6袋和第9袋.(2)质量最大的是第7,8袋,实际质量均是454+4=458(克);(3)质量最小的是第6,9袋,实际质量均为454-5=449(克).,当数的范围扩大到有理数之后,按一定的规律排列有理数,就成为考察有理数的意义以及分类的有效手段,并且成为中考命题的热点.研究数学、学习数学、应用数学的过程,实际上就是探究、研究数学规律并运用数学规律的过程.解决此类问题的关键是建立数与它的序号之间的关系,其中数的符号是首先要考虑的,数的符号一般由数的序号的奇、偶性来决定.对于数字规律性问题,我们要注意观察各局部数字的变化规律以及各数字之间的关系.解这一类题目,要用到归纳推理,它是一种重要的数学思想方法.数学史上有很多重要的发现如哥德巴赫猜测、费尔玛大定理等就是由数学家的探究、猜测而得到的,学习数学必须不断去探究、猜测、总结规律,才会有所发现,有所创造.【例8】 观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的三个数,并说出第99个数是什么?第2 013个数是什么?(1)1,-1,1,-1,1,-1,1,-1,__________,__________,__________,…;(2)1,-2,3,-4,5,-6,7,-8,__________,__________,__________,…;(3)-1,12,-13,14,-15,16,-17,__________,__________,__________,…. 分析:(1)(2)小题全部是按正数、负数、正数、负数……的规律排列的一组整数,(1)去掉数的符号后是1,(2)去掉数的符号后是按顺序排列的自然数;(3)是按负数、正数、负数、正数……的规律排列的一组分数,其分母是按顺序排列的自然数,即分母就是数的序号,分子是1.解:(1)1,-1,1,第99个数是1,第2 013个数是1;(2)9,-10,11,第99个数是99,第2 013个数是2 013;(3)18,-19,110,第99个数是-199,第2 013个数是-12 013. 谈重点 寻找数字规律的方法仔细观察数字以及它的符号的特点,把数和它的序号建立联络,特别注意其中符号确实定方法.励志赠言经典语录精选句;挥动**,放飞梦想。

2019年中考数学专题复习第1讲《实数及有关概念》(含详细参考答案)

2019年中考数学专题复习第1讲《实数及有关概念》(含详细参考答案)

2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。

2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。

3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。

4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。

(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。

知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。

2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。

3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。

知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。

高一数学必修一 第一章 知识点与习题讲解

高一数学必修一 第一章 知识点与习题讲解

精心整理必修1第一章集合与函数基础知识点整理第1讲§1.1.1集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1.把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2.集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{}”括起来,基本形式为{*N 或N +N ,2-解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量.在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .解:化方程212x a x +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是=0,得94a =-,此时的解为12x =,合.x =a =1x =-⑶方程有一解为x =代入得a =1x =+,合. 综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示.注意分式方程易造成增根的现象.包含包含A 的元,记作B A =,则A B A =,则¤例题精讲:1】用适当的符号填空:){菱形}{平行四边形等腰三角形}{等边三角形,;,∈,,. (). 两A =易知B ≠A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =.若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要忘记“∅”,因为A =∅时存在A B ⊆.从而需要分情况讨论.题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0,所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去. 若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0,即(x -1)(2x +1)=0.又x ≠1,所以只有1x =-. A B (读作“A B (读作“,()U B AB ð.{|3A B x =()U A B =【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ;(2)()A A B C ð.解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0A C BC =------.∴()A A C B C {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.A-13 5 9 x解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C AB ,()UC AB ,()()U U C A C B ,()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}AB =,则(){1,2,3,4,6,7,9}UC AB =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,()U C B =由计算结果可以知道,()()U U C B C AB =,()()U U C B C AB =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果可用Venn 图研究()()()U U U C A C B C AB =与()()()U U U C A C B C AB =,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.4讲§1.1.3集合的基本运算(二):掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中)()()U U U C B C A C B =,()()()U U U C A B C A C B =.2.集合元素个数公式:()()()()n ABn A n B n A B =+-.3.在研究集合问题时,常常用到分类讨论思想、数形结合思想等.也常由新的定义考查创新思维¤例题精讲:}{}21,,9,5,1a B a a -=--,若{}9A B =,求实数{}9B =,则有:={9, 0, 4}-,不合题意,故舍去;不合题意,故舍去;P 14B组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =;当4a =时,{3,4}A =,则{1,3,4}AB =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}AB a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论.罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=},B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a 的值.解:先化简集合A ={4,0}-.由AB =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用.通过深刻理解集合表示法的转换,及集合之集合B =,UC x A ∉且:根据题意可知,{|B x x -={1,3,4,7,8}=()U C B .进一步体会函数是描述变量之间的依赖关系的重要数学模型,了解构成函数的要素,B y =). 3.决定函数的三个要素是定义域、值域和对应法则.当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域:(1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-;(2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠.所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+.所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+.求:(1)(2)f 的值;(2)()f x 的表达式素(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -. 又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x)=33x x-+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵0(,1)∈-∞,∴f(0)=,∴f3-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-;(教材P 26练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|x x y x -≥⎧=-=⎨.区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasingfunction ).仿照增函数的定义可定义减函数.2.如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间.在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2).由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3.判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2)→判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <.则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设任意12,x x R ∈,且12x x <.则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.b b0<,即(f得到f ¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质.能利用单调性求函数的最大(小)值.¤知识要点:1.定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x =M .那么,称M 是函数()y f x =的最大值(MaximumValue ).仿照最大值定义,可以给出最小值(MinimumValue )的定义.2.配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224(24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac b a-.3.单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4.图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值. 解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件.现在他采用提高解10(10)x -件,所赚得的利润为8)[10010(10)]x --.即2280160010(x +-=-时,max 360y =所以,他将售出价定为14元时,才能使每天所赚得的利润最大,最大利润为】求函数21y x x =+-的最小值解在t ≥(解(作出函数的图象,由图可知,[3,3]y ∈-.所以函数的最大值为3,最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析.含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究.分段函数的图象注意分段作出.第9讲§1.3.2函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质.理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1.定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(evenfunction ).如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(oddfunction ).2.具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-;(2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()(()f x x x f x x x-=--=--=--,所以为奇函数..2(3f a 又∵()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减. 又(0)(0)f f -=-,解得(0)0f =,所以()f x 的图象在R 上递减. ∵22(33)(32)f a a f a a +-<-, ∴223332a a a a +->-,解得1a >.点评:定义在R 上的奇函数的图象一定经过原点.由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是(),B ∈A B B A B C A C U U D.B C A C U U11.下列函数中为偶函数的是()A .x y =B .x y =C .2x y =D .13+=x y12.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是()A .0B .0或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.19.x )在R 20.};)],1=f 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19..解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1. 当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称, ∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-. .。

2014-2015中考数学总复习-第一轮-第一章 第1讲 实数的相关概念

2014-2015中考数学总复习-第一轮-第一章 第1讲 实数的相关概念

思路分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法 保留有效数字,要在标准形式 a × 10n中 a 的部分保留,从左边第一个不为 0 的 数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.
答案:B。 39 360=3.936×104≈3.94×104
方法指导:用科学记数法表示的数必须满足a×10n(1≤|a|<10,n为整数,表示时 关键要正确确定a的值以及n的值。)的形式;求近似数时注意看清题目要求和单位 的换算;查有效数字时,要从左边第一个不是0的数开始数起,到精确到的数位 为止,所有的数字都叫做这个数的有效数字。

D. -a-2.5
思路分析: ( 1 )因为绝对值符号里面的 a - 2.5 是负 数,去掉绝对值之后,结果为它的相反数, 所以答案为 2.5 - a ,故答案选 B . ( 2 )由题中的图可知, |a - 2.5| 表示的意义是数 a 与数 2.5 所表示的两点 之间的距离,而这两点之间的距离为 2.5 - a ,故答案选 B . 答案: B. 方法指导:解决绝对值的问题通常有两种思路,一是根据绝对值的计算法则去掉 绝对值;二是根据绝对值的几何意义直接计算.
4.绝对值:数轴上表示数 a的点与 原点 的距离叫做数a 的绝对值。即一个正数的
绝对值是它 本身 ;0的绝对值是 0 ;一个负数的绝对值是它的 相反数 。
a ( a>0 ) 即│a│= 0 ( a=0 ) -a ( a<0 )
n a 10 5.科学记数法:把一个数表示成 的形式,其中1≤ │a│ <10的数,n是
考点即时练 3.如图,数轴上表示数-2的相反数的点是( A.点P B.点Q C.点M D.点N )
答案: A 4.(2013张家界)﹣2013的绝对值是( A.﹣2013 B. 2013 C. ) D.﹣

必修1 第一章 第1讲

必修1 第一章 第1讲

变化 与发生这一变化所用_____ 时间 的比值 1.定义:物体速度_____
Δv 2.定义式:__________ Δt a
速度变化 的方向相同 3.方向:与_________ 变化快慢 和_____ 方向 的物理量 4.物理意义:描述速度_________
1.速度、速度变化量和加速度的对比
2.加速度与速度的关系
【解析】选D.位移是从初位置指向末位置的有向线段,路程是
运动轨迹的长度,故赛车手的位移为9 km,路程为15 km,A、B
错误;整个过程中赛车手的平均速度为
v s 9 km / h t 5 / 60
=108 km/h,C错误;车内速率计指示的速率为汽车通过某位置
的瞬时速率,D正确.
考点3
加速度
(1)加速度即为速度的变化率.
(2)加速度的大小与物体的速度及速度变化量无必然联系 .
【自主解答】选B.质点运动的加速度为零时,质点的速度变化
为零,但速度不一定为零,A错误;质点速度变化率即为加速度, B正确;质点在某时刻的加速度不为零,其速度可能为零,如自 由落体的物体在开始下落的瞬间, C错误;质点的速度变化 Δv=a·Δt,即速度的变化由质点的加速度和时间共同决定, D 错误.
路”等,都是突出主要因素,忽略次要因素而建立的物理模型.
【变式训练】下列情况的物体,哪些可看做质点(
)
A.放在地面上的木箱,在上面的箱角处用水平推力推它,木箱
可绕下面的箱角转动
B.放在地面上的木箱,在其外壁的中心处用水平推力推它,木
箱在地面上滑动 C.做花样滑冰的运动员 D.研究钟表时针的转动情况
t
热点考向3
加速度与速度的关系
)
【例证3】对于质点的运动,下列说法中正确的是( A.质点的加速度为零,则速度为零,速度变化也为零 B.质点速度变化率越大,则加速度越大

2024年高考数学一轮复习第1章第1讲:集合(附答案解析)

2024年高考数学一轮复习第1章第1讲:集合(附答案解析)

第1页共23页2024年高考数学一轮复习第1章第1讲:集合学生版考试要求 1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn
图表示集合间的基本关系和基本运算.知识梳理
1.集合与元素
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.
(3)集合的表示法:列举法、描述法、图示法.
(4)常见数集的记法集合
非负整数集(或自然数集)正整数集整数集有理数集实数集符号N N *(或N +)Z Q R
2.集合的基本关系
(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合B 的子集,记作A ⊆B (或B ⊇A ).
(2)真子集:如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A 是集合B 的真子集,记作A B (或B A ).
(3)相等:若A ⊆B ,且B ⊆A ,则A =B .
(4)
空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.
3.集合的基本运算表示
运算
集合语言图形语言记法并集{x |x ∈A ,或x ∈B }A ∪B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 数与式 第1讲 实 数 (建议用时∶45分钟)
一、选择题
1.(2019·十堰)下列实数中,是无理数的是( D ) A .0 B .-3 C .1
3 D .3
2.(2019·荆州)下列实数中最大的是( D ) A .32
B .π
C .15
D .|-4|
3.(2019·广东)化简42的结果是( B ) A .-4 B .4 C .±4
D .2
4.(2019·荆门)-2的倒数的平方是( B ) A .2 B .1
2
C .-2
D .-12
5.(2019·广东)实数a ,b 在数轴上的对应点的位置如图所示 ,下列式子成立的是( D )
A.a>b B.|a|<|b|
C.a+b>0 D.a
b<0
6.(2019·北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(C)
A.0.439×106B.4.39×106
C.4.39×105D.439×103
二、填空题
7.(2019·安顺)若实数a,b满足|a+1|+b-2=0,则a+b= 1 .
8.(2019·台州)若一个数的平方等于5
9.(2019·益阳)国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿.将180 000 000用科学记数法表示为1.8×108.
10.(2019·岳阳)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已
知条件,可求得该女子第一天织布5
31尺.
三、解答题
11.(2019·孝感)计算:|3-1|-2sin 60°+⎝ ⎛⎭⎪⎫16-1+3
-27.
解:原式=3-1-2×3
2
+6-3 =2.
12.(2019·张家界)计算:(3.14-π)0+|2-1|-2cos 45°+(-1)2019. 解:原式=1+2-1-2×2
2-1 =-1.
13.(2019·岳阳)计算:(
2-1)0-2sin 30°+⎝


⎪⎫13-1+(-1)2019. 解:原式=1-2×1
2+3-1
=1-1+3-1 =2.
14.(2019·毕节)计算:⎪⎪⎪⎪⎪⎪
-12+(-1)2019+2-1-(2-2)0+2cos 45°.
解:原式=12-1+12-1+2×2
2
=2-1.
一、选择题
1.(2019·舟山)如图是一个2×2的方阵,其中每行、每列的两数和相等,
则a 可以是( D )
A .tan 60°
B .-1
C .0
D .12019
2.(2019·威海)计算(12-3)0+
27-⎝ ⎛⎭⎪⎫-33-1的结果是( D )
A .1+
8
3
3 B .1+23 C . 3
D .1+43
3.(2019·烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1 ns =0.000 000 001 s ,该计算机完成15次基本运算,所用时间用科学记数法表示为( C )
A .1.5×10-9 s
B .15×10-9 s
C .1.5×10-8 s
D .15×10-8 s
二、填空题
4.(2019·随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为 2 和 9 .
5.(2019·遂宁)阅读材料:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:
计算:(4+i)+(6-2i)=(4+6)+(1-2)i=10-i;
(2-i)(3+i)=6-3i+2i-i2=6-i-(-1)=7-i;
(4+i)(4-i)=16-i2=16-(-1)=17;
(2+i)2=4+4i+i2=4+4i-1=3+4i.
根据以上信息,完成下列计算:
(1+2i)(2-i)+(2-i)2=7-i.
三、解答题
6.(2019·遂宁)计算:(-1)2019+(-2)-2+(3.14-π)0-4cos 30°+|2-12|.
解:原式=-1+1
4+1-4×
3
2+23-2
=-1+1
4+1-23+23-2
=-7 4.
7.(2019·自贡)阅读下列材料:
小明为了计算1+2+22+…+22017+22018的值,采用以下方法:
设S =1+2+22+…+22017+22018,① 则2S =2+22+…+22018+22019,② ②-①,得2S -S =S =22019-1, ∴S =1+2+22+…+22017+22018=22019-1. 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;
(3)求1+a +a 2+…+a n 的值(a >0,n 是正整数,请写出计算过程). 解:(1)210-1.
【提示】设S =1+2+22+…+29,① 则2S =2+22+…+210,② ②-①,得2S -S =S =210-1, ∴S =1+2+22+…+29=210-1. (2)311-32
.
【提示】设S =3+32+33+34+…+310 ,① 则3S =32+33+34+35+…+311,② ②-①,得2S =311-3, ∴S =311-32
.
(3)设S =1+a +a 2+a 3+a 4+…+a n ,① 则aS =a +a 2+a 3+a 4+…+a n +a n +1,② ②-①,得(a -1)S =a n +1-1, 当a =1时,原式等于n +1; 当a ≠1时,S =a n +
1-1
a -1
.
∴1+a +a 2+a 3+a 4+…+a n 的值为n +1或a
n +1-1a -1
.。

相关文档
最新文档