解一元一次方程(二)练习题及答案(通用)

合集下载

七年级上册数学同步练习题库:解一元一次方程(二)——去括号与去分母(计算题:全部)

七年级上册数学同步练习题库:解一元一次方程(二)——去括号与去分母(计算题:全部)

1、解下列方程:(1)3(x﹣2)=x﹣(7﹣8x);(2)2、解方程:1)3、解方程:(1)5、(2015 秋?孝义市期末)解方程:=6、(2015?重庆模拟)解方程:2﹣= .7、解方程:(1)(2)解一元一次方程(二)去括号与去分母(计算题:全部)2)8、解方程1)9、3(x-1)=5x+410、(本题12 分)解下列方程(1)(2)11、解方程:12、解方程:13、解方程(1) 3 -2=4+514、解方程:1)15、解方程:1);2)16、(2015 秋?鞍山期末)解方程:①2(x﹣2)﹣9(1﹣x)=3(4x﹣1)②= +2.17、解方程:(1)3 -2=4+518、解方程(1)(2)19、解方程(或解比例)(每题4分,共12 分)(1)1.8x—0.6x=62) 7x+2 .9=53) =20、(2015 秋?禹州市期末)解方程:(1)x﹣(7﹣8x)=3(x﹣2)(2)﹣=2﹣.21、(本小题 5 分)解方程:22、解方程:(1)8-5x =x +223、(每小题 5 分,共 10 分)2)的解.25、解方程: |x ﹣ 2|+|x ﹣ 3|=2.26、解方程:(1)(2)(3)27、解方程:2) 解不等式组:28、解方程:2) y - =2-24、已知关于 的方程: 与 有相同的解,求关于的方程 29、解方程:30、解方程1)3x+7=32﹣2x2)8x=﹣2(x+4)31、(2015 秋?岳池县期末)解方程:8(x+3)=3(x﹣2)32、(2015 秋?微山县期末)阅读下列材料:现规定一种运算:=ad﹣bc.按照这种规定的运算,请解答下列问题:1)= (只填结果);33、(2012秋?盱眙县校级期末)已知关于x 的方程的解互为倒数,求m 的值.34、计(每题 3 分,共18①化简:例如:=1×4﹣2×3=4﹣6=﹣2;=4x ﹣(﹣2)×3=4x+6 .2)已知:=1.求x 的值.(写出解题过程)3)﹣=1③;④7a+3(a-3b)-2(b-3a);解方程:⑤2(3x+4 )-3(x-1 )=3;⑥2x-3 (10-2x )=6-4(2-x).35、计算(每题 4 分,共161)解方程:4(2-x)-3(x+1)=62)解方程:3)解方程组:4)解方程组36、- -[12-4 (-1)]=037、(2015 秋?藁城区期末)用“☆ ”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆ 3=1×32+2×1×3+1=16.(1)求(﹣2)☆ 3的值;(2)若(☆3)☆ (﹣)=8,求a的值;(3)若2☆ x=m ,(x)☆ 3=n (其中x 为有理数),试比较m,n 的大小.38、解方程:(1)2)参考答案1、(1)x= ;(2)y=2.2、(1)、x=3 ;(2)、x=-3.3、(1)x=-;(2)4、解:整理,得:去分母,得:7(17-20x)=3 ×10x-21 ,去括号,得:119-140x=30x-21 ,移项,得:30x+140x=119+21 ,合并同类项,得:170x=140 ,系数化为1,得:x= .5、x=26、x=17、(1)x=-10;(2)x=-138、(1);(2)9、解:3x-3=5x+4 3x-5x=4+3-2x=7X=-3.51)x =1;( 2)x =-1(1)、x=-3;(2)、x=41) x=6;( 2)x=-1.1) ;( 2)① x=﹣10;② x=﹣ 13.1)x=-3;( 2)x=41)1;( 2) .1) x=5 ;( 2)x=0 . 3;(3)x=2. 1)x= ;( 2)x= .10、 11、12、13、 14、 15、 16、 17、 18、 19、 20、21、x=-3.22、x="1" y=23、(1);(2).24、y=-25、x= ,x=25、x= ,x=26、(1)x="1 ;(2)x=" -4 ;(3)x=27、28、x=﹣29、(1)x=7 是原方程的解;(2)原不等式组的解集为1≤x< 430、(1)x=5 ;(2)x= ﹣0.8;(3)x=6;(4)x= .31、x=﹣632、(1)4;(2)x=033、m=﹣.34、① -20;② 2.5;③;④ 16a-11b;⑤ x= ;⑥ x=7.35、1)3)4)36、解:去括号,得:4x-8-16+20x=0 ,移项,得:4x+20x=8+16 ,合并同类项,得:24x=24 ,系数化为1,得:x=137、(1)﹣32;(2)a=3;(3)m>n.38、(1)x=0(2)x=解析】1、试题分析:(1)按照去括号,移项合并,把x系数化为 1 的步骤解方程即可;(2)按照去分母,去括号,移项合并,把y 系数化为 1 的步骤解方程即可.试题解析:(1)去括号得:3x ﹣6=x ﹣7+8x ,移项合并得:6x=1 ,解得:x= ;2)去分母得:9y﹣6=24 ﹣20y+28 ,移项合并得:29y=58 ,解得:y=2 .考点:解一元一次方程.2、试题分析:(1)、首先进行去括号,然后进行移项、合并同类项、最后进行求解;(2)、首先进行去分母,然后去括号、移项合并同类项,最后进行求解.试题解析:(1)、4x+2+x=17 5x=15 解得:x=3(2)、2(2x+1)-(5x-1)=6 4x+2 -5x+1=6 -x=3 解得:x=-3 考点:一元一次方程的解法.3、试题分( 1 )首先进行去括号,然后进行移项合并同类项计算;( 2 )首先方程左两边同乘以分母的最小公倍数将分母去掉,然后进行去括号,移项合并同类项计算.试题解析:(1)4x-4-1=3x -6解得:x= -1(2)6x-2(3x+2 )=6-3(x-2)6x-6x -4=6-3x+6 3x=16解得:考点:一元一次方程的解法.4、试题分析:先将小数系数化为整数系数,然后按照解方程的步骤求解即可.考点:一元一次方程的解法点评:此题考查的是一元一次方程的解法,解决此类方程要先根据分数的基本性质化小数系数为整数系数后再按解方程的步骤进行计算.5、试题分析:方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.解:去分母得:4(2x﹣1)=3(x+2 ),去括号得:8x﹣4=3x+6 ,移项合并得:5x=10 ,解得:x=2 .考点:解一元一次方程.6、试题分析:先去分母,再去括号、移项、合并同类项、系数化为解:去分母得,12﹣2(2x+1 )=3(1+x),去括号得,12﹣4x﹣2=3+3x ,移项得,﹣4x﹣3x=3 ﹣12+2,合并同类项得,﹣7x=﹣7,系数化为 1 得,x=1 .考点:解一元一次方程.7、试题分析:(1)首先根据去括号的法则将括号去掉,然后进行移项合并同类项求出x 的值;(2)首先根据等式的性质进行去分母,然后根据去括号的法则将括号去掉,最后进行移项合并同类项求出x 的值.试题解析:(1)去括号得:2x-4-9+9x=12x-3 移项得:2x+9x -12x= -3+4+9 解得:x=-10(2)去分母得:2x=3x+1+12 移项得:2x-3x=1+12 解得:x=-13 考点:解一元一次方程8、试题分析:(1)将方程移项,合并同类项,未知数系数化为1,即可求出方程的解;(2)将方程去分母,移项,合并同类项,未知数系数化为1,即可求出方程的解.9、试题分析:先去括号,不要漏乘,在移项,最后系数化为 1.考点:解一元一次方程点评:解一元一次方程的步骤,应熟记,不要犯漏乘的错误。

3.3解一元一次方程(二)去括号去分母-2021-2022学年七年级上学期同步课时训练(含答案)

3.3解一元一次方程(二)去括号去分母-2021-2022学年七年级上学期同步课时训练(含答案)

同步课时训练-2021-2022学年七年级数学人教版上册 (广东地区)3.3解一元一次方程(二)去括号去分母一、单选题(在下列各题的四个选项中,只有一项是符合题意的.本题共8个小题)1.(2021·桥柱中学七年级期末)下列方程变形中,正确的是( )A .方程125x x -=去分母,得()512x x -= B .方程()3251x x -=--去括号,得3251x x -=--C .方程3221x x -=+移项,得3212x x -=-+D .方程2332t =系数化为1,得1t = 2.(2021·饶平县期末)若方程6322x a +=与方程()5147x x +=+的解相同,则a 的值是( )A .103B .310C .103-D .10 3.(2021·全国九年级专题练习)解方程21101136x x ++-=时,去分母、去括号后,正确的结果是( ) A .411011x x +-+=B .421011x x +--=C .421016x x +--=D .421016x x +-+= 4.(2020·肇庆市地质中学七年级月考)若12m +与273m -互为相反数,则m =( ) A .2 B .-2 C .87 D .87- 5.(2021·广东中山市·)代数式2ax+5b 的值会随x 的取值不同而不同,下表是当x 取不同值时对应的代数式的值,则关于x 的方程2ax+5b=4的解是( )A .12B .4C .-2D .06.(2020·广东广州市·绿翠现代实验学校七年级月考)某工程甲独做8天完成,乙独做12天完成,现由乙先做3天,甲再参加合做.设完成此工程一 共用了x 天,则下列方程正确的是( )A .3128x x ++=1 B .3128x x -+=1 C .128x x +=1 D .33128x x +-+=17.(2018·广东深圳实验学校七年级期末)下列变形中:①由方程125x -=2去分母,得x ﹣12=10; ①由方程29x =92两边同除以29,得x =1; ①由方程6x ﹣4=x +4移项,得7x =0;①由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个.A .4B .3C .2D .18.(2020·广东霞山实验中学七年级开学考试)解方程124362x x x -+--= 步骤如下,开始发生错误的步骤为 ( )A .75x x x +-B .2x -2-x+2=12-3xC .4x=12D .x=3 二、填空题9.(2021·广东七年级期末)小明在做解方程5212x n x --=的过程中,去分母时,方程的右边忘记乘以2,结果他得到的解为2x =,那么n 的值为_________.10.(2020·和平县和丰中学七年级月考)对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________. 11.(2020·全国七年级单元测试)当a =__________时,方程1132ax x a -++=解是1x =? 12.(2020·广东九年级零模)轮船沿江从 A 港顺流行驶到 B 港,比从 B 港返回 A 港少用 3 小时,若船速为 26 千米/小时,水速为 2 千米/时,则 A 港和 B 港相距_____千米.13.(2019·广东七年级期末)在梯形面积公式中1()2S a b h =+中,已知18,2,4===S b a h ,则b =______. 14.(2019·广东七年级期末)已知方程232353x x -=-与关于x 的方程()3132n x n n -=+-的解互为相反数,则n 的值为_____.15.(2020·江门市新会尚雅学校七年级期中)已知关于x 的一元一次方程13102020x x m +=+的解为3x =-,那么关于y 的一元一次方程1(21)310(21)2020y y m •++=++的解为__________.16.(2018·广东)定义新运算:对于任意有理数a 、b 都有a①b=a (a ﹣b )+1,等式右边是通常的加法、减法及乘法运算.比如:2①5=2×(2﹣5)+1=2×(﹣3)+1=-6+1=-5.则4①x=13,则x=_____.三、解答题17.(2020·广州大学附属中学七年级期中)解方程:(1)2(x +1)﹣7x =﹣8; (2)5121136x x +--=.18.(2018·广东广州市·七年级期末)解下列方程:(1)()32421x x -+=- (2)1122525x x x +-+-=-19.(2020·东莞市光大新亚外国语学校七年级期中)用“*”定义一种新运算:对于任意有理数a 和b ,规定22*;1*31310a b a b =+=+=.(1)求(4)*2-的值.(2)若1*(3)12a a +⎛⎫-=-⎪⎝⎭,求a 的值.20.(2020·广州市东江外语实验学校七年级月考)定义一种新运算“⊕”:2a b a ab ⊕=-,比如()()1321135⊕-=⨯-⨯-=.(1)求()23-⊕的值;(2)若()()315x x -⊕=+⊕,求x 的值.21.(2020·广东阳江市·七年级月考)小华在解方程21132x x a -+=-去分母时,方程右边的1-没有乘6,求得的方程的解为2x =.(1)求a 的值.(2)正确地解出原方程.22.(2020·东莞市南开实验学校)一般情况下,2323a b a b ++=+不成立,但有些数是可以成立,例如a=b=0,我们称使得2323a b a b ++=+成立的一对数a 、b 为“相对数对”,记为(a ,b). (1)若(-1,b)是相对数对,求b 的值;(2)若(m ,n)是相对数对且m≠0,求n m的值; (3)若(m ,n)是相对数对,求代数式[]2242(31)3m n m n ----的值.参考答案1.A【思路点拨】根据解一元一次方程的步骤逐项判断即可.【详细解答】A .方程125x x -=去分母,得()512x x -=.故A 正确. B .方程()3251x x -=--去括号,得3255x x -=-+.故B 错误.C .方程3221x x -=+移项,得3212x x -=+.故C 错误.D .方程2332t =系数化为1,得94t =.故D 错误. 故选:A .【方法总结】本题考查解一元一次方程,掌握解一元一次方程的步骤是解答本题的关键. 2.A【思路点拨】先求出方程5(x +1)=4x +7的解,再代入第一个方程中计算,即可求出a 的值.【详细解答】解: 5(x +1)=4x +7,5x +5=4x +7.解得:x =2.将x =2代入方程6x +3a =22中,得:12+3a =22,解得:a =103. 故选:A .【方法总结】此题考查了解一元一次方程,掌握同解方程即为两方程未知数的值相同是解题的关键.3.C【思路点拨】对原方程按要求去分母,去括号得到变形后的方程,再和每个选项比较,选出正确选项. 【详细解答】21101136x x ++-=, 去分母,两边同时乘以6为:()()2211016x x +-+=去括号为:421016x x +--=.故选:C .【方法总结】此题考查解一元一次方程的去分母和去括号,注意去分母是给方程两边都乘以分母的最小公倍数;去括号时,括号前是负号括在括号内的各项要变号.4.C【思路点拨】根据题意列出方程,再解关于m 的方程即可. 【详细解答】解:由题意得,271023m m -++=, 去分母,3m+6+2(2m -7)=0,去括号得,3m+6+4m -14=0,移项合并同类项得,7m=8,系数化为1,得87m =. 故选C .【方法总结】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.5.C【思路点拨】根据表格中的数据确定出a 与b 的值,代入方程计算即可求出解.【详细解答】解:根据题意得:-2a+5b=0,5b=-4,解得:a=-2,b= 4-5, 代入方程得:-4x -4=4,解得:x=-2,故选:C .【方法总结】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.B【思路点拨】根据“乙先做3天,甲再参加合做”找到等量关系列出方程即可.【详细解答】解:设完成此项工程共用x 天,根据题意得:31128x x -+=, 故选B .【方法总结】本题考查的知识点是由实际问题抽象出一元一次方程的知识,解题关键是根据工作量之间的关系列出方程.7.B【思路点拨】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详细解答】①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ①方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故①错误.①方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故①错误.①方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故①错误.故①①①变形错误.故选B .【方法总结】在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.8.B【解析】124362x x x -+--=, ()()()21234,x x x --+=-222123x x x ---=-,3124x x +=+,4x=16,x=4.所以选B.9.1【思路点拨】根据题意得出小明去分母后的方程,然后将x=2代入方程求解.【详细解答】解:由题意可得小明去分母之后的方程为:541x n x --=把2x =代入方程541x n x --=得:21n -=,解得:1n =,故答案为1.【方法总结】本题考查解一元一次方程,正确理解题意列出方程代入计算是解题关键. 10.4【思路点拨】首先看清这种运算的规则,将43 77x x=-转化为一元一次方程,通过去括号、移项、系数化为1等过程,求得x 的值. 【详细解答】解:由题意可得:将43 77x x =-化为:()4377x x --=, 去括号得:42137x x -+=,合并得:728x =,系数化为1得:x=4.故答案为:4.【方法总结】本题立意新颖,借助新运算,实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.11.1【思路点拨】将1x =代入方程,再解一元一次方程即可.【详细解答】由题意,将1x =代入得:11132a a -++= 两边同乘以6得2(1)3(1)6a a -++=去括号得22336a a -++=移项、合并同类项得55a =系数化为1得1a =故答案为:1.【方法总结】本题考查了方程的解、解一元一次方程,掌握方程的解法是解题关键. 12.504【思路点拨】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A 港和B 港相距x 千米,则从A 港顺流行驶到B 港所用时间为262x +小时,从B 港返回A 港用262x -小时,根据题意列方程求解.【详细解答】解:设A 港和B 港相距x 千米,根据题意,得262x ++3=262x -, 解之得x=504.故答案为:504.【方法总结】本题考查了一元一次方程的应用,考验学生对顺水速度,逆水速度的理解,注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系.13.6【思路点拨】将18S =,2b a =,4h =代入公式求出a 的值,即可得到b 的值.【详细解答】将18S =,2b a =,4h =代入公式得:118(2)42=+⨯a a 解得:3a =①26==b a故答案为:6.【方法总结】本题考查了解一元一次方程,将字母的值代入公式得到关于a 的一元一次方程是解题的关键.14.−13【思路点拨】根据解方程,可得x 的值,根据方程的解互为相反数,可得关于n 的方程,根据解方程,可得答案. 【详细解答】解232353x x -=-,得x =9. 由关于x 的方程232353x x -=-与方程3n−1=3(x +n )−2n 的解互为相反数,得 3n−1=3(x +n )−2n 的解为x =−9,将x =−9代入3n−1=3(x +n )−2n ,得3n−1=3(−9+n )−2n .解得n =−13.故n 的值为−13.【方法总结】本题考查了一元一次方程的解,利用方程的解互为相反数的出关于n 的方程是解题关键.15.-2【思路点拨】设2y+1=x ,再根据题目中关于x 的一元一次方程的解确定出y 的值即可.【详细解答】解:设2y+1=x ,则关于y 的方程化为:13102020x x m +=+, ①2y+1=x=-3①y=-2故答案为:-2. 【方法总结】本题考查的知识点是解一元一次方程,若关于x 、y 的方程毫无关系,一般是将x 的解代入关于x 的方程求出m 值,再代入关于y 的方程,求出y 的值.16.1【解析】解:根据题意得:4(4﹣x )+1=13,去括号得:16﹣4x +1=13,移项合并得:4x =4,解得:x =1.故答案为1.17.(1)2x =;(2)38x = 【思路点拨】(1)方程去括号,移项,合并同类项,系数化1即可;(2)方程去分母,去括号,移项,合并同类项,系数化1即可.【详细解答】解:(1)2(x +1)﹣7x =﹣8,去括号,得2x +2﹣7x =﹣8,移项,得2x ﹣7x =﹣8﹣2,合并同类项,得﹣5x =﹣10,系数化1,得x =2;(2)5121136x x +--=, 分母,得2(5x +1)﹣(2x ﹣1)=6,去括号,得10x +2﹣2x +1=6,移项,得10x ﹣2x =6﹣2﹣1,合并同类项,得8x =3,系数化1,得38x =. 【方法总结】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.18.(1)1x =(2)-9x =【思路点拨】(1)去括号、移项合并,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详细解答】解:(1)()32421x x -+=-去括号:36421x x -+=-移项:3-21+2x x =-合并同类项:1x =(2)1122525x x x +-+-=- 去分母:()()()21512022x x x +--=-+去括号:225+5202-4x x x +-=-移项:22520-4-7x x x +-=合并同类项:9x -=系数化为1:-9x =【方法总结】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.(1)0;(2)21.【思路点拨】(1)根据新定义运算的规则进行计算即可得出结果;(2)根据新定义运算的规则先求得11*(3)922a a ++⎛⎫-=+ ⎪⎝⎭,则可由已知建立关于a 的方程,利用解一元一次方程的方法即可求解.【详细解答】解:(1)2(4)*2(4)2(4)40-=-+=-+=;(2)根据题意,得:2111*(3)(3)9222a a a +++⎛⎫-=+-=+ ⎪⎝⎭, ①1*(3)12a a +⎛⎫-=-⎪⎝⎭, ①1912a a ++=-, 解得21a =.【方法总结】本题主要考查了解一元一次方程,掌握一元一次方程的解法并准确理解题目中新定义运算的规则是解题的关键.20.(1)2;(2)12x =. 【思路点拨】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出x 的值;【详细解答】解:(1)2a b a ab ⊕=-,()2∴-⊕()()322232=⨯---⨯=;(2)a ⊕2b a ab =-,()3∴-⊕()()23363x x x =⨯---=-+,()1x +⊕()()5215133x x x =+-+=--,6333x x ∴-+=--, 解得12x =. 【方法总结】此题考查了解一元一次方程,有理数的混合运算,以及代数式求值,弄清题中的新定义是解本题的关键.21.(1)13a =;(2)3x =- 【思路点拨】(1)由题意可得2x =是方程2(21)3()1x x a -=+-的解,然后根据解一元一次方程的方法求解即可;(2)把a 的值代入原方程后,根据解一元一次方程的方法和步骤解答即可.【详细解答】解:(1)由题意可得:2x =是方程2(21)3()1x x a -=+-的解,所以2(221)3(2)1a ⨯-=+-, 解得:13a =; (2)解方程1213132x x +-=-, 去分母,得12(21)363x x ⎛⎫-=+- ⎪⎝⎭,去括号,得42316x x -=+-,移项、合并同类项,得3x =-.【方法总结】本题考查了一元一次方程的解法,正确理解题意、熟练掌握解一元一次方程的方法和步骤是解题的关键.22.(1)94;(2)94-;(3)-2. 【思路点拨】阅读理解题意,理解“相对数对”,在此基础上,对于(1)运用“相对数对”的定义列出方程求解;对于(2)运用“相对数对”的定义列出m 、n 的关系式化简即可;对于(3)用(2)的结论,用m 表示n ,代入到所求代数式中,化简即可.【详细解答】解:(1)由“相对数对”的定义得11235b b --++=,解得94b =; (2)①(m ,n)是相对数对且m≠0 ①把2323a b a b ++=+中的a 、b 分别用m 、n 代换得 2323m n m n ++=+ 化简得94n m =-; (3)由(2)得94n m =-,所以得9n 4m =-代入到[]2242(31)3m n m n ----得 原式=2299()423()1344m m m m ⎧⎫⎡⎤-⨯-----⎨⎬⎢⎥⎣⎦⎩⎭ =3327(42)22m m m m +-++ =33274222m m m m +--- =-2.【方法总结】此题是新定义题型,综合考查解一元一次方程和代数式求值,关键是要理解“相对数对”含义和熟练整式加减运算.。

人教版七年级上册《一元一次方程》应用题分类练习(二)

人教版七年级上册《一元一次方程》应用题分类练习(二)

人教版七年级上册《一元一次方程》应用题分类练习(二)一.打折问题1.列一元一次方程解应用题为喜迎中华人民共和国成立70周年,博文中学将举行以“歌唱祖国“为主题的歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,而且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张,小红旗1面.恰好全部分完,请问贴纸和小红旗各多少袋?(3)在(2)条件下,两家文具店的有优惠如下:A.文具店:全场商品物超过800元后,超出800元的部分打八五折;B.文具店,相同商品,“买十件赠一件”.请问在哪家文具店购买比较优惠?并说明理由.2.这个星期周末,七年级准备组织观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于50人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:50人以上的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有7人可以免票.(I)2班有61名学生,他该选择哪个方案?(II)一班班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的,问你知道一班有几人吗?3.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:购物总金额(原价)折扣不超过5000元的部分九折超过5000元且不超过10000元的部分八折超过10000元且不超过20000元的部分七折…………例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?4.十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?5.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?二.数轴问题6.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?7.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?8.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q 的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t 秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.9.如图,在数轴上点A表示的数为20,点B表示的数为﹣40,动点P从点A出发以每秒5个单位长度的速度沿负方向运动,动点Q从原点出发以每秒4个单位长度的速度沿负方向运动,动点N从点B出发以每秒8个单位的速度先沿正方向运动,到达原点后立即按原速反方向运动,三点同时出发,出发时间为t (秒).(1)点P、Q在数轴上所表示的数分别为:、;(2)当N、Q两点重合时,求此时点P在数轴上所表示的数;(3)当NQ=PQ时,求t的值10.如图,点A在数轴上表示的数是﹣6,点B表示的数是+10,P,Q两点同时分别以1个单位/秒和2个单位/秒的速度从A,B两点出发,沿数轴做匀速运动,设运动时间为t(秒).(1)线段AB的长度为个单位;(2)如果点P向右运动,点Q向左运动,求:①当t为何值时,P与点Q相遇?②当t为何值时,PQ=AB?(3)如果点P,点Q同时向左运动,是否存在这样的时间t使得P,Q两点到A点距离相等?若存在,求出t的值,若不存在,请说明理由.三.行程问题11.一个长跑训练队进行训练,训练时所有队员都以6km/h的速度前进,突然,1号队员以8km/h的速度独自跑进,跑进7km后掉头,仍以8km/h的速度往回跑,直到与其他队员会合,1号队员从离开队伍开始到与队员重新会合,经过了多长时间?12.两辆汽车从相距84km的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?13.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.14.一架在无风情况下航速为696km/h的飞机,逆风飞行一条航线用了3h,顺风飞行这条航线用了2.8h.求:(1)风速;(2)这条航线的长度.15.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?四.工程问题16.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?17.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?18.整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?19.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?20.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元.(1)甲、乙两队合作施工多少天能完成该管线的铺设?(2)由两队合做该管线铺设工程共需支付工程费多少元?(3)根据实际情况,若该工程要求10天完成,从节约资金的角度应怎样安排施工?参考答案1.解:(1)设每袋贴纸为x元,每条红旗为(x+5)元,根据题意列出方程可得:4x=3(x+5),∴x=15,∴x+5=20,答:每袋国旗图案贴纸和每袋小红旗的价格各是15和20元.(2)设购买贴纸y袋,购买小红旗(90﹣y)袋,根据题意可知:=20(90﹣y),∴y=40,∴90﹣y=50,答:购买贴纸40袋,购买小红旗50袋.(3)由(2)知购买贴纸40袋,购买小红旗50袋,因为贴纸每袋15元,红旗每袋20元,∴全部金额为:40×15+50×20=1600,在A文具店的应付金额为:800+800×0.85=1480,在B文具店的应付金额为:37×15+46×20=1475,答:在B文具店购买比较优惠.2.解:(Ⅰ)∵方案一:61×20×0.8=976(元),方案二:(61﹣7)×0.9×20=972(元),∴选择方案二.(Ⅱ)假设1班有x人,根据题意得出:x×20×0.8=(x﹣7)×0.9×20,解得:x=63,答:1班有63人.3.解:(1)5000×+(8000﹣5000)×=6900(元)答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x<10000依题意有:5000×+(x﹣5000)×=57004500+0.8x﹣4000=57000.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m元/台,则有:m(1+14%)=5700解得:m=5000答:这种品牌电脑的进价为5000元/台.4.解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.5.解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=27.25答:办卡购书比不办卡购书共节省27.25元.6.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.7.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.8.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.9.解:(1)当运动时间为t秒时,点P表示的数为20﹣5t,点Q表示的数为﹣4t.故答案为:20﹣5t,﹣4t.(2)当0<t≤5时,点N表示的数为8t﹣40;当t>5时,点N表示的数为﹣8(t﹣5)=40﹣8t.∵当N、Q两点重合,∴8t﹣40=﹣4t或40﹣8t=﹣4t,解得:t=或t=10.当t=时,20﹣5t=;当t=10时,20﹣5t=﹣30.∴当N、Q两点重合时,点P在数轴上所表示的数为或﹣30.(3)依题意,得:|﹣40+8t﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|或|﹣8t+40﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|,解得:t1=,t2=(不合题意,舍去)或t1=,t2=12.答:t的值为或或或12.10.解:(1)∵点A在数轴上表示的数是﹣6,点B表示的数是+10,∴AB=|﹣6﹣10|=16.故答案为:16.(2)当运动时间为t秒时,点P表示的数为t﹣6,点Q表示的数为﹣2t+10.①∵点P与点Q相遇,∴t﹣6=﹣2t+10,解得:t=.答:当t的值为(秒)时,P与点Q相遇.②∵PQ=AB,∴|t﹣6﹣(﹣2t+10)|=×16,即16﹣3t=8或3t﹣16=8,解得:t=或t=8.答:当t的值为或8(秒)时,PQ=AB.(3)当运动时间为t秒时,点P表示的数为﹣t﹣6,点Q表示的数为﹣2t+10.∵PA=QA,∴|﹣t﹣6﹣(﹣6)|=|﹣2t+10﹣(﹣6)|,即t=16﹣2t或t=2t﹣16,解得:t=或t=16.答:存在这样的时间t使得P,Q两点到A点距离相等,t的值为或16(秒).11.解:设经过x小时后1号队员与队员重新会合,依题意得:8x+6x=7×2,解得:x=1,答:经过1小时后,1号队员与队友重新会合.12.解:设乙车的速度为xkm/h,甲车的速度为(x+20)km/h,根据题意得:(x+x+20)=84,解得:x=74,∴74+20=94,则甲车速度为94km/h,乙车速度为74km/h.13.解:设公路长x千米,则海路长(x﹣40)千米,﹣(10﹣7)=,解得x=280,280﹣40=240,答:公路长280千米,海路长240千米;解法二:设汽车行驶x小时,则轮船行驶(x+3)小时,40x=24(x+3)+40,解得x=7.公路长40x=280 千米,海路长24(x+3)=240 千米答:公路长280千米,海路长240千米.14.解:(1)设风速为xkm/h,根据题意得:3(696﹣x)=2.8(696+x)解得:x=24,所以风速为24km/h;(2)航线的长度为3×(696﹣24)=2016km,答:这条航线的长度为2016km.15.解:(1)设乙队追上甲队需要x小时,根据题意得:6x=4(x+1),解得:x=2.答:乙队追上甲队需要2小时.(2)设联络员追上甲队需要y小时,10y=4(y+1),∴y=,设联络员从甲队返回乙队需要a小时,6(+a)+10a=×10,∴a=,∴联络员跑步的总路程为10(+)=答:他跑步的总路程是千米.(3)要分三种情况讨论:设t小时两队间间隔的路程为1千米,则①当甲队出发不到1h,乙队还未出发时,甲队与乙队相距1km.由题意得4t=1,解得t=0.25.②当甲队出发1小时后,相遇前与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)=4×1﹣1,解得:t=2.5.③当甲队出发1小时后,相遇后与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)═4×1+1,解得:t=3.5.答:0.25小时或2.5小时或3.5小时两队间间隔的路程为1千米.16.解:设应先安排x人工作,根据题意得:+=1化简可得:+=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.17.解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.18.解:设具体应先安排x人工作,根据题意得:+=1,即:x+2(x+2)=10,解得:x=2.答:具体应先安排2人工作.19.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.20.解:(1)设甲、乙两队合作施工x天能完成该管线的铺设,由题意得+=1,解得:x=8.答:甲、乙两队合作施工8天能完成该管线的铺设.(2)(2000+1500)×8=28000(元)答:两队合做该管线铺设工程共需支付工程费28000元.(3)∵甲单独做完整个工程需要12×2000=24000,乙单独做完整个工程需要24×1500=36000,∴应该让甲尽量多做,剩下的乙来做.所以甲做10天,乙做4天,总费用26000元,故甲乙合干4天,剩下的甲再干6天完成任务.。

人教版2020年七年级数学上册3.2《解一元一次方程(二)》同步练习(含答案)

人教版2020年七年级数学上册3.2《解一元一次方程(二)》同步练习(含答案)

人教版2020年七年级数学上册3.2《解一元一次方程(二)》同步练习1.方程(2x+1)-3(x-5)=0,去括号正确的是( )A.2x+1-x+5=0B.2x+1-3x+5=0C.2x+1-3x-15=0D.2x+1-3x+15=02.解方程4(x-1)-x=2步骤如下:①去括号,得4x-4-x=2x+1;②移项,得4x+x-2x=4+1;③合并同类项,得3x=5;④化系数为1,得x=.其中错误的一步是( )A.①B.②C.③D.④3.若关于x的方程3x+2b+1=x-(3b+2)的解是1,则b= .4.解方程:(1)4-3(x-3)=x+10; (2)3(2x+5)=2(4x+3)-3.5.解方程=1,去分母正确的是( )A.1-(x-1)=1B.2-3(x-1)=6C.2-3(x-1)=1D.3-2(x-1)=66.解方程:(1)-1=; (2)x-=1.6.解方程=0.1时,把分母化为整数,得( )A.=10B.=0.1C.=0.1D.=107.解方程4.5(x+0.7)=9x,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.58.方程-=-的解是x=( )A. B.- C. D.-9.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多长时间可以追上学生队伍?10.已知关于x的方程2ax=(a+1)x+6,求当a为何整数时,方程的解是正整数.11.若2(a+3)的值与4互为相反数,则a的值为( )A.-1B.-C.-5D.12.下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x+3x=1+4B.由7(x-1)=2(x+3),得7x-1=2x+3C.由0.5x-0.7=5-1.3x,得5x-7=5-13xD.由=2,得2x-2-x-2=1213.在解方程+x=时,方程两边同时乘以6,去分母后,正确的是( )A.2x-1+6x=3(3x+1)B.2(x-1)+6x=3(3x+1)C.2(x-1)+x=3(3x+1)D.(x-1)+x=3(x+1)14.若多项式4x-5与的值相等,则x的值是( )A.1B.C.D.215.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( )A.25B.50C.75D.10016.小明解方程-3,去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,问原方程正确的解为( )A.x=5B.x=7C.x=-13D.x=-117.当x= 时,2x-3与的值互为倒数.18.解方程:(1)5x+2=3(x+2); (2)=5.19.我们来定义一种运算:=ad-bc.例如=2×5-3×4=-2;再如=3x-2.按照这种定义,当时,x的值是多少?20.朱老师驾车从江都出发,上高速公路途经江阴大桥到上海下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到江都.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程如下:甲:4.5x=(4.5-0.5)乙:=10根据甲、乙两名同学所列的方程,可知x表示 ;y表示 ;甲所列方程中的方框内该填 ;乙所列方程中的第一个方框内该填 ,第二个方框内该填 .(2)求江都与上海两地间的高速公路路程.(写出完整的解答过程)21.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198 km,已知游艇在静水中的速度是38 km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多长时间?22.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1 m,4.7 m.请你算出小明1月份的跳远成绩以及每个月增加的距离.23.已知某一铁桥长1 000米,今有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间是40秒.求火车的速度和长度.参考答案1.(D )2.(B )3.-1 .4.解:(1)4-3(x-3)=x+10去括号,得4-3x+9=x+10,移项,得-3x-x=10-9-4合并同类项,得-4x=-3两边同除以-4,得x=.(2)3(2x+5)=2(4x+3)-3去括号,得6x+15=8x+6-3移项,得6x-8x=6-3-15合并同类项,得-2x=-12两边同除以-2,得x=6.5.(B )6.解:(1)去分母,得3(x-1)-12=2(2x+1),去括号,得3x-3-12=4x+2,移项、合并同类项,得-x=17,两边同除以-1,得x=-17.(2)去分母,得30x-7(17-20x)=21,去括号,得30x-119+140x=21,移项、合并同类项,得170x=140,两边同除以170,得x=.7.(B )8.(D )9.(D )10.解:设通讯员需x小时可以追上学生队伍.由题意,得5×+5x=14x,解方程,得x=.答:通讯员需小时可以追上学生队伍.11.解:2ax=(a+1)x+6,去括号,得2ax=ax+x+6,移项、合并同类项,得(a-1)x=6,两边同除以(a-1),得x=.因为方程的解是正整数,所以是正整数,即(a-1)是6的因数,所以a-1的值为1,2,3,6,所以a的值是2,3,4,7.12.(C )13.(D )14.(B )15.(B )16.(C )17.(C )18.3.19.解:(1)去括号得5x+2=3x+6,移项、合并同类项得2x=4,解得x=2.(2)去分母得2x-3(30-x)=60,去括号得2x-90+3x=60,移项、合并同类项得5x=150,解得x=30.20.解:根据运算的规则,,可化为2-2x=(x-1)-(-4)×,化简可得-2x=3,即x=-.21.解:(1)去时的平均速度 从江都到上海的高速公路路程 (x+10) 4.5-0.5 4.5(2)甲的方法:设去时的平均速度为x千米/时,则返回时的平均速度为(x+10)千米/时,则4.5x=(4.5-0.5)(x+10),解得x=80.4.5x=4.5×80=360.答:江都与上海两地间的高速公路路程是360千米.或乙的方法:设江都与上海两地间的高速公路路程是y千米,则=10.解得y=360.答:江都与上海两地间的高速公路路程是360千米.22.解:(1)设水流速度为x km/h,则游艇的顺流航行速度为(x+38) km/h,游艇的逆流航行速度为(38-x) km/h.据题意,可得3(38-x)+(38+x)=198.解得x=2.所以水流的速度为2 km/h.(2)由(1)可知,游艇的顺流航行速度为40 km/h,逆流航行速度为36 km/h.所以AB段的路程为3×36=108(km),BC段的路程为×40=90(km).故原路返回所需时间为=2.5+2.7=5.2(h).答:游艇用同样的速度原路返回共需要5小时12分钟.23.解:设小明1月份的跳远成绩为x m,则4.7-4.1=3(4.1-x),解得x=3.9.则每个月增加距离是4.1-3.9=0.2(m).答:小明1月份的跳远成绩是3.9 m,每个月增加的距离是0.2 m.24.解:设火车的长度是x米,根据题意,得. 解得x=200.所以火车的速度是=20(米/秒).答:火车的速度是20米/秒,长度是200米.。

人教版七年级上册数学《第三章3.3解一元一次方程(二)》课后练习题

人教版七年级上册数学《第三章3.3解一元一次方程(二)》课后练习题

七年级上册数学《第三章3.3解一元一次方程(二)》课后练习一、单选题1.若代数式4x-5与的值相等,则x的值是( )A.1 B.C.D.22.解方程2-4(x-2)=1,去括号正确的是()A.2-4x+2=1 B.2-4x-2=1 C.2-4x-8=1 D.2-4x+8=1 3.下列变形正确的是()A.若3x-1=2x+1,则3x+2x=-1+1B.若1-312x-=x,则2-3x-1=2xC.若3(x+1)-5(1-x)=2,则3x+3-5-5x=2D.若1-1012163x x++=,则6-10x-1=2(2x+1)4.下面是解方程21233x x-+=-1的步骤,其中开始出现错误的步骤是()①两边同乘以3,得2x-1=x+2-1;②移项,得2x-x=2-1+1;③合并同类项,得x=2.A.①B.②C.③D.都没错5.在下列解方程的过程中,对方程变形正确的一个是()A.由x+3=0得x=3 B.由18x=0得x=8C.由﹣5x=﹣1得x=﹣15D.由3=x﹣6得x=96.解方程3-23x+=1,在下列去分母运算中,正确的是()A.3-(x+2)=3 B.9-x-2=1 C.9-(x+2)=3 D.9-x+2=37.若x=1是方程31322x kx-=-的解,则2k+3的值是()A.-2 B.2 C.0 D.-18.在有理数范围内定义运算“*”,其规则为a*b=,则方程(2*3)(4*x)=49的解为()A.﹣3 B.﹣55 C.﹣56 D.559.若(5x+2)与(﹣2x+7)互为相反数,则2﹣x的值为()A.﹣1 B.1 C.5 D.﹣510.方程的所有整数解的个数是()A.2 B.3 C.4 D.5二、填空题11.已知x=23是方程3(m-34x)+32x=5m的解,则m=________.12.若2(x+3)的值与4(1-x)的值相等,则x的值为________.13.当x=________时,代数式453x-的值是0.14.若3x﹣4=﹣1与ax﹣b=﹣c有相同的解,则(a﹣b+c)2016的值是_______.15.如果34a+比237a-的值多1,那么a的值为______.16.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为______.三、解答题17.解方程:(1)23234x x --=;(2)211 32x xx--=-;(3)23534x x-+=-1;(4)13(1-2x)=27(3x+1).18.解方程:(1)5x=3(x-4);(2)4(x-2)-2(x+2)=-3.19.已知关于x的方程(m-2)x n-3=0是一元一次方程.(1)m,n应满足的条件为m________,n________;(2)若此方程的解为正整数,求整数m的值.20.已知关于x的方程2236x a x a---=x-1与方程3(x-2)=4x-5的解相同,求a的值.21.当x取什么值时,代数式232x+的值与1-13x-的值相等?22.已知A=2x2+mx﹣m,B=3x2﹣mx+m.(1)求A﹣B;(2)如果3A﹣2B+C=0,那么C的表达式是什么?(3)在(2)的条件下,若x=4是方程C=20x+5m的解,求m的值.23.阅读下列例题解方程:|x|+|2x﹣1|=5.解:①当x≥0.5时,原方程可化为:x+2x﹣1=5,它的解是x=2;②当0≤x<0.5时,原方程可化为:x﹣2x+1=5,解之,得x=﹣4,经检验x不合题意,舍去.③当x<0时,原方程可化为:﹣x﹣2x+1=5,它的解是x=﹣43.所以原方程的解是x=2或x=﹣43.(1)根据上面的解题过程,写出方程2|x﹣1|﹣x=4的解.(2)根据上面的解题过程,解方程:2|x﹣1|﹣|x|=4.(3)方程|x|﹣2|x﹣1|=4是否有解.答案1.B 2.D 3.D 4.A 5.D 6.C 7.D 8.D 9.C 10.C11.14-12.13-13.5414.0. 15.5. 16.﹣6 17.解(1)去分母,得4(x-2)=3(3-2x).去括号,得4x-8=9-6x.移项,得4x+6x=9+8.合并同类项,得10x=17.系数化为1,得x=17 10.(2)去分母,得2(2x-1)=6x-3(x-1).去括号,得4x-2=6x-3x+3.移项,得4x-6x+3x=3+2.合并同类项,得x=5.(3)去分母,得4(2x-3)=3(x+5)-12. 去括号,得8x-12=3x+15-12.移项,得8x-3x=15-12+12.合并同类项,得5x=15.系数化为1,得x=3.(4)去分母,得7(1-2x)=6(3x+1).去括号,得7-14x=18x+6.移项,得-14x-18x=6-7.合并同类项,得-32x =-1.系数化为1,得x =132. .18.解(1)去括号,得5x =3x -12.移项,得5x -3x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.(2)去括号,得4x -8-2x -4=-3.移项,得4x -2x =-3+8+4.合并同类项,得2x =9.系数化为1,得x =92. 19.解:(1)根据题意得m -2≠0,n =1,即m≠2,n =1.故答案为≠2,=1.(2)由(1)可知方程为(m -2)x -3=0,则x =32m - . 因为此方程的解为正整数, 所以32m -为正整数. 又因为m 为整数,所以m =3或5.20.解由3(x -2)=4x -5,得3x -6=4x -5,3x -4x =6-5,-x =1,∴x =-1.把x=-1代入方程2x a 2x a 36---=x -1得 2a 2a 36-----=-1-1 所以2(-2-a )-(-2-a )=-12,-2-a=-12解得a=10.21.解根据题意,得231123x x+-=-:.去分母,得6x+9=6-2x+2. 移项、合并同类项,得8x=-1.解得x=-1 8 .∴当x=-18.时,代数式232x+的值与1-13x-的值相等.故答案为:-1 8 .22.解:(1)A﹣B=(2x2+mx﹣m)﹣(3x2﹣mx+m)=2x2+mx﹣m﹣3x2+mx﹣m=﹣x2+2mx﹣2m;(2)∵3A﹣2B+C=0,∴C=﹣3A+2B=﹣3(2x2+mx﹣m)+2(3x2﹣mx+m)=﹣6x2﹣3mx+3m+6x2﹣2mx+2m=﹣5mx+5m;(3)根据题意知x=4是方程﹣5mx+5m=20x+5m的解,∴﹣20m+5m=80+5m,解得:m=﹣4.23.解(1)2|x﹣1|﹣x=4①当x≥1时,原方程可化为:2x﹣2﹣x=4,它的解是x=6;②当x<1时,原方程可化为:2﹣2x﹣x=4,解得x=﹣23;所以原方程的解是x=6或x=﹣23.(2)2|x﹣1|﹣|x|=4.①当x≥1时,原方程可化为:2x﹣2﹣x=4,它的解是x=6;②当0≤x<1时,原方程可化为:2﹣2x﹣x=4,解得x=﹣23,经检验x不合题意,舍去.③当x<0时,原方程可化为:2﹣2x+x=4,它的解是x=-2.所以原方程的解是x=6或x=-2.(3)|x|﹣2|x﹣1|=4①当x≥1时,原方程可化为:x﹣2x+2=4,它的解是x=﹣2;经检验x不合题意,舍去.②当0≤x<1时,原方程可化为:x﹣2+2x=4,解得x=2,经检验x不合题意,舍去.③当x<0时,原方程可化为:﹣x﹣2+2x=4,它的解是x=6.经检验x不合题意,舍去.所以原方程无解.。

初一上数学真题专题练习---一元一次方程的应用(二)

初一上数学真题专题练习---一元一次方程的应用(二)

一元一次方程的应用(二)【真题精选】1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是分钟时,选择方式一与方式二的费用相同.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有人.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:(注:应纳税额=纳税所得额﹣起征额﹣专项附加扣除)小吴2019年1月纳税所得额是7800元,专项附加扣除2000元,则小吴本月应缴税款元;与此次个税调整前相比,他少缴税款元.17.(2019秋•海淀区校级月考)学校组织游学活动,去往北京市某公园,公园门票价格规定如下表:北京线路共有104人参加本次游园,分两车出发,编号为1号和2号.其中1号车有40多人,不足50人.经估算,如果两辆车以车为单位购票,则一共应付1240元.(1)1号车与2号车各有多少学生?(2)若两车联合起来,作为一个团体购票,可省多少钱?(3)若1号车单独组织去游园,如何购票才最省钱,并说明理由.一元一次方程的应用(二)参考答案与试题解析一.试题(共17小题)1.(2018秋•海淀期末)有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,4x=5(90﹣x),故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2018秋•昌平区期末)列方程解应用题.某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子?【分析】首先根据题意,设有x个椅子,则有40﹣x个凳子,然后根据:椅子腿数+凳子腿数=145,列出方程,求出椅子的数量,进而求出凳子的数量即可.【解答】解:设有x个椅子,则有40﹣x个凳子,根据题意列方程,4x+3(40﹣x)=145,解方程,得:x=25,∴40﹣x=40﹣25=15.答:有25个椅子,15个凳子.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.3.(2020秋•朝阳期末)列方程解应用题油桶制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?【分析】设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.【解答】解:设共有x人生产圆形铁片,则共有(42﹣x)人生产长方形铁片,根据题意列方程得,120x=2×80(42﹣x)解得x=24,则42﹣x=42﹣24=18.答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.4.(2020秋•丰台区期末)下表是两种移动电话的计费方式:当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.【分析】可设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,根据方式一与方式二的费用相同的等量关系列出方程计算即可求解.【解答】解:设当小东某月的移动电话主叫时间是x分钟时,选择方式一与方式二的费用相同,依题意有58+0.25(x﹣150)=88,解得x=270.故当小东某月的移动电话主叫时间是270分钟时,选择方式一与方式二的费用相同.故答案为:270.【点评】本题考查了一元一次方程的应用,关键是理解方式一与方式二两种移动电话的计费方式.5.(2020秋•东城区期末)某校七年级准备观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)若二班有41名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?【分析】(1)分别计算出方案一和方案二的花费,然后比较大小即可解答本题;(2)设一班有x人,根据已知得出两种方案费用一样,进而列出方程求解即可.【解答】解:(1)由题意可得,方案一的花费为:41×30×0.8=984(元),方案二的花费为:(41﹣5)×0.9×30=972(元),∵984>972,∴若二班有41名学生,则他该选选择方案二;(2)设一班有x人,根据题意得x×30×0.8=(x﹣5)×0.9×30,解得x=45.答:一班有45人.【点评】本题主要考查了一元一次方程的应用,根据已知得出关于x的方程是解题关键.6.(2021•海淀区校级模拟)成都中考“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划再采购100个足球,x个排球(x>50).现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)请用含x的代数式分别表示出购买A、B公司体育用品的费用;(2)当购买A、B两个公司体育用品的费用相等时,求此时x的值;(3)已知学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:若学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.【分析】(1)根据A、B两家公司的优惠方案所提供的数量关系直接列代数式化简即可;(2)根据购买A、B两个公司体育用品的费用相等,列出方程可求x的值;(3)首先求出还需要购买排球的个数,即x的值,再将x的值分别代入(1)中所求的代数式,与10500比较,即可求解.【解答】解:(1)由A公司的优惠方案得,购买A公司体育用品的费用为:0.8×(100×50+40x)=(32x+4000)元;购买B公司体育用品的费用为:100×50+40(x﹣50)=(40x+3000)元;(2)依题意有32x+4000=40x+3000,解得x=125.故此时x的值为125;(3)还需要排球:600﹣(100+50)﹣50﹣100×2=200(个).在A公司采购需要的费用为:32×200+4000=10400<10500,在B公司采购需要的费用为:40×200+3000=11000>10500,所以能满足训练要求,应在A公司采购.【点评】本题考查一元一次方程的应用,列代数式,根据数量关系列出代数式是正确计算的前提,理解两个公司的优惠方案是解决问题的关键.7.(2020秋•海淀区校级期末)列方程解应用题北京世界园艺博览会给人们提供了看山、看水、看风景的机会.一天小安和朋友几家去世园会游玩,他们购买普通票比购买优惠票的数量少3张,买票共花费了1640元,符合他们购票的条件如下表,请问他们买了多少张优惠票?【分析】可设他们买了x张优惠票,根据等量关系:买票共花费了1640元,依此列出方程求解即可.【解答】解:设他们买了x张优惠票,根据题意列方程得:80x+120(x﹣3)=1640,80x+120x﹣360=1640,200x=2000,解得x=10.答:他们买了10张优惠票.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.(2020秋•海淀期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.(2020•朝阳区二模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡【分析】设一年内在便利店购买咖啡x次,用x表示出购买各类会员年卡的消费费用,把x=75、85代入计算,比较大小得到答案.【解答】解:设一年内在便利店购买咖啡x次,购买A类会员年卡,消费费用为40+2×(0.9×10)x=(40+18x)元;购买B类会员年卡,消费费用为80+2×(0.8×10)x=(80+16x)元;购买C类会员年卡,消费费用为130+(10+5)x=(130+15x)元;把x=75代入得A:1390元;B:1280元;C:1255元,把x=85代入得A:1570元;B:1440元;C:1405元,则小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为购买C类会员年卡.故选:C.【点评】本题考查的是有理数的混合运算的应用,掌握有理数的混合运算法则是解题的关键.10.(2020秋•怀柔区期末)某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?【分析】设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有(106﹣2x)人.根据初一(1)班有20多人,不足30人得出20<x<30,再分①46<106﹣2x≤60,②106﹣2x>60两种情况进行讨论,根据三个班都以班为单位购票,则一共应付1365元列出方程,求解即可.【解答】解:设初一(1)班有x人,则初一(2)班有(x﹣5)人,初一(3)班有[101﹣x﹣(x﹣5)]=(106﹣2x)人.依题意可知,20<x<30,∴x﹣5<25,46<106﹣2x<66.①如果46<106﹣2x≤60,那么15x+15(x﹣5)+12(106﹣2x)=1365,解得x=28,符合题意.所以x﹣5=23,101﹣x﹣x+5=50;②如果106﹣2x>60,那么15x+15(x﹣5)+10(106﹣2x)=1365.解得x=38.∵38>30,∴x=38不合题意舍去.答:初一(1)班有28人,初一(2)班有23人,初一(3)班有50人.【点评】本题考查了一元一次方程的应用,设初一(1)班有x人,根据x的取值范围得出初一(2)班与初一(3)班人数的范围,进而进行分类讨论是解题的关键.11.(2020秋•大兴区期末)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?【分析】(1)根据总价=单价×数量,即可求出结论;(2)设复印x张时,两处的收费相同,由甲,乙两店收费相同,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(2020秋•昌平区校级期中)根据某话剧团网站公布的门票价格(如表所示),小张预订了B等级、C等级的门票共7张,他发现这7张门票的费用恰好可以预订2张A等级门票,问小张预订了B等级、C等级门票各多少张?【分析】本题的等量关系可表示为:B门票+C门票=7张,购买的B门票的价格+C门票的价格=2张A门票的价格,据此可列出方程组求解.【解答】解:设小明预订了B等级,C等级门票分别为x张和y张,依题意,得,解方程组,得,答:小明预订了B等级门票2张,C等级门票5张.【点评】本题考查了二元一次方程组的应用,关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.(2019秋•怀柔区期末)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,其中初一(1)班有40多人,初一(2)班有50多人,教育基地门票价格如下:原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?【分析】(1)根据表格中的数据列出相应的方程,从而可以得到初一(2)班的人数;(2)根据表格中的数据和(1)中的结果,可知两个班一起购买最省钱,从而可以求得可以省多少钱.【解答】解:(1)设初一(1)班x人,初一(2)班y人,根据题意可得:12x+10y=1106,由于x,y都是整数,且40<x<50,50<x<100,当初一(1)班有48人时,48×12=576,1106﹣576=530,530÷10=53.当初一(1)班有43人时,43×12=516,1106﹣516=590,590÷10=59.所以,初一(2)班共有53人或59人;(2)两个一起买票更省钱,①8×(48+53)=808,1106﹣808=298(元).②8×(43+59)=816,1106﹣816=290(元).这样比原计划节省298元或290元.【点评】本题考查二元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.14.(2019秋•门头沟区期末)2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?【分析】(1)根据里程费+时长费,列式可得车费;(2)根据行车里程1千米,列式可得车费;(3)可设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据等量关系:里程费+时长费=车费37.4元,列出方程求出速度,进一步得到从学校到小华家快车行驶的路程.【解答】解:(1)应付车费=1.8×6+0.8×10=18.8(元).故应付车费18.8元;(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费14元;(3)设改道前的速度为x千米/时,则改道后的速度为3x千米/时,根据题意得,解得x=12.∴3x=36.∴(千米).答:从学校到小华家快车行驶了9千米.故答案为:18.8;14.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出方程是解题的关键.15.(2019秋•西城区校级期中)北京世界园艺博览会(简称“世园会”)园区2019年4月29日至2019年10月7日在中国北京市延庆区举行,门票价格如表:注1:“指定日”为开园日(4月29日)、五一劳动节(5月1日)、端午节、中秋节、十一假期(含闭园日),“平日”为世园会会期除“指定日”外的其他日期;注2:六十周岁及以上老人、十八周岁以下的学生均可购买优惠票;注3:提前两天及以上线上购买世园会门票,票价可打九折,但仅限于普通票.小明全家于9月28日集体入园参观游览,通过计算发现:若提前两天线上购买门票所需费用为996元,而入园当天购票所需费用为1080元,则该家庭中可以购买优惠票的有3人.【分析】设该家庭中购买普通票的有x人,则可以购买优惠票的有人,根据网络购票优惠的钱数,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入中即可求出结论.【解答】解:设该家庭中购买普通票的有x人,则可以购买优惠票的有人,依题意,得:120x﹣120×0.9x=1080﹣996,解得:x=7,∴=3.故答案为:3.【点评】此题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.(2019•北京一模)2019年1月1日起,新个税法全面施行,将个税起征额从每月3500元调整至5000元,首次增加子女教育、大病医疗、赡养老人等6项专项附加扣除.新的税率表(摘要)如下:。

人教版七年级数学上册第三章之《3.3解一元一次方程(二)——去括号与去分母》练习题

人教版七年级数学上册第三章之《3.3解一元一次方程(二)——去括号与去分母》练习题

x= 6
课本第98页 练习
解下列方程:
(3)
5x 4
1
=
3x + 1 2
-
2-x 3

解:(3)去分母(方程两边乘12) ,得
3(5x - 1)= 6(3x + 1)- 4(2 - x)
去括号,得
15x - 3 = 18x + 6 - 8 + 4x
移项,得 15x - 18x - 4x = 6 - 8 + 3
合并同类项,得 化系数为1,得
- 7x = 1
x=-
1 7
课本第98页 练习
解下列方程:
(4)
3x + 2
2
-
1
=
2x 4
1
-
2x + 5
1

解:(4)去分母(方程两边乘20) ,得
10(3x + 2)- 20 = 5(2x - 1)- 4(2x + 1)
去括号,得 30x + 20 - 20 = 10x - 5 - 8x - 4
3x - 24 + 2x = 7 -
1 3
x+1
移项,得
3x + 2x +
1 3
x = 7 + 1 + 24
合并同类项,得
16 3
x
=
32
化系数为1,得
x= 6
课本第95页 练习 解下列方程: (4)2 - 3(x + 1)= 1 - 2(1 + 0.5x)。
解:(4)去括号,得 2 - 3x - 3 = 1 - 2 - x
第三章 一元一次方程

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

第2课时 用移项的方法解一元一次方程 教材知能精练知识点:移项1. 方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-62. 下列解方程中,移项正确的是( )A .由5+x =18得x =18+5B .由5x +31=3x 得5x -3x =31 C .由21x +3=-23x -4得21x +23x =-4-3 D .由3x -4=6x 得3x +6x =43. 在解方程2314-=+x x 时,下列移项正确的是( )A .2134-=+x xB .1234--=-x xC .1234-=-x xD .1234--=+x x4. 已知当b =1,c =-2时,代数式ab +bc =10-ca ,则a 的值是( )A .12B .6C .-6D .-125.某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是( ).A.20日B.21日C.22日D.23日6. 4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是__________. 7. 方程2x-0.3=1.2+3x 移项得 .8.当=x _____时,代数式24+x 与93-x 的值互为相反数.9.已知y 1=2x+3,y 2=215-x ,如果y 1=2y 2,则x=_______.10.若2(1)0x y y -++=,则22x y +=___.11. 解方程:4227-=+-x x12. 张老师给学生分练习本,若每人分4本,则余8本,若每人分5本,则缺2本, 求有多少名学生和多少本练习本.学科能力迁移13.【易错题】解下面的方程时,既要移含未知数的项,又要移常数项的是( ).A.372x x =-B.3521x x -=+C.3321x x --=D.1511x +=14.【新情境题】小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:11222y y -=+■.怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是53y =,于是很快补上了这个常数,并迅速完成了作业.同学们,你能补出这个常数吗?它应是( ).A1 B.2 C.3 D.415.【变式题】若132x y =-,224x y =+,当y =_______时,12x x =.16.【多解法题】若32x -=,则x 的值为_____.课标能力提升17. 【探究题】设“●■▲”分别表示三种不同的物体(如图3-2-5),前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4C.3D.218. 【开放题】已知2)53(1--m 有最大值,则方程2345+=-x m 的解是( )A.79B.97C.79-D.97- 19.【综合题】若2x n+1与3x 2n-1是同类项,则n=______.20.【解决问题型题目】2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.品味中考典题21.有一个两位数,它的十位数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是( )A .41B .42C .43D .44 B22.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为x 元,则可列出的方程为 .迷途知返___________________________________________________________________________________________________________________________________________________________________________课外精彩空间数学冤案人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢.古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了.在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法.在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺.那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样.数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana). 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一.由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思.后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳.经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法.这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲.但是冯塔纳不愿意将他的这个重要发现公之于世.当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣.他几次诚恳地登门请教,希望获得冯塔纳的求根公式.可是冯塔纳始终守口如瓶,滴水不漏.虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”.后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺.冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密.卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字.随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法.由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”.卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页.这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的.但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度.3.2解一元一次方程(二)1. C ;2. C ;3. B ;4. A ;5. A ;6. 移项,等式基本性质(1);7. 2x-3x=1.2+0.3;8. 1;9. 21;10. 2;11. 32=x ; 12.有学生10人,有练习本48本.13. B ;14. B ;15. 6;16. 5或1;17. A ;18. A ;19. 2;20. 解:设列车提速后行驶时间为x 小时,根据题意,得264442644x x +=,解得 2.4x =.故到站时刻为4︰24,历时2.4小时.21. B ;22. 80%300100x -=.。

一元一次方程练习题(二)

一元一次方程练习题(二)

一元一次方程练习题(二)一选择题1,家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=2. 今年“十.一”长假期间,我市磁器口古镇在10月1日接待游客约2.83万人,“2.83万”的有效数字和精确度为( )A . 3个 、十分位B .3个、百位C . 5个 、十分位D . 5个、百位3下列各组数中,不相等的一组是 ( )A .()23-与23-B .-23-与23-C . -33-与 33-D .()33- 与33- 4 .计算(-3)2+(-3)3-22+(-2)2的结果是( )A. 36B. -18C. -36D. 18 5.下列说法中正确的是( )A. 0不是单项式B. x1是整式C. -2x y 的系数是1 D. -322x y 的次数是3 6 。

某书店按标价的八折售出,仍可获利20﹪,若该书的进价为18元,则标价为( )A. 27元B. 28元C. 29元 D ,30元7 、方程12=+a x 与方程2213+=-x x 的解相同,则a 的值为( )A. -5 B . -3 C. 3 D. 58 设a 表示三位数, b 表示两位数, 如果把a 放在b 的左边组成一个五位数, 可表示为( )A. abB. 1000 a + bC. a + bD. 100 a + b9. 甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设xs后甲可追上乙,则下列四个方程中不正确的是 ( )A.7x=6.5x+5B.7x+5=6.5xC.(7-6.5)x=5D.6.5x=7x-510.某种手机卡的市话费上次已按原收费标准降低了b 元/分钟,现在又下调20﹪,使收费标准为a 元/分钟,那么原收费标准为( )A. B. C. D.11.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合做这项工程所需天数为( )A.1x y + B.11x y + C.1xy D.111x y +12.小明把400元钱存入银行,年利率为1.8%,到期时小明得到利息36元,则她一共存了( )A 、6年B 、5年C 、4年D 、3年b a -45b a +45b a +43b a +3413,足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,那么这个队胜了( )A.3场 B.4场 C.5场 D.6场14,我国股市交易中每买、卖一次需交千分之七点五的各种费用。

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第2课时课堂练习

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第2课时课堂练习

《解一元一次方程(二)——去括号与去分母》第2课时课堂练习基础训练1.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?2.将一箱苹果分给一群小朋友,若每个小朋友分5个苹果,则还剩12个苹果;若每个小朋友分8个苹果,则最后一个小朋友只分到2个苹果.求这群小朋友的人数.3.东坡中学组织七年级师生春游.如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数;(2)已知租用45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问租用哪种客车更合算?4.有这样一道题:假如井不知深,先将绳三折入井,绳长四尺;后将绳四折入井,亦长一尺.问井深及绳长各若干?请你解答这个问题.5.一艘轮船航行在A、B两个码头之间,已知该船在静水中每小时航行12 km,轮船顺水航行需用6 h,逆水航行需用10 h,求水流速度和A、B两码头之间的距离.6.一艘船从甲码头到乙码头顺流行驶用4小时,从乙码头到甲码头逆流行驶用4小时40分钟,已知水流速度为3千米/小时,则船在静水中的平均速度是多少?7.一架战斗机的贮油量最多够它在空中飞行4.6 h,飞机出航时顺风飞行,在无风时的速度是575 km/h,风速为25 km/h,这架飞机最远能飞出多少千米就应返回?提升训练8. A,B两地间的路程为360 km,甲车从A地出发开往B地,每小时行驶72 km;甲车出发25 min后,乙车从B地出发开往A地,每小时行驶48 km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100 km时,甲车从出发开始共行驶了多少小时?9.甲、乙两人在一环形公路上骑自行车,环形公路长为42 km,甲、乙两人的速度分别为21 km/h、14 km/h.(1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇?10.甲、乙两列火车的长分别为144米和180米,甲车比乙车每秒多行4米.(1)两列车相向而行,从相遇到完全错开需9秒,问甲、乙两列车的速度各是多少?(2)若同向而行,甲车的车头从乙车的车尾追到甲车完全超过乙车,需要多少秒?11.“健康出行,绿色环保”,星期天小李骑自行车从家出发到郊区去游玩,他先在某景区待了2 h,再绕道到某农家特色小吃处品尝风味小吃用去了30分钟,然后愉快地返程.已知去时的速度为6 km/h,返回时的速度为10 km/h,往返共用了4 h,返回时因绕道多走了1 km,求去时的路程.12.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C 地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10 km.如果乙船由A地经B地再到达C地共用了4 h,问:乙船从B地到达C地时,甲船距离B地有多远?13.某同学在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40 km,小轿车的速度为45 km/h,运货汽车的速度为35 km/h,?”(涂黑部分表示被墨水覆盖的若干文字,请将这道作业题补充完整,并列方程解答)参考答案基础训练1.解:设原有x条船.由题意,得9(x-1)=6(x+1),解得x=5.答:原有5条船.2.解:设这群小朋友有x个人.由题意得:5x+12=8(x-1)+2.解得:x=6.答:这群小朋友有6个人.3.解:(1)设租用45座客车x辆.由题意,得45x=60(x-1)-15.解得x=5.所以45x=225.答:参加春游人数为225人.(2)由(1)可知x=5,则x-1=4.因为5×250>4×300,所以租用60座客车更合算.4.解:设井深x尺.根据题意,得3(x+4)=4(x+1).解得x=8.所以3(x+4)=3×(8+4)=36.答:井深8尺,绳长36尺.5.解:设水流速度为x km/h,由题意,得6(12+x)=10(12-x),解得x=3.所以6×(12+3)=90(km).答:水流速度为3 km/h,A、B两码头之间的距离为90 km.6.解:设船在静水中的平均速度是x千米/小时,根据题意,得4(x+3)=(x-3),解得x=39. 答:船在静水中的平均速度是39千米/小时.7.解:(方法一)设这架飞机最远能飞出x km就应返回.依题意,有+=4.6.解得x=1320.答:这架飞机最远能飞出1 320 km就应返回.(方法二)设飞机顺风飞行的时间为t h.依题意,有(575+25)t=(575-25)(4.6-t).解得t=2.2.则(575+25)t=600×2.2=1 320.答:这架飞机最远能飞出1 320 km就应返回.提升训练8.解:设甲车共行驶了x h,则乙车行驶h.依题意,有72x+48=360+100.解得x=4.答:甲车共行驶了4 h.点拨:根据题意画出示意图如图,再利用相遇问题的等量关系建立方程.(第8题)9.解:(1)设经过x h后,两人首次相遇.依题意,得21x+14x=42.解得x=1.2.答:经过1.2 h后,两人首次相遇.(2)设出发后经y h两人第二次相遇.依题意,得21y-14y=42×2.解得y=12.答:出发后经12 h两人第二次相遇.10.解:(1)设乙车的速度为x米/秒,则甲车的速度为(x+4)米/秒.依题意得,得9x+9(x+4)=180+144.解得x=16,则x+4=20.答:甲、乙两列车的速度分别为20米/秒、16米/秒.(2)设需要y秒,则有20y-16y=180+144.解得y=81.答:需要81秒.11.解:设去时的路程为x km,依据题意,得+2++=4,解得x=5.25,答:去时的路程为5.25 km.12.解:设乙船由B地航行到C地用了x h,那么甲、乙两船由A地到B地都用了(4-x)h. (1)若C地在A、B两地之间,则乙船由A地航行到B地的距离是(7.5+2.5)(4-x)km,乙船由B地返回到C地的距离是(7.5-2.5)x km.根据乙船从A地航行到B地的距离-乙船从B地返回到C地的距离=A、C两地间的距离,得(7.5+2.5)(4-x)-(7.5-2.5)x=10.整理,得10(4-x)-5x=10.去括号,得40-10x-5x=10.移项、合并同类项,得-15x=-30.系数化为1,得x=2.所以甲船距离B 地有(7.5+2.5)×2=20(km)远.(2)若C地不在A、B两地之间,则乙船由A地航行到B地的距离是(7.5+2.5)(4-x)km,乙船由B地返回到C地的距离是(7.5-2.5)x km,根据乙船从B地返回到C地的距离-乙船由A地航行到B地的距离=A、C两地间的距离,得(7.5-2.5)x-(7.5+2.5)(4-x)=10.整理,得5x-10(4-x)=10.去括号,得5x-40+10x=10.移项、合并同类项,得15x=50.系数化为1,得x=.所以甲船距离B 地有×(7.5+2.5)=(km)远.答:乙船从B地到达C地时,甲船距离B地有20 km或km远.13.解:(方法一)补充部分:若两车分别从甲、乙两地同时开出,相向而行,经几小时两车相遇? 设经x h两车相遇,根据题意,得45x+35x=40.解得x=.答:经h两车相遇.(方法二)补充部分:如果两车同时从甲地出发,同向而行,当小轿车到达乙地时,运货汽车距乙地还有多远?设运货汽车距乙地还有x km远,则该车行驶了(40-x) km,此时运货汽车与小轿车所用时间相等,依题意,得=.解得x=.答:运货汽车距乙地还有km远.。

人教版七年级上册数学3.3解一元一次方程(二)去括号去分母练习题

人教版七年级上册数学3.3解一元一次方程(二)去括号去分母练习题

2019年12月01日初中数学组卷参考答案与试题解析一.选择题(共50小题)1.下列解方程过程中,变形正确的是()A.由2x﹣1=3得2x=3﹣1 B.由2x﹣3(x+4)=5得2x﹣3x﹣4=5C.由﹣75x=76得x=﹣D.由2x﹣(x﹣1)=1得2x﹣x=0【分析】方程的变形一般包括去分母,去括号,移项,合并同类项,系数化为1等.【解答】解:A、不对,因为移项时没有变号;B、不对,因为去括号时4没有乘3;C、不对,系数化1时,方程两端要同时除以未知数的系数x=﹣;D、正确.故选D.【点评】考查解方程的一般过程.方程的变形一般包括去分母,去括号,移项,合并同类项,系数化为1等.移项时注意变号.2.下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+18【分析】各项中方程变形得到结果,即可做出判断.【解答】解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,错误;B、3x=2变形得x=,错误;C、3(x﹣1)=2(x+3)变形得3x﹣3=2x+6,错误;D、x﹣1=x+3变形得4x﹣6=3x+18,【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.方程2x﹣(x+10)=5x+2(x+1)的解是()A.x= B.x=﹣C.x=﹣2 D.x=2【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:2x﹣x﹣10=5x+2x+2,移项合并得:﹣6x=12,解得:x=﹣2,故选C【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.4.方程﹣=1的解是()A.x=0 B.x=2 C.x=5 D.x=7【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去分母得:2x﹣x+1=6,解得:x=5,故选C【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.5.下列方程的变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程x=,未知数系数化为1,得x=1D.方程﹣=1 化成5(x﹣1)﹣2x=10【分析】各方程移项,去括号,未知数系数化为1,去分母分别得到结果,即可【解答】解:A、方程3x﹣2=2x+1,移项得:3x﹣2=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号得:3﹣x=2﹣5x+5,不符合题意;C、方程x=,未知数系数化为1,得:x=,不符合题意;D、方程﹣=1化为5(x﹣1)﹣2x=10,符合题意,故选D【点评】此题考查了解一元一次方程,解方程去分母时注意每项都乘以各分母的最小公倍数.6.解方程4(y﹣1)﹣y=2(y+)的步骤如下:解:①去括号,得4y﹣4﹣y=2y+1②移项,得4y+y﹣2y=1+4③合并同类项,得3y=5④系数化为1,得y=.经检验y=不是方程的解,则上述解题过程中是从第几步出错的()A.①B.②C.③D.④【分析】第②步中将y的符号弄错,而出现错误,注意不移项时不变号,移项要变号.【解答】解:第②步中将y的符号弄错,而出现错误,应为4y﹣y﹣2y=1+4而不是4y+y﹣2y=1+4.故选B【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.7.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【分析】方程去括号,移项合并,将x系数化为1,求出解即可做出判断.【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.8.下列去分母错误的是()A.由得2y=3(y+2)B.得2(2x+3)﹣5x﹣1=0C.由(y﹣8)=9得2(y﹣8)=27D.由得21(1﹣5x)﹣14=6(10x+3)【分析】各项方程去分母得到结果,即可做出判断.【解答】解:A、由得2y=3(y+2),本选项正确;B、﹣=0,得:2(2x+3)﹣(5x﹣1)=0,本选项错误;C、(y﹣8)=9,得:2(y﹣8)=27,本选项正确;D、由得21(1﹣5x)﹣14=6(10x+3),本选项正确,故选B【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.方程3﹣=﹣,去分母得()A.3﹣2(5x+7)=﹣(x+17)B.12﹣(5x+7)=﹣x+17C.12﹣(5x+7)=﹣(x+17)D.12﹣10x+14=﹣(x+17)【分析】方程两边乘以4去分母即可得到结果.【解答】解:去分母得:12﹣2(5x+7)=﹣(x+17),故选A【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.10.在对方程的下列变形中,应用了等式的性质2变形的是()A.B.(2x﹣1)+3=6 C. D.【分析】根据等式的基本性质2,在等式两边乘以3即可得到结果.【解答】解:去分母得:2x﹣1+3=6.故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.11.把方程的分母化为整数,可得方程()A.B.C.D.=83【分析】把方程的分母化为整数,方法是分子、分母上同时乘以10,化简的依据是分式的基本性质,同时在分子、分母上同时乘以或除以同一个非0的数或整式,分式的值不变.【解答】解:把方程的分母化为整数,分子、分母上同时乘以10,得:,故选C.【点评】在解这个方程的过程中利用了分式的基本性质,要注意与解方程的去分母区别,去分母是依据的等式的基本性质.12.方程的解为()A.20 B.40 C.60 D.80【分析】先合并同类项,再把x的系数化为1即可.【解答】解:合并同类项得x=210,系数化为1得x=60.故选C.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.13.解方程,下列解题步骤不正确的是()A.去分母,得2(x﹣1)﹣(x+2)=3(4﹣x) B.去括号,得2x﹣2﹣x+2=12﹣3xC.移项、合并同类项,得4x=16 D.系数化为1,得x=4【分析】利用等式的基本性质,以及去括号得法则即可判断.【解答】解:A、在等式的两边同时乘以2、3、6的最小公倍数6即可,即2(x ﹣1)﹣(x+2)=3(4﹣x).故本选项正确;B、由2(x﹣1)﹣(x+2)=3(4﹣x)去括号,应该得到2x﹣2﹣x﹣2=12﹣3x.故本选项错误;C、由2x﹣2﹣x﹣2=12﹣3x移项、合并同类项,得4x=16.故本选项正确;D、由4x=16的两边同时除以4,得到x=4.故本选项正确;故选B.【点评】本题考查了解一元一次方程.(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.14.若x=﹣2时,3x2+2ax﹣4的值是0,则a的值是()A.2 B.﹣2 C.1 D.﹣1【分析】把x=﹣2代入3x2+2ax﹣4=0得出方程12﹣4a﹣4=0,求出方程的解即可.【解答】解:把x=﹣2代入3x2+2ax﹣4=0得:12﹣4a﹣4=0,解得:a=2,故选A.【点评】本题考查了解一元一次方程的应用,关键是能得出关于a的方程.15.解方程2(y﹣2)﹣3(y+1)=4(2﹣y)时,下列去括号正确的是()A.2y﹣2﹣3y﹣1=8﹣y B.2y﹣4﹣3y﹣3=8﹣yC.2y﹣4﹣3y+3=8﹣4y D.2y﹣4﹣3y﹣3=8﹣4y【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【解答】解:由原方程,得2y﹣4﹣3y﹣3=8﹣4y.故选D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.16.方程的解为()A.12 B.24 C.25 D.28【分析】先去中括号,再去小括号得到x﹣=1,然后移项后把x的系数化为1即可.【解答】解:去中括号(x﹣1)=1,去小括号得x﹣=1,移项得x=1+,合并得x=,系数化为1得x=28.故选D.【点评】本题考查了解一元一次方程:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.17.下列各式属于移项的是()A.由﹣=2,得x=﹣6 B.5x+6=3,得5﹣x+6=3﹣6C.由9=﹣6x﹣1,得6x=﹣1﹣9 D.由=﹣3x得﹣3x=【分析】根据移项的定义,移项是从方程的一边移到方程的另一边,注意改变符号作答.【解答】解:A、由﹣=2的化系数为1得到x=﹣6.故本选项错误;B、由5x+6=3不是通过移项得到5﹣x+6=3﹣6,并且该题的由5x+6=3,得不到5﹣x+6=3﹣6.故本选项错误;C、属于移项.故本选项正确;D、运用了等式的对称性,不属于移项.故本选项错误;故选C.【点评】本题不仅需要熟悉解方程的步骤,更需要熟悉解方程每步的含义.移项的本质是等式的性质1:等式两边同加(或减)同一个数(或式子),结果仍相等.18.下列是四个同学解方程2(x﹣2)﹣3(4x﹣1)=9的过程,其中正确的是()A.2x﹣4﹣12x+3=9 B.2x﹣4﹣12x﹣3=9 C.2x﹣4﹣12x+1=9 D.2x﹣2﹣12x+1=9【分析】根据去括号法则去掉括号即可得解.【解答】解:去括号得,2x﹣4﹣12x+3=9.故选A.【点评】本题考查了一元一次方程的解法,去括号时注意符号以及不要漏乘系数.19.方程m+m=5﹣m的解是()A.5 B.10 C.15 D.30【分析】方程两边同时乘以6去分母,得到3m+2m=30﹣m,移项、合并同类项、系数化为1可得出得m的值.【解答】解:方程m+m=5﹣m去分母得:3m+2m=30﹣m,移项得:3m+2m+m=30,合并同类项得:m=5故选A.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式.在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.20.解方程时,为了去分母应将方程两边同乘以()A.10 B.12 C.24 D.6【分析】根据去分母是乘以分母的最小公倍数解答.【解答】解:∵去分母时方程两边同乘以分母4、6的最小公倍数12,∴方程两边同乘以12.故选B.【点评】本题考查了解一元一次方程,主要考查了去分母是乘以分母的最小公倍数.21.解方程=6,下列几种解法中较为简便的是()A.两边都乘以4得,3=24B.去括号得x﹣9=6C.两边都乘以,得x﹣12=8D.小括号内先通分,得【分析】观察方程得到解法较为简便的为去括号.【解答】解:方程解法较为简便的是去括号得:x﹣9=6.故选B【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.22.解方程1﹣(2x+3)=6,去括号的结果是()A.1+2x﹣3=6 B.1﹣2x﹣3=6 C.1﹣2x+3=6 D.2x+1﹣3=6【分析】方程左边利用去括号法则变形即可得到结果.【解答】解:方程去括号得:1﹣2x﹣3=6.故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.23.下列四组变形中,属于去括号的是()A.5x+4=0,则5x=﹣4 B.=2,则x=6C.3x﹣(2﹣4x)=5,则3x+4x﹣2=5 D.5x=2+1,则5x=3【分析】观察各选项只有C选项左边有括号右边没括号,由此可得出答案.【解答】解:去括号首先在开始的时候要有括号,由此可得A、B、D都错误.C、3x﹣(2﹣4x)=5,去括号得:3x+4x﹣2=5,故本选项正确.故选C.【点评】本题考查去括号的知识,比较简单,运用视察法即可直接得出答案.24.方程3﹣去分母,得()A.3﹣2(5x+7)=﹣(x+17)B.12﹣2(5x+7)=﹣x+17C.12﹣2(5x+7)=﹣(x+17)D.12﹣10x+14=﹣(x+17)【分析】去分母时要两边同时乘以分母的最小公倍数12,其实质是等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【解答】解:A漏乘了不含分母的项;B、漏掉了括号;C、正确;D、漏掉了括号.故选C.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.25.下列解方程过程中,变形正确的是()A.由4x﹣1=3得4x=3﹣1B.+1.2得+1=+12C.由﹣5x=6,得x=﹣D.由=1得2x﹣3x=6【分析】由等式的性质,可得答案.【解答】解;A、方程两边加不同的数,故A错误;B、分数化成整数,1.2不变,故B错误;C、方程两边都除以﹣5得,故C错误;D、方程两边都乘以6得,故D正确;故选:D.【点评】本题考查了解一元一次方程,利用了等式的性质.26.下列四个方程及它们的变形:①4x+8=0,变形为x+2=0;②x+7=5﹣3x,变形为4x=﹣2;③x=3,变形为2x=﹣15;④4x=﹣2,变形为x=﹣2.其中变形正确的是()A.①②③B.②③④C.①③④D.①②④【分析】①4x+8=0,两边除以4得到结果,即可做出判断;②x+7=5﹣3x,两边加上3x﹣7得到结果,即可做出判断;③x=3,两边乘以﹣5得到结果,即可做出判断;④4x=﹣2,两边除以4得到结果,即可做出判断.【解答】解:①4x+8=0,两边除以4得:x+2=0,本选项正确;②x+7=5﹣3x,移项合并得:4x=﹣2,本选项正确;③x=3,两边乘以﹣5得:2x=﹣15,本选项正确;④4x=﹣2,变形为x=﹣,本选项错误;则变形正确的有①②③.故选A.【点评】此题考查了解一元一次方程组,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.27.解方程(x﹣1)﹣1=(x﹣1)+4的最佳方法是()A.去括号B.去分母C.移项合并(x﹣1)项D.以上方法都可以【分析】由于x﹣1的系数分母相同,所以可以把(x﹣1)看作一个整体,先移项,再合并(x﹣1)项.【解答】解:移项得,(x﹣1)﹣(x﹣1)=4+1,合并同类项得,x﹣1=5,解得x=6.故选C.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.28.要使方程6x+5y﹣2+3kx﹣2ky﹣5k=0中不含有y,那么k的值应是()A.0 B.C.D.【分析】本题思维的出发点是将6x+5y﹣2+3kx﹣2ky﹣5k合并同类项后,方程6x+5y﹣2+3kx﹣2ky﹣5k=0中不含有y,则y项系数为0.即5﹣2k=0,解得k的值.【解答】解:∵6x+5y﹣2+3kx﹣2ky﹣5k=(6+3k)x+(5﹣2k)y﹣(5k+2),又∵6x+5y﹣2+3kx﹣2ky﹣5k=0中不含有y,∴5﹣2k=0,∴k=.故选D.【点评】要善于转化题目中的条件,“不含y”即其系数为0.29.解方程.下列几种解法中,较简便的是()A.先两边同乘以6 B.先两边同乘以5C.括号内先通分D.先去括号,再移项【分析】观察方程左边,发现去括号后,再移项较为简便.【解答】解:根据题意得:较简便的解法为:先去括号,再移项.故选D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.30.方程4(2﹣x)﹣4(x+1)=60的解是()A.7 B.C.﹣ D.﹣7【分析】先去括号,再移项,合并,最后化系数为1,从而得到方程的解.【解答】解:去括号得:8﹣4x﹣4x﹣4=60,移项,合并得:﹣8x=56,方程两边都除以﹣8得:x=﹣7;故选D.【点评】去括号时,注意符号,不要漏乘括号里的每一项;化系数为1时,应用常数项除以未知数的系数.31.方程4x﹣2=3﹣x解答过程顺序是()①合并,得5x=5 ②移项,得4x+x=3+2 ③系数化为1,得x=1.A.①②③B.③②①C.②①③D.③①②【分析】观察方程特点:不含分母,没有括号.故解答过程只需要:移项,合并同类项,系数化为1.【解答】解:根据解方程的步骤:先移项,再合并同类项,最后系数化为1;故选C.【点评】本题考查了一元一次方程的解题步骤:去分母;去括号;移项;合并同类项;系数化为1.根据不同题目,选择其中适当的步骤解答.32.已知下列方程的解法分别是:(1)y﹣=1去分母得3y﹣2y﹣4=3,所以y=7;(2)2﹣3(x+1)=4(x+3)去括号得2﹣3x+3=4x+12,所以x=﹣1;(3)﹣=1去分母得3x﹣4x=1,所以x=﹣1;(4)﹣16x=﹣8两边都乘﹣,得x=2其中正确的个数是()A.3 B.2 C.1 D.0【分析】利用解方程的一般方法:去分母、去括号、移项、合并同类项、系数化1来解方程即可.【解答】解:(1)去分母后,得3y﹣(2y﹣4)=3,去括号得3y﹣2y+4=3,解得y=﹣1;(2)去括号,得2﹣3x﹣3=4x+12,解得x=﹣;(3)去分母得3x﹣4x=12;(4)两边都乘﹣,应得x=.故选D.【点评】本题的四种错误都是同学们平时易出现的问题,要注意啊.33.欲使x2y n﹣2和﹣x2y2是同类项,则n应取()A.6 B.5 C.4 D.3【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.【解答】解:欲使x2y n﹣2和﹣x2y2是同类项,它们含的字母相同了,主要指数也相同就可以了,∴n﹣2=2,解得:n=4.故选C.【点评】同类项就是字母和字母指数都相同的项,与它们的系数没有关系.34.解方程,去分母正确的是()A.2(3x﹣3)﹣1﹣x=4 B.3x﹣3﹣(1﹣x)=1 C.2(3x﹣3)﹣(1﹣x)=1 D.2(3x﹣3)﹣(1﹣x)=4【分析】由于此方程的公分母是4,所以方程两边同时乘以4就可以去掉分母,只是等式右边不要漏乘.【解答】解:去分母得:2(3x﹣3)﹣(1﹣x)=4.故选D.【点评】此题主要考查了解一元一次方程的方法,此题主要去分母,方程两边乘以公分母就可以解决问题,只是不要漏乘.35.下列变形属于移项的是()A.若,则B.3x2y+3x2y2+5x2y=(3x2y+5x2y)+3x2y2C.若3x=1,则x=D.若3x﹣4=5x+5,则3x﹣5x=5﹣4【分析】利用等式的性质,在方程两边加上或减去同一个数或整式,此变形为移项,判断即可.【解答】解:x﹣=0.4x+3,得到x﹣0.4=3+变形属于移项.故选A.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.36.解方程时,去分母后正确的是()A.4x+2﹣10x+1=10 B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=10 D.4x+1﹣10x+1=1【分析】方程两边乘以10去分母,去括号得到结果,即可做出判断.【解答】解:方程去分母得:2(2x+1)﹣(10x﹣1)=10,去括号得:4x+2﹣10x+1=10,故选A.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.37.规定=ad﹣bc,若,则x的值是()A.﹣60 B.4.8 C.24 D.﹣12【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简得:16+2x=﹣3x﹣2﹣42,移项合并得:5x=﹣60,解得:x=﹣12.故选D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.38.如果式子5x﹣4的值与﹣互为倒数,则x的值为()A.B.﹣ C.﹣ D.【分析】由题意可列出方程,解之即可得出答案.【解答】解:根据题意得:5x﹣4=﹣6,解得:x=.故选C.【点评】本题的关键是对互为倒数的概念理解,根据其关系转化成解方程的问题.解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式.39.解方程中,以下变形正确的是()A.由=15得x=3+3B.由2x+3=3x+3得2x+3x=6C.由﹣1得x﹣1=4x﹣1﹣1D.由=1得3x﹣2x=6【分析】分别对所给的四个方程利用等式性质进行变形,可以找出正确答案.【解答】解:A选项两边都乘以5去分母,应该是x=45+3,所以不对;B选项移项没有变号,应该是2x﹣3x=0,所以不对;C选项两边都乘以2去分母,但是最后一项﹣1没有乘,应该是x﹣1=4x﹣1﹣2,所以不对;D选项对.故选D.【点评】移项一定要变号,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.40.解方程时,去分母,可得()A.4x=1﹣3(x﹣1)B.4x=3﹣(x﹣1) C.4x=12﹣3(x﹣1)D.x=1﹣(x ﹣1)【分析】由于方程中两个分母的最小公倍数是12,所以方程两边同时乘以12即可去掉分母,但1不要漏乘.【解答】解:∵,方程两边同时乘以12得:4x=12﹣3(x﹣1).故选C.【点评】此题主要考查了解一元一次方程时去分母的方法,解题关键是找出所有分母的最小公倍数.41.如果2006﹣200.6=x﹣20.06,那么x等于()A.1824.46 B.1825.46 C.1826.46 D.1827.46【分析】求x的值,需要对方程进行移项,注意在移项的过程中符号的变化.【解答】解:∵2006﹣200.6=x﹣20.06∴x=2006﹣200.6+20.06=1825.46;故选B.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式.42.要使代数式5t+与5(t﹣)的值互为相反数,t是()A.0 B.C.D.【分析】根据相反数的定义列出关于t的一元一次方程,求出t的值即可.【解答】解:∵代数式5t+与5(t﹣)的值互为相反数,∴5t+=﹣5(t﹣),解得t=.故选D.【点评】本题考查的是解一元一次方程及相反数的定义,熟知解一元一次方程的一般步骤是解答此题的关键.43.方程﹣=的“解”的步骤如下,错在哪一步()A.2(x﹣1)﹣3(4﹣x)=x+2 B.2x﹣2﹣12﹣3x=x+2C.2x=﹣16 D.x=﹣8【分析】根据解方程的一般步骤,先去分母,再去括号,然后移项合并,最后化系数为1判断各选项可得出答案.【解答】解:方程﹣=,去分母得:2(x﹣1)﹣3(4﹣x)=x+2,去括号得:2x﹣2﹣12+3x=x+2,移项合并得:2x=﹣16,化系数为1得:x=﹣8.故可得B项错误.故选B.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.44.解方程2(x+3)﹣5(1﹣x)=3(x﹣1),去括号正确的是()A.2x+6﹣5+5x=3x﹣3 B.2x+3﹣5+x=3x﹣3C.2x+6﹣5﹣5x=3x﹣3 D.2x+3﹣5+x=3x﹣1【分析】去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.【解答】解:去括号得:2x+6﹣5+5x=3x﹣3,故选A.【点评】去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.45.把方程﹣0.5=的分母化为整数,正确的是()A.﹣0.5=B.﹣0.5=C.﹣0.5=D.﹣0.5=【分析】方程左边第一项与右边分子分母乘以10变形即可得到结果.【解答】解:方程变形得:﹣0.5=.故选C【点评】此题考查了解一元一次方程,熟练掌握分数的基本性质是解本题的关键.46.把方程2﹣=﹣去分母后,正确的是()A.12﹣(3x+2)=﹣(x﹣5)B.12﹣2(3x+2)=﹣x﹣5C.2﹣2(3x+2)=﹣(x﹣5)D.12﹣2(3x+2)=﹣(x﹣5)【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:12﹣2(3x+2)=﹣(x﹣5),故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.47.的倒数与互为相反数,那么m的值是()A.B.﹣ C.D.﹣3【分析】关键是考查互为相反数和互为倒数的概念,根据其关系转化为解一元一次方程的问题.即的倒数与的和是0,根据此关系可得到关于m得方程,从而可以求出m的值.【解答】解:的倒数是:,由题意得:+=0,解得:m=,故选C.【点评】本题解决的关键是正确理解互为倒数、互为相反数指中的“互为”的含义.48.解方程(x﹣1)=3,下列变形中,较简捷的是()A.方程两边都乘以4,得3(x﹣1)=12B.去括号,得x﹣=3C.两边同除以,得x﹣1=4D.整理,得【分析】观察原方程中的分数,因为分数和互为倒数,即它们的积为1,应该先去括号,这样方程中的一次项系数很直接的变为1了.【解答】解:一般情况下,是将一元一次方程的未知数的系数化为正整数.因为分数和互为倒数,即它们的积为1,通过观察,先去括号,这样方程中的一次项系数很直接的变为1了.故选B.【点评】在解一元一次方程式时,一般情况下是将一元一次方程的未知数的系数化为正整数.49.下列解方程去分母正确的是()A.由得2x﹣1=3﹣3xB.由得2(x﹣2)﹣3x﹣2=﹣4﹣C.由得3x+1=10﹣2x+6D.由得3x+3=2x﹣3x+1【分析】根据去分母的方法,方程两边都乘以分母的最小公倍数,对各选项分析判断后利用排除法求解.【解答】解:A、方程两边都乘以6得,2x﹣6=3﹣3x,故本选项错误;B、方程两边都乘以4得,2(x﹣2)﹣3x+2=﹣4,故本选项错误;C、方程两边都乘以10得,3x+1=10﹣2x﹣6,故本选项错误;D、方程两边都乘以6得,3x+3=2x﹣3x+1,故本选项正确.故选D.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.50.关于x的方程+2(a≠b)的解为()A.x=a﹣b B.x=a+b C.x=2ab D.x=b﹣a【分析】将题中的a、b看作常数项,先去分母,再去括号,最后移项,化系数为1.从而得到方程的解.【解答】解:+2去分母得:a(a+x)=b(x﹣b)+2ab去括号得:a2+ax=bx﹣b2+2ab移项,合并得:(a﹣b)x=﹣a2﹣b2+2ab方程两边都除以(a﹣b)得:x=b﹣a.故选D.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.。

人教版七年级上册数学:3.2《解一元一次方程(二)》练习题及答案

人教版七年级上册数学:3.2《解一元一次方程(二)》练习题及答案

解一元一次方程(二)-------- 去括号与去分母满分 :100分班级 ________姓名 ________成绩一、相信你都能选对(每题2分,共 16分)1、以下方程中是一元一次方程的是()x1 x2 A 、x-y=2005 B 、3x-20042D 、2 =3C 、 x +x=12、以下四组变形中,属于去括号的是()1A.5x+3=0, 则 5x=-3B.2x = 6, 则 x = 12C.3x-(2-4x)=5, 则 3x+4x-2=5D.5x=1+4, 则 5x=53、某同学在方程 5x-1=□ x+3时,把 □处的数字看错了,解得 x=-4/3, 该同学把 □当作了()A.3B.-8C. 8D. -314、方程2x - 3 = 2 + 3x 的解是( )11A.-2;B.2;C.- 2;D. 25、以下解方程去分母正确的选项是()x1 1 xA.由32 ,得 2x - 1 =3 - 3x; x2 3x 212 4B. 由,得 2(x - 2) - 3x - 2 = - 4y1 y 3 y 123 6 yC. 由 ,得 3y + 3 = 2y - 3y + 1 - 6y;4 x 1y 4D.由53,得 12x - 1 = 5y + 206 、某件商品连续两次 9折降价销售 ,降价后每件商品售价为a 元 ,则该商品每件原价为 ()a aC. 1.12D. 0.817、一个两位数, 个位数字与十位数字的和是9,假如将个位数字与十位数字对换后所得的新数比原数大 9,则本来的两位数为()A .54B .27C .72D .458、一个长方形的周长为 26 cm ,这个长方形的长减少 1 cm ,宽增添 2 cm ,便可成为一个正方形,设长方形的长为 xcm ,可列方程( )A .x1 (26 x)2B .x1 (13 x) 2C .x1 (26 x)2 D . x1 (13 x) 2二、相信你填得又快又准(每题 2分,共 16分)9、去括号且归并含有同样字母的项: ( 1) 3x+2(x-2)=(2)8y-6(y-2)=10、 x = 3和 x = - 6 中,________是方程 x - 3(x + 2) = 6 的解 .2 k 111、若代数式3的值是 1,则 k = _________.3 2x2 x12、 当 x=________ 时,式子2 与3互为相反数 .13、小明买了 20本练习本,店东给他八折优惠,结果廉价 1.6元,每本练习本的标价是元 。

解一元一次方程40题(二)含答案

解一元一次方程40题(二)含答案

解一元一次方程40题(二)含答案1.若关于x 的方程2m x x =-的解为整数,且m 为负整数,求代数式22225[(65)2(3)]m m m m m m -----的值.2.已知关于x 的方程3261x m x +=+与2(2)46x x +=-的解相同,求m 的值.3.解方程:(1)542(23)x x -=-(2)341125x x -+-=4.已知关于x 的方程4(2)x ax -=的解为正整数,求整数a 的所有可能取值.5.解方程:(1)2534x x -=+(2)341125x x -+-=6.解下列方程:(1)5278x x +=-.(2)10(1)5x -=.(3)7341125x x -+-=.7.解方程12334x x x -+-=-8.解方程13136x x x ---=-9.解方程:5(1)64(2)x x +-=--10.若a 、b 为定值,关于x 的一元一次方程2236kx a x bk +--=,无论k 为何值时,它的解总是1x =-,求23a b +的值.11.请阅读下列材料:让我们来规定一种运算:a bad bcc d=-,例如:2325341012245=⨯-⨯=-=-.按照这种运算的规定,请回答下列的问题:(1)求0.6475的值;(2)若132212x x-=,试用方程的知识求x的值.12.解关于未知数x的方程:2(3)1153(1)x x x--=-+ 13.解方程:2(1)3(2)5x x--+=14.解方程:382x x-=+.15.小华在解方程21132x x a-+=-,去分母时,方程的右边的1-没有乘6,因而求得的方程的解为2x=,求a的值,并正确地解方程.16.解方程:455x x=-17.解方程:11 (3)1 23xx-+=+18.解方程:(1)423x x-=-(2)24311 32x x+--=19.解方程:1211 23x x--+=.20.解方程:(1)4610x-=-;(2)1053x x=-.21.解方程:(1)263x += (2)3157146y y ---=22.解方程(1)52(4)6y y -+= (2)2121136x x -+-=-23.解一元一次方程:(1)5234x x +=- (2)222(1)x x -=-24.小明解方程121224x x +--=+的过程如图,请指出他解答过程中所有错误步骤的序号,并写出正确的解答过程.25.解方程:(1)53(1)x x -=+ (2)211123y y +--=26.解方程:3(2)12x -+=-27.阅读与理解:已知关于x 的方程5kx x =-有正整数解,求整数k 的值. 解:5kx x +=,(1)5k x +=,51x k =+因为关于x 的方程5kx x =-,有正整数解,所以51k +为正整数,因为k 为整数,所以11k +=或15k +=,所以0k =或4k =; 探究与应用:应用上边的解题方法,已知关于x 的方程6kx x =+有正整数解,求整数k 的值.28.解方程:(1)2(8)31x x +=- (2)132125x x -+=-29.解方程:(1)5634x x -=- (2)71132x x -+-=30.解方程24431324x x +--=31.解方程:21122323x x x -++=-32.若关于x 的方程1123x k k --=+与方程3(1)5x x x --=-的解互为相反数,求k 的值.33.解方程:4(1)5(3)11x x +--=.34.解方程:43(8)4x x --=.35.阅读以下例题:解方程:|3|2x -=.解:(1)当30x -…时,方程化为32x -=,所以5x =;(2)当30x -<时,方程化为32x -=-,所以1x =. 根据上述阅读材料,解方程:|21|7x +=.36.解下列方程(1)313x x -=+ (2)121135x x +--=37.解方程(1)2121136x x +--=. (2)1(35)2(5)2x x x --=+38.解方程(组12):223x x x -+-=-.39.解方程:(1)534x x =-; (2)16324x x +-=+40.(1)若关于x 的方程30x m +-=的解为2,则m = .(2)若关于x 的方程30x m +-=和2212x m x +=-的解的和为4,求m 的值.解一元一次方程(二)含答案参考答案与试题解析一.解答题(共40小题)1.若关于x 的方程2m x x =-的解为整数,且m 为负整数,求代数式22225[(65)2(3)]m m m m m m -----的值.【解答】解:解方程2mx x =-得:21x m=+, 关于x 的方程2mx x =-的解为整数,且m 为负整数, 12m ∴+=±或1±,解得:1m =或3-或0或2-,其中1m =和0m =舍去(不是负整数),即3m =-或2-;22225[(65)2(3)]m m m m m m -----22225[6526]m m m m m m =--+-+222256526m m m m m m =-+-+-2m =,当2m =-时,原式2(2)4=-=;当3m =-时,原式2(3)9=-=,所以代数式22225[(65)2(3)]m m m m m m -----的值是4或9.2.已知关于x 的方程3261x m x +=+与2(2)46x x +=-的解相同,求m 的值.【解答】解:由3261x m x +=+, 解得:213m x -=. 由2(2)46x x +=-,解得:5x =,两个方程的解相同, ∴2153m -=,解得:8m=.3.解方程:(1)542(23)x x-=-(2)3411 25x x-+-=【解答】解:(1)去括号得:5446x x-=-,移项合并得:2x=-;(2)去分母得:5158210x x---=,移项合并得:327x-=,解得:9x=-.4.已知关于x的方程4(2)x ax-=的解为正整数,求整数a的所有可能取值.【解答】解:去括号,得:48x ax-=,移项、合并同类项,得:(4)8a x-=,系数化成1得:84xa=-,x是正整数,48a∴-=或4或2或1,4a∴=-或0或2或3.即整数a的所有可能取值为4-或0或2或3.5.解方程:(1)2534x x-=+(2)3411 25x x-+-=【解答】解:(1)移项合并得:82x-=,解得:14x=-;(2)去分母得:5(3)2(41)10x x--+=,去括号得:5158210x x---=,移项合并得:327x-=,解得:9x=-.6.解下列方程:(1)5278x x+=-.(2)10(1)5x -=.(3)7341125x x -+-=. 【解答】解:(1)移项合并得:210x -=-,解得:5x =;(2)去括号得:10105x -=,移项合并得:1015x =,解得: 1.5x =;(3)去分母得:35158210x x ---=,移项合并得:2727x =,解得:1x =.7.解方程12334x x x -+-=- 【解答】解:去分母得:44123636x x x --=--,移项合并得:1326x -=,解得:2x =-.8.解方程13136x x x ---=- 【解答】解:去分母得:62236x x x -+=--,移项合并得:77x =-,解得:1x =-.9.解方程:5(1)64(2)x x +-=--【解答】解:去括号得:55648x x +-=-+,移项合并得:99x =,解得:1x =.10.若a 、b 为定值,关于x 的一元一次方程2236kx a x bk +--=,无论k 为何值时,它的解总是1x =-,求23a b +的值. 【解答】解:把1x =-代入方程2236kx a x bk +--=得:21236k a bk -+---=解:把1x =,0k =代入方程得:11236b --= 当1x =,1k =时,原式即:211236a b +--=,根据题意得:11236211236b a b -⎧-=⎪⎪⎨+-⎪-=⎪⎩,解得:0a =,11b =,2333a b +=.11.请阅读下列材料:让我们来规定一种运算:a b ad bc c d=-,例如: 2325341012245=⨯-⨯=-=-.按照这种运算的规定,请回答下列的问题: (1)求0.6475的值; (2)若132212xx -=,试用方程的知识求x 的值. 【解答】解:(1)根据题中的新定义得:原式32825=-=-;(2)根据题中的新定义化简得:13222x x +-=, 移项合并得:32x =, 解得:23x =. 12.解关于未知数x 的方程:2(3)1153(1)x x x --=-+【解答】解:2(3)1153(1)x x x --=-+2611533x x x --=--2113536x x x -+=-+68x -=43x =- 13.解方程:2(1)3(2)5x x --+=【解答】解:去括号得:22635x x ---=,移项合并得:13x -=,解得:13x =-.14.解方程:382x x -=+.【解答】解:移项合并得:210x =,解得:5x =.15.小华在解方程21132x x a -+=-,去分母时,方程的右边的1-没有乘6,因而求得的方程的解为2x =,求a 的值,并正确地解方程.【解答】解:把2x =代入2(21)3()1x x a -=+-中得:6631a =+-, 解得:13a =, 代入方程得:1213132x x +-=-,去分母得:42316x x -=+-,解得:3x =-.16.解方程:455x x =-【解答】解:移项合并得:5x -=-,解得:5x =.17.解方程:11(3)123x x -+=+ 【解答】解:去分母得:39226x x +=-+,移项合并得:5x =-.18.解方程:(1)423x x -=-(2)2431132x x +--= 【解答】解:(1)移项合并得:55x =,解得:1x =;(2)去分母得:48936x x +-+=,移项合并得:55x -=-,解得:1x =.19.解方程:121123x x --+=. 【解答】解:去分母得:33426x x -+-=,移项合并得:5x =.20.解方程:(1)4610x -=-;(2)1053x x =-.【解答】解:(1)移项合并得:44x =-,解得:1x =-;(2)移项合并得:53x =-, 解得:35x =-. 21.解方程:(1)263x +=(2)3157146y y ---= 【解答】解:(1)移项合并得:23x =-, 解得:32x =-; (2)去分母得:93101412y y --+=,移项合并得:1y -=,解得:1y =-.22.解方程(1)52(4)6y y -+=(2)2121136x x -+-=- 【解答】解:(1)去括号得:5286y y --=,移项合并得:314y =, 解得:143y =; (2)去分母得:42216x x ---=-,移项合并得:23x =-, 解得:32x =-. 23.解一元一次方程:(1)5234x x +=- (2)222(1)x x -=-【解答】解:(1)移项合并得:26x =-,解得:3x =-;(2)去括号得:2222x x -=-,移项合并得:44x -=-,解得:1x =.24.小明解方程121224x x +--=+的过程如图,请指出他解答过程中所有错误步骤的序号,并写出正确的解答过程.【解答】解:错误步骤的序号为:①、③.正确解答过程如下:121224x x +--=+ 2(1)14242x x +-⨯=⨯+-22482x x +-=+-28224x x +=+-+312x =4x =.故错误步骤为:①③.25.解方程:(1)53(1)x x -=+(2)211123y y +--= 【解答】解:(1)去括号得:533x x -=+,移项合并得:8x =-,解得:4x =-;(2)去分母得:63622y y +-=-,移项合并得:41y =, 解得:14y =. 26.解方程:3(2)12x -+=-【解答】解:3612x -+=-,352x -=-,33x =,1x =,27.阅读与理解:已知关于x 的方程5kx x =-有正整数解,求整数k 的值. 解:5kx x +=,(1)5k x +=,51x k =+因为关于x 的方程5kx x =-,有正整数解,所以51k +为正整数,因为k 为整数,所以11k +=或15k +=,所以0k =或4k =; 探究与应用:应用上边的解题方法,已知关于x 的方程6kx x =+有正整数解,求整数k 的值.【解答】解:6kx x =+,6kx x -=,(1)6k x -=,61x k =- 因为关于x 的方程6kx x =+有正整数解, 所以61k -为正整数, 因为k 为整数,所以16k -=或13k -=或12k -=或11k -=, 解得7k =或4k =或3k =或2k =. 故整数k 的值为7或4或3或2.28.解方程:(1)2(8)31x x +=-(2)132125x x -+=- 【解答】解:(1)去括号得:21631x x +=-, 移项合并得:17x =;(2)去分母得:551064x x -=--, 移项合并得:1111x =,解得:1x =.29.解方程:(1)5634x x -=-(2)711 32x x-+-=【解答】解:(1)移项合并得:22x=,解得:1x=;(2)去分母得:214336x x---=,移项合并得:23x-=,解得:23x=-.30.解方程24431 324 x x+--=【解答】解:去分母得:4(24)6(43)3x x+--=,去括号得:81624183x x+-+=,移项合并得:1631x-=-,解得:3116x=.31.解方程:21122 323 x xx-++=-【解答】解:去分母,得2(21)3(1)124x x x-++=-,去括号,得4233124x x x-++=-,移项并合并,得55x=,解得,1x=32.若关于x的方程1123x k k--=+与方程3(1)5x x x--=-的解互为相反数,求k的值.【解答】解:由3(1)5x x x--=-,可得:2x=-,所以方程1123x k k--=+的解为2x=,将2x=代入11 23x k k--=+,∴211 23k k--=+,解得:2k=-33.解方程:4(1)5(3)11x x+--=.【解答】解:去括号得:4451511x x+-+=,移项合并得:8x-=-,解得:8x=.34.解方程:43(8)4x x --=.【解答】解:去括号得:42434x x -+=, 移项得:43424x x +=+,合并得:728x =,解得:4x =.35.阅读以下例题:解方程:|3|2x -=.解:(1)当30x -…时,方程化为32x -=,所以5x =;(2)当30x -<时,方程化为32x -=-,所以1x =. 根据上述阅读材料,解方程:|21|7x +=.【解答】解:当210x +…时,方程化为217x +=,解得3x =; 当210x +<时,方程化为217x +=-,解得4x =-. 所以原方程的解为3x =或4x =-.36.解下列方程(1)313x x -=+(2)121135x x +--= 【解答】解:(1)移项得:331x x -=+, 合并同类项得:24x =,系数化为1得;2x =,(2)去分母得:5(1)3(21)15x x +--=, 去括号得:556315x x +-+=,移项得:561535x x -=--,合并同类项得:7x -=,系数化为1得:7x =-.37.解方程(1)2121136x x +--=. (2)1(35)2(5)2x x x --=+ 【解答】解:(1)去分母得:2(21)(21)6x x +--=, 去括号得:42216x x +-+=,移项得:42621x x -=--, 合并同类项得:23x =, 系数化为1得:32x =, (2)去分母得:2(35)4(5)x x x --=+, 去括号得:235204x x x -+=+, 移项得:234205x x x --=-, 合并同类项得:515x -=, 系数化为1得:3x =-.38.解方程(组12):223x x x -+-=-. 【解答】解:去分母得:6331224x x x -+=--, 移项合并得:55x =, 解得:1x =.39.解方程:(1)534x x =-;(2)16324x x +-=+. 【解答】解:(1)移项得:534x x -=-, 合并同类项得:24x =-, 系数化为1得:2x =-,(2)方程两边同时乘以4得:2(1)12(6)x x +=+-, 去括号得:22126x x +=+-, 移项得:21262x x -=--, 合并同类项得:4x =.40.(1)若关于x 的方程30x m +-=的解为2,则m = 1 .(2)若关于x 的方程30x m +-=和2212x m x +=-的解的和为4,求m 的值. 【解答】解:(1)把2x =代入方程得:230m +-=, 解得:1m =;故答案为:1;(2)方程30x m +-=的解为3x m =-,方程2212x m x +=-解为:2(21)3x m =+,根据题意得:23(21)43m m-++=,去分母得:932112m m-++=,移项合并得:2m-=,解得:2m=-.。

列一元一次方程或二元一次方程组解应用题

列一元一次方程或二元一次方程组解应用题

实用标准文案文档列一元一次方程或二元一次方程组解应用题:(二)班级 姓名 座号1、 白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?3、某年级学生外出参观,如果每辆汽车坐45人,那么有15个学生没有坐位;如果每辆汽车坐60人,那么空出一辆汽车,问有几辆汽车?有多少个学生?4、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班共用土筐59个,扁担36根,求抬土与挑土的各有多少人?2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车情况如下表:第一次第二次甲种货车辆数(单位:辆) 2 5乙种货车辆数(单位:辆) 3 6累计运货吨数(单位:吨) 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费30元计算,问:货主应付运费多少元?5、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额×20%)6、保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460g;第二天收集1号电池2节,5号电池3节,总重量为240g。

求1号和5号电池每节分别重多少克?7、一只船的载重量为380t,容积为2000m3,有甲、乙两种货物,甲货物4m3/t,乙货物6m3/t,现要最大限度地利用船的载重量和容积,问两种货物各应装多少吨?8、某市按以下规定收取每月水费;若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水。

人教版数学七年级上册3.3《解一元一次方程(二)》同步练习(有答案)

人教版数学七年级上册3.3《解一元一次方程(二)》同步练习(有答案)

《解一元一次方程(二)》同步练习一、选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x xC .1129)12(4=+--x xD .12)43(348=-+-x x2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x xC .12236=+-+x xD .62236=+-+x x4.解方程256133x x x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+C .x x x -=--+15162D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x x C .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =- B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+ 7.方程)1(332+=-y y 的解是( )A .-6B .6C .54 D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-1510.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=x C .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( ) A .513 B .-135 C .-513 D .135 12.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51B .53C .-51D .-53 15.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时二、填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ;3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ;4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k5.若)9(312y --与)4(5-y 的值相等,则____=y6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--x a 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y . 11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.元三、计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y(3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+ (5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值. 四、应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.某商店为了促销G牌空调机,2000年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案一、选择题1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C10.D 11.C 12. A 13.B 14.D 15.B二、填空题1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.10 14.答案:230.利用等量关系50元+九折消费=212元.设购买的是价值x 元的商品,则212%90)50(50=⨯-+x去括号整理得2079.0=x ,解得230=x (元).15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x 三、计算题1.(1)两边乘以10得)2(210)1(52++=--y y y去括号,得95-=y 所以,59-=y(2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x 去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得632412334=-⎪⎭⎫ ⎝⎛-x 32-移到右边再乘以43,去掉小括号得 54123=-x 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m 四、应用题1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x 8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x x x12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则560)]200(2[2=-+x x解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800>且教师出门又快于学生所以,建造的4道门符合规定.。

2023学年人教版七年级数学上册《3-3解一元一次方程(二)—去括号与去分母》同步练习题(附答案)

2023学年人教版七年级数学上册《3-3解一元一次方程(二)—去括号与去分母》同步练习题(附答案)

2022-2023学年人教版七年级数学上册《3.3解一元一次方程(二)—去括号与去分母》同步练习题(附答案)一.选择题1.若2x﹣3和1﹣4x互为相反数,则x的值是()A.0B.1C.﹣1D.2.下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣33.方程=1变形正确的是()A.2(2x﹣1)﹣1﹣x=4B.2(2x﹣1)﹣1+x=4C.4x﹣1﹣1﹣x=1D.4x﹣2﹣1+x=14.方程﹣2x=的解是()A.x=B.x=﹣4C.x=D.x=45.一元一次方程﹣2x=4的解是()A.x=﹣2B.x=2C.x=1D.x=﹣6.方程2x﹣4=x+2的解为()A.x=﹣1B.x=1C.x=6D.x=27.下列各个变形正确的是()A.由=1+去分母,得2(2x﹣1)=1+3(x﹣3)B.方程﹣=1可化为﹣=1C.由2(2x﹣1)﹣3(x﹣3)=1去括号,得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号,移项,合并同类项,得x=58.已知2x﹣1与4﹣x的值互为相反数,那么x的值是()A.B.3C.﹣3D.19.将方程=1去分母,结果正确的是()A.2x﹣3(1﹣x)=6B.2x﹣3(x﹣1)=6C.2x﹣3(x+1)=6D.2x﹣3(1﹣x)=110.如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=2D.x=﹣211.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6 12.在解方程﹣=1时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=6二.填空题13.整式ax+b的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值,则关于x的方程﹣ax﹣b=6的解是.x﹣202ax+b﹣6﹣3014.方程2x+5=0的解是x=.15.若代数式5x﹣5与2x﹣9的值互为相反数,则x=.16.定义运算“☆”,其规则为a☆b=,则方程(4☆3)☆x=13的解为x=.17.当x时,式子x+1与2x+5的值互为相反数.18.已知y1=x+3,y2=2﹣x,当x=时,y1比y2大5.19.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为.20.若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd •x﹣p2=0的解为x=.三.解答题21.解方程:.22.解方程:﹣1=.23.解方程:5x﹣2(3﹣2x)=﹣3.24.解方程:(1)2(x+1)=﹣5(x﹣2);(2).25.解方程:﹣3=.26.在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程;(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)若关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,求a的值;(3)若关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,求此时符合要求的正整数m,n的值.参考答案一.选择题1.解:由题意可知:2x﹣3+1﹣4x=0∴﹣2x﹣2=0,∴x=﹣1故选:C.2.解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.3.解:去分母得:2(2x﹣1)﹣1+x=4,故选:B.4.解:方程﹣2x=,系数化为1得:x=.故选:A.5.解:﹣2x=4,x=﹣2,故选:A.6.解:方程2x﹣4=x+2,移项得:2x﹣x=2+4,合并得:x=6.故选:C.7.解:A、由=1+去分母,得2(2x﹣1)=6+3(x﹣3),错误;B、方程﹣=1可化为﹣=1,错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号,得4x﹣2﹣3x+9=1,错误;D、由2(x+1)=x+7去括号,移项,合并同类项,得x=5,正确.故选:D.8.解:根据题意可得:2x﹣1+(4﹣x)=0,去括号得:2x﹣1+4﹣x=0,移项得:2x﹣x=1﹣4,合并同类项得:x=﹣3,故选:C.9.解:将方程=1去分母,结果正确的是:2x﹣3(1﹣x)=6.故选:A.10.解:根据题意得:a+2=1,解得:a=﹣1,b+1=3,解得:b=2,把a=﹣1,b=2代入方程ax+b=0得:﹣x+2=0,解得:x=2,故选:C.11.解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.12.解:去分母得:3(x﹣1)﹣2(2x+2)=6,故选:D.二.填空题13.解:由题意得:当x=﹣2时,﹣2a+b=﹣6.∴2a﹣b=6.∴关于x的方程﹣ax﹣b=6的解是x=﹣2.故答案为:x=﹣2.14.解:移项,得2x=﹣5,化系数为1,得x=﹣,故答案为:﹣15.解:∵代数式5x﹣5与2x﹣9的值互为相反数,∴(5x﹣5)+(2x﹣9)=0,去括号,可得:5x﹣5+2x﹣9=0,移项,可得:5x+2x=5+9,合并同类项,可得:7x=14,系数化为1,可得:x=2.故答案为:2.16.解:已知等式化简得:(4☆3)☆x=☆x==13,整理得:+x=,去分母得:7+4x=91,移项合并得:4x=84,解得:x=21,故答案为:2117.解:根据题意得:x+1+2x+5=0,解得:x=﹣2,即当x=﹣2时,式子x+1与2x+5的值互为相反数,故答案为:=﹣2.18.解:根据题意得:(x+3)﹣(2﹣x)=5,去括号得:x+3﹣2+x=5,移项合并得:2x=4,解得:x=2,则当x=2时,y1比y2大5.故答案为:219.解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,故答案为:2.20.解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.三.解答题21.解:去分母,得3(4x﹣3)﹣15=5(2x﹣2),去括号,得12x﹣9﹣15=10x﹣10,移项,得12x﹣10x=﹣10+9+15,合并同类项,得2x=14,系数化为1,得x=7.22.解:去分母得:3(x+1)﹣6=2(2﹣x),去括号得:3x+3﹣6=4﹣2x,移项得:3x+2x=4+6﹣3,合并得:5x=7,解得:x=1.4.23.解:去括号得:5x﹣6+4x=﹣3,移项、合并得:9x=3,系数化为1得:x=.24.解:(1)2x+2=﹣5x+10,2x+5x=10﹣2,7x=8,则x=;(2)2(5x+1)﹣(7x﹣8)=4,10x+2﹣7x+8=4,10x﹣7x=4﹣2﹣8,3x=﹣6,25.解:去分母得:2x+2﹣12=2﹣x,移项合并得:3x=12,解得:x=4.26.解:(1)解方程2x=4得x=2,把x=2代入mx=m+1得2m=m+1,解得m=1;(2)关于x的两个方程2x=a+1与3x﹣a=﹣2得x=,x=,∵关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,∴=,解得a=﹣7;(3)解关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)得x=,x=,∵关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,∴=,∴mn﹣3m﹣3=0,mn=3(m+1),∵m,n是正整数,∴m=3,n=4或m=1,n=6.。

人教版七年级数学上册3-3解一元一次方程(二)去括号与去分母课后练习【含答案】

人教版七年级数学上册3-3解一元一次方程(二)去括号与去分母课后练习【含答案】

人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母课后练习1、单选题(共12题;共24分)1.方程 ,去分母,得( )2x −12−x +13=1A. B. C. D. 2x −1−x +1=63(2x −1)−2(x +1)=62(2x −1)−3(x +1)=63x −3−2x −2=12.解方程 ,去分母后正确的是( )x −13=1−3x +16A. B.2(x −1)=1−(3x +1)2(x −1)=6−(3x +1)C. D. 2x −1=1−(3x +1)2(x −1)=6−3x +13.解方程 ,去分母,得( )1−x +36=x 2A. B. C. D.1−x −3=3x 6−x +3=3x 6−x −3=3x 1−x +3=3x 4.从 , , ,1,2,4中选一个数作为 的值,使得关于 的方程的解−4−2−1k x 1−2x −k 4=2x +k 3−x 为整数,则所有满足条件的 的值的积为( )k A. -32 B. =16 C. 32 D. 645.解方程 ,去分母,去括号得( )1−x +12=x 4A. B. C. D. 1−2x +2=x 1−2x −2=x 4−2x +2=x 4−2x −2=x6.如果 与 是互为相反数,那么 的值是( )2a −9313a +1a A. 6 B. 2 C. 12 D. -67.下列各题正确的是( )A. 由 移项得 7x =4x −37x −4x =3B. 由 去分母得 2x −13=1+x −322(2x −1)=1+3(x −3)C. 由 去括号得 2(2x −1)−3(x −3)=14x −2−3x −9=1D. 由 去括号、移项、合并同类项得 2(x +1)=x +7x =58.代数式 的值等于2,则x 的值为( )x +x −23A. 2 B. -2 C. D. 12−129.下列方程变形中,正确的是( )A. 方程 ,移项,得 5x −2=2x +15x −2x =−1+2B. 方程 ,去括号,得 3−x =2−5(x −1)3−x =2−5x +1C. 方程,系数化为1,得 43x =34x =1D. 方程 ,去分母得 x +15=3x −15−1x +1=3x −1−510.一元一次方程 6( -2) 8( -2)的解为( )x =x A. =1 B. =2 C. =3 D. =6x x x x 11.解方程 步骤如下,开始发生错误的步骤为 ( )x −13−x +26=4−x 2A. B. 2x-2-x+2=12-3x C. 4x=12 D. x=3x +7x −5x 12.关于x 的方程 有负整数解,则所有符合条件的整数m 的和为( )12mx −53=12(x −43)A. 5 B. 4 C. 1 D. -1二、填空题(共6题)13.已知关于x 的一元一次方程0.5x+1=2x+b 的解为x =2,那么关于y 的一元一次方程0.5(y -1)+1=2(y-1)+b 的解为________.14.若代数式 的值等于12,则 等于________ .2x −x +43x 15.已知3x-12的值与 互为倒数,则x=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元一次方程(二)--------去括号
与去分母
满分:100分
班级________姓名________成绩
一、相信你都能选对(每小题2分,共16分)
1、下列方程中是一元一次方程的是()
A、x-y=2005
B、3x-2004
C、x2+x=1
D、21
-
x
=32
-
x 2、下列四组变形中,属于去括号的是()
A.5x+3=0,则5x=-3
B.1
2x = 6,则x = 12
C.3x-(2-4x)=5,则3x+4x-2=5
D.5x=1+4,则5x=5
3、某同学在方程5x-1=□x+3时,把□处的数字看错了,解得x=-4/3,该同学把□看成了()
A.3
B.-8
C. 8
D. -3
4、方程1
2 x -
3 = 2 + 3x的解是 ( )
A.-2;
B.2;
C.-1
2; D.
1
2
5、下列解方程去分母正确的是( )
A.由
1
1
32
x x
-
-=
,得2x - 1 = 3 - 3x;
B.由
232
1
24
x x
--
-=-
,得2(x - 2) - 3x - 2 = - 4
C.由
131
236
y y y
y
+-
=--
,得3y + 3 = 2y - 3y + 1 - 6y;
D.由4415
3x y +-=,得12x - 1 = 5y + 20 6、某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为
( ) A.0.92a B.1.12a C.1.12a D.0.81a
7、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( )
A .54
B .27
C .72
D .45
8、一个长方形的周长为26 cm ,这个长方形的长减少1 cm ,宽增加2 cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程( )
A .1(26)2x x -=-+
B .1(13)2x x -=-+
C .1(26)2x x +=--
D .1(13)2x x +=--
二、相信你填得又快又准(每小题2分,共16分)
9、去括号且合并含有相同字母的项:
(1)3x+2(x-2)= (2)8y-6(y-2)=
10、x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.
11、若代数式213k --的值是1,则k = _________.
12、当x =________时,式子322x -与23x
-互为相反数.
13、小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,
每本练习本的标价是 元 。

14、如果方程 2x+4=0的解与方程4x+m=8的解相同,则m= .
15、三个连续偶数的和为18,设最大的偶数为 x, 则可列方程______.
16、甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一多.
三、相信你都能做对
17、解方程(每小题5分,共20分)
(1)3(x+2)-2(x+2)=2x+4 (2)2(10-0.5y)=-(1.5y+2)
(3)
341
1
25
x x
-+
-=
(4)
43
2.5
0.20.05
x x
--
-=
18、今年父子的年龄之和是50,且父亲的年龄是儿子的4倍,求儿子今年多少岁?(6分)
19、全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。

问这个班有多少位同学?(6分)
20、(爷爷与孙子下棋,爸爸赢一盘记为1分,孙子赢一盘记为3分,两人下了12盘(未出现和棋)后,得分相同,他们各赢了多少盘?(6分)
21、一项工程,甲独立做需要20天完成,乙独立完成需要30天完成,丙独立完成需要40天。

开始三人合作,后来甲另外有事离开,由乙和丙继续合作,全部工作共用了12天完成,问甲工作了几天?(6分)
四、能力与拓展
22、一题多变(12分)
A、B两地相距600千米,一列慢车从A地开出,每小时行80千米,一列快车从B地开出,每小时行120千米,两车同时开出。

(1)若同向而行,出发后多少小时相遇?
(2)若相背而行,多少小时后,两车相距800千米?
(3)若两车同向而行,快车在慢车后面,多少小时后,快车追上慢车?
(4)若两车同向而行,慢车在快车后面,多少小时后,两车相距760千米?
(1)请计算小王买红辣椒和西红柿各多少公斤?
(2)若他能当天卖完,请问他能赚多少钱?
参考答案:
一、1、D 2、C 3、C 4、A 5、C 6、D 7、D 8、B
二、9、(1)7x-4 (2) 2y+12 10、x=-6 11、k=-4 12、x=13/8 13、0.4
14、m=16 15、x+(x-2)+(x-4)=18 16、11+2x, 31-2x, 5
三、17、(1)x=-2(2)y=-44 (3) x = -9;(4) x=2.5 18、设儿子今年x岁,则:4x+x=50,解得:x=10 19、设现在有x 船,则有9(x-1)名同学,则:
9(x-1)=6(x+1),解得:x=5
此时基电路9(x-1)=9×4=36 所以这个班有36名同学。

20、爷爷赢了9盘,孙子赢了3盘 21、甲工作了6天。

四、22、(1)设若相向而行,出发后x小时相遇,则:80x+120x=600 解得,x=3
(2) 设若两车相背而行, x小时后两车相遇800千米,则:80x+120x=600 +800 解得,x=7
(3)设若两车同向而行,快车在慢车后面,x小时后快车追上慢车,则:
120x=80x+600
解得,x=15
(4)设若两车同向而行,慢车在快车后面,x小时后两车相距760千米,则:
120x+600=80x+760
解得,x=4
23.(1)第二个排球;
(2)如果│p│>│q│,则结果为q的质量好一些;如果│p│<│q│,则结果为p的质量好一些;如果│p│=│q│,则两个排球的质量一样好。

相关文档
最新文档