2805表示一组数据分布的量
28.5 表示一组数据分布的量(题型专训)(解析版)
28.5 表示一组数据分布的量一、单选题A.5B.6C.7D.8【答案】D【分析】用总人数减去其他三组的人数即为所求频数.【解析】解:20-3-5-4=8,故组界为99.5~124.5这一组的频数为8,故选:D.【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.7.已知一组数据:6,7,8,8,8,9,9,9,10,10,10,10,10,11,11,11,12,12,12,13,若以2为组距,则可以分成()A.6组B.5组C.4组D.3组【答案】C【分析】求出数据中做最大值和最小值的差,然后除以组距,小数部分要进一位即为组数.【解析】解:在这组数据中最大值为13,最小值为6,它们的差为:13-6=7,∵组距为2,∴组数=7÷2=3.5,所以可以分成4组,故选:C.【点睛】本题主要考查频数分布直方图,熟知频数分布直方图的画法,分组方法是解题的关键.8.将100个数据分成①-⑧组,如下表所示:A.35kg B.170kg【答案】C【分析】用总质量乘以质量不小于20g【解析】解:估计500kg草莓中“大果”故选:C.【点睛】本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,二、填空题【答案】0.2【分析】根据频数分布直方图可知组距为10可求解.【解析】设60~70的频率/组距为:x ,由题意得(100.0050.0100.0300.035x ´++++解得:0.02x =,三、解答题19.对一批成品衬衣进行抽检,获得如下频率、频数分布表:【答案】(1)40名;(2)约有104名;【分析】(1)利用五组频率之和为1,求出最后一组的频率,从而求出共抽取的学生数;(2)根据成绩超过80分的组频率之和,乘以(3)利用加权平均数求出即可.【解析】解:(1)最后一组的频率为请根据所给信息,解答下列问题:(1)a= ,b= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)的为少人?(3)一共有200个数据,按照从小到大的顺序排列后,第所以这次比赛成绩的中位数会落在80£故答案为:8090£<x´=(人).(4)30000.401200即该校参加这次比赛的3000名学生中成绩【点睛】本题考查频数(率)分布直方图,解题的关键是利用统计图获取信息,掌握用样本估计总体的方(1)此次调查的总体是__________,样本容量是__________.(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.【答案】(1)某区3200名学生放学后在校体育运动的情况,40(2)不合适;随机抽样(3)240(4)三(5)方差;离散程度;选择乙【分析】(1)根据总体及样本容量的相关概念可直接进行求解;(2)由题意可直接求解;(3)由图表1及题意可直接进行求解;(4)由题意知一共抽取40名学生进行调查,则将数据从小到大排列,第20,21和的平均数即为中位数,进而根据图表2可求解;(5)根据题意可求出方差,然后问题可求解.【解析】(1)解:总体是指要调查对象的全体,所以此次调查的总体是某区3200名学生放学后在校体育运(1)根据以上图表,回答下列问题:(1)请你根据上述频率分布直方图及表格完成下面的填空:这个地区11月份空气为轻度污染的天数是________.(2)为了进一步改善生活环境和空气质量,提高人民的生活质量,当地政府计划从积.已知2022年底该地区的绿化面积为化面积增加了50%,假设这两年绿化面积的年增长率相同,求这两年中绿化面积每年的增长率(精确到0.01)(参考数据:2 1.414»,3»【答案】(1)3,12,9,0.4,0.3(2)0.22正正。
28.5-2表示一组数据分布的量
组频率 = 小组中数据的频数. 全组数据的总个数
由于组频率表示比值大小,因此可 以用组频率来比较人数不同的两个班学 生成绩的分布情况. 将频数分布表扩充得到频率分布表. 学生认真听课,掌握新知识. 必要时可以记笔记.
在两班人 数不同的情况 下,再用上节 课学的频数来 比较成绩的分 布情况是不合 适的
_ 月_ _日 星期__ 第__周
课 题 教学目标
28.5 表示一组数据分布的量(2)
课 型
新授
教 时
1
1.知道频率的定义,学会绘制频率分布表. 2.经历问题讨论引入“组频率”概念,学会绘制频率分布直方图及从图中获取有关信 息. 3.知道频数与频率、频数分布直方图与频率分布直方图的区别与联系. 频率分布直方图的绘制. 频数与频率、频数直方图与频率直方图的区别与联系 多媒体课件 教学过程 教师活动 学生活动 设计意图
3
答:横坐标的分组相同(代表 组距) ,纵坐标需要将频数除 以总数. 答:图中小矩形代表不同含 义.
教师强调在 频率分布直方 图中的纵轴所 代表的含义与 频数分布表中 纵轴所代表的 含义是不同的.
教师的补 充再一次给学 生强调频率分 布直方图与频 数分布直方图 中小矩形所代 表的含义是不 同的. 学生可以同桌两人互相讨论
学生数
预设: 答:从图中可知: (1)A 班参赛学生有 45 名. (2)B 班参赛学生有 40 名. (3)因为两班人数不同, 所以光靠图上的数据很难比 较两班参赛学生成绩情况.
通过具体 事例, 以人数不 同的两个班学 生参加同一项 知识竞赛为背 景, 经历问题讨 论引入“组频 率”概念. .
12 11 10 9 8 7 6 5 4 3 2 1 0
5 0. 5 7 0. 5 9 0. 5 6 0. 5 4 0. 5 8 0. 5 1 00 . 5
28.5(1)表示一组数据分布的量
28.5(1)表示一组数据分布的量教学目标设计理解频数的概念,对于一组数据,在给定的分组情况下能制作频数分布表,会绘制频数分布直方图,能从频数分布直方图中获取有关信息以及判断数据的分布情况。
通过学生自主对数据进行整理,让学生了解数据的处理方式可以多种多样,但为了统一,我们规定一种特定的方式。
教学重点及难点重点:绘制频数分布直方图的方法.难点:确定频数分布直方图的组距与组数.1)如果给出的数据如上,你能否根据以前的知识对这批数据进行整理2)为什么不能处理2)给出教师对数据的整理方式通过教师对数据的处理回答问题 1)14的含义?2)从图中可否看出80-90分数段中每一个学生的具体分数。
明确这节课的学习目标:对于较复杂的数据进行整理和分组,并用如上的频数分布直方图表示出来。
回到前面的问题复习频数的概念,并在图中指出同意票价为160元的频数。
部分学生想到了利用分数段来对数据进行整理。
学生回答 要这样细致。
对于想到分数段来解决该问题的学生给予肯定复习曾在概率初步中出现过的“频数”概念,同时让学生直观地认识“分布”的含义,抛砖引玉.983073295080人数价格(元) 160 180 200 价格(元 )人数(人)8090100成绩(分)21014591)在这幅图中,频数体现在哪里? 2)从几何的角度思考,频数表示什么? 3)对于这组数据,一共分了几组,每一组的跨度多少? 再给出一组数据 1)数据的整理 某校八年级2班30名男生的身高情况测量如下(单位:cm ): 164 169 170 182 180 169 176 166 162 174 183 170 171 170 173 174 162 174 173 165 167 160 158 175 162 177 173 156 174 175 学生进行整理 提问,若对这组数据我们想分六组怎么分? 例题:某中学为了了解本校九年级学生用于阅读课外书籍的时间的情况,对九年级随机抽取了40名学生,对他们每周阅读课外书籍所用时间进行统计,调查结果如下(时间单位:小时) 学生思考并回答整理的方式很多,对于学生好的分组方法给与肯定 学生思考并回答在此通过问题,引出频数分布的组距和组数的概念 教师在学生进行自行分组时要注意:1) 起始组小于等于最小值,最后一组包含最大值 2) 问学生先确定组距还是组数 分组的方法很多,这里有必要统一一种分组方法。
最新新编八年级数学下册第二十章数据的分析知识点总结新版新人教
第二十章数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。
众数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.极差:是指一组数据中最大数据与最小数据的差。
巧计方法,极差=最大值-最小值。
方差:各个数据与平均数之差的平方的平均数,记作s2.巧计方法:方差是偏差的平方的平均数。
标准差:方差的算术平方根,记作s 。
二教学时对五个基本统计量的分析:1 算术平均数不难理解易掌握。
加权平均数,关键在于理解“权”的含义,权重是一组非负数,权重之和为1,当各数据的重要程度不同时,一般采用加权平均数作为数据的代表值。
学生出现的问题:对“权”的意义理解不深刻,易混淆算术平均数与加权平均数的计算公式。
采取的措施:弄清权的含义和算术平均数与加权平均数的关系。
并且提醒学生再求平均数时注意单位。
2 平均数、与中位数、众数的区别于联系。
联系:平均数、中位数和众数都反映了一组数据的集中趋势,其中以平均数的应用最为广泛。
区别:A 平均数的大小与这组数据里每个数据均有关系,任一数据的变动都会引起平均数的变动。
B 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响。
当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。
C 众数主要研究个数据出现的频数,其大小只与这组数据中的某些数据有关,当一组数据中有不少数据多次重复出现时,我们往往关心众数。
其中众数的学习是重点。
学生出现的问题:求中位数时忘记排序。
对三种数据的意义不能正确理解。
采取的措施:加强概念的分析,多做对比练习。
3 极差,方差和标准差。
方差是重难点,它是描述一组数据的离散程度即稳定性的非常重要的量,离散程度小就越稳定,离散程度大就不稳定,也可称为起伏大。
表示一组数据分布的量
0.25 0.15
组距的商,即
0
2 4 6 8 10
横轴的意义与频数分布 直方图相同。
小时数(时)
频率分布直方图与频数分布直方图的不同
• 这两图小矩形表示不同的意义,频数分布 直方图小矩形表示相应小组的频数,频率 分布直方图中小矩形的面积表示相应小组 的组频率,且各小矩形的面积和为1;频数 分布直方图小矩形内部空白,频率分布直 方图中小矩形内部标着相应的组频率;这 两图的纵坐标(或小矩形的高)含义不同.
表示一组数据分布的量
A班学生参加环保知识竞赛的成绩的频数分布直
方图如左图所示.如果B班学生参加同一环保知
识竞赛的成绩的频数分布直方图如右图所示,那
么应该如何比较A、B两班参赛学生成绩的分布
情况?
学生数
学生数
12 11 10 9 8
7 6 5 4
3
2
1
0
4
0.
5 5
0.
56
0.
57
0.
5
8
0.
5
90.5 100.5
3
2
1
0
40.
55 0. 56
0. 57 0. 5
80.5
90.5 100.5
分数
如果将每小组的频数除以全组数据总的个数,就 可以得到各小组数据的频数与全组数据总个数的 比值,我们把这个比值叫做组频率。
由于组频率表示比值大小,因此可以用组频率来 比较人数不同的两个班学生成绩的分布情况。
学生数
数据总数为40。
例2:为了了解全区6 000名初中毕业生的体重情况, 随机抽测了400名学生的体重.统计结果列表如下:
体重(kg) 40—45 45—50 50—55 55—60 60—65 65—70
表示一组数据离散程度的指标
22
9
16
不同时段的最高气温
思考
01
思 考
单击此处添加小标题
03
这里四季分明。
单击此处添加小标题
02
为什么说本章导图中的两个城市,一个“四季温差不大”,一个“四季分明”?
单击此处添加小标题
04
这里一年四季温度差不大
单击此处添加小标题
练习 5 5 a+3 a+3
中位数为 ;极差为 ;
单击此处添加大标题内容
发现: 方差或标准差越小,离散程度越小,波动越小. 方差或标准差越大,离散程度越大,波动越大
01
方差与标准差------ 描述一组数据的波动大小或者与平均值的离散程度的大小.
02
极差----反映一组数据变化范围的大小;
03
总结: 平均数------反映一组数据的总体趋势
04
14
13
12
13
每次成绩- 平均成绩
0
1
0
-1
0
小兵
每次测试成绩
10
13
16
14
12
每次成绩- 平均成绩
-3
0
3
1
-1
如果一共进行了7次测试,小明因故缺席了两次, 怎样比较谁的成绩更稳定? 请将你的方法与数据填入表21.3.5中.
65
平均
13
0
1
0
0
1
2
0.4
91
13
9
9
0
1
1
9
9
38
在实际应用时常常将求出的方差再开平方,这就是标准差.
发现: 方差或标准差越小,离散程度越小,波动越小. 方差或标准差越大,离散程度越大,波动越大
28.5表示一组数据分布的量——频率
为了了解全区6000名初中毕业生的体重情况,随 机抽取了400名学生的体重,统计结果列表如下: 体重(kg) 40—45 45—50 50—55 55—60 60—65 65—70 频数 44 66 84 86 72 48 频率 0.11 0.165 0.21
0.215 0.18 0.12
为了了解全区6000名初中毕业生的体重情况,随 机抽取了400名学生的体重, (1) 画出频率分布直方图 (2) 估计全区初中毕业生
(3)在频率分布直方图中, 梯形ABCD的面积是______
(4)请你用样本估计总体,可以得到 哪些信息(写一条即可):
(3)在频率分布直方图中, 0.8 梯形ABCD的面积是______ (4)请你用样本估计总体,可以得到 哪些信息(写一条即可):
该校初中毕业年级学生视力在4.55~4.85的人数最多, 约250人;或该校初中毕业年级学生视力在5.15以上的 与视力在4.25以下的人数基本相等,各有20人左右
(3)样本中男生立定跳远 的人均成绩不低于多少米?
因为第一组到第五组人数依次为 4人,8人,12人,10人,6人, 则 • 可求得样本中男生立定跳远的 人均成绩不低于2.03m
为了迎接全市体育中考,• 中学对全校初三男生进行了 某 立定跳远项目测试,并从参加测试的500名男生中随机 抽取了部分男生的测试成绩(单位:m,精确到0.01m) 作为样本进行分析,绘制了如图所示的频率分布直方图 (• 组含最低值,不含最高值).已知图中从左到右每 每 个小长方形的高比依次为2:4:6:• :3,其中1.80~ 5 2.00这一小组的频数为8, 请根据有关信息解答:
24,23,25,29,27,28,27,30,19,20在列频数分布表时, 11 先计算出极差为_______,如果组距为2,那么应分成 25% ___组,26.5~28.5这组的频数为____,频率为____。 6 5 2、从5所中学中各抽取40名男生测量身高,其中落 在180.5cm~185.5cm的学生的频数分别为11,6,6,8,9, 则这组的频率为__________。 0.2
统计学第三版书后答案第二章
第2章统计数据的描述●9.某百货公司6月份各天的销售额数据如下(单位:万元):257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269 295(1)计算该百货公司日销售额的均值、中位数和四分位数;(2)计算日销售额的标准差。
解:(1)将全部30个数据输入Excel表中同列,点击列标,得到30个数据的总和为8223,于是得该百货公司日销售额的均值:(见Excel练习题2.9)x=xn∑=822330=274.1(万元)或点选单元格后,点击“自动求和”→“平均值”,在函数EVERAGE()的空格中输入“A1:A30”,回车,得到均值也为274.1。
在Excel表中将30个数据重新排序,则中位数位于30个数据的中间位置,即靠中的第15、第16两个数272和273的平均数:M e=2722732+=272.5(万元)由于中位数位于第15个数靠上半位的位置上,所以前四分位数位于第1~第15个数据的中间位置(第8位)靠上四分之一的位置上,由重新排序后的Excel表中第8位是261,第15位是272,从而:Q L=261+2732724-=261.25(万元)同理,后四分位数位于第16~第30个数据的中间位置(第23位)靠下四分之一的位置上,由重新排序后的Excel表中第23位是291,第16位是273,从而:Q U=291-2732724-=290.75(万元)。
(2)未分组数据的标准差计算公式为:s =302 1()1iix xn=--∑利用上公式代入数据计算是个较为复杂的工作。
手工计算时,须计算30个数据的离差平方,并将其求和,()再代入公式计算其结果:得s=21.1742。
(见Excel练习题2.9)我们可以利用Excel表直接计算标准差:点选数据列(A列)的最末空格,再点击菜单栏中“∑”符号右边的小三角“▼”,选择“其它函数”→选择函数“STDEV”→“确定”,在出现的函数参数窗口中的Number1右边的空栏中输入:A1:A30,→“确定”,即在A列最末空格中出现数值:21.17412,即为这30个数据的标准差。
28.5表示一组数据分布的量
2.某中学为了了解七年级学生的早锻炼情况,校政教处在七年 级随机抽取了部分学生,并对这些学生某一天的早锻炼时间x(分 钟)进行了调查.现把调查结果分成A,B,C,D四组,如下表所 示;同时,将调查结果绘制成下面两幅不完整的统计图.
分组 A B C D
早锻炼时间/分钟 0≤x<10 10≤x<20 20≤x<30 30≤x<40
[整理、描述数据]按如下分数段整理、描述这两组样本数据:
成绩
部门 人数 甲 乙
40≤x≤50
0 1
50≤x≤60
0 0
60≤x≤70
1 0
70≤x≤80
10 7
80≤x≤90 90≤x≤100
6
3
10
2
(说明:成绩80分及以上为生产技能优秀,70~79分为生产技能 良好,60~69分为生产技能合格,60分以下为生产技能不合格) [分析数据]请完成下列表格
解:(1)如图所示:
(3)1 200×(65%+20%)=1 020,所以该校七年级 学生中约有1 020人早锻炼时间不少于20分钟.
40≤x≤50
甲
0
乙
1
50≤x≤60
0 0
60≤x≤70
1 0
70≤x≤80 10 7
80≤x≤90 6 10
90≤x≤100 3 2
分组 A B C D
早锻炼时间/分钟 0≤x<10 10≤x<20 20≤x<30 30≤x<40
(1)补全频数分布直方图和扇形统计图; (2)抽取的七年级学生早锻炼时间的中位数落在2_0_≤_x<30区间内; (3)已知该校七年级共有1 200名学生,请你估计这个年级学生 中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指 学生在早晨7:00~7:40之间的锻炼)
统计学重点名词解释
1、数据类型:分类数据:只能归于某一类别的非数字型数据,它是对事物进行匪类的结果,数据表现为类别,是用文字来表述。
(定性数据或品质数据)顺序数据:只能归于某一有序类别的非数字型数据。
有类别,但类别是有序的。
(定性数据或品质数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
现实中所处理的大多数都是数值型数据。
(定量数据或数量数据)2、截面数据:在相同或近似相同的时间点上收集的数据,这类数据通常是在不同的空间上获得的,用于描述现象在某一时刻的变化情况。
3、总体:是包含所研究的全部个体(数据)的集合,它通常由所研究的一些个体组成。
可分为有限总体和无限总体。
4、样本:从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量。
5、参数(对应总体)是用来描述总体特征的概括性数字度量,是研究者想要了解总体的某种特征值。
6、统计量(对应样本)是用来描述样本特征的概括性数字度量。
是根据样本数据计算出来来的一个量,由于抽样时随机的,因此统计量是样本的函数。
7、调查方法:普查,抽样调查,统计报表8、抽样采集数据的方式分为概率抽样和非概率抽样。
9、概率抽样:简单随机抽样、分层抽样、整群抽样、系统抽样、多阶段抽样。
10、非概率抽样:方便抽样、判断抽样、自愿样本、滚雪球抽样、配额抽样。
11、搜集数据的基本方法:自填式、面访式、电话式12、数据的误差:抽样误差和非抽样误差抽样误差:是有抽样的随机性引起的样本结果与总体真值的误差。
非抽样误差:相对抽样误差而言的,初抽样误差之外的,由于其他原因引起的样本观察结果与总体真值之间的差异。
13、集中趋势:一组数据向某一中心值靠拢的程度,反映了一组数据中心点的位置所在表示。
众数主要用于14、众数(分类数据):是一组数据中出现次数最多的变量值,用M测度分类数据的集中趋势,当然也适用于作为顺序数据以及数值型数据集中趋势的测度值。
众数是一个位置代表值,他不受数据中极端值的影响。
统计学(贾俊平)第五版课后习题答案(完整版)
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
28.5 表示一组数据分布的量(作业)(解析版)
28.5 表示一组数据分布的量(作业)一、单选题1.(2020·上海长宁区·九年级二模)如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是()A.8、9B.8、8.5C.16、8.5D.16、14【答案】A【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】众数即出现次数最多的数据,由图中数据知道众数是8,由图中知道共有40个数据,中位数是从小到大排列,位于中间的两个数的平均数即为中位数,由图中数据知道是9;故此题选:A.【点睛】此题考查数据收集,主要是众数,中位数和条形统计图,难度一般.2.(2020·上海市静安区实验中学九年级课时练习)某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如下频数分布直方图,则下列说法正确的是( )A.该班人数最多的身高段的学生数为7人B.该班身高低于160.5cm的学生数为15人C.该班身高最高段的学生数为20人D.该班身高最高段的学生数为7人【答案】D【分析】根据频数直方图的意义,表示每段中的人数,即可得到答案.【详解】由频数直方图可以看出:该班人数最多的身高段的学生数为20人;该班身高低于160.5cm 的学生数为20人;该班身高最高段的学生数为7人;故选:D.【点睛】此题考查频数分布直方图,解题关键在于看懂题中数据.3.(2017·上海杨浦区·九年级二模)通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示( )A.频数组距B.频率组距C.频率组数D.频数组数【答案】B【分析】根据频率分布直方图中纵坐标表示频率/组距,横坐标表示组距来作答即可【详解】在频率直方图中纵坐标表示频率/组距,横坐标表示组距,则小长方形的高表示频率/组距,小长方形的长表示组距,则长方形的面积为长乘宽,即组距×频率/组距=频率;故选:B.【点睛】本题的关键是掌握频率分布直方图横纵坐标表示什么4.(2020·上海九年级专题练习)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:组号①②③④⑤⑥⑦⑧频数14111213■131210那么第⑤组的频率是( )A.14B.15C.0.14D.0.15【答案】D【分析】先用样本容量分别减去其它7组的频数得到第⑤组的频数,然后根据频率的定义计算第⑤组的频率.【详解】第⑤组的频数为100﹣14﹣11﹣12﹣13﹣13﹣12﹣10=15,所以第⑤组的频率=15÷100=0.15.故选D.【点睛】本题考查了频(数)率分布表:在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.也考查了频数与频率.5.(2020·上海九年级专题练习)下列各统计量中,表示一组数据离散程度的量是()A.平均数B.众数C.方差D.频数【答案】C【分析】根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数据的离散程度或波动大小进行选择.【详解】A. 平均数是表示一组数据集中趋势的量数,故本选项错误;B. 众数是表示在一组数据中,出现次数最多的数据,故本选项错误;C. 方差是表示一组数据离散程度的度量,故本选项正确;D. 频数表示某一项或某一组出现的次数,是直观的数量,故本选项错误.故选C.【点睛】本题考查了离散程度的量,熟练掌握平均数,众数,方差,频数各自的含义是解题的关键.6.(2019·上海长宁区·九年级二模)某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率是( )A.0.1B.0.2C.0.3D.0.4【答案】A【分析】结合频数分布直方图,根据频率=频数÷总数,直接代入求解即可.【详解】仰卧起坐次数不小于15次且小于20次的频率是:3310125+++=0.1;故选:A.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,解题的关键是掌握频率=频数÷总数.7.(2020·上海市静安区实验中学九年级课时练习)从一堆苹果中任取了20个,称得它们的质量(单位:克),其数据分布表如下.则这堆苹果中,质量不小于120克的苹果数约占苹果总数的()分组(90,100)(100,110)(110,120)(120,130)(130,140)(140,150)频数1231031A.80%B.70%C.40%D.35%【答案】B【分析】在样品中,质量不小于120克的苹果20个中有14个,通过计算在样本中所占比例来估计总体.【详解】解:103114=123103120+++++++=70%,所以在整体中质量不小于120克的苹果数约占苹果总数的70%.故选B .点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.二、填空题8.(2020·上海静安区·九年级二模)为了解某区24000名初中生平均每天的体锻时间,随机调查了该区300名初中生.如图是根据调查结果绘制成的频数分布直方图(每小组数据含最小值,不含最大值),由此可估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为_____人.【答案】4800【分析】用总人数乘以样本中每天的体锻时间不少于1.5小时的人数占被调查人数的比例即可得.【详解】解:估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为24000×30020100120300---=4800(人),故答案为:4800.【点睛】考查了频数(率)分布直方图,解题关键是根据频数分布直方图得出解题所需数据及利用样本估计总体思想的运用.9.(2020·上海松江区·九年级二模)空气质量检测标准规定:当空气质量指数W ≤50时,空气质量为优;当50<W ≤100时,空气质量为良,当100<Q ≤150时,空气质量为轻微污染.已知某城市4月份30天的空气质量状况,统计如表:空气质量指数(W)406090110120140天数3510741这个月中,空气质量为良的天数的频率为_____.【答案】0.5【分析】先求出空气质量为良的天数,再除以30即得结果.【详解】解:这个月中,空气质量为良的天数的频率为51030+=0.5.故答案为:0.5.【点睛】本题考查了频数与频率,属于常见题型,掌握计算频率的方法是解题关键.10.(2020·上海市静安区实验中学九年级课时练习)已知在一个样本中,30个数据分别落在3个组内,第一、二、三组数据个数分别为5,16,9,则第二组的频率为______.【答案】8 15【分析】根据频率=频数÷总数计算.【详解】由题意得:第二组的频率是16÷30=8 15.故答案为815.【点睛】此题考查频数与频率,解题关键在于掌握频率、频数、总数三者之间的关系:频率=频数÷总数.11.(2020·上海九年级专题练习)为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)分组(分)40~5050~6060~7070~8080~9090~100频数1218180频率0.160.04根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是__________.【答案】1620.【分析】根据题意和表格中的数据可以求得样本中成绩在70~80分的人数,从而可以估计全区此次成绩在70~80分的人数.【详解】由题意可得,样本中成绩在70~80分的人数为:600–12–18–180–600×0.16–600×0.04=270,3600×270600=1620,故答案为1620.【点睛】本题考查频数分布表、用样本估计总体,解答本题的关键是明确题意,求出全区此次成绩在70~80分的人数.三、解答题12.(2020·上海市静安区实验中学九年级课时练习)1995年联合国教科文组织把每年4月23日确定为“世界读书日”.某中学为了解全校1000名学生平均每天阅读课外书报的时间,随机调查了该校50名学生一周内平均每天阅读课外书报的时间,结果如下表:时间(分)15202530354045505560人数81275434232根据上述信息完成下列各题:(1)在统计表(上表)中,众数是分,中位数是分;(2)估计该学校平均每天阅读课外书报的时间不少于35分钟的学生大约人;小明同学根据上述信息制作了如下频数分布表和频数分布直方图,请你完成下列问题:(3)频数分布表中m=,n=;(4)补全频数分布直方图.【答案】(1)20,25;(2)360;(3)12,7;(4)见解析.【分析】(1)找出表格中出现次数最多的数可得众数,找出按大小顺序排好后位于中间的两个数,求其平均数可得中位数;(2)借助表格查找时间35分及以上的人数,除以样本容量,然后乘以全校人数即可;(3)根据统计表中的数据,可直接得出m,n的值;(4)根据(3)中m,n的值,补全频数分布直方图即可.【详解】解:(1)由统计表知,20分出现的次数最多,故众数是20,按从小到大的顺序排列后,处在第25,26的两个数都是25,故中位数是2525=252+;(2)4342321000=36050+++++´,故该学校平均每天阅读课外书报的时间不少于35分钟的学生大约有360人;(3)由统计表知,m=12,n=7;(4)补全频数分布直方图如图:【点睛】本题考查了利用统计表获取信息的能力.利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.同时考查了加权平均数、中位数和众数的概念以及用样本估计总体.13.(2020·上海市静安区实验中学九年级课时练习)某地区为了了解当年春游时学生的个人消费情况,从其中一所学校的初三年级中随机抽取了部分学生春游消费情况进行调查,并将这部分学生的消费额绘制成频率分布直方图.已知从左至右第一组的人数为12名.请根据所给的信息回答:(1)被抽取调查的学生人数为名;(2)从左至右第五组的频率是;(3)假设每组的平均消费额以该组的最小值计算,那么被抽取学生春游的最低平均消费额为元;(4)以第(3)小题所求得的最低平均消费额来估计该地区全体学生春游的最低平均消费额,你认为是否合理?请说明理由.【答案】(1)120;(2)0.15;(3)31.5;(4)不合理,因为所抽取的样本不是从该地区中随机抽取的,所以对该地区全体学生不具有代表性【分析】(1)根据总数=频数÷频率进行计算;(2)用1减去其余各组的频率和即可回答;(3)根据加权平均数的求法进行计算;(4)不合理,因为样本不具有代表性.【详解】解:(1)被抽取调查的学生人数为:12÷(0.01×10)=120名;(2)第5组的频率=1−(0.010+0.020+0.030+0.025)×10=0.15;(3)被抽取学生春游的最低平均消费额为:(10×0.01+20×0.02+30×0.03+40×0.025+50×0.15)×10=31.5元;10(4)不合理,因为所抽取的样本不是从该地区中随机抽取的,所以对该地区全体学生不具有代表性.【点睛】本题考查了频率分布直方图,掌握频率=频数÷总数的计算方法,能够正确运用加权平均数进行计算平均数是解题的关键.14.(2020·上海市静安区实验中学九年级课时练习)随着人民的生活水平的不断提高,学生身边的零用钱也多了.夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.(1)请你写出同学的零用钱(0元,2元,5元,6元8元)出现的频数;(2)求出同学的零用钱的平均数、中位数和众数;(3)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是多少元?【答案】(1)0元的频数是5,2元的频数是7,5元的频数是21,6元的频数是5,8元的频数是2;(2)平均数是4.125,中位数是5;众数是5;(3)老师最有可能得到的回答是5元.【分析】(1)频数即为该组数据出现的次数,仔细观察后找到该数据出现的次数即为该组数据的频数.(2)根据平均数、中位数和众数的计算方法,进行计算可得答案;(3)因为“5元”的频数最大,即其频率最大,故最有可能得到的回答是5元.【详解】(1)0元的频数是5,2元的频数是7,5元的频数是21,6元的频数是5,8元的频数是2;(2)平均数是140(2×7+5×21+6×5+8×2)=4.125,将数据从小到大排列,找第20、21人的数值,均为5,故中位数是5;5的数目最多,故众数是5(3)因为“5元”的频数最大,即其频率最大;故老师最有可能得到的回答是5元.【点睛】此题考查频率、频数、中位数、众数、平均数的定义.解题关键在于掌握各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=频数数据总和.15.(2020·上海市静安区实验中学九年级课时练习)“国际无烟日”来临之际,小明就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请你根据图中信息回答:(1)被调查者中,不吸烟者赞成在餐厅彻底禁烟的人数是 .(2)被调查者中,希望在餐厅设立吸烟室的人数是 .(3)求被调查者中赞成在餐厅彻底禁烟的频率.(4)眉山市现有人口约380万,根据图中信息估计眉山市现有人口中赞成在餐厅彻底禁烟的人数.【答案】(1)不吸烟中赞成在餐厅彻底禁烟的人数是97;(2)63;(3)被调查者中赞成在餐厅禁烟的频率为0.6;(4)眉山市现有人口中赞成在餐厅彻底禁烟的人数为228万.【分析】(1)读图易得:不吸烟中赞成在餐厅彻底禁烟的人数是97人;(2)希望在餐厅设立吸烟室的人数是35+28=63;(3)希望彻底戒烟人数÷总人数,求得频率;(4)380万×频率即可.【详解】(1)不吸烟中赞成在餐厅彻底禁烟的人数是97;(2)35+28=63;(3)97230.6 97233528107+=+++++;答:被调查者中赞成在餐厅禁烟的频率为0.6;(4)380×0.6=228;答:眉山市现有人口中赞成在餐厅彻底禁烟的人数为228万.【点睛】本题考查了统计图的有关知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.。
28.5.2表示一组数据分布的量剖析
例2:为了了解全区6 000名初中毕业生的体重情况, 随机抽测了400名学生的体重.统计结果列表如下: 频 体重(kg) 40—45 45—50 50—55 55—60 60—65 65—70 44 66 84 86 72 48 数 频 率 (1)计算组频 率,并填人表 格中; (2)画出样本 频率分布直方 图,图中各小 矩形面积的和 等于多少?
28.5(2)
表示一组数据分布的量
频率分布直方图
A班学生参加环保知识竞赛的成绩的频数分布直 方图如左图所示.如果B班学生参加同一环保知 识竞赛的成绩的频数分布直方图如右图所示,那 么应该如何比较A、B两班参赛学生成绩的分布 情况?
学生数
学生数
12 11 10 9 8 7 6 5 4 3 2 1 0
课堂小结
作业:
0.11 0.165 0.21 0.215 0.18 0.12
(3)估计全区初中毕业生中体重小于60千克且不小于 50千克的学生人数.
例题: 为了了解高一学生的体能情况,某校 随机抽取部分学生进行一分钟跳绳次数测试,将 所得数据整理后,画出了频率分布直方图.图中从 左到右各小长方形的面积之比为2:4:17:15:9: 3,第二小组的频数为12. 频率/组距 (1)第二小组的频 0.036 0.032 率是多少? 0.028 (2)样本容量是多 0.024 少? 0.020 (3)若次数在110以 0.016 上(含110次)为达 0.012 标,试估计该校全体 0.008 0.004 高一学生的达标率约 次数 o 90 100 110 120 130 140 150 是多少?
5 0. 5 7 0. 5 9 0. 5 6 0. 5 4 0. 5 8 0. 5 1 00 . 5
10 9 8 7 6 5 4 3 2 1 0
28.5(1)表示一组数据分布的量
分组
频数
54-56
4
56-58
7
58-60
9
60-62
11
62-64
10
64-66
6
66-68
3
分组
次数记录
频数
O一2
币
4
2—4
正下
8
4—6
正正T
12
6—8
正正
10
8—10
正一
6
我们把反映各小组中相关数据出现的频数的统计图叫做频数分布直方图.
提问:从上述的频数分布直方图中,同学们能找出那些信息?
——从图中可见,学生每周用于阅读课外书籍的时间t(时)中,满足4≤t<6的最多,达12人;其次是满足6≤t<8的有10人;另外,满足2≤t<4的有8人,满足8≤t<10的有6人;而满足0≤t<2的最少,只有4人.
5.绘制频数分布直方图.
每个小矩形的高表示相应小组的频数,小长方越高.表示在这一区段的频数越大(在上图中不要误认为是时间长).绘好频数分布直方图,我们就能很直观地区别出它是呈中间高的、还是两头高的、或偏高于一头的分布.
例题A班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分成6小组,画出竞赛成绩的频数分布直方图,如图所示.根据图中的信息回答下列问题:
(1)A班共有多少名学生参赛?
(2)成绩的中位数落在哪个小组数据范围内?
(3)求成绩高于60分的学生占全班参赛人数的百分率.
三、课堂籍的时间的中位数在哪个小组?
(2)学生每周用于阅读课外书籍的时间在4-8(不含8)小时的人占学生总人数的百分比是多少?
285表示一组数据分布的量
80.5-90.57
90、5T00.5 6
B班
分组 频数
40.5-50.53
50.5-60.56
60.5-70.58
70.5-80.58
80.5-80.59
90、5T08 56
将频数分布表扩充得到频率 分布表.
从频率分布表中可比较A、B两班参赛学生成绩的分布情况.
你知道各小组的频率和为多 少吗?
教学内容
教学过程
教后记
本课小结
频率
1.频率:
各小组数据的频数与全组数 据总个数的比值,叫做组频率.组样女小组中数据的频数 组频率二全组数据的总数
2.频率分布直方图:
(可在频数分布直方图的基础 上画频率分布直方图)
(1)横轴的意义与频数分布直方 图相同表示组距.
(2)纵轴表示频率与组距的商,即 “频率”.
(3)最后一个问题学生自己填 空.
教学内容
教学过程
教后记
可在频数分布直方图的基础 上画频率分布直方图.
纵轴单位如何确定呢?
频率
组距
.0.2 5
.0.3_
—0.2
0.15
0.1
024 6 810小时数(时,频数
频率_总个数
组距一组距
-频数X总个数x组距
例如频数为2.
2x而'=0.025.
例如频数为6.
教学内容
教学过程
教后记
新课探索三
对于人口、身高、体重等问 题,我们可以通过大容量的随机 样本的分布来推断总体的分布.
例题为了了解全区6000名 初中毕业生的体重情况,随机抽 测了400名学生的体重.
统计结果列表如下:
体重(kg)频数频率
北京博克图中学八年级数学下册第五单元《数据的分析》测试卷(含答案解析)
一、选择题1.某中学足球队的18名队员的年龄情况如下表: 年龄(单位:岁) 14 15 16 17 18 人数36441则这些队员年龄的众数和中位数分别是( ) A .15,15B .15,15.5C .15,16D .16,152.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5 B .中位数是5C .平均数是6D .方差是3.63.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或64.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁5.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染) 有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数; ②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差. 上述结论中,所有正确结论的序号是( ) A .①B .①③C .②③D .①②③6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论: ①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150≥为优秀) ③甲班成绩的波动比乙班大. 上述结论中正确的是( ) A .①②③B .①②C .①③D .②③7.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是( ) A .85和85 B .85.5和85 C .85和82.5 D .85.5和80 8.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A .3B .4C .5D .99.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数10.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):A .80,80B .81,80C .80,2D .81,211.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分12.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐二、填空题13.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 14.某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为x 甲=79,x 乙=79,2S 甲=101,2S 乙=235,则成绩较为整齐的是_________(填“甲班”或“乙班”).15.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.16.一组数据1,0,2,1的方差S 2=_____.17.一组数2、a 、4、6、8的平均数是5,这组数的中位数是______.18.某样本数据是:2,2,x ,3,3,6如果这个样本的众数为2,那么这组数据的方差是______19.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.20.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为________.三、解答题21.濮阳市团委举办“我的中国梦”为主题的知识竞赛,甲乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)请你将图②中条形统计图补充完整;(2)图①中,90分所在扇形的圆心角是 °;图③中80分有人.(3)分别求甲、乙两校成绩的平均分;(4)经计算知S2甲=135,S2乙=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.22.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?23.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.24.图甲和图乙分别是A,B两家酒店去年下半年的月营业额(单位:百万元)统计图.(1)求A酒店12月份的营业额a的值.(2)已知B酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.(3)完成下面的表格(单位:百万元)(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.25.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲789710109101010乙10879810109109)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.26.为了了解某校初三学生每周平均阅读时间的情况,随机抽查了该校初三m名学生,对其每周平均课外阅读时间进行统计,绘制了条形统计图和扇形统计图.根据以上信息回答下列问题:(1)求m的值;(2)求扇形统计图中阅读时间为3小时的扇形圆心角的度数;(3)求出这组数据的平均数.(精确到0.1)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据众数和中位数的定义求解即可.【详解】解:这组数据按从小到大顺序排列为:14,14,14,15,15,15,15,15,15,16,16,16,16,17,17,17,17,18,则众数为:15,中位数为:(15+16)÷2=15.5.故答案为B.【点睛】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是掌握众数和中位数的定义.2.D解析:D【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误; 故选D . 【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.C解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5, ∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.4.B解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁,∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.5.C解析:C 【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6.A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.A解析:A【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85; 故选:A . 【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.9.A解析:A 【分析】根据方差的计算公式可直接得出结果. 【详解】()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦∴5是数据的个数,7是平均数, 故选:A 【点睛】本题考查方差的定义.熟记方差公式是解题的关键.10.A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.11.B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.12.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.此题考查方差,掌握波动越小,数据越稳定是解题关键二、填空题13.网页制作【分析】根据加权平均数的定义解答即可【详解】解:设网页制作的权重为a语言的权重为b则甲的分数为80a+70b乙的分数为70a+80b而甲的分数高所以80a+70b>70a+80b解得a>b则解析:网页制作【分析】根据加权平均数的定义解答即可.【详解】解:设网页制作的权重为a,语言的权重为b,则甲的分数为80a+70b,乙的分数为70a+80b,而甲的分数高,所以80a+70b>70a+80b,解得a>b,则本次招聘测试中权重较大的是网页制作项目.故答案为:网页制作.【点睛】本题考查了加权平均数的和解一元一次不等式的知识,属于基础题型,熟练掌握加权平均数的定义是关键.14.甲班【分析】根据方差的意义(方差越小数据越稳定)进行判断【详解】∵=101=235∴<∴成绩较为整齐的是:甲班故答案是:甲班【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量方差越大表明解析:甲班【分析】根据方差的意义(方差越小数据越稳定)进行判断.【详解】∵2S甲=101,2S乙=235,∴2S甲<2S乙,∴成绩较为整齐的是:甲班.故答案是:甲班.【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.30【分析】根据计算方差的公式能够确定数据的个数和平均数从而求得所有数据的和【详解】解:∵S2=(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2∴平均数为3共10个数据∴x1+x2+x3+…+x【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据,∴x 1+x 2+x 3+…+x 10=10×3=30.故答案为30.【点睛】 本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.16.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5【分析】利用方差的计算公式计算即可.【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5.【点睛】 本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 17.5【解析】【分析】由平均数可求解a 的值再根据中位数的定义即可求解【详解】解:由平均数可得a=5×5-2-4-6-8=5则该组数由小至大排序为:24568则中位数为5故答案为:5【点睛】本题考查了平均解析:5【解析】【分析】由平均数可求解a 的值,再根据中位数的定义即可求解.【详解】解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,故答案为:5.【点睛】本题考查了平均数和中位数的概念.18.2【解析】【分析】根据众数的概念确定x 的值再求该组数据的方差【详解】因为一组数据22x336的众数是2所以x=2于是这组数据为222336该组数据的平均数为:(2+2+2+3+3+6)=3方差S2=解析:2【解析】【分析】根据众数的概念,确定x 的值,再求该组数据的方差.【详解】因为一组数据2,2,x ,3,3,6,的众数是2,所以x=2.于是这组数据为2,2,2,3,3,6. 该组数据的平均数为:16(2+2+2+3+3+6)=3, 方差S 2=16[(2-3)2+(2-3)2+(2-3)2+(3-3)2+(3-3)2+(6-3)2]=2. 故答案为:2.【点睛】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”; ②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个; ③方差是用来衡量一组数据波动大小的量.19.【分析】利用平均数的定义利用数据x1x2…x10的平均数为ax11x12…x30的平均数为b 可求出x1+x2+…+x10=10ax11+x12+…+x30=20b 进而即可求出答案【详解】解:因为数据 解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.20.3【分析】首先根据这组数据的总和等于各个数据之和或等于这组数据的平均数乘以这组数据的个数列出方程得出x的值再根据众数的概念这组数据中出现次数最多的是3从而得出答案【详解】解:1+3+2+7+x+2+解析:3【分析】首先根据这组数据的总和等于各个数据之和,或等于这组数据的平均数乘以这组数据的个数,列出方程,得出x的值,再根据众数的概念,这组数据中出现次数最多的是3,从而得出答案.【详解】解: 1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为3.点睛: 本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.三、解答题21.(1)见解析;(2)108,4;(3)甲校85分,乙校85分;(4)见解析【分析】(1)甲校得“90分”的有6人,占调查人数的30%,可求出调查人数,再用总人数减其它分数段的人数,求出得100分的人数,从而补全统计图;(2)用360︒乘以得90分的人数所占的百分比求出90分所在扇形的圆心角,用总人数减去乙校其它分数段的人数求出得80分的人数;(3)根据平均数的计算公式求出甲校和乙校的平均成绩;(4)从方差的大小,得出数据的离散程度.【详解】÷=(人),解:(1)甲校参赛的总人数是:630%20---=(人),补全统计图如下:100分的人数有:206365︒⨯=︒,(2)图①中,90分所在扇形的圆心角是:36030%108---=(人),图③中80分有:207184故答案为:108,4;(3)甲校的平均成绩是:1(7068039061005)8520⨯+⨯+⨯+⨯=(分),乙校的平均成绩是:1(7078049011008)8520⨯+⨯+⨯+⨯=(分).(4)甲、乙两校的平均分相同,22135175S S=<=乙甲,∴甲校的成绩离散程度较小,比较稳定.【点睛】此题考查中位数、平均数的意义,条形统计图、扇形统计图的意义,理解各个概念的内涵和外延是正确解答的前提.22.(1)80;(2)①81;②85.【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分);(2)①小张的期末评价成绩为70190280781127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x分,根据题意,得:601752780127x⨯+⨯+++,解得84.2x,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.23.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义.24.(1)4百万元;(2)3百万元,见解析;(3)2.5,见解析;(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好,见解析【分析】(1)想办法求出12月份的扇形图中的圆心角,构建方程即可解决问题;(2)根据平均数的定义即可解决问题;(3)根据平均数,中位数,众数的定义计算即可;(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好.【详解】解:(1)设7、8、9、10所占的圆心角为x.则有:2.4 2.2 2.2 1.2x+++=372,解得x=192°,∴12月份的圆心角为360°-192°-72°=96°,则有:a96=372,∴a=4百万元,(2)由题意,8月份的月营业额为3百万元.作图:(3)A 酒店的平均数=3 2.4 2.2 2.2 1.246+++++=2.5, B 酒店的中位数为1.9,众数为1.7,故答案为2.5,1.9,1.7. (4)平均数,中位数反映酒店的经营业绩,A 酒店的经营状况较好.理由:平均数.中位数比较大.【点睛】此题考查折线统计图、扇形统计图、中位数、平均数、众数,解题的关键是熟练掌握基本知识.25.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.26.(1)m=60;(2)120°;(3)2.8小时.【分析】(1)根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m的值;(2)先求出课外阅读3小时的人数,再用360°乘以阅读时间为3小时的人数所占的百分比即可;(3)利用平均数的计算公式进行计算即可.【详解】(1)∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为9013604=,∵课外阅读时间为2小时的有15人,∴m=15÷14=60;(2)课外阅读3小时的人数有:60﹣10﹣15﹣10﹣5=20(人),所以阅读时间为3小时的扇形圆心角的度数是2060×360°=120°;(3)这组数据的平均数为:1011522031045560⨯+⨯+⨯+⨯+⨯≈2.8小时.【点睛】此题考查条形统计图与扇形统计图的结合计算,能正确求样本的总数,求部分的数量及圆心角度数,掌握加权平均数的公式是解题的关键.。
安徽铜陵市八年级数学下册第二十章《数据的分析》知识点(含答案解析)
一、选择题1.八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7 B.6 C.5 D.4C解析:C【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【详解】解:∵5,7,6,x,7的平均数是6,∴1(5+7+6+x+7)=6,5解得:x=5;故选:C.【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.2.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分B解析:B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中80出现12次,出现的次数最多,故这组数据的众数为80分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组40个按大小排序的数据中,中位数是按从小到大排列后第20,21个数的平均数,而第20,21个数都在80分组,故这组数据的中位数为80分.故选B.考点:1.众数;2.中位数.3.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定B解析:B【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是()A.平均数是92 B.中位数是90 C.众数是92 D.极差是7C解析:C【分析】根据平均数、中位数、众数以及极差的定义、计算公式对各选项进行判断.【详解】解:A.这组数据的平均分15×(85+90+92+92+96)=91分,所以A选项错误;B、这组数据按从小到大排列为:85、90、92、92、96,所以这组数据的中位数为92(分),所以B选项错误;C、这组数据的众数为92(分),所以C选项正确;D.这组数据极差是96﹣85=11,所以D选项错误;故选C.【点睛】本题查平均数,中位数,众数以及极差,解题关键是正确熟练运用公式.5.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是()A.75,70 B.70,70 C.80,80 D.75,80A解析:A【分析】根据中位数和众数的定义解答即可.【详解】共40个数据中第20和第21个数分别是70、80,∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70,故选:A.【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.6.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A.1999年B.2004年C.2009年D.2014年C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.7.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A.6 B.6.5 C.7 D.8C解析:C【分析】根据平均数求出x的值,再利用中位数定义即可得出答案.【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.8.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,30C解析:C 【解析】 【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数. 【详解】解:30元的人数为20人,最多,则众数为30, 中间两个数分别为30和30,则中位数是30, 故选:C . 【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握. 9.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖): 组员 甲乙丙丁戊平均成绩众数得分81 77 80 82 80A .80,80B .81,80C .80,2D .81,2A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.10.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( ) A.S2甲<S2乙B.S 2甲=S2乙C.S 2甲>S2乙D.无法比较S 2甲和S2乙的大小C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题11.一组数据2,3,4,x,6的平均数是4,则x是_______.5【分析】根据用平均数的定义列出算式再进行计算即可得出答案【详解】解:∵数据234x6的平均数是4∴(2+3+4+x+6)÷5=4解得:x=5;故答案为:5【点睛】本题考查了平均数的概念平均数是指在解析:5【分析】根据用平均数的定义列出算式,再进行计算即可得出答案.【详解】解:∵数据2,3,4,x,6的平均数是4,∴(2+3+4+x+6)÷5=4,解得:x=5;故答案为:5.【点睛】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.12.若一组数据4,x,5,7,9的众数为5,则这组数据的方差为_____.【分析】根据众数的定义先判断出x是5再根据平均数的计算公式求出平均数为6然后代入方差公式即可得出答案【详解】解:∵数据4x579的众数为5∴x=5S2=(4﹣6)2+2×(5﹣6)2+(7﹣6)2+解析:16 5【分析】根据众数的定义先判断出x是5,再根据平均数的计算公式求出平均数为6,然后代入方差公式即可得出答案.【详解】解:∵数据4,x,5,7,9的众数为5,∴x=5,1(45579)65x=+++++=,S2=15[(4﹣6)2+2×(5﹣6)2+(7﹣6)2+(9﹣6)2]=165,故答案为165.【点睛】此题主要考查了平均数、众数、方差的统计意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.熟练掌握方差的计算公式是解答本题的关键.13.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3.【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可.【详解】原数据的1、3、3、5的平均数为13354+++=3,中位数为332+=3,众数为3;添加的数为3后,新数据1、3、3、3、5的平均数为133355++++=3,中位数为3,众数为3;故答案为:3.【点睛】此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.14.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.15岁15岁【分析】由图得到男子足球队的年龄及对应的人数再根据平均数中位数的概念求解【详解】∵由图可得:13岁的有2人14岁的有6人15岁的有8人16岁的有3人17岁的有2人18岁的有1人∴平均数为解析:15岁 15岁 【分析】由图得到男子足球队的年龄及对应的人数,再根据平均数、中位数的概念求解. 【详解】∵由图可得:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∴平均数为13214615816317218115268321⨯+⨯+⨯+⨯+⨯+⨯=+++++;∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,即15岁, 故答案是:15岁,15岁. 【点睛】本题考查了求一组数据的加权平均数和中位数.解题关键是求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.15.为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.86【分析】根据加权平均数的计算公式列出算式再进行计算即可得出答案【详解】解:根据题意得:90×50+80×30+85×20=45+24+17=86(分)答:该选手的最后得分是86分故答案为86【点解析:86 【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案. 【详解】 解:根据题意得: 90×50%+80×30%+85×20% =45+24+17 =86(分).答:该选手的最后得分是86分. 故答案为86. 【点睛】本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.16.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.乙【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】解:∵∴队员身高比较整齐的球队是乙故答案为乙【点睛解析:乙 【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙, 故答案为乙. 【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量17.已知一组数据为:5,3,3,6,3则这组数据的方差是______.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】 【分析】先求出平均数,再根据方差的公式计算即可. 【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6. 【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.刘亮【解析】【分析】根据折线统计图得出两人射击成绩再计算出两人成绩的方差据此即可作出判断【详解】解:李飞的成绩为58978910897则李飞成绩的平均数为=8所以李飞成绩的方差为×(5-8)2+2×解析:刘亮【解析】【分析】根据折线统计图得出两人射击成绩,再计算出两人成绩的方差,据此即可作出判断.【详解】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为57283931010+⨯+⨯+⨯+=8,所以李飞成绩的方差为110×[(5-8)2+2×(7-8)2+3×(8-8)2+3×(9-8)2+(10-8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为73849310⨯+⨯+⨯=8,∴刘亮成绩的方差为110×[3×(7-8)2+4×(8-8)2+3×(9-8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故答案为:刘亮.【点睛】本题考查折线统计图与方差,解题关键是根据折线统计图得出解题所需数据及方差的计算公式.19.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x2-2y=_________.成绩(分)30405060708090100人数235x6y34=15结合众数为50分中位数为60分分情况讨论即可确定xy之值从而求出x2-2y之值【详解】∵全班共有38人∴x+y=38-(解析:50 【分析】由于全班共有38人,则x+y=38-(2+3+5+6+3+4)=15,结合众数为50分,中位数为60分,分情况讨论即可确定x 、y 之值,从而求出x 2-2y 之值. 【详解】 ∵全班共有38人,∴x+y=38-(2+3+5+6+3+4)=15, 又∵众数为60分,∴x≥8,当x=8时,y=7,中位数是第19,20两个数的都为70分,则中位数为70分,符合题意; 当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(60+70)÷2=65分,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于70分,不符合题意. 则x=8,y=7. 则x 2-2y=64-14=50. 故答案为50. 【点睛】此题主要考查了中位数和众数的应用,关键是根据众数的人数和中位数的数值进行分类讨论x 、y 的取值.20.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.【解析】分析:如果一组的数据的每一个数都扩大或缩小相同的倍数则平均数也扩大或缩小相同的倍数方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数则平均数也增加或减少相同的数方差不变详解解析:36,【解析】分析:如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变.详解:根据题意可知:这组数据的平均数为:2×2-1=3;方差为:23262⨯=. 点睛:本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.三、解答题21.甲、乙两位同学5次数学选拔赛的成绩统计如表,他们5次考试的总成绩相同,请同学们完成下列问题:= ,甲同学成绩的极差为 ;(2)小颖计算了甲同学的成绩平均数为60,方差是S 甲2=15[(80﹣60)2+(40﹣60)2+(70﹣60)2+(50﹣60)2+(60﹣60)2]=200.请你求出乙同学成绩的平均数和方差; (3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定. 解析:(1)40,40;(2)平均数为60,方差160;(3)见解析. 【分析】(1)由“他们5次考试的总成绩相同”可求得a 的值,利用极差的定义求解可得; (2)利用方差公式计算出乙的方差;(3)根据平均数与方差的意义进行判断,即可得出结论. 【详解】解:(1)a =(80+40+70+50+60)﹣(70+50+70+70)=40, 甲同学成绩的极差为:80﹣40=40, 故答案为:40,40;(2)乙同学的成绩平均数为15×(70+50+70+40+70)=60,方差S 乙2=15[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160;(3)因为甲乙两位同学的平均数相同,S 甲2>S 乙2,所以乙同学的成绩更稳定. 【点睛】本题主要考查平均数、方差,解题的关键是掌握方差、平均数、极差的计算方法和方差的意义.22.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下: 学部 平均数 中位数最高分 众数 初一 88 a98 98初二8886100ba =(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?解析:(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人. 【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可. 【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上, 第8个数据为85, 中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100,100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40% 30+⨯,此次测试成绩达到90分及以上的学生约:80040%320⨯=,答:此次测试成绩达到90分及以上的学生约有320人.【点睛】本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.23.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是、众数是和中位数是;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?解析:(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数,则中位数是1111112+=(吨),故答案为:11.6吨,11吨,11吨;(2)月平均用水量不超过12吨的户数占比为204010100%70% 100++⨯=,则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.24.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.解析:(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲乙射击成绩统计表平均数中位数方差命中10环的次数甲70乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________; (3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.解析:(1)补全图表见解析;(2)甲,理由见解析;(3)可制定评判规则为:命中10环次数较多者胜出,理由见解析. 【分析】(1)根据甲选手成绩的平均数可求出甲选手第8次命中的环数,即可补全折线图;然后根据平均数、中位数和方差的求法补全统计表; (2)根据方差的意义可得答案;(3)可根据乙选手命中10环1次,甲选手没有命中10环来制定评判规则. 【详解】解:(1)甲选手第8次命中的环数为:7×10-(9+6+7+6+5+7+7+8+9)=6, 将甲选手的成绩从小到大排列为:5,6,6,6,7,7,7,8,9,9, 中间两次的环数分别为:7,7,故中位数为7772+=, 2222221=5767377387972=1.610S 甲,乙选手成绩的平均数为:24687789910=710,补全表格和折线图为:平均数 中位数 方差 命中10环的次数 甲 771.6乙7 7.5 5.41(2)如果规定成绩较稳定者胜出,则甲胜出,理由:因为甲的方差小于乙的方差,所以甲的成绩比乙稳定,即甲胜出;(3)可制定评判规则为:命中10环次数较多者胜出,理由:因为乙选手命中10环1次,甲选手没有命中10环,所以乙胜出.【点睛】本题考查了折线统计图,平均数、中位数、方差的意义与求法,能够从图表中得出有用信息是解题的关键.26.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10988109乙101081079根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.解析:(1)甲、乙六次测试成绩的方差分别是22 3S=甲,243S=乙;(2)甲【分析】(1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是:(222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下: ∵两人的平均成绩相等, ∴两人实力相当;∵甲的六次测试成绩的方差比乙小, ∴甲发挥较为稳定,∴推荐甲参加比赛更合适. 故答案为:甲 【点睛】本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.27.某公司为了到高校招聘大学生,为此设置了三项测试:笔试、面试、实习.学生的最终成绩由笔试面试、实习依次按3:2:5的比例确定.公司初选了若干名大学生参加笔试,面试,并对他们的两项成绩分别进行了整理和分析.下面给出了部分信息: ①公司将笔试成绩(百分制)分成了四组,分别为A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x <100;并绘制了如下的笔试成绩频数分布直方图.其中,C 组的分数由低到高依次为:80,81,82,83,83,84,84,85,86,88,88,88,89. ②这些大学生的笔试、面试成绩的平均数、中位数、众数、最高分如下表:根据以上信息,回答下列问题:(1)这批大学生中笔试成绩不低于88分的人数所占百分比为 .(2)m = 分,若甲同学参加了本次招聘,他的笔试、面试成绩都是83分,那么该同学成绩排名靠前的是 成绩,理由是 .(3)乙同学也参加了本次招聘,笔试成绩虽不是最高分,但也不错,分数在D 组;面试成绩为88分,实习成绩为80分由表格中的统计数据可知乙同学的笔试成绩为 分;若该公司最终录用的最低分数线为86分,请通过计算说明,该同学最终能否被录用?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2805表示一组数据分布的量
教材分析:
生活中人们需要学会对数据进行收集、整理和统计,教材从生活中的实际问题出发,安排了频数分布直方统计图的认识和制作,在初中阶段“统计和概率”领域有着承上启下的地位和作用。
在素材的选取上,体现了实践性和可操作性原则,注重与实际生活联系,注重学生的认知水平,注重学生的兴趣,让学生体会到频数就在身边,体会到数学的应用价值。
学情分析:
在本节课之前学生已经学习了统计表、统计图、平均数以及中位数、众数等相关知识,能利用多种统计图对数据加以表示,并对利用平均数、众数和中位数描述数据的作用有了较深入的理解。
这对本课的学习起着铺垫作用,为学习绘制频数分布直方图做准备。
同时,学生具备了一定的从生活中发现问题和解决问题的能力,动手实践能力初步形成,他们乐于在交流合作中探索新知、增长才干。
教学目标设计
1.学会识别频数分布直方图.
2. 掌握绘制频数分布直方图的方法.
3. 学会运用频数分布直方图.
教学重点及难点
重点:绘制频数分布直方图的方法.
难点:确定频数分布直方图的组距与组数.
教学用具
多媒体、三角尺
教学过程设计
一、情景引入
准备工作:学生分组(分成六大组,合作完成实际问题,每组由一名学生担任组长)
采集数据、整理数据、分析数据、填写频数分布表、绘制频数分布直方图
1.观察
这是一个向200名游客调查某景点合适的门票价格的条形图,而条形图有利于比较数据的差异,这节课我们就来学习和研究表示一组数据分布的量:频数(板书课题)
2.思考
从这个条形图中我们能获得那些重要的信息呢?
条形图与频数分布直方图有共同点,从已有的知识引入有利于知识的迁移. 3.讨论
——认为合适的价格是30元的有98人,认为合适的价格是50元的有73人,认为合适的价格是80元的有29人
二、学习新课
1.概念辨析
在刚才的问题中,“98”,“73”,“29”就是赞同相应门票价格的人的频数,知道频数就能知道赞同这三种价格的人数分布情况.
复习曾在概率初步中出现过的“频数”概念,同时让学生直观地认识“分布”的含义,抛砖引玉.
2.例题分析
(一)实践操作:以课本提供的九(5)班40名学生每周阅读课外书籍所用时间纪录.让学生整理和分析九(5)班40名学生的阅读课外书籍所用时间.频数分布直方图.
(各组组员提交数据给组长汇总,组长提交给老师)
提问:如何整理和表示这40个数据才能反映学生阅读时间的分布情况?
——绘制阅读时间的频数分布直方图.
提问:这40个数据中共有20个不同的小时数,如果就按这20个不同的小时数来整理和表示,结果会怎样?
——结果比较散乱,反而不能显示数据的分布情况.
追问:那么,你会怎样处理?
——进行分组.
我们先从这40个数中最大值9.5和最小值0,两者的差9.5就是这组数据的波动
范围,接着确定相应的组数与组距,其关键是要使整个数据的分布规律能通过频数分布直方图清晰地呈现出来.不能说一定是组数越多越好.一般由经验定出合适的组数与组距.如果把这40个数分成5组,那么小组两端点的距离称为组距,
,所以可取组距是2小时,想一想:当组距取1.9时,会有什么因为9.55=1.9
情况发生?还是5组吗?
当以2为组距再列频数分布表.有些数正好在两小组的分界点上,为了使各数既不重复也不遗漏,我们规定每个小组可包括最小值,不包括最大值.于是得到频数分布表,如表所示.
在列频数分布表时要注意写出横行标题,以及算出每一空格的数据资料.最后根据频数分布表来画统计图.以横轴表示学生每周用于阅读课外书籍的小时数,纵轴表示人数,绘制统计图如图所示.
1.当(最大值-最小值)/组距不是整数时,可用进一法,得出组数;当所得商是整数时,则应把所得的整数再加上l,得出组数.如果不加一组,最大值将无归属的组.
2.要指出为何有了频数分布表,还要绘制频数分布直方图.虽然它们都反映了整个数据资料的频数,但频数分布表数字精确.它能确切地反映每个区段的频数,而频数分布直方图对反映整个数据资料的分布规律很直观.它们各自的用
途不同,结合起来运用才能达到精确而直观的效果.
我们把反映各小组中相关数据出现的频数的统计图叫做频数分布直方图.
其他实际问题:
例如:想知道一星期七天中电影院每天有多少人看电影?
想知道在一篇文章中哪个英文字母出现的次数最多?
同学们最喜欢的歌手是谁?喜欢每一个歌手的人数是多少?
这些都可以运用频数的基本知识来解决吗?
3.问题拓展
提问:从上述的频数分布直方图中,同学们能找出那些信息?
——从图中可见 ,学生每周用于阅读课外书籍的时间t(时)中,满足4≤t<6的最多,达12人;其次是满足6≤t<8的有10人;另外,满足2≤t<4的有8人,满足8≤t<10的有6人;而满足0≤t<2的最少,只有4人
利用频数分布直方图可以直观地看到学生每周用于阅读课外书籍实践的分布情况.
即时小结:师生共同归纳绘制频数分布直方图的步骤:
1.搜集数据.
2.求出数据资料的最大值与最小值的差.
3.决定组距与组数.
一般数据越多,分组也越多,当数据在100个左右时分成5—12小组为宜.在上题中有40个数据,可分成4或5小组,组距相应为3或2小时.4.列频数分布表.
通常规定各小组包括最小值,不包括最大值.分组后对各个小组作频数累计,得出频数.
5.绘制频数分布直方图.
每个小矩形的高表示相应小组的频数,小长方越高.表示在这一区段的频数越大(在上图中不要误认为是时间长).绘好频数分布直方图,
我们就能很直观地区别出它是呈中间高的、还是两头高的、或偏高于一头的分布.
三、巩固练习
A班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分成6小组,画出竞赛成绩的频数分布直方图,如图所示.根据图中的信息回答下列问题:
100.5
(1)A班共有多少名学生参赛?
(2)成绩的中位数落在哪个小组数据范围内?
(3)求成绩高于60分的学生占全班参赛人数的百分率.
四、课堂小结
1.今天我们研究了什么内容,又哪些收获呢?
2.这些内容和过去的知识有没有联系,有怎样的联系呢?
3.你有没有不明白的地方呢?如果要你自学你能够胜任吗
4.寻找身边的频数
五、作业布置
1.书后练习1、2、
2. 练习册28.5(1)。