精品 九年级数学 下册解直角三角形同步讲义+练习16页

合集下载

解直角三角形(1)(知识讲解)九年级数学下册基础知识专项讲练(浙教版)

解直角三角形(1)(知识讲解)九年级数学下册基础知识专项讲练(浙教版)

专题1.8解直角三角形(1)(知识讲解)【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠A,(如∠A,a),斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.【典型例题】类型一、解直角三角形1.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=3 4则sin C=_______.【点拨】此题考查了解直角三角形,勾股定理,锐角三角函数,求出BD是解本题的关键.举一反三:【变式1】在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tan B=3 4(1)求AD和AB的长;(2)求∠B的正弦、余弦值.【变式2】如图,已知Rt△ABC中,∠C=90°,AD为∠BAC的平分线,且AD=2,AC解这个直角三角形.类型二、解非直角三角形2.如图,在ABC △中,6AB =,1sin 2B =,1tan 3C =,求ABC △的面积.1AD 举一反三:【变式1】如图,一艘货船以20n mile /h 的速度向正南方向航行,在A 处测得灯塔B 在南偏东40 方向,航行5h 后到达B 在北偏东60 方向,求C 处距离灯塔B的距离BC (结果精确到0.1,参考数据:sin 400.64≈ ,cos400.77≈ ,tan 400.84≈ 1.73≈).【答案】65.4nmile【分析】过点B 作BH AC ⊥,在Rt △CBH 和Rt △BAH 中,根据三角函数的定义即可计算出C 处距离灯塔B 的距离BC .【点拨】本题考查的是解直角三角形的应用,化为解直角三角形的问题是解题的关键.【变式2】如图,已知一居民楼AD 前方30m 处有一建筑物BC ,小敏在居民楼的顶部D 处和底部A 处分别测得建筑物顶部B 的仰角为19︒和41︒,求居民楼的高度AD 和建筑物的高度BC (结果取整数).(参考数据:tan190.34︒≈,tan 410.87︒≈)【答案】居民楼的高度AD约为16米,建筑物的高度BC约为26米.【分析】通过作垂线,构造直角三角形,分别在Rt△BDE和RtABC中,根据锐角三角函数的意义求出BC、BE,进而求出AD,得出答案.解:过点D作DE⊥BC于点E,则DE=AC=30,AD=EC,由题意得,∠BDE=19︒,∠BAC=41︒,在Rt△ABC中,BC=AC•tan∠BAC=30×tan41︒≈26.1≈26,在Rt△BDE中,BE=DE•tan∠BDE=30×tan19︒≈10.2,∴AD=BC−BE=26.1−10.2=15.9≈16.答:居民楼的高度AD约为16米,建筑物的高度BC约为26米.【点拨】考查直角三角形的边角关系,锐角三角函数,构造直角三角形利用锐角三角函数是解决问题的关键.类型三、构造直角三角形求不规则图形的边长或面积3.如图,四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=12,CD=求AD的长.【答案】6【分析】延长DA交CB的延长线于E,根据已知条件得到∠ABE=90°,根据邻补角的定义得到∠EAB=60°,得到∠E=30°,根据直角三角形的性质即可得到结论.解:延长DA交CB的延长线于E,∵∠ABC=90°,【点拨】本题考查了含30°角的直角三角形,正确的作出辅助线是解题的关键.举一反三:【变式1】如图,AB是长为10m,倾斜角为30°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).【参考数据:sin65°=0.90,tan65°=2.14】【答案】大楼CE的高度是26m.【分析】作BF⊥AE于点F,根据三角函数的定义及解直角三角形的方法求出BF、CD即可.解:作BF⊥AE于点F.则BF=DE.【变式2】一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为ABC ,点B 、C 、D 在同一条直线上,测得90ACB ∠=︒,60ABC ∠=︒,32cm AB =,75BDE ∠=︒,其中一段支撑杆84cm CD =,另一段支撑杆70cm DE =,(1)求BC 的距离;(2)求支撑杆上的E 到水平地面的距离EF 是多少?(用四舍五入法对结果取整数,参考数据sin150.26︒≈,cos150.97︒≈,tan150.27︒≈ 1.732≈)【答案】(1)16cm (2)105cm【分析】(1)根据直角三角形中60°角解直角三角形即可;(2)如图作DG ⊥EF ,PQ EF ∥,证明EF =EG +QC +CP ,再分别运用解直角三角形求出EG 、QC 、CP 即可.∵DG ⊥EF ,AF ⊥EF ,PQ ∴DG ⊥PQ ,AF ⊥PQ ,∴四边形FPQG 是矩形,∴3sin 60842CQ CD =⋅︒=⨯∵75,60BDE BDQ ∠=︒∠=︒∴∠EDG =75°-60°=15°。

精品 九年级数学 下册解直角三角形 综合题 同步讲义+练习8页

精品 九年级数学 下册解直角三角形 综合题 同步讲义+练习8页

解直角三角形第02课 三角函数综合应用锐角三角函数的增减性:当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而 (或 ) (2)余弦值随着角度的增大(或减小)而 (或 ) (3)正切值随着角度的增大(或减小)而 (或 ) 仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,把坡面与水平面的夹角记作α(叫做坡角),那么tan h i lα==。

例1.求下列各函数值,并把它们按从小到大的顺序用“<”连接:(1)0041sin 37sin 与 (2)0041cos 37cos 与 (3)0041tan 37tan 与 (4)0041cos 37sin 与例2.如图,将正方形ABCD 的边BC 延长到点E,使CE=AC,AE 与CD 相交于点F .求∠E 的正切值.例3.一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为600,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.例4.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼问的距离AC=24m,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为300时,求甲楼的影子在乙楼上有多高?(精确到0.1m,2=≈,)41.173.13例5.如图,身高1.5m的小丽用一个两锐角分别是30º和60º 的三角尺测量一棵树的高度.已知她与树之间的距离为5m,那么这棵树大约有多高?例6.△ABC中,∠A、∠B均为锐角,且0)3-AB,试确定△ABC的形状.-+tan2=2(sin3例7.如图,城市规划期间,要拆除一电线杆AB,已知距电线杆水平距离14米的D处有一大坝,背水坡的坡度i=2:1,坝高CF为2米,在坝顶C处测得杆顶A的仰角为300,D、E之间是宽为2米的人行道.请问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)例8.如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东300,在M 的南偏东600方向上有一点A ,以A 为圆心、500m 为半径的圆形区域为居民区。

人教版九年级数学下册《解直角三角形》同步作业(含答案)

人教版九年级数学下册《解直角三角形》同步作业(含答案)

图28-3练习9 解直角三角形一、自主学习1.如图28-3所示,Rt △ABC 中 (1)它三边之间的关系是_________. (2)它两锐角之间的关系是________. (3)它的边角之间的关系是:___________________,____________________; ___________________,__________________; ___________________,____________________; 二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________.3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________.4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________.5.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.6.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m.7.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________8.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________.9.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=____.10.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.11.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________.三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( ) A.2B.21C.1D.)32(21+13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.23514.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的图28-4影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5 图28-6 图28-7A.3m B.3 m C.2 m D.1.5 m15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( ) A.(21,23-) B.(21,23--) C.(21,23-) D.(23,21-)16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( ) A.32m ,2 m B.2 m ,32m C.3 m ,1 mD.1 m,3m17.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33m C.3+32 m D.32 m18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( )A.35B.552C.553D.3219.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( )A.αα2sin cos •mB.ααcos sin 2•mC.ααcos sin •mD.ααsin cos 2•m图28-8 图28-920.已知平行四边形两邻边长分别是64cm和34cm ,一角为45°,则这个平行四边形的较长对角线长是( ) A.66cm B.68 cm C.38 cm D.154cm21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( ) A.53B.55C.51 D.52四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-1023.小华所在的学校A位于某工地O的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O出发,以5m/s的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m,问小华所在的学校A是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-1124.阅读下列材料,并解决后面的问题:在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=cAD ,sinC=bAD ,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C cB b sin sin =,同理有A a C c sin sin =,即Cc B b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K](1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程.第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ; 第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ; 第三步:由条件_______−−−→−有关系式__________−−→−求出∠c (2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12图28-13参考答案一、自主学习1.如图28-3所示,Rt△ABC中(1)它三边之间的关系是_________.(2)它两锐角之间的关系是________.(3)它的边角之间的关系是:__________________________,_______________________ ______;____________________________,__________________________;___________________________,_________________________;图28-3答案:(1)a 2+b 2=c 2 (2)∠A+∠B=90° (3)sinA=ca ,cosA=cb ,tanA=bacotA=ab ,sinB=cb ,cosB=ca ,tanB=ab ,cotB=ba二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________. 答案:30°3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________. 答案:3310m4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________. 答案:255.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.答案:10106.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m.答案:627.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________ 答案:8548.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________. 答案:2329.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=__________.图28-4答案:3310.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.答案:611.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________. 答案:530° 60°三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( ) A.2B.21 C.1D.)32(21+答案:B13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.235答案:C14.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5A.3m B.3 m C.2 mD.1.5 m 答案:C15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( )A.(21,23-) B.(21,23--) C.(21,23-)D.(23,21-)答案:A16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( ) A.32m ,2 m B.2 m ,32 m C.3 m ,1 mD.1 m,3m图28-6答案:A17.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33 m C.3+32mD.32m图28-7答案:C18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( )A.35B.552 C.553D.32 答案:D19.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( )图28-8A.αα2sin cos •mB.ααcos sin 2•mC.ααcos sin •mD.ααsin cos 2•m 答案:A20.已知平行四边形两邻边长分别是64cm和34cm ,一角为45°,则这个平行四边形的较长对角线长是( ) A.66 cm B.68 cm C.38cmD.154cm答案:D21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( ) A.53 B.55C.51 D.52图28-9答案:B 四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-10答案:112 m23.小华所在的学校A 位于某工地O 的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O 出发,以5m/s 的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m ,问小华所在的学校A 是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-11答案:受影响的时间为20 s24.阅读下列材料,并解决后面的问题:在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=cAD ,sinC=bAD ,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C cB b sin sin =,同理有A a C c sin sin =,即Cc B b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K](1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程.第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ; 第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ; 第三步:由条件_______−−−→−有关系式__________−−→−求出∠c (2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12 图28-13答案:(1)略(2)约为21.3海里(提示:用题目中的结论)。

人教版九年级下册数学 28.2.1解直角三角形 同步练习

人教版九年级下册数学 28.2.1解直角三角形 同步练习

28.2.1解直角三角形同步练习一.选择题1.如图,△ABC的顶点都在正方形网格的格点上,则cos∠BAC的值为()A.B.C.D.2.在平面直角坐标系中,从原点O引一条射线,设这条射线与x轴的正半轴的夹角为a,若cos a=,则这条射线是()A.OA B.OB C.OC D.OD3.在Rt△ABC中,∠C=90°,sin A=,则BC:AC:AB等于()A.1:2:5B.1::C.1::2D.1:2:4.如图:∠C=90°,∠DBC=30°,AB=BD,利用此图可求得tan75°的值是()A.2﹣B.2+C.﹣2D.+15.在Rt△ABC中,∠C=90°,如果AC=8,BC=6,那么∠B的余切值为()A.B.C.D.6.如图,在▱ABCD中,AB:AD=3:2,∠ADB=60°,那么cos∠A的值等于()A.B.C.D.7.如图,在等腰△ABC中,AB=AC,BD是AC边上的高,cos C=,则△BCD与△ABD 的面积比是()A.1:3B.2:7C.2:9D.2:118.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sin A=,那么点C的位置可以在()A.点C1处B.点C2处C.点C3处D.点C4处9.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm10.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.二.填空题11.如图,在△ABC中,∠ACB=90°,D是AB的中点,DE⊥AB,交AC于E,若=,则tan∠A=.12.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,连接AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.13.一副直角三角板如图放置,点C在FD的延长线上,已知AB∥FC,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=8,则CD的长为.14.如果三角形有一边上的高恰好等于这边长的,那么称这个三角形为“好玩三角形”,在Rt△ABC是“好玩三角形”,且∠C=90°,则tan A=.15.如图,平面上七个点A、B、C、D、E、F、G,图中所有的连线长均相等,则cos∠BAF =.三.解答题16.如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.17.已知:如图,在△ABC中,AB=AC=5,BC=8,D是边AB上一点,且tan∠DCB=.(1)试求cos B的值;(2)试求△BCD的面积.18.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是边AC的中点,CF⊥BD,垂足为点F,延长CF与边AB交于点E.求:(1)∠ACE的正切值;(2)线段AE的长.参考答案一.选择题1.解:过B作BH⊥AC交AC的延长线于H,∴AB===5,AH=3,∴cos∠BAC==,故选:C.2.解:∵点A的坐标为(3,4),∴OA=5,∴cos a=,则这条射线是OA.故选:A.3.解:∵在Rt△ABC中,∠C=90°,sin A==,∴∠A=30°,cos A==,∴BC:AC:AB=1::2.故选:C.4.解:∵AB=BD,∴∠A=∠ADB,∵∠DBC=∠A+∠ADB=30°,∴∠A=15°,∴∠ADC=75°,设CD=a,在Rt△BCD中,∵∠DBC=30°,∴BD=2a,BC=a,∴AC=AB+BC=BD+BC=2a+a=(2+)a,在Rt△ACD中,tan∠ADC=tan75°===2+.故选:B.5.解:如图,在Rt△ABC中,∵∠C=90°,AC=8,BC=6,∴cot B===,故选:A.6.解:作AF⊥DB于F,作DE⊥AB于E.设DF=x,则AD=2x,∵∠ADB=60°,∴AF=x,又∵AB:AD=3:2,∴AB=3x,于是BF=x,∴3x•DE=(+1)x•x,DE=x,sin∠A=,cos∠A==.故选:A.7.解:作AE⊥BC于E,∵AB=AC,∴BE=EC=BC,∵在Rt△AEC中,cos C==,∴AC=3EC,∴AC=BC,在Rt△BCD中,cos C==,∴BC=3CD,∴AC=CD,∴=,∴===,故选:B.8.解:过点C作CD⊥直线AB于点D,如图所示.∵AB=5,△ABC的面积为10,∴CD=4.∵sin A=,∴AC=4,∴AD==8,∴点C在点C4处.故选:D.9.解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选:A.10.解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:B.二.填空题11.解:连接EB,∵D是AB的中点,DE⊥AB,∴DE是AB的垂直平分线,∴EA=EB,∵==,设EC=3k,则AE=BE=4k,AC=5k+3k=8k,在Rt△BCE中,BC==4k,在Rt△ABC中,tan∠A===,故答案为:.12.解:如图,过点E作EH⊥BC于H.∵BC=7,CD=3,∴BD=BC﹣CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°,∵DE=DC=3,∴EH=DE•sin60°=,∴E到直线BD的距离为,故答案为.13.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=8,∴∠ABC=30°,BC=AC×tan60°=8,∵AB∥CF,∴BM=BC×sin30°=8×=4,CM=BC×cos30°=12,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=4,∴CD=CM﹣MD=12﹣4.14.解:分三种情况:①如图1,高AC=BC,此时tan A===2;②如图2,高BC=AC,此时tan A===;③如图3,高CD=AB,设AC=x,BC=y,CD=a,则AB=2a,由三角形面积公式和勾股定理得:,解得:x=y=a(负数舍去),tan A==1;故答案为:或2或1.15.解:连接AC、AD,过点D作DM⊥AC,垂直为M.设AE的长为x,则AB=AG=BG=CG=CB=AF=AE=EF=x,∴△ABG、△AEF、△CBG和△DEF都是等边三角形,四边形ABCG、四边形AEDF是菱形,∴∠BAC=∠EAD=30°∴AC=AD=2×cos∠BAC×AB=2×x=x∵∠CAD=∠BAE﹣∠BAC﹣∠EAD=∠BAE﹣60°,∠BAF=∠BAE﹣∠EAF=∠BAE﹣60°,∴∠BAF=∠CAD在Rt△AMD中,因为DM=sin∠CAD×x,AM=coa∠CAD×x,CM=x﹣cos∠CAD×x,在Rt△CMD中,CD2=CM2+MD2,即x2=(x﹣cos∠CAD×x)2+(sin∠CAD×x)2整理,得5x2=6x2cos∠CAD∴cos∠CAD=∴cos∠BAF=.故答案为:三.解答题16.解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tan D=tan∠ECH==.17.解:(1)作AE⊥BC于E,如图,∵AB=AC,∴BE=CE=BC=×8=4,在Rt△ABC中,cos B==;(2)作DF⊥BC于F,如图,在Rt△CDF中,tan∠DCF==,设DF=3x,则CF=5x,在Rt△ABE中,AE==3,∴tan B==,在Rt△BDF中,tan B==,而DF=3x,∴BF=4x,∴BC=BF+CF=4x+5x=9x,即9x=8,解得x=,∴DF=3x=,∴S△BCD=×DF×BC=××8=.18.解:(1)∵∠ACB=90°,∴∠ACE+∠BCE=90°,又∵CF⊥BD,∴∠CFB=90°,∴∠BCE+∠CBD=90°,∴∠ACE=∠CBD,∵AC=4且D是AC的中点,∴CD=2,又∵BC=3,在Rt△BCD中,∠BCD=90°.∴tan∠CBD==,∴tan∠ACE=tan∠CBD=;(2)过点E作EH⊥AC,垂足为点H,在Rt△EHA中,∠EHA=90°,∴tan A=,∵BC=3,AC=4,在Rt△ABC中,∠ACB=90°,∴tan A==,∴=,设EH=3k,AH=4k,∵AE2=EH2+AH2,∴AE=5k,在Rt△CEH中,∠CHE=90°,∴tan∠ECA==,∴CH=k,∴AC=AH+CH=k=4,解得:k=,∴AE=.。

初三数学解直角三角形的应用题

初三数学解直角三角形的应用题

初三数学解直角三角形的应用题(共16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解直角三角形应用题考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下: ⇒BC=21AB∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=ADD 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、直角三角形的判定 (3~5分) 1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值4、各锐角三角函数之间的关系(1)互余关系sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系1cos sin 22=+A A5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 (3~5) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

人教版九年级数学下册28.2: 解直角三角形及其应 用同步练习(附答案)

人教版九年级数学下册28.2: 解直角三角形及其应 用同步练习(附答案)

人教版九年级下册28.2 解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.27.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为米.(结果保留根号)14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)15.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车(填“超速”或“没有超速”)(参考数据:≈1.732)16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)参考答案一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米【解答】解:由题意可得:sinα==,故BC=3sinα(m).故选:A.3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.【解答】解:∵AD∥BC,∠DAB=90°,∴∠ABC=180°﹣∠DAB=90°,∠BAC+∠EAD=90°,∵AC⊥BD,∴∠AED=90°,∴∠ADB+∠EAD=90°,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴=,∵BC=AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=BC,在Rt△ABC中,tan∠BAC===;故选:C.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米【解答】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选:D.6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.2【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.7.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【解答】解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选:D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【解答】解:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选:D.10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴cosα=,解得,AB=米,故选:B.11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为4﹣4米.(结果保留根号)【解答】解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×=4,在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM﹣DM=(4﹣4)米,故答案为:4﹣4.14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为54.6米.(≈1.73,结果精确到0.1米)【解答】解:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,∵∠PBC=75°,∠P AB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EP A=∠P AB=30°,∴AE=AP=20+20≈54.6,故答案为:54.615.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车没有超速(填“超速”或“没有超速”)(参考数据:≈1.732)【解答】解:作AD⊥直线l于D,在Rt△ADB中,∠ABD=45°,∴BD=AD=100,在Rt△ADB中,tan∠ACD=,则CD==100≈173.2,∴BC=173.2﹣100=73.2(米),小汽车的速度为:0.0732÷=52.704(千米/小时),∵52.704千米/小时<速60千米/小时,∴小汽车没有超速,故答案为:没有超速.16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为3m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为566米.(精确到1米,参考数据:≈1.414,≈1.732)【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈566(米)故答案是:566.三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)【解答】解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=,则DF==y,在Rt△MPE中,tan∠MPE=,则PE==(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=20,解得,y=7.5+10,∴ME=MF+FE=7.5+10+15≈39.8,答:古塔的高度ME约为39.8m.21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)【解答】解:能,理由如下:延长EF交CH于N,则∠CNF=90°,∵∠CFN=45°,∴CN=NF,设DN=xm,则NF=CN=(x+3)m,∴EN=5+(x+3)=x+8,在Rt△DEN中,tan∠DEN=,则DN=EN•tan∠DEN,∴x≈0.6(x+8),解得,x=12,则DH=DN+NH=12+1.2=13.2(m),答:点D到地面的距离DH的长约为13.2m.22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)【解答】解:过点C作CE⊥AB于点E,∵CD=2,tan∠CMD=,∴MD=6,设BM=x,∴BD=x+6,∵∠AMB=60°,∴∠BAM=30°,∴AB=x,已知四边形CDBE是矩形,∴BE=CD=2,CE=BD=x+6,∴AE=x﹣2,在Rt△ACE中,∵tan30°=,∴=,解得:x=3+,∴AB=x=3+3≈8.2m。

【新】人教版九年级数学下册: 解直角三角形及其应用 同步练习 (含答案)

【新】人教版九年级数学下册: 解直角三角形及其应用   同步练习 (含答案)

解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,在等腰△ABC中,AB=AC,BD是AC边上的高,cosC=,则△BCD与△ABD的面积比是()A.1:3B.2:7C.2:9D.2:112.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A.1B.C.0.5D.3.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.4.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,延长CA到点D,使AD=AB,连接BD.根据此图形可求得tan15°的值是()A.B.C.D.5.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为31°,缆车速度为每分钟40米,从山脚下A到达山顶B缆车需要15分钟,则山的高度BC为()A.600•tan31°B.C.600•sin31°D.6.小明同学在数学实践课中测量路灯的高度.如图,已知他的目高AB为1.5米,他先站在A处看路灯顶端O的仰角为30°,向前走3米后站在C处,此时看灯顶端O的仰角为60°,则灯顶端O 到地面的距离约为()A.3.2米B.4.1米C.4.7米D.5.4米7.如图所示,小明所住高楼AB高为100米,楼旁有一座坡比为3:1的山坡CE,小明想知道山坡的高度,于是小明来到楼顶B俯视坡底C,测得俯角为45°,仰视坡项E,测得仰角为27°,请根据小明提供的信息,帮小明求出斜坡CE的高度ED的值.(结果均精确到0.1米.参考数据:sin27°≈0.45,cos37°≈0.89,tan27°≈0.51)()A.151.1米B.168.7米C.171.6米D.181.9米8.如图,要测量小河两岸相对的两点P、A之间的距离,可以在小河边PA的垂线PB上取一点C.测得PC=80米,∠PCA=32°,则PA的长为()A.80sin32°米B.80tan32°米C.D.9.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=12米,CD=8米,∠D=36°(其中A,B,C,D均在同一平面内),则垂直升降梯AB的高度约为(精确到0.1米)()(参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.8.6B.11.4C.13.9D.23.410.如图,在一笔直的海岸线l上有A,B两个测点,AB=4km,从A处测得船C在北偏东45°的方向,从B 处得船C在北偏东22.5°的方向,则船C离海岸线l的距离CD的长为()A.4kmB.(4+2)kmC.(4+)kmD.(4-)km11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福土最高楼顶点F的仰角为45°,此时他头项正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为()(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米12.诗人卞之琳的代表作《断章》:“你站在桥上看风景,看风景的人在楼上看你,明月装饰了你的窗子,你装饰了别人的梦”.2019年国庆,重庆来福士广场开业,吸引了全国各地游客前来,重庆又有了一张新的名片.10月2日,游客小王从南滨路的A处,沿坡度i=1:0.75的斜坡上行20米到达B处,再往正前方水平走8米到达C处,对来福士广场拍照.同时,小王身后的一栋居民楼里面的重庆市民小张在D处测得C处的俯角为42°,若居民楼底端E处与A处的距离是45米,A、B、C、D、E在同一平面内,DE⊥AE于点E.则DE的长约为()米.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)A.74.5B.74.1C.61.2D.58.5二.填空题(共6小题)13.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了.14.如图,l是一条笔直的公路,道路管理部门在点A设置了一个速度监测点,已知BC为公路的一段,B 在点A的北偏西30°方向,C在点A的东北方向,若AB=50米.则BC的长为米.(结果保留根号)15.如图,在Rt△ABC中,∠ACB=90°,AC=2,tanB=0.75,CD平分∠ACB交AB于点D,DE⊥BC,垂足为点E,则DE=.16.如图,渔船在A处看到灯塔C在北偏东60°方向上,渔船向正东方向航行了12km达B处,在B处看到灯塔C在正北方向上,则A处与灯塔C的距离是.17.在△ABC中,∠A=30°,AB=2,AC=6,则BC的长为18.如图,为了测量塔CD的高度,小明在A处仰望塔顶,测得仰角为30°,再往塔的方向前进60m至B处,测得仰角为60°,那么塔的高度是m.(小明的身高忽略不计,结果保留根号).三.解答题(共5小题)19.如图,正在海岛C西南方向20海里作业的海监船A,收到位于其正东方向渔船B发出的遇险求救信号,已知渔船B位于海岛C的南偏东30°方向,海岛C周围13海里内都有暗礁.(参考数据)(1)如果海监船A沿正东方向前去救援是否有触礁的危险?(2)求海监船A与渔船B的距离.(结果精确到0.1海里)20.某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.(1)求∠CAE的度数;(2)求AE的长(结果保留根号);(3)求建筑物AO的高度(精确到个位,参考数据:.21.如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB 的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,22.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,AD=BD=DE=30cm,CE=40cm,车杆AB与BC所成的∠ABC=53°,图1中B、E、C三点共线,图2中的座板DE与地面保持平行.问变形前后两轴心BC的长度有没有发生变化?若不变,请写出BC的长度;若变化,请求出变化量?(参考数据:sin53°)23.如图①是某小区入口实景图,图②是该入口抽象成的平面示意图,已知入口BC宽3.9米,门卫室外墙(灯罩长度忽略不计),∠AOM=60°.上的O点处装有一盏灯,点O与地面BC的距离为3.3米,灯臂OM长1.2米,(1)求点M到地面的距离,(2)某搬家公司一辆总宽2.55米,总高3.5米的货车能否从该入口安全通过?如果能安全通过,请直接写出货车离门卫室外墙AB的最小距离(精确到0.01米);如果不能安全通过,请说明理由.(参考数据:参考答案1-5:BDBAC 6-10:BDBBB 11-12:BA13、214、)15、16、17、18、19、20、21、22、在Rt△CEN中,∵CE=40cm,∴由勾股定理可得CN=32cm,则BC=18+30+32=80(cm),答:BC的长度发生了改变,增加了4cm23、(1)过点M作MN⊥OA于点N,∵OM长1.2米,∠AOM=60°.∴ON=0.6米,∴BN=OB+ON=3.3+0.6=3.9米.答:点M到地面的距离为3.9米.(2)一辆总宽2.55米,总高3.5米的货车能从该入口安全通过,理由如下:过点A作AE⊥BA,垂足为A,∵设货车高AB=3.5米,则OA=3.5-3.3=0.2∴AE=OAtan60°=≈0.35答:货车离门卫室外墙AB的最小距离为0.35米。

下册第章解直角三角形人教版九年级数学全一册完美课件

下册第章解直角三角形人教版九年级数学全一册完美课件
第二十八章 锐角三角 函数
第4课时 解直角三角形
学习目标
1.理解直角三角形中五个元素的关系,会运用勾股定理、直 角三角形的两个锐角互余及锐角三角函数解直角三角形. 2.通过综合运用勾股定理、直角三角形的两个锐角互余及锐 角三角函数解直角三角形,提高分析问题、解决问题的能力.
知识要点
知识点一:解直角三角形的概念 解直角三角形:一般地,直角三角形中,除直角外,共有五 个元素(两条直角边、斜边、两个锐角),如果知道其中两个元 素(其中至少有一条边),求出其余三个未知元素的过程,叫做 解直角三角形.
演讲完毕,谢谢观看!
对点训练
1.如图,在 Rt△ABC 中,∠C=90°,BC=1,∠A=30°,则: (1)∠B= 60°; (2)AB= 2 ; (3)AC= 3 .
下册第28章 第4课时 解直角三角形-2020秋人教版九年级 数学全 一册课 件(共1 5张PPT )
知识点二:解直角三角形的主要依据
(1)三边关系: a2+b2=c.2(勾股定理) (2)两锐角关系: ∠A+∠B=90.°
下册第28章 第4课时 解直角三角形-2020秋人教版九年级 数学全 一册课 件(共1 5张PPT )
下册第28章 第4课时 解直角三角形-2020秋人教版九年级 数学全 一册课 件(共1 5张PPT )
★9.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,求 AD,CD 的长.
AD=5 3+10,CD=10 3+5
下册第28章 第4课时 解直角三角形-2020秋人教版九年级 数学全 一册课 件(共1 5张PPT )
5.【例 2】如图,在 Rt△ABC 中,∠C=90°,AC= 2,AB =2,解这个直角三角形.
BC= 2,∠A=45°,∠B=45°

九年级数学(下)《解直角三角形》练习题含答案

九年级数学(下)《解直角三角形》练习题含答案

九年级数学(下)《解直角三角形》练习题1、测得某坡面垂直高度为2m,水平宽度为4m,则坡度为 [ ]2、在Rt △ABC 中,∠C=90°,∠A=30°,b=310,则a= ,c= ;3、已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34,则底角∠B= ;4.如图:铁路的路基的横截面是等腰梯形,斜坡AB 的坡度为1∶3,BE 为33米,基面AD 宽2米,求路基的高AE ,基底的宽BEC 及坡角B 的度数.(答案可带根号)5.水坝横断面为等腰梯形,尺寸如图,(单位:米)坡度I=DEAE =1,求坡面倾斜角(坡角),并计算修建长1000米的水坝约需要多少土方? 6.如图,上午9时,一条船从A 处出发,以20节的速度向正北航行,11时到达B 处,从A ,B 望灯塔C ,测得∠NAC =36°,∠NBC =72°,那么从B 处到灯塔C 的距离是多少海里?7.如图,王聪同学拿一把∠ACB =30°的小型直角三角尺ABC 目测河流在市区河段的宽度.他先在岸边的点A 顺着30°角的邻边AC 的方向确定河对岸岸边的一棵树M .然后,沿30°角的对边AB 的方向前进到点B ′,顺着斜边C B ''的方向看见M ,并测得B A '=100 m ,那么他目测的宽大约为多少?(结果精确到 1m)8.海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°,航行12海里到达D点,这时测得小岛A在北偏东30°.如果渔船不改变航向,继续向东捕捞,有没有触礁的危险?思考·探索·交流1.如图,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心、500 m为半径的圆形区域为居民区.取MN上另一点B,测得BA的方向为南偏东 75°.已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?答案:1、D 2、10,20 3、30°4.解:∵3133 AE∴AE=3(米)BC=(2+63)(米)∠B=30°5. 45°,444000土方6.40 海里.7.河宽约 173 m .8.渔船没有触礁的危险.思考·探索·交流答案:1.输水路线不会穿过居民区.提示:过点A 作MN 的垂线,垂足为C ,求AC。

人教版九年级数学下册:解直角三角形 三角函数值讲义 必考知识点

人教版九年级数学下册:解直角三角形 三角函数值讲义 必考知识点

讲义主题:解直角三角形 三角函数值 一:课前纠错与课前回顾 1、作业检查与知识回顾 2、错题分析讲解 (1) (2) (3) ···二、课程内容讲解与课堂练习 【题模1】:三角函数值1、在△ABC 中,若三边BC 、CA 、AB 满足 BC ∶CA ∶AB =5∶12∶13,则cos B ( ) A .125 B .512 C .135 D .1312【讲透例题】 1、 答案:C解析:设,则,,则,所以△是直角三角形,且∠.所以在Rt △ABC 中,135135==x x AB BC .【讲透考点】一.锐角三角函数的定义 在Rt ABC V 中,90C ∠=︒,我们把A ∠的对边与斜边的比叫做A ∠的正弦,记作sin A ,即 sin =A a A c∠=的对边斜边;我们把A ∠的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即 cos =A b A c∠=的邻边斜边;我们把A∠的对边与邻边的比叫做A∠的正切,记作tan A,即tan=A aAb∠=的对边邻边.二.锐角三角函数的计算在直角三角形中利用三角函数的定义,结合勾股定理求解锐角三角函数值.三、特殊角的三角函数【相似题练习】一:正弦1如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.B.C.D.2把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()A.不变B.缩小为原来的13C.扩大为原来的3倍D.不能确定锐角α三角函数30︒45︒60︒sinα122232cosα322212tanα33133如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12B .55C .1010D .255二:余弦1在等腰ABC ∆中,AB AC =,5sin 5C =,请问cos B 的值为多少? 2在△ABC 中,∠C=90°,BC=4,AB=5,则cosB 的值是( ) A .45B .35C .34D .43三:正切1如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=5,AC=6,则tanB 的值是( )A .45B .35C .34D .432如图,已知AD 是等腰△ABC 底边上的高,且sinB=.点E 在AC 上且AE :EC=2:3.则tan ∠ADE 等于( )A .B .C .D .如图,在Rt ABC ∆中,90ACB ∠=︒,D 是AB 边上的中点,BE CD ⊥,垂足为点E .已知15AC =,3cos 5A =.(1)求线段CD 的长;(2)求sin DBE ∠的值.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上.(1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE=,求tan ∠EBC 的值.计算:101()(32)3---+4cos45°﹣8. ﹣(﹣4)+|﹣5|+01(3)2- ﹣4tan45°【题模2】:特殊三角函数 计算201()122cos30( 3.14)2π-+-︒+-【讲透例题】 【答案】53+【解析】原式=23223214233153+-⨯+=+-+=+【讲透考点】一. 特殊角的三角函数【相似题练习】随练2.1在Rt ABC ∆中,902C AB BC ∠==o ,, 先给出下列结论中:①3sin 2A =;②1cos 2B =;③3tan 3A =;④tan 3B =,其中正确的结论是__________(只需填上正确结论的序号).随练2.2已知α是锐角,若tan(15)1α+=o ,则2cos 3tan 1sin ααα+-=__________.随练2.3课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30︒角时,测得旗杆AB 在地面上的影长BC 为24m ,那么旗杆AB 的高度约是( )A . 12mB . 83mC . 243mD . 24m随练2.4已知α是锐角,若tan(15)1α+︒=,则2cos 3tan 1sin ααα+-= .随练2.5在ABC ∆中,若21cos (1tan )02A B -+-=,则C ∠=_______.随练2.6在Rt ABC ∆中,902C AB BC ∠=︒=,, 先给出下列结论中:①3sin A =;②1cos 2B =;③3tan A =;④tan 3B =,其中正确的结论是______________(只需填上正确结论的序号).随练2.7计算下列各式:(1)2cos60tan 45sin 45sin30︒-︒+︒︒锐角α 三角函数30︒ 45︒ 60︒sin α1222 32 cos α32 22 12 tan α3313(2)2cos 45tan 453tan3023sin30︒-︒+︒-︒(30213tan602016812()3π-︒--+-()+(4)120160(cos60)(1)28(sin 451)21-︒÷-+︒-+随练2.8先化简再求值:22121(1)24x x x x ++-÷+- ,其中x=tan601︒-.随练2.9规定()sin sin cos sin cos αβαββα-=-,则sin15︒=________. 随练2.10先化简再求值:22121(1)24x x x x ++-÷+- ,其中x=tan601-o. 随练2.11在△ABC 中,若21cos 1tan 02A B -+-=(),则∠C 的度数是( ) A .45° B .60° C .75° D .105° 随练2.12规定()sin sin cos sin cos αβαββα-=-,则sin15=o __________.三、课后练习(写出各题的主要解答过程。

人教版九年级下册数学第二十八章 解直角三角形习题课件

人教版九年级下册数学第二十八章 解直角三角形习题课件
AC2-CD2 =3,∴AB=AD+BD=3+ 3
15.(梧州中考)如图,在 Rt△ABC 中,∠C=90°,D 为 BC 上一点,
AB=5,BD=1,tan B=34 . (1)求 AD 的长; (2)求 sin α的值.
解:(1)由 tan B=34 可设 AC=3x,得 BC=4x, ∵AC2+BC2=AB2, ∴(3x)2+(4x)2=52,解得 x=-1(舍去)或 x=1, ∴AC=3,BC=4,∵BD=1,∴CD=3,∴AD = CD2+AC2 =3 2
人教版
第二十八章 锐角三角函数
28.2.1 解直角三角形
9.(练习变式)在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,由下列条件解直角三角形: 第二十八章 锐角三角函数
(1)∠A=60°,b=4; (1)∠A=60°,b=4; 第二十八章 锐角三角函数
(1)∠A=60°,b=4; (1)∠A=60°,b=4; 9.(练习变式)在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,由下列条件解直角三角形: 第二十八章 锐角三角函数
9.(练习变式)在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,由下列条件解直角三角形:
((11))∠ ∠AA==解6600:°°探,,bb==究44;;:过点 B 作 BD⊥AC,垂足为 D.∵AB=c,∠A=α,∴BD=c·sin
(1)∠A=60°,b=4;
9(91..)∠((练练A习 习=α变 变60,式 式°)),在 在∴bRR=ttS△ △4△;AAABBCCB中 中C=, ,∠ ∠12CC= =A9900C° °·, ,Baa, ,Dbb=, ,cc分 分12别 别b为 为c∠ ∠AAs, ,in∠ ∠BBα, ,∠ ∠CC的 的应对 对用边 边, ,:由 由下 下过列 列点条 条件 件解 解C直 直作角 角三 三C角 角E形 形: :⊥DO 于点

精品 九年级数学 下册解直角三角形同步讲义+练习16页

精品 九年级数学 下册解直角三角形同步讲义+练习16页
0
10 3 cm,求∠B,AB 及 BC. 3
第 3 页 共 16 页
九年级数学 下册同步讲义
16.在△ABC 中,AB=AC=5,sin∠ABC=0.8,则 BC=
. .
4 0 17.在 Rt△ABC 中,∠C=90 ,tanA= ,BC=8,则△ABC 的面积为 3
0
18.如图,某山坡的坡面 AB=200 米,坡角∠BAC=30 ,则该山坡的高 BC 的长为______米.
九年级数学 下册同步讲义
解直角三角形
第 01 课 三角函数的定义
知识点: 解直角三角形的概念: 在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形 中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。 ∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作 sinA,即 sin A
0
例 2.探索 30 、45 、60 角的三角函数值.
0
0
0
ቤተ መጻሕፍቲ ባይዱ
第 1 页 共 16 页
九年级数学 下册同步讲义
例 3.计算: (1)(1)cos60 + sin 45 -tan34 ·tan56
0 2 0 0 0
(2)已知 tanA=2,求
2 sin A cos A 的值. 4 sin A 5 cos A
0
13.如图,点 E 是矩形 ABCD 中 CD 边上一点,△BCE 沿 BE 折叠为△BFE,点 F 落在 AD 上. (1)求证:△ABE∽△DFE; (2)若 sin∠DFE=
1 ,求 tan∠EBC 的值. 3
第 8 页 共 16 页
九年级数学 下册同步讲义
第 02 课 三角函数综合应用

九年级数学解直角三角形同步练习题(含答案)

九年级数学解直角三角形同步练习题(含答案)

九年级数学解直角三角形同步练习题(含答案)一、选择题(本大题共15小题,共45.0分)1.若角α的余角是30∘,则cosα的值是()A. 12B. √32C. √22D. √332.在Rt▵ABC中,∠C=90∘,sinA=35,则cosB的值是()A. 45B. 35C. 34D. 433.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=45,则BD的长度为()A. 94B. 125C. 154D. 44.已知a,b,c是△ABC的∠A,∠B,∠C的对边,且a:b:c=1:√2:√3,则cos B的值为()A. √63B. √33C. √22D. √245.如图,Rt△ABC中,∠C=90°,AB=5,cosA=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A. 相离B. 相切C. 相交D. 无法确定6.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=B. tan55°=C. sin55°=D. cos55°=7.如图,已知点A、点B是同一幢楼上的两个不同位置,从A点观测标志物C的俯角是65°,从B点观测标志物C的俯角是35°,则∠ACB的度数为()A. 25°B. 30°C. 35°D. 65°8.在Rt△ABC中,已知∠C=90∘.若AC=2BC,则sin∠A的值是()A. 12B. 2 C. √55D. √529.△ABC中,∠C=90°,若∠A=2∠B,则cosB等于()A. √3B. √33C. √32D. 1210.如图,△ABC中,AD⊥BC于点D,AD=2√3,∠B=30°,S△ABC=10√3,则tanC的值为()A. 13B. 12C. √33D. √3211.在Rt△ABC中,∠C=90,AC=12,cosA=1213,则tanA等于()A. 513B. 1312C. 125D. 51212.如图,点A、B、C均在小正方形的顶点上,且每个小正方形的边长均为1,则cos∠BAC的值为()A. 12B. √22C. 1D. √213.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A. 42√3米B. 14√3米C. 21米D. 42米14.如图,在8×4的正方形网格中,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A. 13B. √1010C. 12D. √2215.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A. 不变B. 缩小为原来的13C. 扩大为原来的3倍D. 扩大为原来的9倍二、填空题(本大题共1小题,共3.0分)16.计算:√27+(13)−2−3tan60°+(π−√2)0=______.三、计算题(本大题共1小题,共6.0分)17.如图,在A的正东方向有一港口B.某巡逻艇从A沿着北偏东55°方向巡逻,到达C时接到命令,立刻从C沿南偏东60°方向以20海里/小时的速度航行,从C到B航行了3小时.求A,B间的距离(结果保留整数).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,√3≈1.73)四、解答题(本大题共5小题,共40.0分)18.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.19.如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求tan∠BAO的值.)−1+√18−6sin45°.20.计算:(1221.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3取1.7).22.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cosA=3.5(1)求CD的长;(2)求tan∠DBC的值.1.【答案】A【解析】【分析】本题考查了特殊角的三角函数值,属于基础题.先根据题意求得α的值,再求它的余弦值.【解答】解:因为角α的余角是30∘,所以α=90°−30°=60°,则.故选A.2.【答案】B【解析】解:在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=,故选:B.3.【答案】C【解析】解:∵∠C=90°,AC=4,cosA=45,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cosA=BCBD =45,∴BD=3×54=154,故选:C.在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.4.【答案】B【解析】解:∵,∴△ABC为直角三角形.cosB==.故选:B.5.【答案】B【解析】【分析】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=45,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.6.【答案】B【解析】【解析】解:∵在Rt△ADE中,DE=6,AE=AB−BE=AB−CD=x−1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.7.【答案】B【解析】【解析】解:根据题意可知:∠ACD=65°,∠BCD=35°,∴∠ACB=∠ACD−∠BCD=30°.故选:B.8.【答案】C【解析】【分析】本题主要考查了锐角三角函数的求法,属于基础题.可先求出斜边AB,然后根据正弦的定义求出角A的正弦即可.【答案】解:∵AC=2BC,由勾股定理可得:AB=√AC2+BC2=√(2BC)2+BC2=√5BC,∴sin∠A=BCAB =√5=√55,故选C.9.【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°,∵∠A=2∠B,∴∠B=30°,∴cosB=cos30°=√32,故选:C.根据直角三角形的性质求出∠B,根据30°的余弦值是√32解答.本题考查的是特殊角的三角函数值、直角三角形的性质,熟记特殊角的三角函数值是解题的关键.10.【答案】D【解析】解:∵在△ABD中,∠ADB=90°,AD=2√3,∠B=30°,∴BD=ADtanB =√3√33=6.∵S△ABC=12BC⋅AD=10√3,∴12BC⋅2√3=10√3,∴BC=10,∴CD=BC−BD=10−6=4,∴tanC=ADCD =2√34=√32.故选:D.首先解直角△ABD,求得BD,再根据S△ABC=10√3,求出BC,那么CD=BC−BD,然后在直角△ACD中利用正切函数定义即可求得tanC的值.本题考查了解直角三角形,三角形的面积,锐角三角函数定义,解题的关键是求出CD的长.【解析】解:∵cosA=ACAB =1213,AC=12,∴AB=13,BC=√AB2−AC2=5,∴tanA=BCAC =512.故选:D.根据cosA=1213求出第三边长的表达式,求出tanA即可.本题利用了勾股定理和锐角三角函数的定义.12.【答案】B【解析】解:连接BC,∵每个小正方形的边长均为1,∴AB=√5,BC=√5,AC=√10,∵(√5)2+(√5)2=(√10)2,∴△ABC是直角三角形,∴cos∠BAC=ABAC =√5√10=√22,故选:B.根据题目中的数据和勾股定理,可以求得AB、BC、AC的长,然后根据勾股定理逆定理可以判断△ABC的形状,从而可以求得cos∠BAC的值.本题考查解直角三角形、勾股定理与逆定理,解答本题的关键是明确题意,判断出△ABC 的形状,利用锐角三角函数解答.13.【答案】A【解析】解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)故选:A.在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.本题考查解直角三角形的应用−仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.【解析】【分析】本题主要考查正切值的求法,解题的关键是构造直角三角形.作AH⊥CB,交CB延长线于H点,∠ACB的正切值是AH与CH的比值.【解答】解:如图,作AH⊥CB,交CB延长线于H点,则tan∠ACB=AHHC =26=13.故选A.15.【答案】A【解析】【分析】本题考查的是相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.根据相似三角形的性质解答.【解答】解:三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:A.16.【答案】10【解析】解:原式=3√3+9−3√3+1=10.故答案为:10.直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17.【答案】解:如图,过点C作CD⊥AB于点D,由题意可知:∠ACD=55°,∠BCD=60°,BC=20×3=60(海里),BC=30(海里),BD=30√3(海里),在Rt△BCD中,CD=12在Rt△ADC中,AD=CD⋅tan55°=30×1.43≈42.90(海里),∴AB=AD+BD=42.90+30√3≈95(海里).答:A,B间的距离为95海里.【解析】过点C作CD⊥AB于点D,根据三角函数分别求出CD、BD、AD的长,进而可求出A、B间的距离.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角的定义.18.【答案】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB⋅sin58°≈0.85x,BD=AB⋅cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.【解析】通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.19.【答案】解:(1)如图,过点B作BH⊥OA于点H,∵OB=5,sin∠BOA=,∴BH=3,OH=4,∴点B的坐标为(4,3),(2)∵OA=10,∴AH=OA−OH=10−4=6,∴在Rt△AHB中,tan∠BAO===.【解析】解答案20.【答案】解:(12)−1+√18−6sin45°=2+3√2−6×√2 2=2+3√2−3√2=2.【解析】首先计算负整数指数幂、开方和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.【答案】解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=BE,CE∴BE=CE⋅cot30°=12×√3=12√3.在Rt△BDE中,由∠DBE=45°,得DE=BE=12√3.∴CD=CE+DE=12(√3+1)≈32.4.答:楼房CD的高度约为32.4m.【解析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)在Rt△ADE中,∠AED=90°,AE=6,cosA=3,5∴AD=AE=10,cosA∴DE=√AD2−AE2=√102−62=8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴DEBC =AEAC,即8BC=618,BC=24,∴tan∠DBC=CDBC =824=13.【解析】(1)在Rt△ADE中,根据余弦函数的定义求出AD,利用勾股定理求出DE,再由角平分线的性质可得DC=DE=8;(2)由AD=10,DC=8,得AC=AD+DC=18.由∠A=∠A,∠AED=∠ACB,可知△ADE∽△ABC,由相似三角形对应边成比例可求出BC的长,根据三角函数的定义可求出tan∠DBC=13.本题考查了解直角三角形,角平分线的性质、相似三角形的判定与性质,三角函数的定义,求出DE是解第(1)小题的关键;求出BC是解第(2)小题的关键.。

精品 九年级数学 下册解直角三角形定义 同步讲义+练习8页

精品 九年级数学 下册解直角三角形定义 同步讲义+练习8页


7.在△ABC 中,∠A=30º,tan B=
1 ,BC= 10 ,则 AB 的长为 3
; 9.锐角 A 满足 2 sin( A 15 0 ) 3 ,则∠A=
8.计算: 8 4sin 45 (3 )0 4 = 10.已知 tanB= 3 ,则 sin 12.已知 cos 14.计算: (1) sin 30 0 sin 60 0 2 cos 45 0 2
例 4.如图,在 Rt△ABC 中,∠C=900, sin B
5 ,D 在 BC 边上,且∠ADC=450,AC=5.求∠BAD 的正切值. 13
例 5.如图,在△ABC 中,AB=AC,∠A=135°求 tanB 的值.
课堂练习: 1.填表:已知一个角的三角函数值,求这个角的度数(逆向思维)
1 ,AC=6,则 BC 的长为( ) 3 A.6 B.5 C.4 D.2 0 3.在 Rt△ABC 中,∠C=90 ,AC=4,BC=3,cosB 的值为 ( ) 1 3 4 3 A. B. C. D. 5 5 5 4 0 4.在△ABC 中,∠C=90 ,tanA=1,则 sinB 的值是 ( )
0Leabharlann 10 3 cm,求∠B,AB 及 BC. 3
第 3 页 共 8 页
九年级数学下册 同步讲义
16.在△ABC 中,AB=AC=5,sin∠ABC=0.8,则 BC=
. .
4 0 17.在 Rt△ABC 中,∠C=90 ,tanA= ,BC=8,则△ABC 的面积为 3
0
18.如图,某山坡的坡面 AB=200 米,坡角∠BAC=30 ,则该山坡的高 BC 的长为______米.
4 ,AB=15,求 tanA 和△ABC 的周长. 5

28.2.1解直角三角形-2021春人教版九年级数学下册习题课件

28.2.1解直角三角形-2021春人教版九年级数学下册习题课件

B.
15 3
C.
6 4
D.
10 4
【点拨】过点 A 作 AD⊥BC,垂足为 D,如图所示.
在 Rt△ ACD 中,CD=CA·cos C=1,
∴AD= AC2-CD2= 15.
在 Rt△ ABD 中,BD=CB-CD=3,AD= 15,
∴AB= BD2+AD2=2 6.
∴sin B=AADB=
10 4.
提示:点击 进入习题
第1课时 解直角三角形
= AD +DC = 提示:点击 进2入习题 2
第二十八章 锐角三角函数 提示:点击 进入习题
12+122= 25,故选 B.
【答案】B
*9.【2019·凉山州】如图,在△ ABC 中,CA=CB=4,cos C=14, 则 sin B 的值为( )
A.
10 2
第1课时 解直角三角形
第二十八章 锐角三角函数
过点 D 作 2 解直角三角形及其应用
第1课时 解直角三角形
DE⊥AB
于点
ቤተ መጻሕፍቲ ባይዱ
E,且
sin
2 解直角三角形及其应用
∠DAB=35,BD=3
2.求:
2 解直角三角形及其应用
(1)AB 的长; 提示:点击 进入习题
2 解直角三角形及其应用
第二十八章 锐角三角函数
在 Rt△ ABD 中,AB= 2x,AD= 22x,
∴BD=
AB2-AD2=
26x.∴BC=BD+CD=
26x+
2 2x
= 6+ 2.∴x=2,即 AC=2.
【答案】2
8.【2020·鸡西】如图,在△ ABC 中,sin B=13,tan C=2,AB =3,则 AC 的长为( )

九年级数学下册 解直角三角形讲解练习 北师大版

九年级数学下册 解直角三角形讲解练习 北师大版

第二讲 二元一次方程组的解法知识要点:(一)二元一次方程(组)的定义1.二元一次方程:含有两个未知数,并且含有两个未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程的一个解:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.3.二元一次方程组: 含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.注意体会二元一次方程组的两个特征:(1)方程组中共含有两个未知数,而每个方程所含未知数的个数可能是2个,也可能是1个;(2)方程组中至少含有两个方程. 每个方程中所含未知数的项的次数是1次.对所给出的二元一次方程,要能熟练的整理成一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a 4.二元一次方程组的解 :二元一次方程组中各个方程的的公共解,叫做这个二元一次方程组的解.即:满足方程组中每个方程的一对未知数的值称为该二元一次方程组的解.(二)二元一次方程组的解法1.代入法:用代入法解二元一次方程组的一般步骤:(1)在方程组中选一个系数比较简单的方程,将这个方程变形成用含一个未知数的代数式来表示另一个未知数的关系式.(2)将这个关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.(3)解这个一元一次方程,求得一个未知数的值.(4)将这个求得的未知数的值,再代入关系式求出另一个未知数的值,并把求得的两个未知数的值用符号“{”联立起来. (5)注意检验.2.加减法:用加减法解二元一次方程组的步骤.(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等.(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程.(3)解这个一元一次方程,求得一个未知数的值.(4)将这个求得的两个未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“{”联立起来. (5)注意检验.典型例题例1 判断下列方程中,哪些是二元一次方程?哪些不是?为什么?(1)123-=-y x ; (2)13121=+y x ; (3)7532=-x ; (4)01=+xy ; (5)x 1+2y=4;例2 判断下列说法是否正确: (1)二元一次方程734=-y x 的解是⎩⎨⎧-==11y x ; (2)⎩⎨⎧=-=01y x 是二元一次方程44-=-y x 的一个解;(3)方程组⎩⎨⎧+==-3203x y y x 是二元一次方程组;(4)方程组⎪⎩⎪⎨⎧=+=+02113y x y x 是二元一次方程组;(5)方程组⎪⎩⎪⎨⎧=-+-==+0333231y x y x y x 是二元一次方程组;(6)方程组⎩⎨⎧=+=+154432z y y x 是二元一次方程组.例3 已知方程132212=+-+n m y x 是一个二元一次方程,求m 和n 的值.例4 已知方程632=-y x .(1)用含x 的代数式表示y ;(2)当x 取何值时,y 的值为2?例5 试求方程1323=+y x 的正整数解.例6 解方程组⎪⎩⎪⎨⎧=+=+ ② 02141① 13y x y x 例7 解方程组:⎩⎨⎧==+② 42-3①1223y x y x例8 解方程 ⎪⎩⎪⎨⎧+=-=+② 2557① 5531x y yx x 例9 解方程组 ⎩⎨⎧-=+--=+-- ②1)(5)(2①21)(7)(6y x y x y x y x例10 解方程组:0.1x -2=y +7=0.7x +y 例11 解方程组⎩⎨⎧=+=② 102①3:2:y x y x例12 已知代数式q px x ++2,当x =-1时,它的值是-5;当x =-2时,它的值是4,求p 、q 的值.例13 解方程组 ⎪⎩⎪⎨⎧=-+=+-=-+ ③ ②①325232 0z y x z y x z y x 例14 解方程组26553423 =-+=+=+zy x z y z x .例15 已知关于x 、y 的方程组⎩⎨⎧=-=+53ny mx y x 与⎩⎨⎧=-=-512y x my nx 的解相同,求m 、n 的值.经典练习:一.选择题:1.已知x =-2是方程2x +m -4=0的一个解,则m 的值是( )(A )8 (B )-8 (C )0 (D )22.如果2(x +3)的值与3(1-x )的值互为相反数,那么x 等于()(A )-8 (B )8 (C )-9 (D )3.下列是二元一次方程组的是( ) (A )⎩⎨⎧=+=81y x xy (B )⎪⎩⎪⎨⎧=-=+13571y x y x (C )⎩⎨⎧-==142z x x y (D )⎩⎨⎧=+=-55343y x y x 4.下列各对数中,是方程2131=+y x 的解是( ) (A )⎩⎨⎧=-=32y x (B )⎩⎨⎧-==23y x (C )⎩⎨⎧-=-=32y x (D )以上都不对5.从方程组⎩⎨⎧=-=+m y m x 54中,求出x 与y 的关系式是( ) (A )1-=+y x (B )1=+y x (C )9=+y x (D )9-=+y x二.填空题:1.下列各式:①31=+yx ,②3x =5y ,③164=-y x ,④ 5x +xy =2,⑤ x +4y 2=3,⑥ 7x +3y 属于二元一次方程的有 .2.方程x +2y =7的解有 个,其中正整数解(x 、y 均为正整数的解)有 个,它们是 .3.若52133=-+-n m y x 是二元一次方程,则m = ,n = .4.已知方程组⎩⎨⎧==⎩⎨⎧=-=+214y x a y x y b x 的解是,那么a +b = . 5.若x -y =5,则15-x +y = . 6.若0625=+++-x y x ,则3x +y +1= .7.对于方程24131=+y x ,用含有x 的代数式表示y 为 ,用含有y 的代数式表示x 为 . 8.二元一次方程组⎩⎨⎧=-+=+3)1(134y k kx y x 的解中,x 、y 的值相等,则k = . 9.已知053)422=+++--y x y x (,则x = ,y = . 10.若12-x ab 与b a y x 22-+-是同类项,则22y x -= .三.计算题1 ⎩⎨⎧=+-=24352y x x y 2.⎪⎩⎪⎨⎧-=-=-)2(34742a b a b 3.⎩⎨⎧=--=+3231954b a b a 4. ⎩⎨⎧=-+--=-5)1()2(2)1(22y x y x四、解方程组:1. ② 823① 02⎩⎨⎧=+=-y x y x 2. ⎩⎨⎧=+=+② 82 ① 5y x y x 3. ⎩⎨⎧=+-=- 16214y x y x4. ⎪⎩⎪⎨⎧=+=+-10231312y x y x5. ⎪⎩⎪⎨⎧=-+=+11)1(2231y x y x 6.⎪⎩⎪⎨⎧=--+=-++2)(5)(4632y x y x y x y x五、解答题:1.若方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值.2.在解方程组⎩⎨⎧bx+ay=10x-cy=14时,甲正确地解得⎩⎨⎧x=4y=-2,乙把c 写错而得到⎩⎨⎧x=2y=4,若两人的运算过程均无错误,求a 、b 、c 的值3.小明和小华同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗?。

解直角三角形及其应用讲练-简单数学之2020-2021学年九年级下册同步讲练(原卷版)(北师大版)

解直角三角形及其应用讲练-简单数学之2020-2021学年九年级下册同步讲练(原卷版)(北师大版)

专题1.4-1.6解直角三角形及其应用典例体系(本专题共50题34页)一、知识点1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系 (1)三边之间的关系:a 2+b 2=c 2; (2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:sin A ==cosB=a c ,cos A =sinB=b c ,tan A =ab .3.解直角三角形的应用4.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i 表示. 坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i =tan α.(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O 出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角. 5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题; (3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解. 解直角三角形中“双直角三角形”的基本模型:二、考点点拨与训练考点1:由已知函数值求未知函数值 典例:在Rt ABC △中,90C ∠=︒,12sin 13B =,则tan A 的值为( ). A .513B .1312C .125D .512方法或规律点拨本题考查互余两角三角函数的关系,其中涉及正弦、余弦、正切等知识,是重要考点,难度较易,掌握相关知识是解题关键. 巩固练习1.⊿ABC 中,∠C=90°,CD ⊥AB 于D ,下列比值中不等于tan A 的是( ) A .BCACB .CDADC .BDCDD .ACAB2.若锐角A 满足tan a =13,则sin a 的值是( )A B C D3.如果α是锐角,sin α=,那么cosα的值是( )A .12B .2C D 4.在Rt ABC ∆中,∠C=90°,3sin 5A =,则tanB 的值为( ) A .45B .35 C .34D .435.已知α是锐角,cosα=13,则tanα的值是( )A B .C .3D6.已知:1sin α3=则cos α=( )A .13B .23C .89D 7.在Rt ABC ,90C ∠=,3sin 5B =,则sin A 的值是( ) A .3 5B .4 5C .5 3D .5 48.已知sinαcosα=18,且0°<α<45°,则sinα-cosα的值为( )A B C .34D .9.在Rt ABC △中,90C =∠,如果1cos 2B =,那么sin A 的值是( )A .1B .12C D10.在ABC ∆中,90C ∠=︒,4sin 5A =,则cosB 的值为( ) A .43B .34 C .35D .4511.如图,3sin 5α=,则cos β等于( )A .35B .45C .925D .162512.如果α是锐角,且3sin 5α=,那么cos α的值为_____. 13.在Rt ABC ∆中,∠C=90°,tan A =3,tanB=________ 14.已知:∠A +∠B =90°,若sin A =35,则cos B =__________. 【答案】3515.如果α是锐角,且sinα=cos20°,那么α=_____度.16.在Rt △ABC 中,∠C=90°,sinA=35,则cosB 的值为_____. 考点2:几何图形中应用锐角三角函数典例:在△ABC 中,AB tanB =45,AC =BC 的长为_____. 方法或规律点拨本题主要考查了三角函数的应用,结合勾股定理计算是解题的关键. 巩固练习1.如图,已知Rt ABC ∆,90ACB ∠=,3AC =,4BC =,AD 平分BAC ∠,则点B 到射线AD 的距离是( )A .2BCD .32.在△ABC 中,已知∠C=90°,BC=4,sinA=23,那么AC 边的长是( )A .6B .C .D .3.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( ) A .2sin AB A = B .2cos AB A = C .2tan BC A =D .2cot BC A =4.如图,Rt ABC 中,C 90∠=︒,4sin 5=B ,AB 10=.则tan =A ________.5.如图,在△ABC 中,∠A =30°,∠B =45°,BC cm ,则AB 的长为_____.6.在△ABC 中,∠C=90°,BC=2,2sin 3A =,则边AC 的长是 .7.在ABC ∆中,AB =,AC =1tan 2B =,则BC 的长为______. 8.(2020·河南期末)如图,在ABC 中,90ACB ∠=︒,CD 是AB 边上的中线,过点A 作AE CD ⊥,垂足为M ,交BC 于点E ,2AM CM =.(1)求sin B 的值:(2)若CD =,求BC 的长.9.(2020·吉林长春·初三一模)(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是 . (问题2)小明发现只利用直角三角板也可以作∠AOB 的角平分线,方法如下: 步骤:①利用三角板上的刻度,在OA 、OB 上分别截取OM 、ON ,使OM =ON . ②分别过点M 、N 作OM 、ON 的垂线,交于点P . ③作射线OP ,则OP 为∠AOB 的平分线. (1)请写出小明作法的完整证明过程.(2)当tan ∠AOB =43时,量得MN =4cm ,直接写出MON △的面积.考点3:解直角三角形典例:如图,在Rt ABC 中,90,30,C A AC ∠=︒∠=︒=()1求AB 的长; ()2求RtABC 的面积.方法或规律点拨本题考查了解直角三角形的性质及勾股定理,熟练掌握性质是解题的关键. 巩固练习1.如图,在ABC 中,AD BC ⊥于点D ,若6AD =.3tan 2C =,12BC =,求cos B 的值.2.如图,在△ABC 中,BD ⊥AC ,AB =6,AC =A =30°. (1)求BD 和AD 的长; (2)求tan C 的值.3.如图,在锐角三角形ABC 中,AB=4,BC=∠B=60°,求△ABC 的面积4.若A 为锐角,且tan 2A =,求3sin cos 4cos 5sin A AA A+-.5.(2020·沙坪坝·重庆一中初三开学考试)如图,在ABC 中,AD 是BC 边上的高,14BC =,12AD =,4sin 5B =.(1)求线段CD 的长度: (2)求cos C ∠的值.6.(2020·华南师大(广东)教育文化传播有限公司月考)在△ABC 中,AB =8,BC =6,∠B 为锐角且cosB =12. (1)求△ABC 的面积. (2)求tanC .7.如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=34,求sinC 的值.本考点4:解直角三角形的实际应用典例:如图,某海监船以60海里/时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡査此可疑船只,此时可疑船只仍在B 的北偏西30︒方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60 方同.(以下结果保留根号)(1)求B,C两处之问的距离;(2)求海监船追到可疑船只所用的时间.方法或规律点拨本题考查了解直角三角形的应用、方向角、直角三角形的性质;正确作出辅助线是解题的关键.巩固练习1.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE的顶部测得信号发射塔AB顶端的仰角∠FEA=56°,建筑物DE的底部D到山脚底部C的距离DC=16米,小山坡面BC的坡度(或坡比)i=1:0.75,坡长BC=40米(建筑物DE、小山坡BC 和网络信号发射塔AB的剖面图在同一平面内,信号发射塔AB与水平线DC垂直),则信号发射塔AB的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A.71.4米B.59.2米C.48.2米D.39.2米2.如图,甲、乙两船同时从港口O出发,其中甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,已知两船的航行速度相同,如果1小时后甲、乙两船分别到达点A、B处,那么点B位于点A的()A .南偏西40°B .南偏西30°C .南偏西20°D .南偏西10°3.一座建于若干年前的水库大坝的横截面如图所示,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB 的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了_____平方米.4.汾河是山西最大的河流,被山西人称为母亲河,对我省的历史文化有深远的影响.在“我爱汾河,保护汾河”实践活动中,小李所在学习小组要测量汾河河岸某段的宽度,如图,河岸//EF GH ,小李在河岸GH 上点B 处用测角仪观察河岸EF 上的小树A ,测得45ABH ∠=︒,然后沿河岸走了50米到达C 处,再一次观察小树A ,测得65ACH ∠=︒,则可求出河的宽度为________________米.(参考计算:650.9sin ︒≈,650.42cos ︒≈,65 2.14tan ︒≈,结果精确到0.1米).5.如图,梯形ABCD 是拦水坝的横断面图,(图中i =DE 与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________(结果保留三位有效数字,参1.732= 1.414=)6.如图,在大楼AC 的正前方有一个舞台,舞台前的斜坡DE =4米,坡角∠DEB =41°,小红在斜坡下的点E 处测得楼顶A 的仰角为60°,在斜坡上的点D 处测得楼顶A 的仰角为45°,其中点B ,C ,E 在同一直线上求大楼AC 的高度.,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)7.如图是一矩形广告牌ACGE ,2AE =米,为测量其高度,某同学在B 处测得A 点仰角为45︒,该同学沿GB 方向后退6米到F 处,此时测得广告牌上部灯杆顶端P 点仰角为37︒.若该同学眼睛离地面的垂直距离为1.7米,灯杆PE 的高为2.25米,求广告牌的高度(AC 或EG 的长).(精确到1米,参考数据:sin370.6︒≈,tan370.75︒≈)7.兰州白塔山山势起伏,山中白塔七级八面,上有绿项,下筑圆基,几经强烈地震仍屹立未动,显示了我国古代劳动人民在建筑艺术上的智慧与才能. 问题提出:如何测量白塔的高MN .方案设计:九年级三班的白亮同学去测量白塔的高,如图,他在点A 处测得塔尖M 的仰角是30°,向前走了50米到达点B 处,又测得塔尖M 的仰角是60°.问题解决:根据上述方案和数据,求白塔的高度MN (结果精确到1m ).9.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60︒,热气球与高楼的水平距离为66m ,这栋高楼有多高?(结果精确到0.1m 1.73≈)10.如图1是小明在健身器材上进行仰卧起坐锻炼时的情景,图2是小明锻炼时上半身由ON 位置运动到与底面CD 垂直的OM 位置时的示意图,已知AC 0.66=米,BD 0.26=米,α30=︒(参考数据:1.414==)(1)求AB 的长(2)若ON 0.6=米,求M N 、两点的距离(精确0.01)11 / 1211.二七纪念塔位于郑州市二七广场,是独特的仿古,它是为纪念京汉铁路工人大罢工而修建的纪念性建筑物.学完三角函数知识后,某校”数学社团”的刘明和王华决定用自己学到的知识测量二七纪念塔的高度.如图,CD 是高为1米的测角仪,在D 处测得塔顶端A 的仰角为40︒,向塔方向前进38米在E 处测得塔顶端A 的仰角为60︒,求二七纪念塔AB 的高度(精确到1米,参考数据400.64,400.77,40 1.73sin cos tan ︒≈︒≈︒≈≈).12.如图,小明的家在某住宅楼AB 的最顶层,他家对面有一建筑物CD ,他很想知道建筑物的高度,他首先量出A 到地面的距离()AB 为16m ,又测得从A 处看建筑物底部C 的俯角α为30,看建筑物顶部D 的仰角β为53︒且AB ,CD 都与地面垂直,点A ,B ,C ,D 在同一平面内.(1)求AB 与CD 之间的距离(结果保留根号);(2)求建筑物CD 的高度(结果精确到1m ).参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈1.7≈.13.图1所示的是某景区的“关帝圣像”,它从2007年1月开始铸造,共用铜500吨,铁2000吨,甚是伟岸壮观.其侧面示意图如图2所示.在B 处测得圣像顶A 的仰角为52.8,在点E 处测得圣像顶A的仰角12 / 12 为63.4︒.已知AC BC ⊥于点,C EG BC ⊥于点,//,30G EF BC BG =米,19FC =米,求圣像的高度AF . (结果保留整数.参考数据:52.80.80,52.80.60sin cos ≈︒≈,52.8 1.32,63.40.89tan sin ︒≈︒≈,63.40.45,63.4 2.00cos tan ≈︒≈)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形第01课 三角函数的定义知识点:解直角三角形的概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即=A sin∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即=A cos∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即=A tan即锐角A 的正弦、余弦和正切统称∠A 的三角函数.注意:sinA,cosA,tanA 都是一个完整的符号,单独的"sin ”没有意义,其中A 前面的“∠”一般省略不写。

各锐角三角函数之间的关系:(1)互余关系:若∠A+∠B=900,则sinA=cos =cos ( ),cosA=sin =sin ( ) (2)平方关系:1cos sin 22===+=+A A ⇒1cos sin 22=+A A(3)倒数关系:1tan tan ,tan tan =⋅=⋅==B A B A ,⇒=⋅B A tan tan(4)弦切关系:=A sin ,=A cos ,=AAcos sin ⇒=A tan例1.如图,在Rt △ABC 中,∠C=900,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切.例2.探索300、450、600角的三角函数值.例3.计算:(1)(1)cos600+ sin 2450-tan340·tan560(2)已知tanA=2,求AA AA cos 5sin 4cos sin 2+-的值.例4.如图,在Rt △ABC 中,∠C=900,135sin =B ,D 在BC 边上,且∠ADC=450,AC=5.求∠BAD 的正切值.例5.如图,在△ABC 中,AB=AC ,∠A=135°求tanB 的值.课堂练习:1.填表:已知一个角的三角函数值,求这个角的度数(逆向思维)2.在Rt △ABC 中,∠C=900,31tan =A ,AC=6,则BC 的长为( ) A.6 B.5 C.4 D.23.在Rt △ABC 中,∠C=900,AC=4,BC=3,cosB 的值为 ( )A.51 B.53 C.54 D.434.在△ABC 中,∠C=900,tanA=1,则sinB 的值是 ( )A.3B.2C.1D.22 5.在正方形网格中,△ABC 的位置如图所示,则cos B ∠的值为( ) A.12 B.22C.32D.33第5题图 第6题图6.在Rt △ABC 中,∠C=90º,∠A=15º,AB 的垂直平分线与AC 相交于E 点,则CE :EB 等于( ) A.2:3 B.3:2 C.3:1 D.1:37.在△ABC 中,∠A=30º,tan B=13,BC=10,则AB 的长为 8.计算:084sin 45(3)4-︒+-π+-= ; 9.锐角A 满足3)15sin(20=-A ,则∠A= 10.已知tanB=3,则sin 2B = ; 11.已知32sin =α,则αcos = ,αtan =12.已知31cos =α,则α2sin 1-= ;13.已知42cos sin =⋅a a ,则aaa a sin cos cos sin += 14.计算:(1)245cos 260sin 30sin 000-+⋅ (2)000020253tan 37tan 45tan 60cos 60sin ⋅+-+(3)︒⋅︒-︒⋅+︒60tan 60sin 45cos 230sin (4)000030tan )30cos 260(sin 345sin 2+--15.如图,在△ABC 中,∠C=900,AC=5cm ,∠BAC 的平分线交BC 于D,3310=AD cm,求∠B ,AB 及BC.16.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC= . 17.在Rt △ABC 中,∠C=900,tanA=34,BC=8,则△ABC 的面积为 . 18.如图,某山坡的坡面AB=200米,坡角∠BAC=300,则该山坡的高BC 的长为______米.19.如图,在矩形ABCD 中,E 是BC 边上的点,AE=BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:△ABE ≌△DFA ;(2)如果AD=10,AB=6,求sin ∠EDF 的值.20.某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF (如图所示),已知立杆AB 的高度是3米,从侧面D 点测到路况警示牌顶端C 点和底端B 点的仰角分别是600和450,求路况警示牌宽BC 的值.21.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由450降为300,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.求:改善后滑滑板会加长多少?22.如图,为了测量某风景区内一座塔AB 的高度,小明分别在塔的对面一楼房CD 的楼底C,楼顶D 处,测得塔顶A 的仰角为450和300,已知楼高CD 为10m ,求塔的高度.23.某型号飞机的机翼形状如图所示,AB ∥CD ,根据数据计算AC 、BD 和CD 的长度.24.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF,∠F=∠ACB=900, ∠E=450,∠A=600,AC=10,试求CD 的长.25.如图,在△ABC 中,∠C=900,sinA=54,AB=15,求tanA 和△ABC 的周长.1.计算:2cos 45tan 60cos30+等于( )A.1B.2C.2D.32.A (cos600,-tan300)关于原点对称的点A 1的坐标是( )A.1323⎛⎫- ⎪ ⎪⎝⎭,B.3323⎛⎫- ⎪ ⎪⎝⎭, C.1323⎛⎫-- ⎪ ⎪⎝⎭, D.1322⎛⎫- ⎪ ⎪⎝⎭, 3.三角形在方格纸中的位置如图所示,则tan α的值是( )A.35B.43 C.34 D.454.如图,在Rt △ABC 中,∠ACB=900,BC=1,AB=2,则下列结论正确的是( )A.3sin 2A =B.1tan 2A = C.3cos 2B = D.tan 3B =5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则sin B 的值是( )A.23B.32C.34D.436.如图,在△ABC 中,∠ACB=900,CD ⊥AB 于D ,若AC=32,AB=23,则tan BCD ∠的值为( )A.2B.22C.63D.337.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD=300,在C 点测得∠BCD=600,又测得AC=50米,则小岛B 到公路l 的距离为( )米.A .25B.253C.10033D.25253+8.已知△ABC 的外接圆O 的半径为3,AC=4,则sinB=( )A.13错误!未找到引用源。

B.34错误!未找到引用源。

C.错误!未找到引用源。

45 D.23错误!未找到引用源。

9.在△ABC 中,∠C=900, BC=6cm ,53sin =A ,则AB 的长是 cm .10.已知在△ABC 中,∠A 、∠B 是锐角,且sinA=135,tanB=2,AB=29cm ,则S △ABC = 11.如果方程错误!未找到引用源。

的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值 为第01课 解直角三角形定义 测试题日期: 月 日 满分:100分 时间:20分钟 姓名: 得分:1.在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦( )A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半 2.在△ABC 中,∠A,∠B,∠C 对边分别为a,b,c ,a=5,b=12,c=13,下列结论成立的是( ) A.12sin 5A =B.5cos 13A = C.5tan 12A = D.12cos 13B = 3.在△ABC 中,90C ∠=︒,且两条直角边a,b 满足22430a ab b -+=,则tan A 等于( ) A.2或4 B.3 C.1或3 D.2或3 4.如图,在Rt △ABC 中,∠C=900,AB=4,AC=1,则cos A 的值是( )A.154B.14C.15D.4第2题图 第3题图5.如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A.247B.73C.724D.136.在△ABC 中,∠C =900,tanA=31,则sinB=( )1010.A32.B43.C.10103.D7.填空:(1)在Rt △ABC 中,∠C=900,5=a ,2=b ,则sinA= 。

(2)在Rt △ABC 中,∠A=900,如果BC=10,sinB=0.6,那么AC= 。

(3)在ABC Rt ∆中,C ∠=900,c=8,sinA=41,则b = . 8.若∠A 是锐角,cosA=23,则∠A= 9.计算:(1)13230sin 1+-︒ (2)830sin 2)12(01-++-(3)100)21(30sin 1)21(-+--+ (4)0060tan 1160sin -+10.在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B 两个凉亭之间的距离.现测得AC=30m ,BC=70m ,∠CAB=1200,请计算A,B 两个凉亭之间的距离.11.小明放一个线长为125米的风筝,他的风筝线与水平地面构成600的角,他的风筝有多高?12.在Rt △ABC 中,∠C=900,AC=12,BC=15.(1)求AB 的长;(2)求sinA 、cosA 的值;(3)求A A 22cos sin 的值;(4)比较sinA 、cosB 的大小.13.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE,点F 落在AD 上. (1)求证:△ABE ∽△DFE; (2)若sin ∠DFE=31,求tan ∠EBC 的值.第02课 三角函数综合应用锐角三角函数的增减性:当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而 (或 ) (2)余弦值随着角度的增大(或减小)而 (或 ) (3)正切值随着角度的增大(或减小)而 (或 ) 仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

相关文档
最新文档