实验二 动态规划算法棋盘覆盖
动态规划练习例题
动态规划方法总结
动态规划算法的设计步骤
– – – – – – – 将问题表示成多步判断 确定是否满足优化原则——必要条件 确定子问题的重叠性——估计算法效率 列出关于优化函数的递推方程(或不等式)和边界条件 自底向上计算子问题的优化函数值----非递归的算法 备忘录方法记录中间结果 标记函数追踪问题的解
• S(i)表示结束于位置i的最大子区间和 • max{S(i)}即为所求最大子区间和 • 考虑如何递推求解并反算问题解
最大子矩阵
• 已知矩阵的大小定义为矩阵中所有元素的 和。给定一个矩阵,找到最大的非空(大小 至少是1 * 1)子矩阵。 • 例如这个矩阵的最大子矩阵大小为15。
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
动态规划练习例题在棋盘上移动在一个nn的棋盘上棋子可以向上方右上方或左上方移动每次从x方格移动到y方格将获得pxy元钱pxy不一定是正数现求一个获得钱最多的从底边到顶边的一种移动棋子的方案
动态规划练习例题
在棋盘上移动
• 在一个n×n的棋盘上,棋子可以向上方、 右上方或左上方移动,每次从x方格移动到y 方格将获得p(x,y)元钱, p(x,y)不一定是正 数,现求一个获得钱最多的从底边到顶边 的一种移动棋子的方案。
解题思路
Qx, y 1 Q x, y max Qx 1, y 1 Q x 1, y 1 y 1 px, y 1, x, y y 1 px 1, y 1, x, y y 1且x 1 px 1, y 1, x, y y 1且x 字符串X=x1,x2,…xm和Y=y1,y2,…yn 使用一系列编辑操作将字符串X转变成Y。允许使 用插入,删除,修改三种操作,每种操作都有 一定的代价,求一个总代价最小的操作序列。 – 设从字符X中删除符号xi的代价为D(xi) – 将符号yj插入X的代价为I(yj) – 将X中的符号xi修改成yj的代价为C(xi,yj)
算法分析与设计(山东联盟)智慧树知到答案章节测试2023年泰山学院
绪论单元测试1.山东师范大学的管教授在哪个问题上给出了比较好的解决方法。
A:邮递员问题B:背包问题C:装载问题D:最大团问题答案:A第一章测试1.算法具备的四个基本性质是()A:输入B:有限性C:确定性D:输出答案:ABCD2.算法就是程序A:错B:对答案:A3.描述渐进上界的符号是()A:ΩB:ωC:OD:θ答案:C4.f(n)=3n2+n+1,下面不正确的是()A:f(n)=O(n3)B:f(n)=O(n2)C:f(n)=O(2n)D:f(n)=O(3n2)答案:C5.在算法分析中,我们希望找到更加高阶的上界函数A:错B:对答案:A第二章测试1.Strassen 矩阵乘法是利用()实现的算法。
A:贪心法B:分治策略C:动态规划法D:回溯法答案:B2.使用分治法求解不需要满足的条件是()A:子问题不能够重复B:子问题的解可以合并C:子问题必须是一样的D:原问题和子问题使用相同的方法解答案:C3.实现棋盘覆盖算法利用的算法是()。
A:分治法B:回溯法C:动态规划法D:贪心法答案:A4.实现循环赛日程表利用的算法是()。
A:贪心法B:回溯法C:分治策略D:动态规划法答案:C5.从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法A:对B:错答案:A第三章测试1.动态规划算法一般分成()三个阶段。
A:求解B:分析C:分段D:汇总答案:ABC2.动态规划的基本要素有()?A:备忘录方法B:最优子结构C:子问题的重叠性质答案:ABC3.用动态规划法求解的问题都可以分解为相互重叠的子问题。
A:对B:错答案:A4.动态规划法利用递推关系式()计算,实现动态规划过程。
A:循环B:递归C:自底向上D:自顶向下答案:C5.最优子结构是问题可以用动态规划法求解的前提。
A:错B:对答案:B第四章测试1.贪心算法中每次做出的贪心选择都是全局最优选择。
A:对B:错答案:B2.下面问题不能使用贪心法解决的是A:N皇后问题B:最小花费生成树问题C:背包问题D:单源最短路径问题答案:A3.背包问题的贪心算法所需的计算时间为A:O(n2n)B:O(n)C:O(nlogn)D:O(2n)答案:C4.哈夫曼编码是自底向上构造的A:错B:对答案:B5.Kruskal算法的时间复杂度是A:O(eloge)B:O(n)C:O(nlogn)D:O(2n)答案:A第五章测试1.回溯法就是穷举法A:错B:对答案:A2.回溯法使用的是广度优先遍历A:对B:错答案:B3.回溯法必须寻找一个限界函数A:对B:错答案:B4.使用回溯法时可以考虑以下哪些方面()A:约束函数B:解空间结构C:解的向量形式D:解的最优子结构性质答案:ABC5.回溯法在处理n皇后问题时,必须把解空间组织成子集树。
动态规划实验报告心得
一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。
本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。
二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。
动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。
2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。
通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。
3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。
在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。
4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。
在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。
实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。
三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。
动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。
这种思维方式有助于我们更好地理解和解决实际问题。
2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。
它描述了子问题之间的关系,是求解问题的关键。
通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。
动态规划算法的详细原理及使用案例
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
棋盘覆盖问题c语言
// 覆盖本子棋盘中的其余方格
ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
}
//覆盖右上角子棋盘
if(dr<tr+s&&dc>=tc+s)
// 特殊方格在此棋盘中
ChessBoard(tr,tc,dr,dc,s);
else
{//特此棋盘中无特殊方格 ,t号L型骨牌覆盖左下角
{//此棋盘中无特殊方格 ,t号L型骨牌覆盖左上角
board[tr+s][tc+s]=t;
// 覆盖本子棋盘中的其余方格
ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
}
}
int main()
{
int size,r,c,row,col;
printf("输入棋盘大小:\n");
scanf("%d",&size);//输入棋盘大小
{
for (c = 0; c < size; c++)
{
printf("%d ",board[r][c]);
}
printf("\n");
}
return 0;
}
运行效果:
实验报告成绩
老师
注:1)专业班级按打印课表中名称填写;2)课程名称按课表中名称填写,不能简写;
3)实验日期格式示例:)实验时间格式示例:“第三大节”5)实验情况包括任务(或题目)、解决方案(或者代码)、结果等;6)实验报告成绩按五级标准评分;精心搜集整理,只为你的需要
算法设计与分析实验报告棋盘覆盖问题
算法设计与分析实验报告棋盘覆盖问题贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:信计101班实验日期:2013-9-30 姓名: 张胜学号:1007010162 指导教师:程欣宇实验序号:一实验成绩: 一、实验名称分治算法实验 - 棋盘覆盖问题二、实验目的及要求1、熟悉递归算法编写;2、理解分治算法的特点;3、掌握分治算法的基本结构。
三、实验环境Visual C++四、实验内容根据教材上分析的棋盘覆盖问题的求解思路,进行验证性实验;要求完成棋盘覆盖问题的输入、分治求解、输出。
有余力的同学尝试消去递归求解。
五、算法描述及实验步骤分治算法原理:分治算法将大的分解成形状结构相同的子问题,并且不断递归地分解,直到子问题规模小到可以直接求解。
棋盘覆盖问题描述:在一个2k x 2k个方格组成的棋盘中恰有一个方格与其他的不同称为特殊方格,想要求利用四种L型骨牌(每个骨牌可覆盖三个方格)不相互重叠覆盖的将除了特殊方格外的其他方格覆盖。
实验步骤:1、定义用于输入和输出的数据结构;2、完成分治算法的编写;3、测试记录结构;4、有余力的同学尝试不改变输入输出结构,将递归消除,并说明能否不用栈,直接消除递归,为什么,六、调试过程及实验结果实验运行结果:七、总结通过本次实验,我更深的理解了递归和分治策略。
代码是书上的算法,加上主函数就行了,用的是C语言编写,很长时间没用了,感觉有点生疏。
实验结果有点问题,就是覆盖棋盘时,并不是按照1,2,3….的字符顺序,而是按照很乱的顺序输出字符,这个我不知道怎么解决,就没解决。
八、附录#include "stdio.h"#include "conio.h"int board[8][8] ={{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0 ,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0}};int tile=0;void chessBoard(int tr, int tc, int dr, intdc, int size){int t=tile++,s=size/2;if (size==1) return;if (dr<tr+s&&dc<tc+s)chessBoard(tr,tc,dr,dc,s);else {board[tr+s-1][tc+s-1]=t;chessBoard(tr,tc,tr+s-1,tc+s-1,s);}if(dr <tr+s && dc >= tc+s)chessBoard(tr,tc+s,dr,dc,s);else {board[tr+s-1][tc+s]=t;chessBoard(tr,tc+s,tr+s-1,tc+s,s);} if(dr >= tr+s&&dc<tc+s)chessBoard(tr+s,tc,dr, dc,s);else {board[tr+s][tc+s-1]=t;chessBoard(tr+s,tc,tr+s,tc+s-1,s);} if(dr >= tr+s &&dc>=tc+s) chessBoard(tr+s,tc+s,dr,dc,s);else {board[tr+s][tc+s]=t;chessBoard(tr+s,tc+s,tr+s,tc+s,s);} }main(){int i ,j;chessBoard(0,0,5,5,8);for(i=0;i <8;i++){for( j=0;j <8;j++) {if(board[i][j]<10)printf("0");printf("%d",board[i][j]);printf(" ");}printf( "\n"); } getchar();}。
动态规划算法
动态规划算法
动态规划算法(Dynamic Programming)是一种解决多阶段最优化决策问题的算法。
它将问题分为若干个阶段,并按照顺序从第一阶段开始逐步求解,通过每一阶段的最优解得到下一阶段的最优解,直到求解出整个问题的最优解。
动态规划算法的核心思想是将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,而是直接使用已有的计算结果。
即动态规划算法采用自底向上的递推方式进行求解,通过计算并保存子问题的最优解,最终得到整个问题的最优解。
动态规划算法的主要步骤如下:
1. 划分子问题:将原问题划分为若干个子问题,并找到问题之间的递推关系。
2. 初始化:根据问题的特点和递推关系,初始化子问题的初始解。
3. 递推求解:按照子问题的递推关系,从初始解逐步求解子问题的最优解,直到求解出整个问题的最优解。
4. 得到最优解:根据子问题的最优解,逐步推导出整个问题的最优解。
5. 保存中间结果:为了避免重复计算,动态规划算法通常会使
用一个数组或表格来保存已经求解过的子问题的解。
动态规划算法常用于解决最优化问题,例如背包问题、最长公共子序列问题、最短路径问题等。
它能够通过将问题划分为若干个子问题,并通过保存已经解决过的子问题的解,从而大大减少计算量,提高算法的效率。
总之,动态规划算法是一种解决多阶段最优化决策问题的算法,它通过将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,从而得到整个问题的最优解。
动态规划算法能够提高算法的效率,是解决最优化问题的重要方法。
棋盘覆盖实验报告
int x_pos;//特殊点横坐标
int y_pos;//特殊点竖坐标
Container p;
public MyChessBoard() {
super();
x_pos = 0;
y_pos = 0;
dimen = 0;
setTitle("棋盘覆盖");
setBackground(Color.YELLOW);
y = 0;}setLocation(x, y);}public void actionPerformed(ActionEvent e) {
if(e.getActionCommand()=="退出") {
System.exit
(0);}else if(e.getActionCommand()=="开始") {
x_pos = (int)(dimen*Math.random());//随机生成特殊点位置
y_pos = (int)(dimen*Math.random());
p.setLayout(new GridLayout(dimen, dimen));
System.out.println(x_pos+","+y_pos);
/**** @authorxxxx
*/
public class FenZi {
public static void main(String args[]){new MyChessBoard();}}
class MyChessBoard extends JFrame implements ActionListener {
for(int j=0; j<board[i].length; j++) {
算法与设计实验报告
实验一分治与递归(4学时)一、实验目的与要求1、熟悉C/C++语言的集成开发环境;2、通过本实验加深对递归过程的理解二、实验内容掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。
三、实验题任意输入一个整数,输出结果能够用递归方法实现整数的划分。
四、程序代码五、实验结果首先按照提示输入数字:按回车键,得到此数划分的个数:此时您可以接着计算另一个数的划分个数:若要退出,请输入一个小于等于零的数:六、结果分析及程序功能经过和其它同学的实验数据对比,初步认定此程序基本正确,然而不足之处是只能得到划分的个数,而不能列出每个划分的详细情况。
一、实验目的与要求1、掌握棋盘覆盖问题的算法;2、初步掌握分治算法二、实验题盘覆盖问题:在一个2k×2k个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
三、程序代码四、实验结果按照提示输入特殊方格的行号和列号(起始行列号为0):按回车键,得到一个矩阵,数字相同区域为一个L型骨牌覆盖:五、结果分析及程序功能得到的16*16棋盘覆盖结果正确,此程序的不足之处:只能设定特殊方格的行列号,而不能设定棋盘的大小。
实验二动态规划算法(4学时)一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
棋盘覆盖实验报告
实验报告课程名称算法分析与设计实验项目名称棋盘覆盖算法设计与实现班级与班级代码14251102202实验室名称(或课室)实验楼802 专业计算机科学与技术任课教师李绍华学号:14251102202姓名:陈晓俊实验日期:2016年10月27日广东商学院教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
一、实验目的1、理解算法的概念2、实现棋盘化以及棋盘覆盖3、理解递归与分治策略算法4、能够用Java语言实现该算法二、实验设备硬件:计算机一台软件:Windows 7操作系统、eclipse Java编程软件三、问题与算法描述1、问题描述在一个2^k×2^k (k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格,且称该棋盘为一个特殊棋盘。
在棋盘覆盖问题中,要用4种不同形态的L型骨牌覆盖给定的特异盘上除特殊方格以外所有方格,且任何2个L型骨牌不得重叠覆盖。
2、算法描述当k>0时 将2^k×2^k 棋盘分割为4个2k-1×2k-1 子棋盘。
特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。
为了将这3个无特殊方格的子棋盘转化为特殊棋盘可以用一个L型骨牌覆盖,从而将原问题转化为4个较小规模的棋盘覆盖问题。
递归地使用这种分割直至棋盘简化为棋盘1×1。
3、算法时间复杂性分析从算法的分割策略可知,此算法的时间复杂度如下递归方程所示:)1()1(40)1({)(>+-==k o k T k o k T解此递归方程可得:)4()(k o k T =。
由于覆盖2^k ×2^k 棋盘所需的L 型骨牌个数为3/14k )(-,所以这个算法是一个渐进意义的最优算法。
四、实验结果 1、当k=0时:2、当k>0时: 例如k=3时:例如k=5时:。
棋盘覆盖算法
棋盘覆盖算法
棋盘覆盖算法是一种经典的计算机算法,主要用于解决棋盘覆盖问题。
棋盘覆盖问题是指,将一个大小为2的幂次方的棋盘分成若干个大小为2的幂次方的小棋盘,然后选择其中一个小棋盘覆盖一个方块,直到所有方块都被覆盖。
具体规则是,每次覆盖一个小棋盘,然后将其他小棋盘划分成4个等分的小棋盘,其中一个小棋盘被覆盖,而其他小棋盘继续重复这个过程,直到所有方块都被覆盖。
棋盘覆盖算法可以采用分治算法的思想,将棋盘分成四个小区域,然后递归地解决每个小区域的棋盘覆盖问题。
每个小区域可以采用类似的方法继续划分,直到小棋盘的大小为1。
然后根据特定规则选择一个小棋盘进行覆盖,再递归地解决其他小区域的棋盘覆盖问题。
棋盘覆盖算法的时间复杂度为O(n^2),其中n为棋盘的大小。
虽然该算法的复杂度比较高,但是它可以解决一些实际问题,比如图像识别、计算机视觉等。
- 1 -。
动态规划问题常见解法
动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。
动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。
以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。
它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。
可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。
2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。
背包问题包括 0/1 背包问题和完全背包问题。
0/1 背包问题中每个物品要么被选中放入背包,要么不选。
完全背包问题中每个物品可以被选中多次放入背包。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。
3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。
最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。
通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。
4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。
给定两个字符串,找到它们之间最长的公共子序列。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。
5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。
给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。
以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。
【参考文档】棋盘覆盖实验报告-范文word版 (4页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==棋盘覆盖实验报告篇一:(棋盘覆盖) 实验报告实验报告篇二:算法设计与分析实验报告棋盘覆盖问题贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告篇三:算法实验报告--棋盘覆盖算法分析与设计实验报告棋盘覆盖201X/03/06实验名称:实验日期:学生姓名:学生学号:一、实验目的在一个2^k*2^k的方格组成的棋盘中,若恰有一个方格与其他方格不同,则称该方格为一个特殊方格。
用分治法将整个棋盘除特殊方格以外的方格覆盖。
二、实验环境Windows7 + Visual Studio 201X三、实验内容1. 设计思路当k>0时,将2k* 2k的棋盘分割为4个2(k-1)*2(k-1)子棋盘。
特殊方格必位于4个较小棋盘之一中,其余3个子棋盘中无特殊方格。
为了将这3个无特殊方格的子棋盘化为特殊棋盘,我们用一个L型骨牌覆盖这3个较小的棋盘的回合处,这3个子棋盘被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原问题化为4个小规模的棋盘覆盖问题。
递归地使用这种分割,直至棋盘化简为1*1棋盘。
2. 相关模块#include<iostream>#include<iomanip>usingnamespacestd;voidChessBoard(int,int,int,int,int);int **board;//棋盘int tile = 1;//L型骨牌编号void main(){int size = 0;int row, column;cout<<"Input the size n of the chessboard(n*n): "<<endl;cin>> size;cout<<"Input the position of the special check: "<<endl;cin>> row >> column;board = newint*[size];for(int i=0; i<size; ++i){}ChessBoard(0,0,row,column,size);。
棋盘覆盖实验报告心得(3篇)
第1篇一、实验背景棋盘覆盖实验是计算机科学中一个经典的算法问题,旨在研究如何用最少数量的棋子覆盖整个棋盘。
这个实验不仅考验了我们对算法和数据结构的理解,还锻炼了我们的逻辑思维和编程能力。
在本实验中,我选择了使用回溯算法来解决棋盘覆盖问题,以下是我在实验过程中的心得体会。
二、实验目的1. 理解棋盘覆盖问题的背景和意义;2. 掌握回溯算法的基本原理和应用;3. 提高编程能力和逻辑思维能力;4. 分析不同算法的优缺点,为实际应用提供参考。
三、实验过程1. 确定问题模型棋盘覆盖问题可以抽象为一个二维数组,其中每个元素代表棋盘上的一个格子。
我们需要使用棋子(如皇后)来覆盖整个棋盘,使得每个格子都被至少一个棋子覆盖。
在本实验中,我们选择使用N皇后问题作为棋盘覆盖问题的子问题。
2. 设计算法为了解决棋盘覆盖问题,我们可以采用回溯算法。
回溯算法的基本思想是从一个解空间中搜索解,当找到一个解时,将其输出;当发现当前解不满足条件时,回溯到上一个状态,尝试其他可能的解。
具体步骤如下:(1)初始化棋盘,将所有格子设为未覆盖状态;(2)从第一行开始,尝试将棋子放置在该行第一个格子;(3)判断放置棋子后是否满足约束条件,如冲突、越界等;(4)如果满足约束条件,将该格子设为已覆盖状态,继续放置下一行棋子;(5)如果当前行已放置完棋子,检查是否覆盖了整个棋盘;(6)如果覆盖了整个棋盘,输出解;否则,回溯到上一个状态,尝试其他可能的解。
3. 编写代码根据上述算法,我使用Python语言实现了棋盘覆盖问题的回溯算法。
在代码中,我定义了一个二维数组来表示棋盘,并实现了放置棋子、检查约束条件、回溯等功能。
4. 实验结果与分析通过实验,我发现以下结论:(1)随着棋盘大小的增加,回溯算法的搜索空间也随之增大,导致算法的运行时间显著增加;(2)在解决N皇后问题时,当棋盘较大时,回溯算法的效率较低;(3)通过优化算法,如剪枝,可以提高算法的效率。
棋盘覆盖 实验报告
棋盘覆盖实验报告标题:棋盘覆盖实验报告摘要:本实验旨在通过模拟棋盘覆盖问题,探讨如何用特定形状的多米诺骨牌完全覆盖一个给定大小的棋盘。
实验结果表明,通过合理的排列和放置,可以用特定形状的多米诺骨牌完全覆盖任意大小的棋盘。
引言:棋盘覆盖问题是一个经典的组合数学问题,它涉及如何用特定形状的多米诺骨牌完全覆盖一个给定大小的棋盘。
这个问题既具有理论意义,又有着实际应用,因此一直备受学者们的关注。
本实验将通过模拟棋盘覆盖问题,探讨如何用特定形状的多米诺骨牌完全覆盖一个给定大小的棋盘。
实验方法:1. 准备工作:准备一个标准的棋盘和特定形状的多米诺骨牌。
2. 实施步骤:将多米诺骨牌按照特定规则排列放置在棋盘上,直到完全覆盖整个棋盘。
3. 观察记录:记录每一步的排列和放置过程,以及最终的覆盖结果。
实验结果:经过一系列的排列和放置,最终成功用特定形状的多米诺骨牌完全覆盖了给定大小的棋盘。
实验结果表明,通过合理的排列和放置,可以用特定形状的多米诺骨牌完全覆盖任意大小的棋盘。
讨论:棋盘覆盖问题是一个复杂而有趣的问题,它涉及到排列组合、几何形状等多个领域的知识。
通过本实验,我们不仅加深了对棋盘覆盖问题的理解,还发现了一些规律和技巧,可以帮助我们更好地解决类似的问题。
未来,我们可以进一步探讨不同形状的多米诺骨牌对棋盘覆盖的影响,以及如何应用这些规律和技巧解决实际问题。
结论:通过本实验,我们成功模拟了棋盘覆盖问题,并得出了一些有益的结论。
我们相信,通过不断地探索和实践,我们可以更好地理解和应用棋盘覆盖问题的相关知识,为解决实际问题提供更多的思路和方法。
棋盘覆盖问题
问题分析(二)
(2)用一个L型骨牌覆盖这3个较小棋盘的结合处。(
如图(d))
(d) 构造相同子问题
这3个子棋盘上被L型骨牌覆盖的方格就成为该 棋盘上的残缺方格,原问题转化为4个较小规模的 棋盘覆盖问题。递归地使用这种分割,直至棋盘 简化为11棋盘。
详Hale Waihona Puke 过程图解如下棋盘中有一个特殊方格
第一次分割
棋盘覆盖问题
问题描述(一)
在一个 k 2k(k≥0)个方格组成的棋盘中, 2 恰有一个方格与其他方格不同,称该方格为特 殊方格,显然,特殊方格在棋盘中出现的位置 有4 k 中情形,因而有4 k 中不同的棋盘(如图 (a) )。
(a) k=2时的一种棋盘
问题描述(二)
棋盘覆盖问题要求用如图(b)所示的L型骨牌覆 盖给定棋盘上除特殊方格以外的所有方格,且任 何2个L型骨牌不得重叠覆盖。
// 覆盖右上角子棋盘 if (dr < tr + s && dc >= tc + s) // 特殊方格在右上角子棋盘中 ChessBoard(tr, tc+s, dr, dc, s); //递归处理子棋盘 else { // 用 t 号L型骨牌覆盖左下角,再递归处理子棋盘 board[tr + s - 1][tc + s] = t; ChessBoard(tr, tc+s, tr+s-1, tc+s, s); } // 覆盖左下角子棋盘 if (dr >= tr + s && dc < tc + s) // 特殊方格在左下角子棋盘中 ChessBoard(tr+s, tc, dr, dc, s); //递归处理子棋盘 else { // 用 t 号L型骨牌覆盖右上角,再递归处理子棋盘 board[tr + s][tc + s - 1] = t; ChessBoard(tr+s, tc, tr+s, tc+s-1, s); } // 覆盖右下角子棋盘 if (dr >= tr + s && dc >= tc + s) // 特殊方格在右下角子棋盘中 ChessBoard(tr+s, tc+s, dr, dc, s); //递归处理子棋盘 else { // 用 t 号L型骨牌覆盖左上角,再递归处理子棋盘 board[tr + s][tc + s] = t; ChessBoard(tr+s, tc+s, tr+s, tc+s, s); } }
动态规划应用动态规划解决问题的思路与技巧
动态规划应用动态规划解决问题的思路与技巧动态规划应用 - 动态规划解决问题的思路与技巧动态规划(Dynamic Programming)是一种常见的算法思想,用于解决一些具有重叠子问题和最优子结构性质的问题。
通过将大问题划分为小问题,并将小问题的解存储起来以避免重复计算,可以在一定程度上优化问题的求解过程。
本文将介绍动态规划的应用,并提供一些思路与技巧。
一、动态规划的基本思路动态规划问题通常可以由以下步骤解决:1. 定义状态:将问题划分成若干子问题,并确定每个子问题需要记录的状态。
2. 定义状态转移方程:通过分析子问题之间的关系,建立状态转移方程,以表达子问题的最优解与更小规模子问题的关系。
3. 初始化边界条件:确定最小规模子问题的解,并初始化状态转移方程中需要用到的边界条件。
4. 递推求解:按照状态转移方程的定义,从较小规模的子问题开始逐步推导出较大规模的问题的解。
5. 求解目标问题:根据最终推导出的状态,得到原始问题的最优解。
二、动态规划的技巧与优化1. 滚动数组:为了降低空间复杂度,可以使用滚动数组来存储状态。
滚动数组只记录当前状态与之前一部分状态相关的信息,避免了存储所有状态的需求。
2. 状态压缩:对于某些问题,可以将状态压缩成一个整数,从而大幅减小状态的数量。
例如,当问题中涉及到某些特定的组合或排列时,可以使用二进制位来表示状态。
3. 前缀和与差分数组:对于某些问题,可以通过计算前缀和或差分数组,将问题转化为求解累加或差对应数组中的某个区间的值的问题,从而简化计算过程。
4. 贪心思想:有些动态规划问题可以结合贪心思想,在每个阶段选择局部最优解,然后得到全局最优解。
5. 双重循环与多重循环:在实际解决问题时,可以使用双重循环或多重循环来遍历状态空间,求解问题的最优解。
三、动态规划的实际应用动态规划广泛应用于各个领域,包括但不限于以下几个方面:1. 最短路径问题:例如,求解两点之间的最短路径、最小生成树等。
棋盘覆盖问题
分治法棋盘覆盖声明:本文使用的代码和例子的来源:《计算机算法设计与分析》(王晓东编著,电子工业出版社)。
我对代码做了少许修改,使可以在tc的图形模式下看到题目的结果。
题目:在一个(2^k)*(2^k)个方格组成的棋盘上,有一个特殊方格与其他方格不同,称为特殊方格,称这样的棋盘为一个特殊棋盘。
现在要求对棋盘的其余部分用L型方块填满(注:L 型方块由3个单元格组成。
即围棋中比较忌讳的愚形三角,方向随意),切任何两个L型方块不能重叠覆盖。
L型方块的形态如下:■■■■■■■,■ ,■■ ,■■题目的解法使用分治法,即子问题和整体问题具有相同的形式。
我们对棋盘做一个分割,切割一次后的棋盘如图1所示,我们可以看到棋盘被切成4个一样大小的子棋盘,特殊方块必定位于四个子棋盘中的一个。
假设如图1所示,特殊方格位于右上角,我们把一个L型方块(灰色填充)放到图中位置。
这样对于每个子棋盘又各有一个“特殊方块”,我们对每个子棋盘继续这样分割,知道子棋盘的大小为1为止。
用到的L型方块需要(4^k-1)/3 个,算法的时间是O(4^k),是渐进最优解法。
本题目的C语言的完整代码如下(TC2.0下调试),运行时,先输入k的大小,(1<=k< =6),然后分别输入特殊方格所在的位置(x,y), 0<=x,y<=(2^k-1)。
程序将绘制出覆盖后的棋盘,运行效果截图如图2所示。
[此程序在TC下课成功运行。
VC下缺少头文件<graphics.h>,编译时会出现错误。
]#include <stdio.h>#include <graphics.h>/*#include <cpyscr.h>*/#define N 64#define BoardLeft 2#define BoardTop 2int Board[N][N]; /*棋盘*/int tile;/*全局性质的L图形编号*/int CellSize=10;/*网格大小*/int BorderColor=LIGHTGRAY;/*用指定颜色填充一个单元格!*/void PutCell(int x,int y,int color){setfillstyle(SOLID_FILL,color);rectangle(BoardLeft+x*CellSize,BoardTop+y*CellSize,BoardLeft+(x+1) *CellSize,BoardTop+(y+1)*CellSize);floodfill(BoardLeft+x*CellSize+CellSize/2,BoardTop+y*CellSize+Cel lSize/2,BorderColor);}/*绘制L方块,(cx,cy)是L方块的中心点CELL坐标,pos从1到4,表示位于特殊方块位于哪个角(即缺失的一角位置)*/void PutBlock(int cx,int cy,int pos){int x,y,t=CellSize;/*方块起始点像素坐标*/x=BoardLeft+cx*CellSize;y=BoardTop+cy*CellSize;moveto(x,y);/*移动到中心点*/switch(pos){case 1:/*左上角缺*/lineto(x,y-t);lineto(x+t,y-t);lineto(x+t,y+t);lineto(x-t,y+t);lineto(x-t,y);break;case 2:/*右上角缺*/lineto(x+t,y);lineto(x+t,y+t);lineto(x-t,y+t);lineto(x-t,y-t);lineto(x,y-t);break;case 3:/*左下角缺*/lineto(x-t,y);lineto(x-t,y-t);lineto(x+t,y-t);lineto(x+t,y+t);lineto(x,y+t);break;case 4:/*右下角缺*/lineto(x,y+t);lineto(x-t,y+t);lineto(x-t,y-t);lineto(x+t,y-t);lineto(x+t,y);break;}lineto(x,y);/*回到闭合点!*/}/*初始化图形模式*/void InitGraph(){int gdriver=DETECT,gmode;initgraph(&gdriver,&gmode,"");setcolor(BorderColor);}/*关闭图形模式*/void CloseGraph(){closegraph();}/*打印棋盘*/void PrintBoard(int size){int i,j;clrscr();for(j=0;j<size;j++){for(i=0;i<size;i++){printf("%2d ",Board[i][j]);}printf("\n");}printf("\n--------------------------------\n");printf("size=%d;\n");}/*left,top:方块的左上角坐标,x,y:特殊方块的坐标 size:当前的子棋盘大小*/void ChessBoard(int left,int top,int x,int y,int size){int i,t,s,pos;/*t是方块的编号,s是棋盘的一半尺寸!(size/2),pos表示方块位于哪一角 */if(size==1)return;t=tile++;/*当前L行方块的编号!递增*/s=size/2;/*------------处理左上角----------*/if(x<left+s && y<top+s){ChessBoard(left,top,x,y,s);/*设置位于左上角的标识*/ pos=1;}else{Board[left+s-1][top+s-1]=t; /*不在左上角*/ ChessBoard(left,top,left+s-1,top+s-1,s);}/*------------处理右上角----------*/if(x>=left+s && y<top+s){ChessBoard(left+s,top,x,y,s);pos=2;}else{Board[left+s][top+s-1]=t;/*不在右上角*/ChessBoard(left+s,top,left+s,top+s-1,s);}/*------------处理左下角----------*/if(x<left+s && y>=top+s){ChessBoard(left,top+s,x,y,s);pos=3;}else{Board[left+s-1][top+s]=t;ChessBoard(left,top+s,left+s-1,top+s-1,s);}/*------------处理右下角----------*/if(x>=left+s && y>=top+s){ChessBoard(left+s,top+s,x,y,s);pos=4;}else{Board[left+s][top+s]=t;ChessBoard(left+s,top+s,left+s,top+s,s);}/*画出当前的L方块*/PutBlock(left+s,top+s,pos);}void main(){int size,k,x,y,i,j;printf("please input k=? (k should not more than 6, boardsize=2^k ): \n");scanf("%d",&k);size=1<<k;printf("please input position of the special cell. x=? (not more than %d): \n",size-1);scanf("%d",&x);printf("please input position of the special cell. y=? (not more than %d): \n",size-1);scanf("%d",&y);if(k<0 || k>6 || x<0 || x>(size-1) || y<0 || y>(size-1)){printf("Input invalid!\n");return;}InitGraph();tile=1;Board[x][y]=0;/*绘制特殊方块!*/PutCell(x,y,RED);ChessBoard(0,0,x,y,size);/*CopyScreen("c:\\tc\\temp\\chess.bmp",0,0,400,400);*/getch();CloseGraph();}2.#include"stdio.h"#include<graphics.h>#include<dos.h>#include<math.h>int tile=1;int avg;int basex,basey;void chessboard(int tr,int tc,int dr,int dc,int size)/*加了一个int tc*/{int s,t;if(size==1)return;t=tile++;s=size/2;delay(150000);setfillstyle(7,1);sound(500);delay(1500);sound(400);delay(1500);nosound();bar(dr*avg+basex,dc*avg+basey,(dr+1)*avg+basex,(dc+1)*avg+basey);if((dr*avg+basex)<tr+s*avg&&(dc*avg+basey)<tc+s*avg)chessboard(tr,tc,dr,dc,s);else{setfillstyle(1,t);bar(tr+(s-1)*avg,tc+(s-1)*avg,tr+s*avg,tc+s*avg);chessboard(tr,tc,(tr-basex)/avg+s-1,(tc-basey)/avg+s-1,s);}if((dr*avg+basex)<tr+s*avg&&(dc*avg+basey)>=tc+s*avg)chessboard(tr,tc+s*avg,dr,dc,s);else{setfillstyle(1,t);bar(tr+(s-1)*avg,tc+s*avg,tr+s*avg,tc+(s+1)*avg);/*在这加了一个tr+ s*avg*/chessboard(tr,tc+s*avg,(tr-basex)/avg+s-1,(tc-basey)/avg+s,s); }if((dr*avg+basex)>=tr+s*avg&&(dc*avg+basey)<tc+s*avg)chessboard(tr+s*avg,tc,dr,dc,s);else{setfillstyle(1,t);bar(tr+s*avg,tc+(s-1)*avg,tr+(s-1)*avg,tc+s*avg);chessboard(tr+s*avg,tc,(tr-basex)/avg+s,(tc-basey)/avg+s-1,s); }if((dr*avg+basex)>=tr+s*avg&&(dc*avg+basey)>=tc+s*avg)chessboard(tr+s*avg,tc+s*avg,dr,dc,s);else{setfillstyle(1,t);bar(tr+s*avg,tc+s*avg,tr+(s+1)*avg,tc+(s+1)*avg);chessboard(tr+s*avg,tc+s*avg,(tr-basex)/avg+s,(tc-basey)/avg+s,s);}}main(){int size,k;int dr,dc,tr,tc;int endx,endy;int i;double x,y;int gdriver=DETECT;int gmode=VGA;initgraph(&gdriver,&gmode,"");basex=300,basey=100;endx=basex+320;endy=basey+320;cleardevice();setcolor(12);settextstyle(2,0,8);outtextxy(20,20,"zhoumingjiang\n");/*改成了outtextxy函数~~*/ outtextxy(60,60,"designer:zhoumingjiang 25/10/2002");setbkcolor(BLACK);setcolor(RED);printf("\n\n\n");printf(" please input k: ");scanf("%d",&k);x=2;y=k;size=pow(x,y);avg=320/size;rectangle(basex,basey,endx,endy);for(i=0;i<=size;i++){setlinestyle(1,1,6);line(basex,basey+i*avg,endx,basey+i*avg);line(basex+i*avg,basey,basex+i*avg,endy);}printf(" please input dr,dc: ");scanf("%d,%d",&dc,&dr);tr=basex;tc=basey;chessboard(tr,tc,dr,dc,size);}3.棋盘覆盖(C语言)#include <stdio.h>#include <conio.h>#include <math.h>int title=1;int board[64][64];void chessBoard(int tr,int tc,int dr,int dc,int size) {int s,t;if(size==1) return;t=title++;s=size/2;if(dr<tr+s && dc<tc+s)chessBoard(tr,tc,dr,dc,s);else{board[tr+s-1][tc+s-1]=t;chessBoard(tr,tc,tr+s-1,tc+s-1,s); }if(dr<tr+s && dc>=tc+s)chessBoard(tr,tc+s,dr,dc,s);else{board[tr+s-1][tc+s]=t;chessBoard(tr,tc+s,tr+s-1,tc+s,s); }if(dr>=tr+s && dc<tc+s)chessBoard(tr+s,tc,dr,dc,s);else{board[tr+s][tc+s-1]=t;chessBoard(tr+s,tc,tr+s,tc+s-1,s); }if(dr>=tr+s && dc>=tc+s)chessBoard(tr+s,tc+s,dr,dc,s);else{board[tr+s][tc+s]=t;chessBoard(tr+s,tc+s,tr+s,tc+s,s);}}void main(){ int dr=0,dc=0,s=1,i=0,j=0;printf("print in the size of chess:\n"); scanf("%d",&s);printf("print in specal point x,y:\n"); scanf("%d%d",&dr,&dc);if(dr<s && dc<s){chessBoard(0,0,dr,dc,s);for(i=0;i<s;i++){for(j=0;j<s;j++){printf("%4d",board[i][j]);}printf("\n");}}elseprintf("the wrong specal point!!\n"); getch();}。
棋盘算法总结报告范文(3篇)
第1篇一、引言随着计算机科学和人工智能技术的不断发展,棋盘算法在各个领域得到了广泛应用。
棋盘算法是指解决棋类游戏问题的算法,包括但不限于国际象棋、围棋、五子棋等。
本文将对棋盘算法的发展历程、主要类型及其在现实中的应用进行总结和分析。
二、棋盘算法的发展历程1. 早期阶段:20世纪50年代,随着计算机的出现,人们开始尝试用计算机程序模拟棋类游戏。
这一阶段的棋盘算法主要以穷举搜索为主,算法效率较低。
2. 中期阶段:20世纪60年代至70年代,随着算法理论的不断发展,人们提出了许多高效的棋盘算法,如Alpha-Beta剪枝、Minimax搜索等。
这些算法在提高棋类游戏程序水平方面取得了显著成果。
3. 现阶段:20世纪80年代至今,随着人工智能技术的飞速发展,棋盘算法逐渐融入深度学习、强化学习等先进技术,使得棋类游戏程序水平达到了前所未有的高度。
三、棋盘算法的主要类型1. 穷举搜索算法:穷举搜索算法通过对棋盘上的所有可能走法进行穷举,找出最优解。
该算法在棋类游戏中应用广泛,但计算量巨大,效率较低。
2. Alpha-Beta剪枝算法:Alpha-Beta剪枝算法是一种高效的穷举搜索算法,通过剪枝减少搜索空间,提高搜索效率。
该算法在棋类游戏中得到广泛应用。
3. Minimax搜索算法:Minimax搜索算法是一种基于启发式的搜索算法,通过评估函数对棋局进行评估,选择最优走法。
该算法在棋类游戏中具有较好的实用性。
4. 深度学习算法:深度学习算法在棋类游戏中取得了显著成果,如AlphaGo、Leela Zero等。
这些算法通过学习大量的棋局数据,实现对棋局的理解和预测。
5. 强化学习算法:强化学习算法在棋类游戏中也取得了显著成果,如DeepMind的AlphaZero。
该算法通过与环境交互,不断优化策略,提高棋类游戏水平。
四、棋盘算法在现实中的应用1. 国际象棋:国际象棋是棋盘算法的经典应用,许多优秀的国际象棋程序都采用了棋盘算法,如Stockfish、AlphaZero等。
《算法设计与分析》实验目的
《算法设计与分析》实验指导书曹严元计算机与信息科学学院2007年5月目录实验一递归算法与非递归算法 (2)实验二分治算法 ................................................... 错误!未定义书签。
实验三贪心算法 (3)实验四动态规划 (2)实验五回溯法 (3)实验六分枝—限界算法 (4)实验七课程设计 (4)实验一递归与分治算法实验目的1.了解并掌握递归的概念,掌握递归算法的基本思想;2.掌握分治法的基本思想方法;3.了解适用于用递归与分治求解的问题类型,并能设计相应递归与分治算法;4.掌握递归与分治算法复杂性分析方法,比较同一个问题的递归算法与循环迭代算法的效率。
实验二动态规划实验目的1.掌握动态规划的基本思想方法;2.了解适用于用动态规划方法求解的问题类型,并能设计相应动态规划算法;3.掌握动态规划算法复杂性分析方法。
实验三贪心算法实验目的1.掌握贪心法的基本思想方法;2.了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3.掌握贪心算法复杂性分析方法分析问题复杂性。
实验五回溯法实验目的1.掌握回溯法的基本思想方法;2.了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法;3.掌握回溯法算法复杂性分析方法,分析问题复杂性。
实验六 分枝—限界算法实验目的1. 掌握分枝—限界的基本思想方法;2. 了解适用于用分枝—限界方法求解的问题类型,并能设计相应动态规划算法;3. 掌握分枝—限界算法复杂性分析方法,分析问题复杂性。
实验七 课程设计实验目的1. 在已学的算法基本设计方法的基础上,理解算法设计的基本思想方法;2. 掌握对写出的算法的复杂性分析的方法,理解算法效率的重要性;3. 能运用所学的基本算法设计方法对问题设计相应算法,分析其效率,并建立对算法进行改进,提高效率的思想意识。
预习与实验要求1. 预习实验指导书及教材的有关内容,回顾所学过的算法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二动态规划算法棋盘覆盖
最长公共子序列问题
一、实验目的 :
1、熟悉最长公共子序列问题的算法;
2、初步掌握动态规划算法。
二、实验内容
若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
三、实验步骤
1、代码
// ZXL_1.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include "iostream.h"
#include <cstring>
//#include "make2DArray.h"
void make2DArray(int** &x , int rows , int cols )
{
//创建行指针
x = new int*[rows] ;
//为每一行分配空间
for( int i= 0 ; i<rows; i++ )
{
x[i] = new int[cols] ;
}
}
void LCS(int i,int j,char *x,int **b)
{
if(i == 0||j == 0)return;
if(b[i][j] == 1)
{
LCS(i-1,j-1,x,b);
cout<<x[i];
}
else if(b[i][j] == 2)LCS(i-1,j,x,b);
else LCS(i,j-1,x,b);
}
void LCSLength(int m,int n,char *x,char *y,char **c,int **b ) {
int i,j;
for(i = 1;i <= m;i++) c[i][0] = 0;
for(i = 1;i <= n;i++) c[0][i]=0;
for(i = 1;i <= m;i++)
for(j = 1;j <= n;j++)
{
if(x[i] == y[j])
{
c[i][j] = c[i-1][j-1] + 1;
b[i][j] = 1;
}
else if(c[i-1][j] >= c[i][-1])
{
c[i][j] = c[i-1][j] + 1;
b[i][j] = 2;
}
else
{
c[i][j] = c[i][j-1] + 1;
b[i][j] = 3;
}
LCS(i,j,x,b);
}
}
int main(int argc, char* argv[])
{
char x[]="1abcdefghijk",y[]="0abcdjki";
int **b,**c;
int m=strlen(x);
int n=strlen(y);
make2DArray(c,m+1,n+1);
make2DArray(b,m+1,n+1);
for(int i=1;i<=m;i++)
for(int j=i;j<=m;j++)
c[i][j]=0;
LCSLength(m,n,x,y,c,b);
LCS(m,n,x,b);
cout<<endl;
delete b;
delete c;
return 0;
}
2、结果
执行成功.
3、结果分析。