高考文科数学专题复习《函数的零点
2025高考数学必刷题 第25讲、函数的零点问题(学生版)
第25讲函数的零点问题知识梳理1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.2、函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.3、求函数的零点个数时,常用的方法有:一、直接根据零点存在定理判断;二、将()f x 整理变形成()()()f x g x h x =-的形式,通过()(),g x h x 两函数图象的交点确定函数的零点个数;三、结合导数,求函数的单调性,从而判断函数零点个数.4、利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图像;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究.必考题型全归纳题型一:零点问题之一个零点例1.(2024·江苏南京·南京市第十三中学校考模拟预测)已知函数()ln f x x =,()21212g x x x =-+.(1)求函数()()()3x g x f x ϕ=-的单调递减区间;(2)设()()()h x af x g x =-,a R ∈.①求证:函数()y h x =存在零点;②设0a <,若函数()y h x =的一个零点为m .问:是否存在a ,使得当()0,x m ∈时,函数()y h x =有且仅有一个零点,且总有()0h x ≥恒成立?如果存在,试确定a 的个数;如果不存在,请说明理由.例2.(2024·广东·高三校联考阶段练习)已知函数()e sin 1x f x a x =--,()()22cos sin 2e xx a g x a x x ++=-+-+,()f x 在()0,π上有且仅有一个零点0x .(1)求a 的取值范围;(2)证明:若12a <<,则()g x 在(),0π-上有且仅有一个零点1x ,且010x x +<.例3.(2024·全国·高三专题练习)已知函数()1ln e xx f x a x -=+.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0a ≥时,()f x 有且只有一个零点;(3)若()f x 在区间()()0,1,1,+∞各恰有一个零点,求a 的取值范围.变式1.(2024·广东茂名·高三统考阶段练习)已知0a >,函数()e xf x x a =-,()ln g x x x a =-.(1)证明:函数()f x ,()g x 都恰有一个零点;(2)设函数()f x 的零点为1x ,()g x 的零点为2x ,证明12x x a =.题型二:零点问题之二个零点例4.(2024·海南海口·统考模拟预测)已知函数2()e x f x x +=.(1)求()f x 的最小值;(2)设2()()(1)(0)F x f x a x a =++>.(ⅰ)证明:()F x 存在两个零点1x ,2x ;(ⅱ)证明:()F x 的两个零点1x ,2x 满足1220x x ++<.例5.(2024·甘肃天水·高三天水市第一中学校考阶段练习)已知函数2()ln (21)f x x ax a x =+++.(1)讨论函数()f x 的单调性;(2)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,两个零点互为倒数.例6.(2024·四川遂宁·高三射洪中学校考期中)已知函数2()ln (21)f x x ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)讨论函数()f x 的单调性;(3)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,且两个零点互为倒数.变式2.(2024·全国·高三专题练习)已知函数()ln x f x e x a =--.(1)若3a =.证明函数()f x 有且仅有两个零点;(2)若函数()f x 存在两个零点12,x x ,证明:121222x x x x e e e a >++-.变式3.(2024·湖南长沙·高三长沙一中校考阶段练习)已知函数()ln ()f x x ax a R =-∈在其定义域内有两个不同的零点.(1)求a 的取值范围;(2)记两个零点为12,x x ,且12x x <,已知0λ>,若不等式()21ln 1ln 10λ-+->x x 恒成立,求λ的取值范围.变式4.(2024·江苏·高三专题练习)已知函数()4212f x ax x =-,,()0x ∈+∞,()()()g x f x f x '=-.(1)若0a >,求证:(ⅰ)()f x 在()f x '的单调减区间上也单调递减;(ⅱ)()g x 在(0,)+∞上恰有两个零点;(2)若1a >,记()g x 的两个零点为12,x x ,求证:1244x x a <+<+.题型三:零点问题之三个零点例7.(2024·山东·山东省实验中学校联考模拟预测)已知函数()21ln ln 1ex ax f x x a -=---有三个零点.(1)求a 的取值范围;(2)设函数()f x 的三个零点由小到大依次是123,,x x x .证明:13e e x x a >.例8.(2024·广东深圳·校考二模)已知函数1()ln 1x f x a x x -=-+.(1)当1a =时,求()f x 的单调区间;(2)①当102a <<时,试证明函数()f x 恰有三个零点;②记①中的三个零点分别为1x ,2x ,3x ,且123x x x <<,试证明22131(1)(1)x x a x >--.例9.(2024·广西柳州·统考三模)已知()3()1ln f x x ax x =-+.(1)若函数()f x 有三个不同的零点,求实数a 的取值范围;(2)在(1)的前提下,设三个零点分别为123,,x x x 且123x x x <<,当132x x +>时,求实数a 的取值范围.变式5.(2024·贵州遵义·遵义市南白中学校考模拟预测)已知函数()32113f x x ax bx =+++(a ,b ∈R ).(1)若0b =,且()f x 在()0+∞,内有且只有一个零点,求a 的值;(2)若20a b +=,且()f x 有三个不同零点,问是否存在实数a 使得这三个零点成等差数列?若存在,求出a 的值,若不存在,请说明理由.变式6.(2024·浙江·校联考二模)设e 2a <,已知函数()()()22e 22x f x x a x x =---+有3个不同零点.(1)当0a =时,求函数()f x 的最小值:(2)求实数a 的取值范围;(3)设函数()f x 的三个零点分别为1x 、2x 、3x ,且130x x ⋅<,证明:存在唯一的实数a ,使得1x 、2x 、3x 成等差数列.变式7.(2024·山东临沂·高三统考期中)已知函数ln ()xf x x=和()e x ax g x =有相同的最大值.(1)求a ,并说明函数()()()h x f x g x =-在(1,e )上有且仅有一个零点;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.题型四:零点问题之max ,min 问题例10.(2024·湖北黄冈·黄冈中学校考三模)已知函数()()2sin cos ,lnπxf x x x x axg x x =++=.(1)当0a =时,求函数()f x 在[]π,π-上的极值;(2)用{}max ,m n 表示,m n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,讨论函数()h x 在()0,∞+上的零点个数.例11.(2024·四川南充·统考三模)已知函数21()sin cos 2f x x x x ax =++,()ln πxg x x =.(1)当0a =时,求函数()f x 在[,]-ππ上的极值;(2)用max{,}m n 表示m ,n 中的最大值,记函数()max{(),()}(0)h x f x g x x =>,讨论函数()h x 在(0,)+∞上的零点个数.例12.(2024·四川南充·统考三模)已知函数()2e 2x ax x f x x =+-,()ln g x x =其中e 为自然对数的底数.(1)当1a =时,求函数()f x 的极值;(2)用{}max ,m n 表示m ,n 中的最大值,记函数()()(){}max ,(0)h x f x g x x =>,当0a ≥时,讨论函数()h x 在()0,∞+上的零点个数.变式8.(2024·广东·高三专题练习)已知函数()ln f x x =-,31()4g x x ax =-+,R a ∈.(1)若函数()g x 存在极值点0x ,且()()10g x g x =,其中10x x ≠,求证:1020x x +=;(2)用min{,}m n 表示m ,n 中的最小值,记函数()min{()h x f x =,()}(0)g x x >,若函数()h x 有且仅有三个不同的零点,求实数a 的取值范围.变式9.(2024·全国·高三专题练习)已知函数2()e (R)x f x ax a =-∈,()1g x x =-.(1)若直线()y g x =与曲线()y f x =相切,求a 的值;(2)用{}min ,m n 表示m ,n 中的最小值,讨论函数()min{(),()}h x f x g x =的零点个数.变式10.(2024·山西朔州·高三怀仁市第一中学校校考期末)已知函数()()31,1ln 4f x x axg x x x =++=--.(1)若过点()1,0可作()f x 的两条切线,求a 的值.(2)用{}min ,m n 表示,m n 中的最小值,设函数()()(){}min ,(01)h x f x g x x =<<,讨论()h x 零点的个数.题型五:零点问题之同构法例13.已知函数1()()2(0)x axf x x ln ax a e -=+-->,若函数()f x 在区间(0,)+∞内存在零点,求实数a 的取值范围例14.已知2()12a f x xlnx x =++.(1)若函数()()cos sin 1g x f x x x x xlnx =+---在(0,]2π上有1个零点,求实数a 的取值范围.(2)若关于x 的方程2()12x a a xe f x x ax -=-+-有两个不同的实数解,求a 的取值范围.例15.已知函数()(1)1x f x ae ln x lna =-++-.(1)若1a =,求函数()f x 的极值;(2)若函数()f x 有且仅有两个零点,求a 的取值范围.题型六:零点问题之零点差问题例16.已知关于x 的函数()y f x =,()y g x =与()(h x kx b k =+,)b R ∈在区间D 上恒有()()()f x h x g x .(1)若2()2f x x x =+,2()2g x x x =-+,(,)D =-∞+∞,求()h x 的表达式;(2)若2()1f x x x =-+,()g x klnx =,()h x kx k =-,(0,)D =+∞,求k 的取值范围;(3)若42()2f x x x =-,2()48g x x =-,342()4()32(0||h x t t x t t t =--+<,[D m =,][n ⊂,,求证:n m-例17.已知函数32()(3)x f x x x ax b e -=+++.(1)如3a b ==-,求()f x 的单调区间;(2)若()f x 在(,)α-∞,(2,)β单调增加,在(,2)α,(,)β+∞单调减少,证明:6βα->.例18.已知函数221()2x f x ae x ax =--,a R ∈.(1)当1a =时,求函数2()()g x f x x =+的单调区间;(2)当4401a e <<-,时,函数()f x 有两个极值点1x ,212()x x x <,证明:212x x ->.题型七:零点问题之三角函数例19.(2024·山东·山东省实验中学校考一模)已知函数()()sin ln 1f x a x x =-+.(1)若对(]1,0x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln2n k k =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,试判断方程()1eln 10x m x +--+=实数根的个数,并说明理由.例20.(2024·全国·高三专题练习)设函数()πsin2x f x x =-.(1)证明:当[]0,1x ∈时,()0f x ≤;(2)记()()ln g x f x a x =-,若()g x 有且仅有2个零点,求a 的值.例21.(2024·广东深圳·红岭中学校考模拟预测)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121n k n k =-<<+∑,其中*N n ∈且2n ≥.变式11.(2024·山东济南·济南市历城第二中学校考二模)已知()sin n f x x =,()ln e x g x x m =+(n 为正整数,m R ∈).(1)当1n =时,设函数()()212h x x f x =--,()0,πx ∈,证明:()h x 有且仅有1个零点;(2)当2n =时,证明:()()()e 12x f x g x x m '+<+-.题型八:零点问题之取点技巧例22.已知函数()[2(1)]2(x x f x e e a ax e =-++为自然对数的底数,且1)a .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例23.已知函数2()(1)()x f x xe a x a R =++∈.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.例24.已知函数211()(()22x f x x e a x =-++.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.变式12.已知函数1()()(1)2x x f x e a e a x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围。
高考文科数学专题复习《函数的零点精选课件
“对对,放点醋,这样好吃,我去拿。” 她转身去厨房拿来醋,给我碗里倒。 “怎么样,淡不淡,再放点盐?” 我摇摇头。
“当花瓣离开花朵,暗香残留,香消在风起雨后,无人来嗅”忽然听到沙宝亮的这首《暗香》,似乎这香味把整间屋子浸染。我是如此迷恋香味,吸进的是花儿的味道,吐出来的是无尽的芬芳。轻轻一流转,无限风情,飘散,是香,是香,它永远不会在我的时光中走丢。 旧的东西其实极好。学生时代喜欢写信,只是今天书信似乎早已被人遗忘,那些旧的记忆,被尘埃轻轻覆盖,曾经的笔端洇湿了笔锋,告慰着那时的心绪。现在读来,仿佛嗅到时光深处的香气,一朵墨色小花晕染了眼角,眉梢,是飞扬的青春,无知年少的轻狂,这份带不走的青涩,美丽而忧伤。 小心翼翼珍藏着,和母亲在一起的美好时光。母亲身体一直不好,最后的几年光景几乎是在医院渡过,然而和母亲在一起的毎一刻都是温暖美好的。四年前,母亲还是离开了这个世界,离开了我。生命就是如此脆弱,逝去和別离,陈旧的情绪某年某月的那一刻如水泻闸。水在流,云在走,聚散终有时,不贪恋一生,有你的这一程就是幸运。那是地久天长的在我的血液中渗透,永远在我的心中,在我的生命里。 时光就是这么不经用,很快自己做了母亲,我才深深的知道,这样的爱,不带任何附加条件,不因万物毁灭而更改。只想守护血浓于水的旧时光,即便峥嵘岁月将容颜划伤,相信一切都是最好的安排。那时的时光无限温柔,当清水载着陈旧的往事,站在时光这头,看时光那头,一切变得分明。执笔书写,旧时光的春去秋来,欢喜也好,忧伤也好,时间窖藏,流光曼卷里所有的宠爱,疼惜,活色生香的脑海存在。 回忆的老墙,偶尔依靠,黄花总开不败,所有囤积下来的风声雨声,天晴天阴,都是慈悲。时光不管走多远,不管有多老旧,含着眼泪,伴着迷茫,读了一页又一页,一直都在,轻轻一碰,就让内心温软。旧的时光被揉进了岁月的折皱里,藏在心灵的沟壑,直至韶华已远,才知道走过的路不能回头,错过的已不可挽留,与岁月反复交手,沧桑中变得更加坚强。 是的,折枝的命运阻挡不了。人世一生,不堪论,年华将晚易失去,听几首歌,描几次眉,便老去。无论天空怎样阴霾,总会有几缕阳光,总会有几丝暗香,温暖着身心,滋养着心灵。就让旧年花落深掩岁月,把心事写就在素笺,红尘一梦云烟过,把眉间清愁交付给流年散去的烟山寒色,当冰雪消融,自然春暖花开,拈一朵花浅笑嫣然。 听这位老友,絮絮叨叨地讲述老旧的故事,试图找回曾经的踪迹,却渐渐明白了流年,懂得了时光。过去的沟沟坎坎,风风雨雨,也装饰了我的梦,也算是一段好词,一幅美卷,我愿意去追忆一些旧的时光,有清风,有流云,有朝露晚霞,我确定明亮的东西始终在。静静感念,不着一言,百转千回后心灵又被唤醒,于一寸笑意中悄然绽放。 唯用一枝瘦笔,剪一段旧时光,剪掉喧嚣尘世的纷纷扰扰,剪掉终日的忙忙碌碌。情也好,事也罢,细品红尘,文字相随,把寻常的日子,过得如春光般明媚。光阴珍贵,指尖徘徊的时光唯有珍惜,朝圣的路上做一个谦卑的信徒,听雨落,嗅花香,心上植花田,蝴蝶自会来,心深处自有广阔的天地。旧时光难忘,好的坏的一一纳藏,不辜负每一寸光阴,自会花香满径,盈暗香满袖。
高三数学一轮复习专题-函数的零点课件
1 ln x ln2 x
由g(x) 0
当x 0 时,g(x) 0 当x 1 时,g(x) 当x 1 时,g(x) 当x 时,g(x) 作出直线y a 与曲线y g(x)
当 e a 0 时,函数没有零点
得 xe
当a 0 或a e 时,函数只有 1 个零点 当a e 时,函数有 2 个零点
解:题意等价为不等式
h(x) 在(0, ) 上递增
a x ln x x 2 x 0 恒成立 x 1
令g(x) x ln x x 2 x 1
又 h(0.5) 0 h(1) 0 x0 (0.5,1) 使得h(x0) 0
即 x0 ln x0 0
y g(x)
则g(x)
x
2 ln (x 1)2
B.(0, 1) e
C.(e, )
D.(1 , ) e
解:由f (x) 0 变形得2ax ln 2 ln x
kx 1 ln k ln x
如图由直线y 2ax ln 2 与 曲线y ln x有两个交点
得 0 2a 2 e
由ekk22a
解之得2a 2 e
得 2x ln 2 ln x e
ya
x 1
1 1 ln x
h(x) h(1) 0 即g(x) 0
则g(x)
x (x 1)2
(x 0, x 1)
lim g(x) 1
x1
g(x) 在(0,1) (1, ) 递减
令h(x) 1 1 ln x (x 0) x
作出直线y a 和曲线y g(x)
如图知 选BC
例5.已知函数f (x) ln x ax2 (2 a)x 1 满足x 0 ,f (x) 0 恒成立,
解:方程 f (x) 0 变为
2022年新高考数学总复习:函数的零点
2022年新高考数学总复习:函数的零点1.函数零点的定义对于函数y=f(x)(x∈D),把使__f(x)=0__成立的实数x叫做函数y=f(x)(x∈D)的零点.注:函数的零点不是点.是函数f(x)与x轴交点的横坐标,而不是y=f(x)与x轴的交点.2.几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与__x轴__有交点⇔函数y=f(x)有__零点__.3.函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有__f(a)f(b)<0__,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得__f(c)=0__,这个c也就是方程f(x)=0的根.知识点二二分法1.对于在区间[a,b]上连续不断且__f(a)f(b)<0__的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__一分为二__,使区间的两个端点逐步逼近__零点__,进而得到零点近似值的方法叫做二分法.2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε,即:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)(3)(4).考点一函数的零点考向1确定函数零点所在区间——自主练透例1(1)若函数f(x)的图象是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是(D)A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(1,2)内有零点C.函数f(x)在区间(0,2)内有零点D.函数f(x)在区间(0,4)内有零点(2)(2021·开封模拟)函数f(x)=x+ln x-3的零点所在的区间为(C)A .(0,1)B .(1,2)C .(2,3)D .(3,4)(3)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间(B)A .(-∞,a )和(a ,b )内B .(a ,b )和(b ,c )内C .(b ,c )和(c ,a )内D .(c ,+∞)和(-∞,a )内[解析](1)因为f (1)·f (2)·f (4)<0,所以f (1)、f (2)、f (4)中至少有一个小于0.若f (1)<0,则在(0,1)内有零点,在(0,4)内必有零点;若f (2)<0,则在(0,2)内有零点,在(0,4)内必有零点;若f (4)<0,则在(0,4)内有零点.故选D .(2)解法一:利用零点存在性定理因为函数f (x )是增函数,且f (2)=ln 2-1<0,f (3)=ln 3>0,所以由零点存在性定理得函数f (x )的零点位于区间(2,3)内,故选C .解法二:数形结合函数f (x )=x +ln x -3的零点所在区间转化为g (x )=ln x ,h (x )=-x +3的图象的交点横坐标所在范围.如图所示,可知f (x )的零点在(2,3)内.(3)易知f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ).又a <b <c ,则f (a )>0,f (b )<0,f (c )>0,又该函数是二次函数,且图象开口向上,可知两个零点分别位于区间(a ,b )和(b ,c )内,故选B .名师点拨确定函数零点所在区间的方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.考向2函数零点个数的确定——师生共研例2(1)函数f (x )2+x -2,x ≤0,1+ln x ,x >0的零点个数为(B)A .3B .2C .7D .0(2)(理)已知f (x )x |,x >0,|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数为__5__.(文)(2021·云南昆明一中摸底)若函数f (x )=|x |,则函数y =f (x )-log 12|x |的零点个数是(D )A .5个B .4个C .3个D .2个[解析](1)解法一:(直接法)由f (x )=0得≤0,2+x -2=0>0,1+ln x =0,解得x =-2或x =e.因此函数f (x )共有2个零点.解法二:(图象法)函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.(2)(理)令2f 2(x )-3f (x )+1=0,解得f (x )=1或f (x )=12,作出f (x )的简图:由图象可得当f (x )=1或f (x )=12时,分别有3个和2个交点,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为5.(文)在同一坐标系中作出f (x )=|x |、g (x )=log 12|x |的图象,由图可知选D .名师点拨函数零点个数的判定有下列几种方法(1)直接求零点:令f(x)=0,如果能求出解,那么有几个解就有几个零点.(2)零点存在性定理:利用该定理不仅要求函数在[a,b]上是连续的曲线,且f(a)·f(b)<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:利用函数y=f(x)的图象与x轴的交点的个数,从而判定零点的个数,或转化为两个函数图象交点个数问题.画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.〔变式训练1〕(1)已知函数f(x)x2-2x,x≤0,1+1x,x>0,则函数y=f(x)+3x的零点个数是(C)A.0B.1C.2D.3(2)设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x-3,则f(x)的零点个数为(C)A.1B.2C.3D.4(3)(理)(2020·河南名校联考)函数f(x)|log2x|,x>0,2x,x≤0,则函数g(x)=3[f(x)]2-8f(x)+4的零点个数是(A)A.5B.4 C.3D.6(文)(2021·郑州质检)已知函数f(x)12-cos x,则f(x)在[0,2π]上的零点个数为__3__.[解析](1)由已知得y=f(x)+3x x2+x,x≤0,1+1x+3x,x>0.令x2+x=0,解得x=0或x=-1.令1+1x+3x=0(x>0)可得3x2+x+1=0.因为Δ=1-12<0,所以方程3x2+x+1=0无实根.所以y=f(x)+3x的零点个数是2.(2)f(x)=e x+x-3在(0,+∞)上为增函数,f 12=e12-52<0,f(1)=e-2>0,∴f(x)在(0,+∞)上只有一个零点,由奇函数性质得f(x)在(-∞,0)上也有一个零点,又f(0)=0,所以f(x)有三个零点,故选C.(3)(理)本题考查函数的零点与方程根的个数的关系.函数g (x )=3[f (x )]2-8f (x )+4=[3f (x )-2][f (x )-2]的零点,即方程f (x )=23和f (x )=2的根.函数f (x )2x |,x >0,x ,x ≤0的图象如图所示,由图可得方程f (x )=23和f (x )=2共有5个根,即函数g (x )=3[f (x )]2-8f (x )+4有5个零点.(文)如图,作出g (x )与h (x )=cos x 的图象,可知其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3.考向3函数零点的应用——多维探究角度1与零点有关的比较大小例3已知函数f (x )=2x +x ,g (x )=x -log 12x ,h (x )=log 2x -x 的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系为(D )A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 1[解析]由f (x )=2x +x =0,g (x )=x -log 12x =0,h (x )=log 2x -x =0,得2x =-x ,x =log 12x ,log 2x =x ,在平面直角坐标系中分别作出y =2x 与y =-x 的图象;y =x 与y =log 12x的图象;y =log 2x 与y =x 的图象,由图可知:-1<x 1<0,0<x 2<1,x 3>1.所以x 3>x 2>x 1.角度2已知函数的零点或方程的根求参数例4(2018·全国Ⅰ)已知函数f (x )x ,x ≤0,x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是(C)A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)[解析]令h (x )=-x -a ,则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )图象的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点.由图知-a ≤1,∴a ≥-1.名师点拨1.比较零点大小常用方法:(1)确定零点取值范围,进而比较大小;(2)数形结合法.2.已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.〔变式训练2〕(1)(角度1)(2021·安徽蚌埠月考)已知函数f (x )=3x +x ,g (x )=log 3x +x ,h (x )=x 3+x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为(B )A .a <b <c B .a <c <bC .a >b >cD .c >a >b(2)(角度2)(2021·杭州学军中学月考)已知函数f (x )x -a ,x ≤0,x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是(D)A .(-∞,-1)B .(-∞,-1]C .[-1,0)D .(0,1][分析](1)解法一:依据零点存在定理,确定a ,b ,c 所在区间,进而比较大小;解法二:分别作出y =3x 、y =log 3x 、y =x 3与y =-x 的图象,比较其交点横坐标的大小即可.[解析](1)解法一:∵f (-1)=3-1-1=-23,f (0)=1,∴a -23,log 313+13=-23,g (1)=1,∴b c =0,∴a <c <b ,故选B .解法二:数形结合法,在同一坐标系中分别作出y =3x 、y =log 3x 、y =-x 的图象,结合图象及c =0可知a <c <b ,故选B .解法三:由概念知b >0,a <0,c <0,∴b 最大,选B .(2)∵当x >0时,f (x )=2x -1,由f (x )=0得x =12,∴要使f (x )在R 上有两个零点,则必须2x -a =0在(-∞,0]上有解.又当x ∈(-∞,0]时,2x ∈(0,1].故所求a 的取值范围是(0,1].考点二二分法及其应用——自主练透例5(1)用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈__(0,0.5)__,第二次应计算__f (0.25)__.(2)在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可判定该根所在的区间为(3)在用二分法求方程x 2=2的正实数根的近似解(精确度0.001)时,若我们选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算的次数是__7__.[解析](1)因为f (0)<0,f (0.5)>0,由二分法原理得一个零点x 0∈(0,0.5);第二次应计算f (0.25).(2)区间(1,2)的中点x 0=32,令f (x )=x 3-2x -1,=278-4<0,f (2)=8-4-1>0,则根(3)设至少需要计算n次,由题意知1.5-1.4<0.001,即2n>100.由26=64,27=128,知n2n=7.名师点拨1.用二分法求函数零点的方法:定区间,找中点,中值计算两边看,同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.2.利用二分法求近似解需注意的问题(1)在第一步中:①区间长度尽量小;②f(a),f(b)的值比较容易计算且f(a)·f(b)<0;(2)根据函数的零点与相应方程根的关系,求函数的零点与相应方程的根是等价的.(3)虽然二分法未单独考过,但有可能像算法中的“更相减损术”一样,嵌入到程序框图中去考查.。
专题四 函数的零点高考数学主干知识整合
专题四│ 要点热点探究
【点评】 含有参数的方程根的个数问题,需要重点研究三个 方面的问题:一是函数的单调性;二是函数极值的值的正负;三 是区间端点的值正负.
专题四 │ 规律技巧提炼
规律技巧提炼
1.函数的零点是方程根的几何特征,方程的根是函数零 点的代数值.
2.方程的根的特征如个数或所在区间不易判断时,可以 转化为用图象进行研究.
程 f2(x)+af(x)+b=0 有 5 个不同实数解,则实数 a 的取值范围是 ________.
专题四│ 要点热点探究
(1)a<c<b (2)(-∞,-2)∪(-2,-1) 【解析】 (1)令 f(x)=0,g(x)=0,h(x)=0 得:2x=-x,log2x =-x,x3=-x, 分别作出 y=2x,y=log2x,y=x3,y=-x 的图象如下:
► 探究点二 用图象判定方程的根
由于函数的零点⇔方程的根,所以当方程的根不能够直接求 出时,可以通过图象来判断对应方程的根的个数.
例 2 (1)已知函数 f(x)=2x+x,g(x)=x+log2x,h(x)=x3+x 的零 点依次为 a,b,c,则 a,b,c 的大小顺序为________.
(2)设定义在 R 上的函数 f(x)=|x-1 3|,x≠3, 若关于 x 的方 1,x=3,
所以ffaa+-11<>00,,
即13a+2a-12>0, 13a-2a+12<0,
专题四 │ 要点热点探究
【点评】 用零点存在定理判断零点是否存在,如果需要 进一步判断图象连续不断的函数的零点是否惟一,可以判断 函数的单调性.一般地,图象连续不断的函数 f(x)在区间(a, b)单调,且 f(a)·f(b)<0,则函数 f(x)在区间(a,b)上有惟一零 点.
高中数学-函数的零点问题及例题分析
高中数学-函数的零点问题及例题分析1. 引言函数是数学中一个非常重要的概念,它在数学和实际问题中发挥着重要的作用。
函数的零点问题是函数中一个常见且重要的问题,它与方程的解有着紧密的联系。
本文将介绍函数的零点问题,并通过一些例题分析来加深理解。
2. 函数的定义与性质回顾函数是一个将一个集合的元素映射到另一个集合的元素的规则。
函数通常用符号表示,如$f(x)$,其中$x$是自变量,$f(x)$是对应的函数值。
函数的零点指的是函数取零值的点,即满足$f(x)=0$的$x$值。
函数的零点问题与方程的解问题紧密相关。
对于一元函数,函数的零点就是方程$f(x)=0$的解。
因此,解方程可以转化为求函数的零点。
函数的零点可以通过图像、图表或数值计算等方法来确定。
下面将通过几个例题来进一步分析。
3. 例题分析3.1 例题一已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点。
解析:要求函数$f(x)$的零点,即求解方程$2x^2-3x+1=0$。
我们可以使用配方法、求根公式或因式分解等方法来解这个二次方程,最终可以得到$x=1$和$x=\frac{1}{2}$两个解。
3.2 例题二已知函数$g(x)=\sqrt{x+3}-2$,求函数$g(x)$的零点。
解析:要求函数$g(x)$的零点,即求解方程$\sqrt{x+3}-2=0$。
为了消除平方根,我们可以将方程两边平方,得到$x+3=4$,然后解得$x=1$。
因此,函数$g(x)$的零点为$x=1$。
3.3 例题三已知函数$h(x)=\frac{1}{x-2}$,求函数$h(x)$的零点。
解析:函数$h(x)$在$x=2$处不存在定义,因此不存在零点。
4. 总结本文介绍了函数的零点问题及其与方程的解之间的联系。
函数的零点是函数取零值的点,可以通过解相应的方程来求得。
通过例题分析,我们进一步了解了求函数零点的具体方法。
在实际问题中,函数的零点问题有时对于确定某个变量的取值非常重要,因此对于函数的零点问题的理解和掌握是非常有益的。
函数零点 题型归纳讲义
专题四《函数》讲义5.9函数的零点知识梳理.函数的零点1.函数的零点(1)函数零点的定义:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)三个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.函数零点的判定如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.我们把这一结论称为函数零点存在性定理.题型一.零点所在的区间1.函数f(x)=3x−3−2的零点所在区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【解答】解:由于函数f(x)=3x−3−2,∴f(1)=3﹣3﹣2=﹣2<0,f(2)=9−32−2>0,∵f(1)•f(2)<0,函数是连续增函数,∴函数f(x)=3x−3−2的零点所在的区间是(1,2),故选:C.2.函数f(x)=log2x+x+2的零点所在的一个区间是()A.(0,18)B.(18,14)C.(14,13)D.(13,12)【解答】解:函数f(x)在(0,+∞)单调递增,且其图象在定义域上是一条不间断的曲线,又o18)=−3+18+2=−78<0,o14)=−2+14+2=14>0,由函数零点存在性定理可知,函数f(x)在(18,14)上有零点.故选:B.3.设函数y=x3与y=(12)x﹣2的图象交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(3,4)C.(1,2)D.(2,3)【解答】解:函数y=x3在R上单调递增,y=(12)K2在R上是减函数.∵x≤1时,函数y=x3的图象在y=(12)K2的下面;x≥2时,函数y=x3在y=(12)K2的上面.∴x0所在的区间是(1,2).故选:C.题型二.零点的个数1.函数f(x)=4x|log0.5x|﹣1的零点个数为2.【解答】解:函数的零点满足|l0.5U=(14),则零点的个数即函数y=|log0.5x|与=(14)交点的个数,绘制函数图象如图所示,观察可得,交点个数为2,故函数零点的个数为2.故答案为:2.2.函数f(x)=2−2,≤12−3+2,>1的图象与函数g(x)=ln(x+1)的图象的交点的个数是2.【解答】解:作出函数f(x)和g(x)的图象如图:由两个函数的图象可知两个函数有2个交点,故答案为:2.3.若偶函数f(x)满足f(x﹣1)=f(x+1),在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=(110)x在[0,4]上根的个数是4.【解答】解:因为偶函数f(x)满足f(x﹣1)=f(x+1),所以函数f(x)的图象关于y 轴对称,同时以2为周期.根据x∈[0,1]时,f(x)=x2得该函数在[0,4]上的图象为:再在同一坐标系中做出函数=(110)的图象,如图,当x∈[0,4]时,两函数图象有四个交点.所以方程f(x)=(110)x在[0,4]上有4个根.故答案为4.4.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),当x∈[﹣1,1]时,f(x)=x2,函数g(x)=l(−1)>12≤1,若函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上恰有8个零点,则a的取值范围为()A.(2,4)B.(2,5)C.(1,5)D.(1,4)【解答】解:函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上恰有8个零点即函数f(x)与函数g(x)在区间[﹣5,5]上有8个交点,由f(x+1)=﹣f(x)=f(x﹣1)知,f(x)是R上周期为2的函数,作函数f(x)与函数g(x)在区间[﹣5,5]上的图象如下,由图象知,当x∈[﹣5,1]时,图象有5个交点,故在[1,5]上有3个交点即可;故l(3−1)<1l(5−1)>1;解得,2<a<4;故选:A.题型三.已知零点个数求参1.若函数f(x)=e x﹣x2+ax﹣1在区间[1,2]内有且仅有一个零点,则实数a的取值范围为()A.[5−22,+∞)B.(﹣∞,2﹣e] C.(5−22,2−p D.[5−22,2−p【解答】解:依题意,−=−−1在x∈[1,2]上有且仅有一个解,设op=−−1,则n(p=⋅K2−1+12=(K1)(−K1)2,由e x≥x+1(当且仅当x=0时取等号)可知,当x∈[1,2]时,函数g(x)单调递增,∴当x∈[1,2]时,op m=o1)=−2,op B=o2)=22−2−12=2−52,∴−∈[−2,2−52],∴∈[5−22,2−p.故选:D.2.若函数f(x)=log a x﹣x+a(a>0且a≠1)有两个零点,则实数a的取值范围是()A.(0,1)B.(1,+∞)C.(1,e)D.(e,+∞)【解答】解:令f(x)=0,有log a x=x﹣a,①当a>1时,函数y=log a x单增,函数y=x﹣a相当于函数y=x向下至少移动了1个单位,故函数y=log a x与y=x﹣a的图象有两个交点;②当0<a<1时,函数y=log a x与y=x﹣a的图象显然仅有一个交点,综上,a>1.故选:B.3.已知函数f(x)=3,∈(−1,0]∈(0,1],且函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是(−94,﹣2]∪(0,32].【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)(图中红色曲线),和y=h(x)=m(x+1)的图象(图中绿色曲线),为一条过点(﹣1,0)的直线,如图:由图象可知f(1)=3,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,3)时,m=32,此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤32①.当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点.当h(x)与f(x)相切时,两个函数只有一个交点,此时1r3x+3=m(x+1),即m(x+1)2+3(x+1)﹣1=0,当m=0时,只有1解;当m≠0,由△=9+4m=0得m=−94,此时直线和f(x)相切.∴要使函数有两个零点,则−94<m≤﹣2②.综上可得,函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围为(−94,﹣2]∪(0,32],故答案为:(−94,﹣2]∪(0,32].4.已知函数f(x)=e2x﹣a(x+2).当a=2时,f(x)的增区间为(0,+∞);若f (x)有两个零点,则实数a的取值范围为(2e﹣3,+∞).【解答】解:当a=2时,f(x)=e2x﹣2(x+2),f′(x)=2e2x﹣2,令f′(x)>0,解得x>0,则f(x)的增区间为(0,+∞).f′(x)=2e2x﹣a,x∈R.①当a≤0时,f′(x)>0,f(x)单调递增,至多有一个零点,不合题意;②当a>0时,令f′(x)=0⇒x=12ln2,可得f(x)在(﹣∞,12ln2)单调递减,在(12ln2,+∞)单调递增,故f(x)的最小值为f(12ln2)=2−a(12ln2+2)=−2ln2−32.∵f(x)有两个零点,当x→±∞时,f(x)→+∞,∴f(2ln2)<0⇒2ln2+32>0,解得a>2e﹣3,所以实数a的取值范围为(2e﹣3,+∞)故答案为:(0,+∞);(2e﹣3,+∞).5.已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+12|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,12).【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+12|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知∈(0,12).故答案为:(0,12).6.已知函数f(x)是定义域为R的偶函数,且满足f(2﹣x)=f(x),当0≤x≤1时,f(x)=2x2,g(x)=log a|x﹣1|(2<a<2),则函数h(x)=f(x)﹣g(x)所有零点的和为()A.3B.4C.5D.6【解答】解:函数f(x)是定义域为R的偶函数,且满足f(2﹣x)=f(x),可得对称轴x=1,所以可得周期T=2,又g(x)=log a|x﹣1|(2<a<2),可得g(x)也是关于x=1对称,令h(x)=f(x)﹣g(x)=0,可得g(x)=f(x),在同一坐标系中在作y=f(x)与y=g(x)的图象如图所示:因为2<a<2,g(x)=log a|x﹣1|,所以g(2)=0,g(5)=log a4∈(2,4),与f(x)无交点,g(3)=log a2∈(1,2)与f(x)有两个交点,所以x>1时,g(x)与f(x)有3个交点,所以x∈R时,g(x)与f(x)有3对关于x=1对称的点,所以所以交点之和为2+2+2=6,即函数h(x)=f(x)﹣g(x)所有零点的和为6,故选:D.7.已知函数g(x)=a﹣x2(1≤x≤e(e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[1,1+2]B.[12+2,e2﹣2]C.[e2﹣2,+∞)D.[1,e2﹣2]【解答】解:因为h(x)=2lnx的图象上存在关于x轴对称的函数为:f(x)=﹣2lnx,所以可得g(x)=f(x)有零点,即a=x2﹣2lnx(1≤x≤e)有解,令t(x)=x2﹣2lnx(1≤x≤e),则t'(x)=2x−2=2⋅(K1)(r1),当x∈(1,1)时,t'(x)<0,则t(x)单调递减,x∈(1,e)时,t(x)>0,t(x)单调递增,而t(1)=12−2ln1=12+2,t(1)=12﹣2ln1=1,t(e)=e2﹣2lne=e2﹣2>o1),所以t(x)∈[1,e2﹣2].所以a的取值范围为[1,e2﹣2].故选:D.8.已知函数f(x)=3e|x﹣1|﹣a(2x﹣1+21﹣x)﹣a2有唯一零点,则负实数a=()A.−13B.−12C.﹣3D.﹣2【解答】解:函数f(x)=3e|x﹣1|﹣a(2x﹣1+21﹣x)﹣a2有唯一零点,设x﹣1=t,则函数f(t)=3e|t|﹣a(2t+2﹣t)﹣a2有唯一零点,则3e|t|﹣a(2t+2﹣t)=a2,设g(t)=3e|t|﹣a(2t+2﹣t),∵g(﹣t)=3e|t|﹣a(2t+2﹣t)=g(t),∴g(t)为偶函数,∵函数f(t)有唯一零点,∴y=g(t)与y=a2有唯一的交点,∴此交点的横坐标为0,∴3﹣2a=a2,解得a=﹣3或a=1(舍去),故选:C.题型四.复合函数的零点1.已知f(x)=x2e x,若函数g(x)=f2(x)﹣kf(x)+1恰有四个零点,则实数k的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2,42+24)C.(82,2)D.(42+24,+∞)【解答】解:f′(x)=2xe x+x2e x=x(x+2)e x,令f′(x)=0,解得x=0或x=﹣2,∴当x<﹣2或x>0时,f′(x)>0,当﹣2<x<0时,f′(x)<0,∴f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,在(0,+∞)上单调递增,∴当x=﹣2时,函数f(x)取得极大值f(﹣2)=42,当x=0时,f(x)取得极小值f(0)=0.作出f(x)的大致函数图象如图所示:令f(x)=t,则当t=0或t>42时,关于x的方程f(x)=t只有1解;当t=42时,关于x的方程f(x)=t有2解;当0<t<42时,关于x的方程f(x)=t有3解.∵g(x)=f2(x)﹣kf(x)+1恰有四个零点,∴关于t的方程t2﹣kt+1=0在(0,42)上有1解,在(42,+∞)∪{0}上有1解,显然t=0不是方程t2﹣kt+1=0的解,∴关于t的方程t2﹣kt+1=0在(0,42)和(42,+∞)上各有1解,∴164−42+1<0,解得k>42+24.故选:D.2.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3B.4C.5D.以上都有可能【解答】解:由题意可得,f′(x)=3x2+2ax+b=0有两个不同的实数根x1,x2,不妨设x1≠x2,所以3(f(x))2+2af(x)+b=0的不同实根f(x)=x1,f(x)=x2,若x1<x2,易得函数f(x)在(﹣∞,x1)上单调递增,在x1,x2)上单调递减,在(x2,+∞)上单调递增,此时f(x)=x2有2个根,f(x)=x1可能的根3或2或1,此时关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数5或4或3个,当x1>x2,同理可得关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数3个,故选:D.3.已知函数f(x)=(12)−4,≤−1B(+1),>−1,若f(f(x))<0,则x的取值范围为()A.(﹣2,0)B.(−∞,12−1) C.(−2,12−1)D.(−2,−1)∪(12−1,0)【解答】解:令f(x)=t,则f(t)<0,t≤﹣1时,(12)−4<0,所以2﹣t<4,解得﹣2<t≤﹣1;t>﹣1时,ln(t+1)<0,解得﹣1<t<0;综上知,t的取值范围是﹣2<t<0,即﹣2<f(x)<0.由f(x)=﹣2,x≤﹣1时,(12)−4=﹣2,解得x=﹣1;x>﹣1时,ln(x+1)=﹣2,解得x=12−1;综上知,x=﹣1或=12−1,画出函数f(x)的图象,如图所示:根据分段函数f(x)的图象得,f(f(x))<0的解集为(−2,−1)∪(12−1,0).故选:D.4.已知函数f(x)=x3﹣3x,则函数h(x)=f[f(x)]﹣c,c∈[﹣2,2]的零点个数()A.5或6个B.3或9个C.9或10个D.5或9个【解答】解:设t=f(x),则由y=f[f(x)]﹣c=0,得f[f(x)]=c,即f(t)=c,t=f(x),函数f(x)的导数f′(x)=3﹣3x2,由f′(x)>0得﹣1<x<1,此时函数单调递增,由f′(x)<0得x<﹣1或x>1,此时函数单调递减,即函数在x=1,取得极大值f(1)=3﹣1=2,函数在x=﹣1,取得极小值f(﹣1)=﹣3+1=﹣2,又由f(﹣2)=﹣2,f(2)=2得:若f(t)=c,c∈(﹣2,2),则方程有三个解,满足﹣2<t1<﹣1,0<t2<1,1<t3<2,则当﹣2<t1<﹣1时,方程t=f(x),有3个根,当0<t2<1时,方程t=f(x),有3个根,当1<t3<2时,方程t=f(x),有3个根,此时共有9个根,若f(t)=c,c=2,则方程有两个解,满足t1=﹣2,t2=1,则当t1=﹣2时,方程t=f(x),有2个根,当t2=1,有3个根,此时共有5个根,同理f(t)=c,c=﹣2时,也共有5个根故选:D.课后作业.函数的零点1.设定义在R上的函数op=2,≤0|l2U,>0,g(x)=f(x)﹣a,则当实数a满足0<a <1时,函数y=g(x)的零点个数为3个.【解答】解:定义在R上的函数op=2,≤0|l2U,>0,函数的图象如图:g(x)=f(x)﹣a,则当实数a满足0<a<1时,函数y=g(x)的零点个数,就是y =f(x)与y=a图象的交点个数,由图象可知,零点个数为3个.故答案为:3.2.已知函数f(x)=|+1|,≤0|l2U,>0,若方程f(x)=a(a∈R)有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则(x1+x2)x4的取值范围是[﹣4,﹣2).【解答】解:由题意作函数f(x)=|+1|,≤0|l2U,>0与y=a的图象如下,,结合图象可知,x1+x2=﹣2,0<log2x4≤1,故x1+x2=﹣2,1<x4≤2,故﹣4≤(x1+x2)x4<﹣2,故答案为:[﹣4,﹣2).3.已知函数op=|BU,>0|2+4+3|,≤0,若g(x)=ax(a∈R)使得方程f(x)=g(x)恰有3个不同的实根,则实数a的取值范围为[0,1)∪{23−4}.【解答】解:由已知得f(x)得图象如图(1),(1)当a>0时,要使得方程f(x)=g(x)恰有3个不同根,则需存在x>1,使得lnx >ax,即a<B,又y=B的图象如图(2),故0<a<1;(2)当a<0时,由图象(1)知y=ax需与函数f(x)=|x2+4x+3|=﹣x2﹣4x﹣3相切,设切点为(m,n),则y﹣f(m)=f'(m)(x﹣m),即y﹣(﹣m2﹣4m﹣3)=(﹣2m﹣4)(x﹣m)过点(0,0),故m2=3,因为m<0,故m=−3,所以a=f'(m)=23−4,(3)当a=0时,显然符合题意,综上,实数a的取值范围为[0,1)∪{23−4}.故答案为:[0,1)∪{23−4}.4.已知函数f(x)=3−34+32,0≤≤122+12,12<≤1,g(x)=e x﹣ax(a∈R),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是()A.(﹣∞,1]B.(﹣∞,e﹣2]C.(﹣∞,e−54]D.(﹣∞,e]【解答】解:①当0≤x≤12时,f(x)=x3−34+32,则f′(x)=3x2−34≤0在[0,12]上恒成立,所以函数f(x)在区间[0,12]上单调递减,则f(12)≤f(x)≤f(0),即54≤op≤32,②当12<≤1时,f(x)=2x+12,函数在区间(12,1]上单调递增,所以f(12)<f(x)≤f(1),即32<op≤52,综上,函数f(x)的值域为[54,52];又g′(x)=e x﹣a,x∈[0,1],若a≤0时,则g′(x)>0,函数g(x)在[0,1]上单调递增,所以g(0)≤g(x)≤g (1),即g(x)∈[1,e﹣a],此时若要满足题意,只需[1,e﹣a]∩[54,52]≠∅,当a≤0时恒成立;若a>0时,令g′(x)=e x﹣a=0,解得x=lna,当0<a<e时,函数g(x)在[0,1]上单调递增,所以g(0)≤g(x)≤g(1),即1≤g (x)≤e﹣a,又因为[1,e﹣a]∩[54,52]≠∅,所以−≥540<<,解得0<a≤−54,当a>e时,g(x)在[0,1]上单调递减,所以g(1)≤g(x)≤g(0),即e﹣a≤g(x)≤1,此时[e﹣a,1]∩[54,52]=∅,所以不存在x1,x2∈[0,1],使得f(x1)=g(x2)=g(x2),综上,实数a的取值范围为(−∞,−54],故选:C.5.已知函数f(x)=,=1(12)|K1|+1,≠1,若方程2f2(x)﹣(2a+3)f(x)+3a=0有5个不同的实数解,则a的范围是()A.(1,32)∪(32,2)B.(1,2)∪(2,3)C.(1,+∞)D.(1,3)【解答】解:方程2f2(x)﹣(2a+3)f(x)+3a=0,解得f(x)=a或f(x)=32,若a=32,f(x)=,=1(12)|K1|+1,≠1,可得x=1或0或2,不满足题意;则a≠32,由f(x)=32,可得原方程有3个不等实根;只要1+(12)|x﹣1|=a有2个不等实根即可.由|x﹣1|>0可得0<(12)|x﹣1|<1,即有1<a<2,综上可得a∈(1,32)∪(32,2).故选:A.6.已知f(x)=2−4,≤−1,>(其中a<0,e为自然对数的底数),若g(x)=f[f(x)]在R上有三个不同的零点,则a【解答】解:(1)当x≤a时,f(x)=x2﹣4,①当x2﹣4≤a时,由f(f(x))=f(x2﹣4)=(x2﹣4)2﹣4=0得x=−2;②当x2﹣4>a时,由f(f(x))=f(x2﹣4)=2−4−1=0得x=﹣2(2)当x>a时,f(x)=e x﹣1,①当e x﹣1≤a时,由f(f(x))=f(e x﹣1)=(e x﹣1)2﹣4=0得e x=﹣1无解,②当e x﹣1>a时,由f(f(x))=f(e x﹣1)=−1−1=0解得x=0,因为g(x)=f(f(x))在R上有三个不同的零点,所以−2≤−2≤0>,解得:−2≤a<0,故答案为:[−2,0).。
专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数
专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。
高考数学复习高频考点题型精讲精练专题11 函数的零点
4
42
故选:D.
12.函数
f
(x)
=
cos
π 3
(x
−1)
在区间
[−3,
5]
上的所有零点之和等于(
)
7 / 54
. . . . A −2 B 0C 3D 2 【答案】D 【分析】直接求出所以零点,然后求和即可.
【详解】令 ,则 ,得 ,因为 , cos
π 3
(x
−1)
=
0
π (x −1) = π + kπ , k ∈ Z
1、定理:如果函数 f ( x) 在区间 [a,b] 上的图象是一条连续不断的曲线,且
1 / 54
f (a)⋅ f (b) < 0, 那么,函数 y = f ( x) 在区间 (a.b) 内至少有一个零点,即存在 c ∈ (a.b) ,使得 f (c) = 0。 2、函数 f ( x) 在区间[a,b] 上的图象是一条连续不断的曲线, f (a) ⋅ f (b) < 0 ,且 f ( x) 具有单调性,则函数 f ( x) 在区间 (a.b) 内只有一个零点.
. . . . A c < b < a B a < c < b C c<a<b D b < a < c
【答案】B
【分析】在同一坐标系中作出 y = 2x, y = log2 x, y = x3, y = −x 的图象,利用数形结合法求解.
【详解】解:在同一坐标系中作出 y = 2x, y = log2x, y = x3, y = −x 的图象,
10.函数 f (x) = ln | x − 2 | +x2与 g(x) = 4x ,两函数图象所有交点的横坐标之和为( ).
高考数学复习考点知识与题型专题讲解11---函数的零点与方程的解
高考数学复习考点知识与题型专题讲解函数的零点与方程的解考试要求1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x 轴的交点.(×)(2)连续函数y =f (x )在区间(a ,b )内有零点,则f (a )·f (b )<0.(×)(3)函数y =f (x )为R 上的单调函数,则f (x )有且仅有一个零点.(×)(4)二次函数y =ax 2+bx +c (a ≠0),若b 2-4ac <0,则f (x )无零点.(√) 教材改编题1.函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为()A .-14B .0C.14D .0或-14答案D解析当a =0时,f (x )=-x -1,令f (x )=0得x =-1,故f (x )只有一个零点为-1.当a ≠0时,则Δ=1+4a =0,∴a =-14. 综上有a =0或-14.2.已知函数f (x )=⎩⎨⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________. 答案-2,e解析⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________.答案(3,6)解析设f (x )=2x +x ,∴f (x )在(1,2)上单调递增,又f (1)=3,f (2)=6,∴3<k <6.题型一 函数零点所在区间的判定例1(1)函数f (x )=x +ln x -3的零点所在的区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析∵f (x )在(0,+∞)上单调递增,且f (2)=ln2-1<0,f (3)=ln3>0,故f (x )在(2,3)上有唯一零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间()A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案A解析函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )() A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均有零点 B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1内有零点,在区间(1,e)内无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1内无零点,在区间(1,e)内有零点 答案D解析f (x )的定义域为{x |x >0},f ′(x )=13-1x =x -33x ,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝ ⎛⎭⎪⎫1e ,1内无零点. 又f (e)=e 3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1(1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析设f (x )=log 3x -3+x ,当x →0时,f (x )→-∞,f (1)=-2,又∵f (2)=log 32-1<0,f(3)=log33-3+3=1>0,故f(2)·f(3)<0,故方程log3x=3-x在区间(2,3)上有解,即利用二分法求方程log3x=3-x的近似解,可以取的一个区间是(2,3).(2)已知2<a<3<b<4,函数y=log a x与y=-x+b的交点为(x0,y0),且x0∈(n,n+1),n∈N*,则n=________.答案2解析依题意x0为方程log a x=-x+b的解,即为函数f(x)=log a x+x-b的零点,∵2<a<3<b<4,∴f(x)在(0,+∞)上单调递增,又f(2)=log a2+2-b<0,f(3)=log a3+3-b>0,∴x0∈(2,3),即n=2.题型二函数零点个数的判定例2(1)已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是()A.9B.10C.11D.18解析由函数y =f (x )的性质,画出函数y =f (x )的图象,如图,再作出函数y =|lg x |的图象,由图可知,y =f (x )与y =|lg x |共有10个交点,故原函数有10个零点.(2)函数f (x )=36-x 2·cos x 的零点个数为______.答案6解析令36-x 2≥0,解得-6≤x ≤6,∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0,由36-x 2=0得x =±6,由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2. 故f (x )共有6个零点.教师备选函数f (x )=2x |log 2x |-1的零点个数为()A .0B .1C .2D .4解析令f (x )=0,得|log 2x |=⎝ ⎛⎭⎪⎫12x ,分别作出y =|log 2x |与y =⎝ ⎛⎭⎪⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝ ⎛⎭⎪⎫12x 的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为()A .6B .7C .8D .9答案B解析令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0,因为函数的最小正周期为2,所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)函数f (x )=⎩⎨⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是() A .1B .2C .3D .4答案C解析当x >0时,作出函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零点;当x ≤0时,由f (x )=0,得x =-14.综上,f (x )有3个零点.题型三 函数零点的应用命题点1根据函数零点个数求参数例3已知函数f (x )=⎩⎪⎨⎪⎧ ln (-x ),x <0,x +2x,x >0,若关于x 的方程f (x )-m -1=0恰有三个不同的实数解,则实数m 的取值范围是()A .(-∞,22]B .(-∞,22-1)C .(22-1,+∞)D .(22,+∞)答案C解析恰有三个不同的实数解等价于函数y =f (x )的图象与直线y =m +1有三个公共点. 作出f (x )的图象如图所示.由图可知,y =f (x )的图象与直线y =m +1有三个公共点时有m +1>22, 解得m >22-1,所以实数m 的取值范围为(22-1,+∞).命题点2根据函数零点范围求参数例4(2022·北京顺义区模拟)已知函数f (x )=3x -1+ax x .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,43B.⎝ ⎛⎭⎪⎫0,43 C .(-∞,0) D.⎝ ⎛⎭⎪⎫43,+∞ 答案B解析由f (x )=3x-1+ax x =0, 可得a =3x -1x ,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时,g (x )=3x -1x <3-1+1=43,又g (x )=3x-1x >0, 所以函数g (x )在(-∞,-1)上的值域为⎝ ⎛⎭⎪⎫0,43. 因此实数a 的取值范围是⎝ ⎛⎭⎪⎫0,43. 教师备选1.函数f (x )=x x +2-kx 2有两个零点,则实数k 的值为________. 答案-1 解析由f (x )=x x +2-kx 2=x ⎝ ⎛⎭⎪⎫1x +2-kx , 函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0. 即方程1x +2-kx =0有且只有一个非零实根. 显然k ≠0,即1k =x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k >-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k =-1,即k =-1时满足条件.当1k <-1时,函数y =x 2+2x 的图象与直线y =1k 无交点,不满足条件.2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________.答案⎝ ⎛⎭⎪⎫14,12 解析依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧ m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧ m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0,解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3(1)已知函数f (x )=e x -ax 2(a ∈R )有三个不同的零点,则实数a 的取值范围是() A.⎝ ⎛⎭⎪⎫e 4,+∞B.⎝ ⎛⎭⎪⎫e 2,+∞ C.⎝ ⎛⎭⎪⎫e 24,+∞D.⎝ ⎛⎭⎪⎫e 22,+∞ 答案C解析令f (x )=e x -ax 2=0,显然x ≠0,∴a =e xx 2,令g (x )=e x x 2(x ≠0),则问题转化为“若y =a 的图象与y =g (x )的图象有三个交点,求a 的取值范围”.∵g ′(x )=(x -2)e xx 3,令g ′(x )=0,解得x =2,∴当x <0或x >2时,g ′(x )>0,g (x )在(-∞,0),(2,+∞)上单调递增,当0<x <2时,g ′(x )<0,g (x )在(0,2)上单调递减,g (x )在x =2处取极小值g (2)=e 24,作出y =g (x )的简图,由图可知,要使直线y =a 与曲线g (x )=e x x 2有三个交点,则a >e 24,故实数a 的取值范围是⎝ ⎛⎭⎪⎫e 24,+∞. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为()A.⎝ ⎛⎭⎪⎫-53,0 B.⎝ ⎛⎭⎪⎫-∞,-53∪(0,+∞) C.⎝ ⎛⎦⎥⎤-∞,-53∪(0,+∞) D.⎣⎢⎡⎭⎪⎫-53,0 答案D解析由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧ f (1)<0,f (3)≥0,即⎩⎨⎧ m <0,m +53≥0,解得-53≤m <0. 因此,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-53,0. 课时精练1.函数f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2的零点所在的区间为() A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案B解析由题意知,f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2, f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间()A.⎝ ⎛⎭⎪⎫1,32B.⎝ ⎛⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫2,52D.⎝ ⎛⎭⎪⎫52,3 答案A解析取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32,因为f ⎝ ⎛⎭⎪⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝ ⎛⎭⎪⎫1,32. 3.已知函数f (x )=⎩⎪⎨⎪⎧ e x -1-1,x <2,log 3x 2-13,x ≥2,则f (x )的零点为()A .1,2B .1,-2C .2,-2D .1,2,-2答案A解析当x <2时,令f (x )=e x -1-1=0,即e x -1=1,解得x =1,满足x <2;当x ≥2时,令f (x )=log 3x 2-13=0,则x 2-13=1,即x 2=4,得x =-2(舍)或x =2.因此,函数y =f (x )的零点为1,2.4.若函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .(1,3)B .(1,2)C .(0,3)D .(0,2)答案C解析由条件可知f (1)·f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3.5.若函数f (x )=⎩⎨⎧ log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为() A .[-3,0) B .[-1,0)C .[0,1)D .[-3,+∞)答案A解析因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.6.(2022·重庆质检)已知函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是()A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案B解析f (x )=⎝ ⎛⎭⎪⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.7.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数不可能是()A .1B .2C .4D .6答案D解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(2022·北京西城区模拟)若偶函数f(x)(x∈R)满足f(x+2)=f(x)且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的根的个数是()A.2B.3C.4D.多于4答案C解析f(x)=log3|x|的解的个数,等价于y=f(x)的图象与函数y=log3|x|的图象的交点个数,因为函数f(x)满足f(x+2)=f(x),所以周期T=2,当x∈[0,1]时,f(x)=x,且f(x)为偶函数,在同一平面直角坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示.显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点.9.若函数f(x)=x3+ax2+bx+c是奇函数,且有三个不同的零点,写出一个符合条件的函数:f(x)=________.答案x 3-x (答案不唯一)解析f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎨⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案(1,2)解析画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案⎣⎢⎡⎭⎪⎫2e 2,1e 解析∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e 2, f (x )=ln x (x >1),f ′(x )=1x ,设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e .则直线y =ax 的斜率a ∈⎣⎢⎡⎭⎪⎫2e 2,1e . 12.(2022·安徽名校联盟联考)已知函数f (x )=2x +x +1,g (x )=log 2x +x +1的零点分别为a ,b ,则a +b =________.答案-1解析由已知得y =2x ,y =log 2x 的图象与直线y =-x -1的交点横坐标分别为a ,b , 又y =2x ,y =log 2x 的图象关于直线y =x 对称,且y =-x -1与y =x 交点横坐标为-12,故a +b =-1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为()A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案B解析令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎨⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案12解析当x ≤0时,x +1=0,x =-1,由f(x)=-1,可得x+1=-1或log2x=-1,∴x=-2或x=1 2;当x>0时,log2x=0,x=1,由f(x)=1,可得x+1=1或log2x=1,∴x=0或x=2;∴函数y=f(f(x))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是________.(填序号)①f(x)=2x+x;②g(x)=x2-x-3;③f(x)=12x+1;④f(x)=|log2x|-1.答案②③④解析对于①,若f(x0)=x0,则02x=0,该方程无解,故①中函数不是“不动点”函数;对于②,若g(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故②中函数是“不动点”函数;对于③,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故③中函数是“不动点”函数;对于④,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故④中函数是“不动点”函数.16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案⎝ ⎛⎦⎥⎤1e ,4e 2 解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x=0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x ,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e ,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝ ⎛⎦⎥⎤1e ,4e 2.。
函数的零点知识点总结
函数的零点知识点总结一、函数零点的定义函数零点:对于函数f(x)f(x)f(x),如果存在某个实数ccc使得f(c)=0f(c) = 0f(c)=0,则称ccc为函数f(x)f(x)f(x)的零点。
二、函数零点与方程根的关系函数零点与方程的关系:函数f(x)f(x)f(x)的零点就是方程f(x)=0f(x) = 0f(x)=0的实数根。
方程的根与函数图像的关系:方程的根对应于函数图像与xxx轴的交点的横坐标。
三、函数零点的求法直接法:对于简单的函数或方程,可以直接通过代数运算求得零点。
图形法:通过绘制函数的图像,观察图像与xxx轴的交点来确定函数的零点。
数值法:对于复杂函数,可以利用数值方法(如二分法、牛顿法等)来近似求解函数的零点。
四、函数零点的性质零点存在性定理:如果函数f(x)f(x)f(x)在区间[a,b][a, b][a,b]上连续,且f(a)⋅f(b)<0f(a) \cdot f(b) < 0f(a)⋅f(b)<0,则函数f(x)f(x)f(x)在区间(a,b)(a, b)(a,b)内至少存在一个零点。
零点个数定理:根据函数的单调性、奇偶性、周期性等性质,可以判断函数零点的个数。
五、函数零点与函数图像的关系函数零点与函数图像的变化趋势:函数在零点处的取值由正变负或由负变正,反映了函数图像在零点处的穿越xxx轴的情况。
六、应用实例通过求解函数的零点来解决实际问题,如求解物理、化学等领域中的方程或不等式。
综上所述,函数的零点知识点涉及定义、与方程根的关系、求法、性质以及与函数图像的关系等多个方面。
掌握这些知识点有助于深入理解函数的性质和行为,并应用于实际问题的求解中。
高考复习专题:函数零点的求法及零点的个数
函数零点的求法及零点的个数题型1:求函数的零点。
[例1] 求函数2223+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根[解析]令32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。
[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。
题型2:确定函数零点的个数。
[例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)= lnx +2x -6只有一个零点。
方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。
画图可知只有一个。
[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。
题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,假如函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。
[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点找寻关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行探讨[解析] 若0a = , ()23f x x =- ,明显在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=, 解得32a -=①当a =时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。
高中数学基础之函数零点
高中数学基础之函数零点函数零点的考查往往以选择题或填空题的形式出现,在解答题中,特别是有关导数的解答题中也经常考查零点问题.根据高考试题的考查特点,建议掌握好函数零点的求法、含参数问题的解决办法以及常用的二次函数零点问题的求法.函数的零点(1)零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.注:函数的零点不是函数y=f(x)的图象与x轴的交点,而是y=f(x)的图象与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数.(2)零点的几个等价关系:方程f(x)=0有实数解⇔函数y=f(x)的图象与x轴有公共点⇔函数y=f(x)有零点.零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条□01连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.注:函数零点存在定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.一、函数零点及其所在区间的判断例1 函数f(x)=log3x+x-2的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)答案B解析解法一(定理法):函数f(x)=log3x+x-2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续的曲线.由题意知f(1)=-1<0,f(2)=log32>0,根据零点存在定理可知,函数f (x )=log 3x +x -2有唯一零点,且零点在区间(1,2)内.故选B.解法二(图象法):将函数f (x )的零点所在的区间转化为函数g (x )=log 3x 和h (x )=-x +2图象交点的横坐标所在的范围.作出两函数的图象如图所示,可知f (x )的零点所在的区间为(1,2).故选B.例2 已知函数f (x )=ln x +2x -6的零点在⎝ ⎛⎭⎪⎫k 2,k +12(k ∈Z )内,那么k = . 答案 5解析 因为x ∈(0,+∞),f ′(x )=1x +2>0,所以f (x )在(0,+∞)上单调递增,f ⎝ ⎛⎭⎪⎫52=ln52-1<0,f (3)=ln 3>0,所以f (x )的零点在⎝ ⎛⎭⎪⎫52,3内,则整数k =5. 总结:判断函数零点所在区间的方法(1)解方程法,当对应方程易解时,可直接解方程. (2)利用零点存在定理求解.(3)数形结合法,画出相应函数图象,观察与x 轴交点来判断,或转化为两个函数的图象在所给区间上是否有交点来判断.二、函数零点个数的判断例3 已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( ) A .0 B .1 C .2 D .3 答案 C解析 令f (x )+3x =0,则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.例4 若函数y =f (x )(x ∈R )满足f (x +4)=f (x ),且x ∈(-2,2]时,f (x )=12|x |,则函数y =f (x )的图象与函数y =lg |x |的图象的交点个数为( )A .4B .6C .8D .10 答案 C解析 因为f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数.又x ∈(-2,2]时,f (x )=12|x |,所以作出函数f (x )的图象如图所示.因为x =±10时,y =lg |±10|=1,所以由数形结合可得函数y =f (x )的图象与函数y =lg |x |的图象的交点个数为8.例5 已知函数f (x )=⎩⎨⎧ln (x -1),x >1,2x -1-1,x ≤1,则f (x )的零点个数为( )A .0B .1C .2D .3 答案 C解析 当x >1时,令f (x )=ln (x -1)=0,得x =2;当x ≤1时,令f (x )=2x -1-1=0,得x =1,故f (x )的零点个数为2.例6 若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个答案 B解析 分别作出y =f (x )与y =log 3|x |的图象如图所示,由图可知y =f (x )与y =log 3|x |的图象有4个交点,故函数y =f (x )-log 3|x |有4个零点.总结:函数零点个数的判断方法(1)直接求零点.令f (x )=0,有几个解就有几个零点.(2)零点存在定理.要求函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,且f (a )f (b )<0,再结合函数的图象与性质确定函数零点个数.(3)利用图象交点个数判断.作出两函数图象,观察其交点个数即得零点个数. 三、函数零点的应用例7 已知方程x 2+(m -2)x +5-m =0的一根在区间(2,3)内,另一根在区间(3,4)内,则m 的取值范围是( )A .(-5,-4)B .⎝ ⎛⎭⎪⎫-133,-2C .⎝ ⎛⎭⎪⎫-133,-4D .(-5,-2) 答案 C解析 令f (x )=x 2+(m -2)x +5-m ,由二次函数根的分布性质,若一根在区间(2,3)内,另一根在区间(3,4)内,只需⎩⎪⎨⎪⎧f (2)>0,f (3)<0,f (4)>0,即⎩⎪⎨⎪⎧4+2(m -2)+5-m >0,9+3(m -2)+5-m <0,16+4(m -2)+5-m >0,解不等式组可得-133<m <-4,即m 的取值范围为⎝ ⎛⎭⎪⎫-133,-4.故选C. 例8 设函数f (x )=⎩⎨⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞)B .⎝ ⎛⎭⎪⎫-1e 2,0C .{0}∪(1,+∞)D .(0,1]答案 D解析 函数g (x )=f (x )-b 有三个零点等价于f (x )=b 有三个根,当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),由f ′(x )<0得x <-2,此时f (x )为减函数,由f ′(x )>0得-2<x ≤0,此时f (x )为增函数,即当x =-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图象如图,要使f (x )=b 有三个根,则0<b ≤1.故选D.例9 若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是 . 答案 ⎣⎢⎡⎦⎥⎤-14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎫2x -122-14,令2x=t ,因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤12,2,a =⎝ ⎛⎭⎪⎫t -122-14,0≤t -12≤32,0≤⎝ ⎛⎭⎪⎫t -122≤94,-14≤⎝ ⎛⎭⎪⎫t -122-14≤2,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,2.总结:已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.。
专题02函数零点问题-2024高考数学尖子生辅导专题
专题02函数零点问题-2024高考数学尖子生辅导专题函数的零点问题在数学中是一个非常重要的概念和问题。
而在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个重点内容。
下面,我们来详细探讨一下这个问题。
函数的零点问题即是求解函数的解析式方程$f(x)=0$的解$x$。
在实际问题中,函数的零点往往表示了其中一种特定情况下的平衡点或者特殊点,因此求解函数的零点问题是非常实用和重要的。
那么,如何求解函数的零点问题呢?下面,我们将从三个方面进行讨论。
首先,我们可以通过图像来求解函数的零点问题。
对于一般的函数,我们可以通过画出函数的图像来判断函数的零点。
函数的零点为函数与$x$轴相交的点,在图像上表现为函数曲线与$x$轴的交点。
通过观察函数图像上哪些点与$x$轴相交,我们可以找到函数的零点。
对于简单的函数,我们可以手工画出函数图像,对于复杂的函数,我们可以借助计算机软件进行绘图。
其次,我们可以通过函数的解析式来求解函数的零点问题。
对于一般的函数,我们可以通过解方程$f(x)=0$来求解函数的零点。
通过将方程变形化简,最终得到$x$的解析表达式。
这种方法适用于存在解析解的函数,对于一些特殊函数,解析解并不存在,我们需要采用其他方法进行求解。
最后,我们可以通过数值计算方法来求解函数的零点问题。
对于一些无法通过解析式求解的函数,我们可以采用数值计算方法进行求解。
数值计算方法包括二分法、不动点迭代法、牛顿迭代法等。
这些方法通过迭代计算,逐渐接近函数的零点。
在实际计算中,我们可以通过计算机软件来进行数值计算,以提高计算的精度和效率。
综上所述,函数的零点问题在数学中具有重要的意义,我们可以通过图像、解析式和数值计算方法等多种途径来求解函数的零点。
在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个关键的内容,掌握这个问题对于学生的数学能力提高和应试能力提升都具有重要作用。
因此,我们应该重视并加以学习和实践。
《函数的零点》 讲义
《函数的零点》讲义一、函数零点的定义同学们,咱们今天来好好聊聊函数的零点。
那什么是函数的零点呢?简单来说,如果函数 y = f(x) 在实数 a 处的值为 0 ,即 f(a) = 0 ,那么 a 就叫做函数 y = f(x) 的零点。
比如说,对于函数 f(x) = x 1 ,当 f(x) = 0 时,也就是 x 1 = 0 ,解得 x = 1 。
所以 1 就是这个函数的零点。
函数的零点不是一个点的坐标,而是一个实数。
它反映了函数图像与 x 轴交点的横坐标。
二、函数零点存在性定理那怎么判断一个函数在某个区间内是否存在零点呢?这就要用到函数零点存在性定理啦。
如果函数 y = f(x) 在区间 a, b 上的图象是连续不断的,并且 f(a) 与f(b) 的乘积小于 0 ,那么在区间(a, b) 内至少存在一个零点。
咱们来举个例子理解一下。
假设函数 f(x) = x^2 2x 3 ,在区间 2,4 上,f( 2) =5 ,f(4) = 5 。
因为 f( 2) × f(4) > 0 ,所以不能确定在( 2, 4 )内一定存在零点。
但如果 f( 2) × f(1) < 0 ,因为函数图象是连续不断的,所以就能确定在( 2, 1 )内至少有一个零点。
这里要注意哦,函数零点存在性定理只是说至少存在一个零点,但不一定能确定零点的个数。
三、求函数零点的方法1、直接求解法对于一些简单的函数,我们可以通过解方程 f(x) = 0 来直接求出零点。
比如函数 f(x) = 2x 4 ,令 f(x) = 0 ,即 2x 4 = 0 ,解得 x = 2 ,所以 2 就是这个函数的零点。
2、二分法当函数比较复杂,不能直接求解时,我们可以用二分法来逼近零点。
假设函数 f(x) 在区间 a, b 上连续,并且 f(a) 与 f(b) 异号。
取区间的中点 c =(a + b) / 2 ,计算 f(c) 。
如果 f(c) = 0 ,那么 c 就是零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
评注:求函数y=f(x)的零点就是求相应的方 程f(x)=0的根,一般可以借助求根公式或因式 分解等办法,求出方程的根,从而得出函数的 零点。
问题三、如何判断函数y=f(x)是否存在零点。
判断函数y=f(x)是否有零点 判断相应的方程f(x)=0的是否有实根
练习 C
解析:对于A选项:可能存在;对于B选项:必存在但不一定唯一
2
5
a
x 1 b
a
-2
a b
b
注意:
函数y=f(x)在区间[a,b]上的图象是连续不 断的一条曲线:
(1) f(a)·f(b)<0 函数y=f(x)在区间(a,
b)内有零点;
(2)函数y=f(x)在区间(a,b)内有零点
f(a)·f(b)<0。
4、当a为何值时,f(x)x22a x1有零点,
函数 x 2 2 有 a 1 x 0 有 零 实 点 0 ( 2 根 a ) 2 4 0
5、当a为何值时,f(x)x22a x1没有零点,
函数 x 没 2 2 a 有 1 x 0 没 零 有 点 0 实 (2 a )2 根 4 0
实数根,也就是函数y=f(x)的图象与x 轴的交点的横坐标。
等价关系:
方程f(x)=0有实数根 函数y=f(x)的图象与x轴有交点
函数y=f(x)有零点
问题二、函数零点的求法:
思考:如何求函数的零点? 如 :求 f(x)x22x1的零 . 点
求函数y=f(x)的零点
求相应的方程f(x)=0的根
练习:求下列函数的零点。
函数是否存 在x2零 2a点 x10是否有实 判 根断 大于 、等于 、小于? 零
2、当a为何值时,f(x)x22a x1有一个零点,
函数有 x2 一 2 a x 1 个 0 有零 一 点 实 0 (2 a 根 )2 4 0
3、当a为何值时,f(x)x22a x1有二个零点,
函数有 x 2 2 两 a x 1 0 个 有零 两 点 个 0 (2 实 a )2 4 根 0
a
a
b
b
a
b
分析:
aRa0f (x)2x3判断零点是[否 1,1]在
a0f
f
(x)2ax22x3a有一个零 点 0求a判断零点是[否 1,1]在 a是否符 (x)2ax22x3a有两个零 aa点 00图 图 交 交像 像 点 点XX与 与 要 要 轴 轴 [[在 在 11有 有 ,,11]]两 两 上 上个 个 交 交要 要点 点满 满足 足什 什么 么条 条
-10
1
(1,0)
一个零点 x=1
-12
-2
x2-2x+3=0 无实数根 y=x2-2x+3
4 -14
-24
-16
没有 交点
没有 零点
-15
-10
-5
-18 1
-6
结 论:函数的零点就是方程f(x)-2=-200的实数根,也就是函数y=f(x)的 --48 图象与x轴的交点的横坐标 -6
-10
结论:函数的零点就是方程f(x)=0的
问题四、如何判断函数y=f(x)在 区间[a,b]上是否存在零点。
讨论: 判断函数 f(x)x22x1在区间
(2,3)上是否存在零点?
f(b)
零点存在的一般结论:
f(c)ቤተ መጻሕፍቲ ባይዱ
如果函数y=f(x)在区间[b,c]上的图象是一条 不间断的曲线,且f(b)·f(c)<0,则函数y=f(x)在 区间(a,b) 内有零点。即存在m∈(b,c),使得 f(m)=0,这个m也就是方程f(x)=0的根。
“f(x)在区间D上有不动点”当且仅当“F(x)=f(x)-x在区间D上有零点”
一、函数的零点的定义:
对于函数y=f(x) 我们把使f(x)=0的实 数x叫做函数y=f(x)的零点(zero point)。
零点是一个点吗?
注意: 零点指的是一个实数。
观察下表,一元二次方程的实数根、相应的二次函数图象与x轴 的交点、相应二次函数的零点之间的关系。
小结:
1、函数零点的定义; 2、函数的零点与方程的根的关系;
3、函数零点存在的一般结论。 4、函数零点的求法与判断方法:
①(代数法)求方程 f(x)=0的实数根; ②(代数法)用判别式; ③(几何法)将函数y=f(x) 和它的图象与x轴交点。 5、本节课运用了化归与转化以及数形结合的数学思想方法。
2
a
a
b
-1 0
-5
a
x 1 b
b
-2
(1)f(a)·f(b)<0 函数y=f(x)在区间(a,b)内有零点;
(2)函数y=f(x)在区间(a,b)内有零点 f(a)·f(b)<0
f(a)·f(b)<0。
函数y=f(x)在区间(a,b)内有零点 f(a)·f(b)>0 (3)函数y=f(x)在单调区间(a,b)内有零点 f(a)·f(b)<0
一元二次方 方程的根 二次函数 函数的图象 图象与x轴 函数的零点
程
的交点
x2--202x-3=0-15
x1=-1-1,0 x2=3
y=x2-2-5x-3
-1
-2
-4
3 (-1,0), (3,0)
两个零点 x1=-1, x2=3
x2-2x+1=0 x1=x2=1 y=x2-2x+1
-10
-5
-6
2
-8
讨论: 1、判断函数 f(x)x22x1 是否存在零点? 2、当a为何值时,f(x)x22a x1有一个零点, 3、当a为何值时,f(x)x22a x1有二个零点, 4、当a为何值时,f(x)x22a x1有零点, 5、当a为何值时,f(x)x22a x1无零点,
1、判断函数 f(x)x22x1 是否存在零点?