人教版-数学-七年级上册--第三章3.3去括号与去分母(第3课时) 课件

合集下载

3.3-解一元一次方程—去括号与去分母(第1、2、3课时合集)

3.3-解一元一次方程—去括号与去分母(第1、2、3课时合集)
如何正确地去括号以及实际问题中的相等关系的寻找和确定.
(一)提出问题,建立模型
问题1:某工厂加强节能措施,去年下半年与上半年
相比,月平均用电量减少2 000 kW·h(千瓦·时),
全年用电15 万 kW·h.这个工厂去年上半年每月平均
用电是多少?
温馨提示:1 kW·h的电量是指1 kW的电器1 h的用电量.
作业:
教科书第99页习题3.3第1,2题.
3.3 解一元一次方程(二)
——去括号与去分母 (第2课时)
解下列方程: (1) 10x-4(3-x)-5(2+7x)=15x-9(x-2); (2) 3(2-3x)-3[3(2x-3)+3]=5.
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
题目:一个两位数,个位上的数是2,十位 上的数是x,把2和x对调,新两位数的2倍 还比原两位数小18,你能想出x是几吗去?括号错
移项错
小方: 解:(10x+2)-2( x+20)=18
去括号,得 10x+2-2 x-20=18
移项,得 10x-2x=18+20+2
合并同类项,得 8 x=40
系数化为1,得
系数化为1
x= 7 16
思考:解含分数系数的一元一次方程的步骤包括哪些?
1.解一元一次方程的一般步骤包括: 去分母、去括号、移项、合并同类项,系数化为1.
2.通过这些步骤可以使以x为未知数的方程逐步向 着x=a的形式转化,这个过程主要依据等式的基本 性质和运算律等.
3.巩固新知 例题规范
例3 解下列方程:
2(x+3)=2.5(x-3) 去括号,得 2x+6=2.5x-7.5
往返路程相等
移项及合并,得 0.5x=13.5

人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)

人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)

3.3 解一元一次方程(二)
——去括号与去分母 (第3课时)
学习目标: (1)会去分母解一元一次方程. (2)归纳一元一次方程解法的一般步骤,体会解方程中
化归和程序化的思想方法. (3)通过列方程,进一步体会模型思想.
教学重点: 建立一元一次方程模型解决实际问题以及解含有分数系
数的一元一次方程,归纳解一元一次方程的基本步骤.
根据往返路程相等,列出方程,得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并同类项,得
0.5x=13.5
系数化为1,得
x 27.
答:船在静水中的平均速度为 27 km/h.
活动3:巩固练习,拓展提高
一架飞机在两城之间航行,风速为24 km/h,顺风 飞行要2小时50分,逆风飞行要3小时,求两城距离.
移项,得
3 x-7 x+7=3-2 x-6
3 x=7 x+2 x=3-6-7
合并同类项,得
-2x=-10
系数化为1,得
x=5
活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考: 1.行程问题涉及哪些量?它们之间的关系是什么?
例:一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返
回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求
船在静水中的速度.
问题中的相等
解:设船在静水中的平均速度为x km/h 关系是什么?
则顺流的速度为_(_x_+__3_)_km/h,逆流速度为_(_x_-__3_)km/h.

七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母

七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母
No 这两步分开写,不要跳步,防止忘记变号。(1)两边同时乘以10,得:15x+5-20=3x-2-4x+6。(2)两边同
时乘以10,得:5(3x+1)-2=(3x-2)-2(2x+3)。相传有个人因为不讲究说话的艺术(yìshù),结果引起误会,把好 事办坏了
Image
12/10/2021
第十四页,共十四页。


2、去分母(fēnmǔ)的依据是等式性质二 , 去分母时不能漏乘 没有分母的项;

3、去分母与去括号这两步分开写,
结 不要(bùyào)跳步,防止忘记变号。
2021/12/10
第七页,共十四页。
对应 训练 (duìyìng)
解 方 程 3xx132x1
2
3
12/10/2021
第八页,共十四页。
拍大腿,连连说:“这,这,我说的不是他们!”最后剩下的3人 一听,心想:“那定是说我们了!”于是,一个个也抬腿告 辞了。学生思考并用方程解决。
12/10/2021
第十二页,共十四页。
2021/12/10
第十三页,共十四页。
内容(nèiróng)总结
3.3.2 解一元一次方程(二) ——去分母。分析:你认为本题用算术方法解方便,还是用方程方法解方便。3、去分母与去括号
32 7
你能解出这道方程吗?把你的解法与其他同学交流(jiāoliú) 一下,看谁的解法好。
总结(zǒngjié):像上面这样的方程中有些系数是分数,如果 能化去分母,把系数化为整数,则可以使解方程中的计 算更方便些。
12/10/2021
第五页,共十四页。
典例解析(jiě xī)
例 题 2 : 解 方 程 3 x 1 2 3 x 2 2 x 3

人教版七年级数学上册一元一次方程《解一元一次方程(二)——去括号与去分母(第3课时)》示范教学课件

人教版七年级数学上册一元一次方程《解一元一次方程(二)——去括号与去分母(第3课时)》示范教学课件
本节课,我们将对一元一次方程的简单应用题目的几种类型进行学习.
类型一、利用去括号解方程
(2) ;
1.利用去括号解下列方程:
(3) .
(1)2x+(10-x)=5x;
类型一、利用去括号解方程
去小括号
由外向内去括号.
归纳
(1)去括号时要按一定的顺序,可以由内向外去括号,也可以由外向内去括号. (2)在解含多重括号的一元一次方程时,要根据方程中各系数的特点,灵活选择适当的运算步骤和运算方法,使求解过程更加简便.
类型二、利用去分母解方程
2.利用ห้องสมุดไป่ตู้分母解下列方程:
(1) ;
(3) .
类型一、利用去括号解方程
去大括号
去中括号
整理,得 .
方程两边乘 3,得
x+2+12=15.
移项、合并同类项,得
x=1.
类型一、利用去括号解方程
解一元一次方程(二)——
去括号与去分母
(第3课时)
人教版七年级数学上册
1.利用去括号解方程
(1)注意符号“+”“-”的改变,即括号前有正号不变号,括号前有负号必变号; (2)去括号时,不要漏乘括号内的任何一项.
例:3x+5(20-x)=6x-(8-x).
去括号,得 3x+100-5x=6x-8+x.
(1)不含分母的项,也必须乘分母的最小公倍数,一定不要漏乘; (2)分子是一个多项式时,去分母后不要忘记加括号.
2.利用去分母解方程
即x+2(x+2)=10.
3.列方程解应用题的步骤
(1)审题勾画关键词,找出相等关系; (2)表示相等关系; (3)设未知数,列方程; (4)解方程、检验,并答题.
(2) .
(1) ;

人教版七年级数学教案:3.3解一元一次方程-去括号与去分母

人教版七年级数学教案:3.3解一元一次方程-去括号与去分母
人教版七年级数学教案:3.3解一元一次方程-去括号与去分母
一、教学内容
本节课选自人教版七年级数学上册第三章第三节:3.3解一元一次方程-去括号与去分母。教学内容主要包括以下两个方面:
1.去括号法则:在学习了移项和合并同类项的基础上,让学生掌握去括号的方法,包括括号前是正数和负数的去括号法则。
2.去分母法则:让学生了解一元一次方程中含有分数时,如何通过去分母的方法将其转化为整数方程,从而简化问题。掌握去分母的基本步骤,注意在去分母时保持等式的平衡。
-举例:实际问题中,若甲有3个苹果,比乙多1/2个苹果,问乙有多少苹果?将这个问题转化为方程3 = x + 1/2。
在教学过程中,教师需要针对这些难点和重点进行详细的讲解,通过举例、练习和互动,帮助学生透彻理解并掌握这些核心知识点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或计算比例的情况?”(如分水果、计算比赛得分等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解一元一次方程的奥秘。
在小组讨论中,我发现有些学生较为内向,不太愿意发表自己的观点。为了鼓励他们,我可以在课堂上适时地给予表扬和鼓励,提高他们的自信心。同时,也可以设置一些小组成果展示环节,让每个学生都有机会展示自己的成果,从而增强他们的参与感。
此外,课堂总结环节,我觉得可以让学生们来参与,让他们谈谈自己在本节课中的收获和疑问。这样既能锻炼学生的表达能力,又能帮助我了解学生们的学习情况,为下一节课法则和去分母这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

2023-2024学年人教版七年级数学第三章3.3 解一元一次方程(二)——去括号与去分母

2023-2024学年人教版七年级数学第三章3.3 解一元一次方程(二)——去括号与去分母

设上半年每月平均用电x kW·h.
6x+6(x-2 000)=150 000 去括号
6x+6x-12000=150000 移项
6x+6x =150000+12000 合并同类项
12x =162000 系数化为1
x=13500
去括号法则的依据是乘法分配律,以及有理 数乘法的运算律. 去括号时注意用括号外面的 数乘括号内的每一个数,同时注意每一个乘 积的符号以及乘积的绝对值.
5x=-3 系数化为1
x3 5
一艘船从甲码头到乙码头顺流而行,用了 2 h;从乙码头返回甲码头逆流而行,用了 2.5 h,已知水流的速度是3 km/h,求船在静水 中的平均速度.
1.行程问题中的基本关系式是什么?
路程=速度×时间 2.船在水中航行,它的速度都和哪些量有关, 这些量之间的关系是怎样的?
1 x 1 x 1 x5 1 x4 x
6 12 7
2
解一元一次方程的基本步骤:
①去括号,移项; ② 合并同类项; ③ 未知数的系数化为1.
一个数,它的三分之二,它的一半,它 的七分之一,它的全部,加起来总共是33.
解:设这个数是x,
2 x 1 x 1 x x 33 327
97 x 33 42
2
4
去分母,得 2(x+1)-4=8+(2-x)
去括号,得 2x+2-4=8+2-x
移项,得
2x+x=8+2-2+4
合并同类项,得 3x=12
系数化为1,得
x4
23x x 1 3 2x 1
2
3
去分母,得 18x+3( x-l)=18-2(2x-1) 去括号,得 18x+3x-3=18-4x+2 移项,得 18x+3x+4x=18+2+3

数学七年级上册3去分母解一元一次方程PPT课件(人教版)

数学七年级上册3去分母解一元一次方程PPT课件(人教版)

2.解方 x4 程 x31.6 0.2 0.5
答案: x122 15
1.解一元一次方程的一般步骤 2.在每一步求解时要注意什么?
作业
教材P98 练习题(四个小题) 去(2解移解(((解等(解110))分:项:学1:式1一x方4) )=母 去 要 生 性 元-6程3+(时分变上质一两23去去-6要母号台1次x边-分分,)9=(,板方每注方x母母等5防书程x一意程,,式得得止解的项什两性漏题一都么边质项过般要55问同2xx;程步乘--题乘((11,骤==以?以(22288))其各)xx6++)余分44,--学=得母223((生xxx的---111自最)) 主小完公成倍,数并抽生纠正错误,师一旁引导。
(1)
(2)
合并同类项,得
15x =3
2、一个数,它的三分之二,它的一半,它的全部,加起来总共是13,这个数为几?设这个数为x,则可用方程表示为:
______________________________
移 用分数的性质
在每一步求解时要注意什么?
指出解方程
X-1 2
=
4x+2 5
-2(x-1)
过程中
所有的错误,并加以改正.

解: 去分母,得 5x-1=8x+4-2(x-1)

去括号,得 5x-1=8x+4-2x-2

移项,得 8x+5x+2x=4-2+1
合并同类项,得
15x =3

系数化为1,得
x =5
?
细心选一选
1.方程3 5x 7 x 17去分母正确的是(C)
=1+ (学生上台板书解题过程,其余学生自主完成,并抽生纠正错误,师一旁引导。

解一元一次方程—去括号与去分母课件人教版七年级数学上册3

解一元一次方程—去括号与去分母课件人教版七年级数学上册3

3.3 解一元一次方程(二)
——去括号与去分母
第2课时
知识回顾
解含有括号的一元一次方程的一般步骤: 去括号
移项
合并同类项
系数化为1
学习目标
1. 进一步熟悉运用去括号法则解带有括号的一元一次 方程. 2.能够明确行程问题中的数量关系,准确列出方程, 体会数学建模思想.
课堂导入 答:水流的速度为3 km/h, A,B两地之间的距离为45 km.
随堂练习
1.一艘轮船在A,B两地之间航行,顺水航行需用3 h, 逆水航行需用5 h.已知该轮船在静水中的速度是12 km/h,求水流的速度及A,B两地之间的距离. 移项、合并同类项,得 8x=24. 系数化为1,得x=3. 所以A,B两地之间的距离为(12+3)×3=45(km). 答:水流的速度为3 km/h, A,B两地之间的距离为45 km.
)
答:两城之间的距离为2 448 km. (3) 若两车同时开出,快车在慢车后面同向而行,则多少小时后两车相距1 200 km?
3 解一元一次方程(二) 由题意,得 60(x+0.
1.相遇问题 甲的行程+乙的行程=甲、乙出发点之间的距离; 若甲、乙同时出发,则甲用的时间=乙用的时间.
2.追及问题 快者走的路程-慢者走的路程=快者出发时两者间的距离; 若同时出发,则快者追上慢者时,快者用的时间=慢者 用的时间.
课堂小结
1.相遇问题 甲的行程+乙的行程=甲、乙出发点之间的距离; 若甲、乙同时出发,则甲用的时间=乙用的时间. 2.追及问题 快者走的路程-慢者走的路程=快者出发时两者间的距离; 若同时出发,则快者追上慢者时,快者用的时间=慢者 用的时间.
3.航行问题 顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度. 顺风速度=无风速度+风速; 逆风速度=无风速度-风速. 往返于A,B两地时,顺流(风)航程=逆流(风)航程.

七年级数学上册教学课件《解一元一次方程(二)——去括号与去分母》(人教)

七年级数学上册教学课件《解一元一次方程(二)——去括号与去分母》(人教)

6x +6(x-2000) =150000
去括号
6x +6x-12000=150000
移项
6x +6x=150000+12000
合并同类项
12x=162000
系数化为1
x=13500
问题1 某工厂加强节能措施,前年下半年与上半年相比,月 平均用电量减少2000kW·h(千瓦·时),全年用电15万kW·h。 这个工厂去年上半年每月平均用电多少? (5)本题还有其他列方程的方法吗? 解:设下半年每月平均用电y kW· h。 根据题意,得 6y +6(y+2000) =150000 ② (6)试仿照解方程①方法解方程②。
实际问题的答案
检验
作业:教科书第91页习题3.3第1、6、7题。
随堂演练
1.方程4(a-x)-4(x+1)=60的解是x=-1,则a的值是( C ) A.-14 20 C. 14 D.-16 2.解方程5-5(x+8)=0的结果是 -7 。
3.解下列方程: (1) 5(x+8)-5=6(2x-7); (2) 4(x-1)+3(2x+1)=10(1-2x)。 4.一架飞机在两城之间飞行,风速为24km/h,顺风飞行需要 2小时50分,逆风飞行需要3h。求无风时飞机的航速和两城之 间的航程。
回顾此题和问题1的解决过程,说一说列一元一次方
程解决实际问题的方法和步骤。
回顾此题和问题1的解决过程,说一说列一元 一次方程解决实际问题的方法和步骤。 实际问题 一元一次方程
解 方 程
设未知数,列方程
实际问题的答案
检验
一元一次方程的解 (x=a)
知识归纳
1.“去括号法”解一元一次方程的步骤:

人教版数学七年级上册解一元二次方程(二)去括号与去分母课件

人教版数学七年级上册解一元二次方程(二)去括号与去分母课件

解:设目的地距学校 x km,则骑自行车所用
时间为
x 9
h,乘汽车所用时间为
x 45
h.
由题意得 解得
x - x = 40 . 9 45 60
x=7.5
答:目的地距学校7.5 km.
一通讯员骑自行车把信送往某地.如果每小时 行15 km,就比预定时间少用24分钟;如果每小 时行12 km,就比预定时间多用15分钟,那么预 定时间是多少小时?他去某地的路程是多少km?
2.为了使每天的产品刚好配套,应使生产的螺母恰好是螺 钉数量的________.
【变式思考 1】 某车间有 28 名工人,生产一种螺母和螺栓,每
人每天平均能够生产螺栓 12 个或螺母 18 个,第一天 安排 14 名工人生产螺栓、14 名工人生产螺母,问第 二天应安排多少工人生产螺栓、多少工人生产螺母, 才能使当天生产的螺栓和螺母与第一天生产的刚好 配套?(已知每个螺栓要配两个螺母)
合并同类项,得
10x=4 200
系数化为1,得
x=420.
答:A,B两地间的路程是420 km.
问题2 回顾本题列方程的过程,计算行程问题时 常用的数量关系是什么?
路程=速度×时间
某中学组织团员到校外参加义务植树活动,一 部分团员骑自行车先走,速度为 9 km/h,40分钟后 其余团员乘汽车出发,速度为 45 km/h,结果他们 同时到达目的地,则目的地距学校多少km?
【变式思考 2】 某车间有 27 名工人,生产一种螺母和螺栓,每人
每天平均能够生产螺栓 12 个或螺母 18 个,问应安排多 少工人生产螺栓、多少工人生产螺母,才能使当天生产 的螺栓和螺母刚好配套?(已知每个螺栓要配两个螺 母)
【变式思考 3】 某车间有 27 名工人,生产一种螺母和螺栓,每人每天平

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

黑龙江双鸭山人教版七年级数学上册3.3解一元一次方程(二)去括号与去分母(第3课时)(22张PPT)

合并同类项,得 25x=23
系数化为1,得
x= 23 . 25
练习
B
12
3(3y-1)-12=2(5y-7)
3.汛期来临前,滨海新区决定实施海堤加固工程.某 工程队承包了该项目,计划每天加固60米,在施工 前,得到气象部门的预报,近期有台风袭击滨海新区, 于是工程队改变计划,每天加固的海堤长度是原计划 的1.5倍,结果提前10天完成加固任务.若设滨海新区 要加固的海堤长x米,则下面的方程正确的是( )
2
10
5
3x 1-2=3x 2- 2x 3
2
10
5
去分母
5(3x+1)-10 2=(3x-2)-2(2x+3)
去括号
15x+5-20=3x-2-4x-6
移项
15x-3x+4x=-2-6-5+20
合并同类项
16x 7
系数化为1
x= 7 16
归纳与总结
解有分数系数的一元一次方程的步骤:
1.去分母;
2.去括号; 3.移项; 4.合并同类项; 5.系数化为1.
以上步骤是不 是一定要顺序 进行,缺一不 可?
主要依据:等式的性质和运算律等.
3.巩固新知 例题规范
解下列方程:
(1) x+1-1=2+ 2-x
2
4
解:(1)去分母(方程两边乘4),得
2( x+1)-4=8+(2-x)
去括号,得 2x+. 2-4=8+2-x
移项,得 2x+x=8+2-2+4
合并同类项,得 3x=12
系数化为1,得 x=4.
3.巩固新知 例题规范
(2)3x+ x-1=3- 2x-1
2
3
解:(1)去分母(方程两边乘6),得

2024年湘教版七年级数学上册 3.2 第3课时 去括号、去分母(课件)

2024年湘教版七年级数学上册 3.2 第3课时 去括号、去分母(课件)

2. (武昌区期末) 方程 x-1-2x+3=1,去分母正确的
2
3

( B)
A. 3(x-1)-2(2x+3)=1
B. 3(x-1)-2(2x+3)=6
C. 3x-1-4x+3=1
D. 3x-1-4x+3=6
3. 把下列方程化成 x=a 的形式:
(1) 7x-3=3x-(x-2); (2) 3(x-1)-2(2x+1)=12;
解:(1) 去括号,得
(2) 去括号,得
7x-3=3x-x+2.
3x-3-4x-2=12.
移项,得
移项,得
7x-3x+x=2+3.
3x-4x=12+3+2.
合并同类项,得 5x=5. 合并同类项,得 -x=17.
两边同时除以 5,得 x=1.
两边同时除以 -1,得 x=-17.
4. (澄海区期末) 解下列方程:
6x+15=x+5,
移项,得 6x-x=5-15, 合并同类项,得 5x=-10, 两边都除以 5,得 x=-2.
运用乘法对加法的分 配律,将方程中的括 号去掉,方程的这种 变形叫作去括号.
知识要点
一元一次方程去括号有什么样的规律?说说你的理由.
方程
左右 两边
去括号
整式
去括号 去括号规律: +(a-b)=a-b -(a-b)=-a+b
方程两边都除以 5 ,得 应改为 3
x
=
-1.
5
应改为
x
=
-
4 3
练一练
1. 把下列方程化成 x=a 的形式:
(1) 2x-(x+10)=5x+2(x-1);
解:去括号,得 2x-x-10=5x+2x-2.
移项,得 2x-x-5x-2x=-2+10.

人教版七年级上册数学教案第三章3.3解一元一次方程-去括号与去分母

人教版七年级上册数学教案第三章3.3解一元一次方程-去括号与去分母
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去括号与去分母在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调分配律的正确运用和最小公倍数的寻找这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与去括号与去分母相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的方程求解实验操作。这个操作将演示去括号与去分母的基本原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配物品或平均分配食物的情况?”(如:将一定数量的糖果平均分给几个朋友)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程去括号与去分母的奥秘。
-目标:确保学生能熟练运用去括号与去分母的方法,解决一元一次方程。
2.教学难点
-难点内容:在去括号与去分母过程中,学生容易出现的错误。
-难点突破:
(1)去括号时,负号的运用错误。
-举例:解方程-2(x + 3) = 4,学生可能会错误地将-பைடு நூலகம்乘以括号内的每一项,而忘记变号。
(2)去分母时,最小公倍数的寻找不准确,导致计算错误。

人教版七年级数学上册3.3 《解一元一次方程:去分母》教学课件

人教版七年级数学上册3.3 《解一元一次方程:去分母》教学课件
3.3 解一元一次方程 ------去分母
下面的方程在求解中的步骤有: 在每一步求解时要注意什么 下面的方程在求解中有哪些步骤? ?
合并 知识回顾:请解下列题目,比一比谁快 , 去括号 移项 系数化为1
同类项 (1)12(x+1)= -(3x-1)
解:去括号,得
移项,得
12x+12=-3x+1
12x+3x=1-12 15x= - 11
特别关注
1.去分母时,应在方程的左右两边都乘以分母 的最小公倍数,不能漏乘没有分母的项。 2.括号前是负号的去掉括号时,括号内各项都要 变号。 3.移项是从方程的一边移到另一边,必须变号; 只在方程一边交换位置的项不变号。 4.合并同类项时,系数加、减要细心。 5.系数化为1时,要注意负号与分数。 6.求出解后养成检验的习惯。
3x 3 8 x 6
5 x 0 x 0 系数化为1,得
火眼金睛
• 下面的解方程的过程是否正确?不正确的 请改正。 x- 2 x+2 • (1) 3 = 6 -1 • 两边同乘以6,得 2x-2=x+2- 6 2x 1 5x 1 1 • (2) 6 4 • 去分母,得 2(2X-1)-3(5X+1)=1 2x 3 9x 5 0 • (3) 2 8 • 去分母,得 4(2X+3)-9X+5=8
x-1 2 x-1 =3- (3) 3 x+ 2 3
解:去分母(方程两边乘6),得
18 x+3( x-1)=18-2(2 x-1).
学.科.网
去括号,得 18 x+3 x-3=18-4 x+2
移项,得 18 x+3 x+4 x=18+2+3
合并同类项,得 25 x=23

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件

移项,得4x-3x=6+2+1,
合并同类项,得x=9.
错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不
含分母的项.
2021/12/11
第二十二页,共九十五页。
知识点一 解一元一次方程——去括号(kuòhào)
1.将方程-3(2x-1)+2(1-x)=2去括号,得 ( ) A.-3x+3-1-x=2 B.-6x-3+2-x=2 C.-6x+3+1-2x=2 D.-6x+3+2-2x=2
≠0,a,b为常数)
等式的 性质2
(1)系数相加; (2)字母及其指数不变
(1)除数不为0;(2)不要把分子、分 母颠倒
化分母中的小数为整数不同于去分母,不是将方程两边同时乘同一个数,而是将分子、分母同时乘同一个 数
第六页,共九十五页。
例3 解方程:(1)4-3(10-y)=5y;
(2) 2 x =1 2-1x . 1
点拨 这是一道典型的追及问题,做题时要注意挖掘题中的隐含条件: 小明用的时间比小亮用的时间多0.5 h.
2021/12/11
第二十页,共九十五页。
易错点一 去括号时漏乘项或出现符号(fúhào)错误
例1 解方程:4x-3(2-x)=5x-2(9+x).
错解 错解一:去括号,得4x-6+x=5x-18-x, 移项、合并同类项,得x=-12. 错解二:去括号,得4x-6-3x=5x-18+2x, 移项、合并同类项,得-6x=-12, 系数化为1,得x=2. 正解 去括号,得4x-6+3x=5x-18-2x, 移项、合并同类项,得4x=-12,系数化为1,得x=-3. 错因分析 错解一中运用分配律时,括号前的系数只乘了第一项,漏乘 了第二项;错解二中出现了符号错误.本题括号前面是“-”,去括号时, 2只021改/12/变11 了第一项的符号,而忽视了第二改十一页变,共九括十五号页。 内其他项的符号.

七年级数学 第三章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母(3)

七年级数学 第三章 一元一次方程 3.3 解一元一次方程(二)去括号与去分母(3)

12/8/2021
第十九页,共十九页。
掌握解一元一次方程中“去分母”的方法(fāngfǎ), 并能解此类方程 .(重点)
运用一元一次方程(yī cìfānɡ chénɡ)解决实际问题 难点
12/8/2021
第四页,共十九页。
情景导入
丢番图的墓志铭:
“坟中安葬着丢番图,多么令人惊讶,它忠实地记录 了所经历的道路.上帝给予的童年占六分之一.又 过十二分之一,两颊长胡.再过七分之一,点燃结婚
的蜡烛.五年之后(zhīhòu)天赐贵子,可怜迟到的宁馨儿,享
年仅及其父之半,便进入冰冷的墓.悲伤只有用数论 的研究去弥补,又过四年,他也走完了人生的旅途.”
你知道丢番图去世时 的年龄(niánlíng)吗?请你 列出方程
来算一算.
12/8/2021
第五页,共十九页。
解:设丢番图去世的年龄为x岁,由题意,得
去分母的关键是在于:方程的两边同时乘各分母的最小公倍数,化为 整系数方程。
12/8/2021
第六页,共十九页。
探索新知 解方程:
3x+1 2
3x-2 -2= 10
-
2x+3 5
想一想: 去分母(fēnmǔ)时要 注意什么问题?
(1)方程两边(liǎngbiān)每一项都要乘各分母的最小 公倍数
(2)去分母后如分子中含有两项,应将该分子
贴近教学
12/8/2021
服务 师 (fúwù) 生方便 老 (fāngbiàn) 师 第一页,共十九页。
人教版
七年级 数学 上册 (shùxué)
12/8/2021
第二页,共十九页。
3.3
(2)
解一元一次方程(yī cì fānɡ chénɡ)

人教版七年级上册第三章3.3解一元一次方程-去括号与去分母(教案)

人教版七年级上册第三章3.3解一元一次方程-去括号与去分母(教案)
去分母法则的教学也遇到了类似的挑战。学生们在处理含有变量的分母时,往往会忘记将等式两边的常数项也乘以分母的乘数。这表明他们在理解等式性质方面还存在一些盲点。我计划在下一节课中,通过更多的实际例题和小组讨论,帮助学生加深对这一概念的理解。
实践活动和小组讨论环节,我观察到学生们积极参与,乐于分享自己的解题思路。这让我感到欣慰,因为这说明学生们在学习过程中逐渐培养了解决问题的能力和团队合作意识。然而,我也注意到有些学生在讨论中较为沉默,可能是因为对自己的答案不够自信。在未来的教学中,我需要更加关注这部分学生,鼓励他们大胆表达,增强他们的自信心。
3.重点难点解析:在讲授过程中,我会特别强调去括号法则和去分母法则这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的方程求解操作。这个操作将演示如何应用去括号与去分母法则。
3.应用以上法则解决具体的一元一次方程,如2(x-3)+4=3x,以及3/4x+1=2x-1/2等。
4.分析和讨论去括号与去分母过程中可能出现的运算错误,提高解题正确率。
二、核心素养目标
1.理解与运用:使学生理解一元一次方程的基本概念和解题方法,培养他们在实际问题中建立方程模型的能力,提升对数学知识的应用意识。
人教版七年级上册第三章3.3解一元一次方程-去括号与去分母(教案)
一、教学内容
人教版七年级上册第三章3.3节,本节课主要围绕解一元一次方程展开,内容包括:
1.去括号法则:掌握如何将方程中的括号去掉,如a(b+c)=ab+ac。

人教版七年级数学上册《三章 一元一次方程 3.3 解一元一次方程(二)——去括号与去分母》示范课课件_2

人教版七年级数学上册《三章 一元一次方程  3.3 解一元一次方程(二)——去括号与去分母》示范课课件_2

x = 37 14
练一练
解下列方程:
(1) 3x - 2 = 7 ;
6
3
x = 16 3
(2) 2x - 1 - 2 = 3x + 4 + 1;
4
5
x = - 81 2
(3) x + 4 - -5x + 2 = 3 + 5x - 1 .
3
4
6
x= 8 3
工程问题
1.工作量、工作时间、工作效率; 2.这三个基本量的关系是: 工作量=工作时间×工作效率 工作效率=工作量÷工作时间 工作时间=工作量÷工作效率 3.工作总量通常看作单位“1”
教学目标
知识与能力
1.掌握解一元一次方程中“去分母”、 “去括号”的方法,并能解此类型的方程.
2.了解一元一次方程解法的一般步骤.
教学目标
过程与方法
1.通过运用算术和列方程两种方法解决 实际问题的过程,体会到列方程解应用题更为 简捷明了;掌握去括号解方程的方法,会用去 分母的方法解一元一次方程.
x 13 5
(2) x 4 x 5 x 3 x 1
3
3
4
解:去分母(方程两边同乘12),得
4(-x+4)-12x+5×12=4(x-3)-3
(x-1)
去括号,得
-4x-16-12x+60=4x-12-3x+3
移项,得
-4x-12x-4x+3x=-12+3+16-60
分析:设王大伯共种了x亩茄子,则他种 西红柿_(__2_5_-__x_)__亩.种茄子每亩用了1700 元.那么种茄子一共用去了__1_7_0_0_x__元; 种 西红柿每亩用了1800元,则他种西红柿共用 去了_1_8_0_0__(__2_5_-__x_)_元.根据王大伯种这两 种蔬菜共用去了44000元,可列方程

人教版数学初一上册3.3 解一元一次方程(二)——去括号与去分母课件

人教版数学初一上册3.3 解一元一次方程(二)——去括号与去分母课件
人教版数学七年级上册
3.2 解一元一次方程(二) ——去括号与去分母
探究新知
利用去括号解一元一次方程
化简下列各式:
(1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式= -3a+2b + 3a-3b =-b; (2) 原式=-5a+4b + 3a - b= -2a+3b.
解:去括号,得
x-2x 4=3x+5x-5. 移项,得
x-2x-5x-3x=-5-4.
合并同类项,得 9x=- 9.
系数化为1,得 x=1.
(2)7+
8
3 4
x
1 =3x-
6
1 2
2 3
x
.
解:去括号,得
7 6x 8=3x 3 4x. 移项,得
6x-3x-4x=-3-7+8.
合并同类项,得 x=- 2.
分析 找等量关系.这艘船往返的路程相等,即 顺流速度_×__顺流时间_=__逆流速度_×__逆流时间.
解:设船在静水中的平均速度为 x km/h,则顺流速度 为(x+3) km/h,逆流速度为(x-3) km/h.
根据顺流速度×顺流时间=逆流速度 ×逆流时间
列出方程,得 2( x+3 ) = 2.5( x-3 ).
方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标 准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪 个阶段,然后列方程求解即可.
巩固练习 4.某中学计划给结成帮扶对子的农村希望小学捐赠40台电 扇(分吊扇和台扇两种).经了解,某商店每台台扇的价格 比每台吊扇的价格多80元,用1240元恰好可以买到3台台 扇和2台吊扇.每台台扇和每台吊扇的价格分别为多少元?

人教版数学七年级上册人教版数学3.3 解一元一次方程(二)去分母课件

人教版数学七年级上册人教版数学3.3 解一元一次方程(二)去分母课件

0.3
0.02
3
2
C.40 5( 3x 7 ) 2( 8 x 2 )去括号,得40 15x 7 16 x 4
D. 2 x 5,得x 25
5
2
2.解方程 x 4 x 3 1.6 0.2 0.5
答案 : x 122 15
3.将方程 0.7 0.3x 0.2 1.5 5x 变形正确的是(
分母是小数的方程的解法
例题2 解方程: x 0.17 0.2x 1
0.7 0.03
解析原:方程可以化成 10 x 17 20x 1
7
3
去分母得,30x-7(17-20x)=21
去括号,得30x-119+140x=21
移项,合并同类项,得170x=140
方程两边同除以170,得x=14 17
系数化为1,得 X=-1
如何求解方程呢?
x 0.3
=1+1.2-0.3x 0.2
解:原方程可化为
10x 1 12 3x
3
2
去分母,得 20x=6+3(12-3x)
分母化整数利 用分数的性质
去括号,得
20x=6+36-9x
移项,得
20x+9x=6+36
合并同类项,得 29x=42
化系数为1,得 x= 42 29
移项,得 18x+3x+4x=18+2+3
合并同类项,得 25x=23
系数化为1,得 x= 23 . 25
小试牛刀
1.将方程 x 2 x 1两边乘 6,得 2( x 2) 3( x 1) .
3
2
2 . 将 方 程 3x 1 x 1 两 边 乘
4
5
5(3x 1) 4( x 1).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
4
2
去分母,得 4 x 1 12x 12 3 x 2 62x 3 0
去括号,得 4x 4 12x 12 3x 6 12x 18 0
合并同类项,得 移项,得
系数化为1,得
17x 4 0 17x 4
x 4 17
所以,x的值为 4 . 17
三、巩固提高
2、 两缸共有水48升,甲缸给乙缸加水1倍后,乙缸又给 甲缸加入甲缸剩余水的1倍,若这时两缸的水相等,则甲 缸最初有水多少升?
的技巧、化小数分母为整数的方法; 3、当未知量很多时,学会用表格表示
未知量的方法.
五、目标检测
1、若方程 求的 a2 2a
a
x 1 2
值.
2x 1 5
1 2
x
1 与方程
2x 6a x a 2x 的解相同,
23
2、已知
a
3
b 12
0
,代数式
2b a 2
m
的值比
1bam 2
多1,
求 m 的值.
不要把分子、分母搞 颠倒.
一、自主学习 丢番图的墓志铭:
“坟中安葬着丢番图,多么令人惊讶,它忠实地记录 了所经历的道路.上帝给予的童年占六分之一.又 过十二分之一,两颊长胡.再过七分之一,点燃结婚 的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享 年仅及其父之半,便进入冰冷的墓.悲伤只有用数论 的研究去弥补,又过四年,他也走完了人生的旅途.”
二、合作探究
1、若 x 2是关于 x 的方程
2x m 1 x m 4 23
1 4m 8 m 1 的值.
4
的解,求
解题思路:根据方程的解的意义,把2代入方程中,得关于m的方
程,解这个方程得m的值,再把m的值代入代数式中求值.
解:根据题意,得
4m1 2m 42 3
去分母,得 34-m 6 42 m
解:移项,得 9 y 1 5 y 3 1 y 1 2 y 3 0
4
3
4
3
先移项行吗?
合并同类项,得 2 y 1 y 3 0
去括号,得 2y 2 y 3 0 合并同类项,得 y 5 0
移项,得 y 5
二、合作探究
3、解方程:
1 2
1 3
1 4
1 5
x
1
2
1
x
1
2
3
去分母,得 移项合并,得
1 x 1 4 5 1x5 5
系数化为1,得 x 25
三、巩固提高
1x、x2为何2值x 时3,的代值数互式为相x 3反1数 .x 1 的值与代数式
4
2
解题思路:根据互为相反数的两数的和等于0得方程,解方程即可.
解:根据题意,得 x 1 x 1 x 2 2x 3 0
人教版七年级数学上册 第三章一元一次方程
3.2去括号与去分母(第3课时)
朱河镇初级中学七年级数学组
一、自主学习 解一元一次方程的一般步骤:
变形名称
具体的做法
根据
注意事项
去分母
去括号
移项 合并 同类项 系数化 为1
在方程两边乘所有的分母的最 小公倍数,当分母是小数时, 要先利用分数的基本性质把小
数转化为整数,然后再去分母.
解题思路:由于未知量很多,利用列表分析如下:请填写各空格
甲缸
乙缸
最初
x
48 x
第1次后 x 48 x
248 x
第2次后 2 x 48 x 248 x x 48 x
2 x 48 x 248 x x 48 x
x 30
四、概括整合 1、认真分析题意,把求值问题转化为
解方程的问题; 2、掌握解方程中的整体思想、去括号
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
去括号,得 12 3m 6 8 4m
移项,得 3m 4m 812 6
合并同类项,得 m 2
当m=2时,14
4m
8
m
1
1 4
4
2
8
2
1
4
1
5
二、合作探究
2、解方程:94
y
1
5 3
y
3
1 4
y12 3来自y3解题思路:把y+1,y-3分别看做一个整体,进行移项,合并同
类项,再去括号,能起到简化计算的作用.
你知道丢番图去世时的年龄吗?请你列出方程 来算一算.
一、自主学习
解 设令丢番图年龄为x岁,依题意,得
1 x 1 x 1 x5 1 x4 x
6 12 7
2
去分母,得 14x+7x+12x+420+42x+336=84x
移项,得
14x+7x+12x+42x-84x=- 420 – 336 合并同类项,得 - 9X= - 756 系数化这1.得 X=84 答丢番图的年龄为84岁.
1
解题思路:此一元一次方程含多重括号,可按先去小括号,再去
中括号,最后去大括号的顺序做,但计算量较大;若由外向内去
括号,一边去括号,一边移项合并,则较为简便.
解:去分母,得
1 3
1 4
1 5
x
1
2
1
2
移项合并,得
1 4
1 5
x
1
1
移项合并,得
1 3
1 4
1 5
x
1
2
1
去分母,得
1 4
1 5
3、已知关于 x
方程
3
x
2
x
a 3
4x
与方程
3x a 1 5x 1 12 8

解相同,求的 a 值.
4、如果
a3 a9 26
与1 2a 1
3
互为相反数,求关于
x
的方程
ax 3 a x 的解.
五、目标检测
相关文档
最新文档