人教版七年级上册第四章几何图形初步知识点总结

合集下载

初一数学上-第四章:几何图形初步

初一数学上-第四章:几何图形初步

第四章:几何图形初步一、几何图形4.1.1几何图形的基本元素:①点②线③面④体注解:包围着体的叫面;面和面相交的地方叫线;线和线相交的地方叫点在几何图形中的线叫棱,在平面图形中的线叫边。

4.1.2立体图形和平面图形(一)区分①只在一个平面内形成的图形叫平面图形②在两个或两个以上的面形成的图形叫几何图形(二)简单分类:①平面图形有:三角形,四边形,正方形,五边形等②几何图形有:锥、柱、球等其中锥的叫法是几棱锥,柱的叫法是几棱柱或者圆柱,正方体和长方体都是属于四棱柱图形展示:精品题目1.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体2.如图,在长方体ABCD﹣EFGH中,与面ABCD垂直的棱有()A.2条B.3条C.4条D.8条3.下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个4.下列几何体中,不完全是由平面围成的是()A.B.C.D.5.下列图形中,不是立体图形的是()A.圆锥B.圆柱C.圆D.球6.下面几何体中为圆柱的是()A.B.C.D.7.下面图形中,以直线为轴旋转一周,可以得到圆柱体的是()A.B.C.D.8.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.4.1.3展开图:把一个几何图形的所有面展开放到一个平面内形成的图形叫展开图→由三棱柱展开得到的图形4.1.4三视图:从左边看,从前(正)面,从上面看,从这3个方向看得到的图形叫三视图二、直线、射线、线段(1)定理:经过两点有一条直线,并且只有一条直线(2)特点:①直线:没有端点,用小写字母表示;如直线a②射线:只有一个端点,用两个大写字母或者一个小写字母表示;如:射线OA或者射线b,O为射线的端点③线段:有两个端点,用两个大写字母或者一个小写字母表示;如:线段AB或者线段b,AB分别为两个端点图形展示:(3)尺规作图:用尺子和圆规作图叫尺规作图(4)中点:一个点如果能把一条线段平分为两条相等的线段,这个点就叫这条线段的中点(5)距离:连接两点间的线段的长度叫做这两点的距离。

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》知识点总结(含答案解析)一、选择题1.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南D解析:D【分析】 如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D .2.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .3.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D .【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A ,B ,C 三点,使得AB=5cm ,BC=2cm ,当C 在B 的右侧时,如图,AC=5+2=7cm当C 在B 的左侧时,如图,AC=5-2=3cm ,综上可得AC=3cm 或7cm ,∴(4)错误;正确的只有1个,故选:A .【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.4.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π C解析:C【分析】 根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.6.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1A解析:A【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴AB=1.5CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=MB=12AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点.其中正确的是()A.①④B.②④C.①②④D.①②③④B 解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.8.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.9.如图所示,在∠AOB的内部有3条射线,则图中角的个数为().A.10 B.15 C.5 D.20A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+ 4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.12.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________. 【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查 解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.13.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.14.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.15.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若3AC=,1CP=,则线段PN的长为________.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.16.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.17.一个圆的周长是62.8m,半径增加了2m后,面积增加了____2m.( 取3.14)16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.18.若∠B 的余角为57.12°,则∠B=_____°_____’_____”5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.3或4或6【分析】分三种情况下:①∠AOP =35°②∠AOP =20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP =35°,②∠AOP =20°,③0<x <50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP =12∠AOB =35°时,∠BOP=35° ∴互余的角有∠AOP 与∠COP ,∠BOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共4对;②∠AOP =90°-∠AOB =20°时,∴互余的角有∠AOP 与∠COP ,∠AOP 与∠AOB ,∠AOP 与∠COD ,∠COD 与∠COB ,∠AOB 与∠COB ,∠COP 与∠COB ,一共6对;③0<x <50中35°与20°的其余角,互余的角有∠AOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共3对.则m =3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.5cm 【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm 求出MB=xcmCN=2xcm 得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm ∵M 是解析:5cm【分析】运用方程的思想,设AB=2xcm ,BC=3xcm ,CD=4xcm ,求出MB=xcm ,CN=2xcm ,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.三、解答题21.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 22.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.解析:(1)射线OC 的方向是北偏东70°;(2)∠COE =70°;(3)∠AOD =90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC 的度数,即可确定OC 的方向;(2)根据∠AOC=55°,∠AOC=∠AOB ,得出∠BOC=110°,进而求出∠COE 的度数; (3)根据射线OD 平分∠COE ,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°即∠NOA =15°,∠NOB =40°,∴∠AOB =∠NOA +∠NOB =55°,又∵∠AOB =∠AOC ,∴∠AOC =55°,∴∠NOC =∠NOA +∠AOC =15°+ 55°70=°,∴射线OC 的方向是北偏东70°.(2)∵∠AOB =55°,∠AOB =∠AOC ,∴∠BOC =∠AOB +∠AOC =55°+55°=110°,又∵射线OD 是OB 的反向延长线,∴∠BOE =180°,∴∠COE =180°-110°=70°,(3)∵∠COE =70°,OD 平分∠COE ,∴∠COD =35°,∴∠AOD =∠AOC +∠COD =55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.23.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.解析:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【分析】设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】设这个锐角为x 度,由题意得:()18049030x x -=--,解得50x =.即这个锐角的度数为50︒.905040︒︒︒-=,18050130︒︒︒-=.答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【点睛】本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 24.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.25.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm). 解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=.故答案为:12,9,23,6,MC,9,6,15.【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM,线段的比得出MC是解题关键.26.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.27.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.28.如图,两个直角三角形的直角顶点重合,∠AOC=40°,求∠BOD的度数.结合图形,完成填空:解:因为∠AOC+∠COB=°,∠COB+∠BOD=①所以∠AOC=.②因为∠AOC=40°,所以∠BOD=°.在上面①到②的推导过程中,理由依据是:.解析:90,90,∠BOD,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB=90 °,∠COB+∠BOD=90 ° -﹣﹣﹣①所以∠AOC=∠BOD .﹣﹣﹣﹣②-因为∠AOC=40°,所以∠BOD=40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的构成点:直线与直线相交的点,是几何图形中最基本的图形。

线:面与面的交线是一条线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点运动成线,线运动成面,面运动成体。

(2)直线、射线和线段1、基本概念图形端点个数直线无直线a表示法直线AB(BA)作直线AB作法叙述做一条直线a制作射线ab作线段AB、连接AB延长线段AB延长叙述不能延长反向延长射线AB反向延长线段BA2、直线的性质有一条直线经过两点,并且只有一条直线。

缩写:两点确定一条直线。

3.画一条与已知线段相等的线段。

(1)测量方法。

(2)用尺子画图。

(4)比较线段的大小。

(1)测量方法。

(2)重叠法。

(5)线段的中点(二等分点)、三等分点和四等分点。

射线AB线段AB(BA)作线段a射线一个两个线段a线段定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:AMB符号:若点M是线段AB的中点,则AM=BM=1AB,AB=2AM=2BM.26、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系(1)点在直线上;(2)点在直线外.(三)角1.角:由两条有共同端点的射线组成的图形称为角。

七年级数学上册第四章几何图形初步知识点总结(超全)

七年级数学上册第四章几何图形初步知识点总结(超全)

(名师选题)七年级数学上册第四章几何图形初步知识点总结(超全)单选题1、如图是一个几何体的展开图,则这个几何体是()A.B.C.D.答案:B分析:根据侧面为n个长方形,底边为n边形,原几何体为n棱柱,依此即可求解.解:侧面为3个长方形,底边为三角形,故原几何体为三棱柱.故选:B.小提示:本题考查了几何体的展开图,n棱柱的展开图侧面为n个长方形,底边为n边形.2、由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是()A.B.C.D.答案:D分析:从正面看该几何体得到的平面图形是主视图,根据主视图的定义进行判断.解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.小提示:此题主要考查了不同角度看几何体,主视图是从物体的正面看得到的视图.3、若α=70°,则α的补角的度数是()A.130°B.110°C.30°D.20°答案:B分析:直接根据补角的定义即可得.∵α=70°∴α的补角的度数是180°−α=180°−70°=110°故选:B.小提示:本题考查了补角的定义,熟记定义是解题关键.4、如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.答案:B分析:根据面动成体:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱,据此判断即可.解:由题意可知:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱.故选:B小提示:本题考查了圆柱的概念和面动成体,属于应知应会题型,熟练掌握基础知识是解题关键.5、圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( )A .2:3B .4:5C .2:1D .2:9答案:D分析:利用圆柱、圆锥的体积公式,即可算出它们的高之比;由题意可知,圆柱的体积=πr 2h 1,圆锥的体积=13πr 2h 2,∵圆柱与圆锥的体积之比为2:3,∴πr 2ℎ113πr 2ℎ2=23, ∴ℎ1ℎ2=29=2:9. 故选:D .小提示:本题考查圆锥和圆柱的体积公式,熟练掌握圆锥和圆柱的体积公式计算是解决本题的关键.6、流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是( )A .点动成线B .线动成面C .面动成体D .以上都不对答案:A分析:流星是点,光线是线,所以说明点动成线.解:流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是:点动成线.故选:A小提示:此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.7、一个角的补角为138°,则这个角的余角为( )A .38°B .42°C .48°D .132°答案:C分析:根据互为补角的定义求出此角,然后再根据余角的定义求出答案即可.这个角是,180°-138°=42°,这个角的余角是,90°-42°=48°.故选:C .小提示:本题主要考查了补角和余角,熟练掌握补角和余角的定义是解题的关键.8、如图是由6块相同的小正方体组成的立体图形,从左面看到的形状是()A.B.C.D.答案:B分析:根据从左面看的要求画图即可.根据题意,从左面看到的形状是:,故选B.小提示:本题考查了从左面看几何体的形状,熟练掌握从左面看到图形的画法是解题的关键.9、一个角的度数等于60°20′,那么它的余角等于()A.40°80′B.39°80′C.30°40′D.29°40′答案:D分析:根据互为余角的定义解答即可.解:90°﹣60°20′=29°40′,故选D.小提示:本题主要考查了余角的定义,若两个角的和为90°,则这两个角互余.10、小王准备从A地去往B地,打开导航,显示两地距离为50km,但导航提供的三条可选路线长却分别为56km,66km,61km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点之间,直线最短D.两点确定一条直线答案:A分析:根据线段的性质:两点之间,线段最短,可得答案.小王准备从A地去往B地,打开导航,显示两地距离为50km,但导航提供的三条可选路线长却分别为56km,66km,61km(如图).能解释这一现象的数学知识是:两点之间,线段最短.故选A.小提示:本题考查了线段的性质,熟记线段的性质并应用是解题的关键.填空题11、如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.答案:月分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:由正方体的展开图特点可得:“神”字对面的字是“月”.所以答案是:月.小提示:此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12、根据表面展开图依次写出立体图形的名称:_____、_____、_____.答案:圆锥四棱锥三棱柱分析:根据表面展开图的形状判断即可.解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.所以答案是:圆锥,四棱锥,三棱柱.小提示:本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.13、在直线AB上,AB=10,AC=16,那么AB的中点与AC的中点的距离为__________.答案:3或13##13或3分析:分两种情况讨论:若点B位于点A和点C间,若点A位于点B和点C间,解:设AB的中点与AC的中点分别为点M、N,如图,若点B位于点A和点C间,MN=AN−AM=12AC−12AB=12×16−12×10=3;如图,若点A位于点B和点C间,MN=AN+AM=12AC+12AB=12×16+12×10=13;综上所述,AB的中点与AC的中点的距离为3或13.所以答案是:3或13小提示:本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系,利用分类讨论思想解答是解题的关键.14、平面内有n 个点A 、B 、C 、D …,其中点A 、B 、C 在同一条直线上,过其中任意两点画直线,最多可以画_____________________条.答案:n(n−1)2−2分析:如果所有点都不在同一直线上,当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…找到规律:当有n 个点不在同一直线上时,最多可连成n(n−1)2条直线,即可求得点A 、B 、C 在同一条直线上,最多可以画n(n−1)2−2条直线.如果所有点都不在同一直线上,当仅有两个点时,最多可连成1条直线;当有3个点时,最多可连成1+2=3条直线;当有4个点时,最多可连成1+2+3=6条直线;当有5个点时,最多可连成1+2+3+4=10条直线;…;可以得到规律:当有n 个点不在同一直线上时,最多可连成n(n−1)2条直线, 已知点A 、B 、C 在同一条直线上,则点A 、B 、C 任意两点的连线都是同一条直线,故最多可以画n(n−1)2−2条直线. 所以答案是:n(n−1)2−2. 小提示:本题考查了探究图形类规律以及直线的性质:两点确定一条直线.注意讨论点共线及不共线的情况,不要漏解.15、图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格,第2格,第3格,此时小正方体朝上一面的字是_________.答案:国分析:动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.由图1可得:“中”和“的”相对;“国”和“我”相对;“梦”和“梦”相对;由图2可得:该正方体从图2所示的位置依次翻到第1格、第2格、第3格时,“我”在下面,则这时小正方体朝上一面的字是“国”.所以答案是:国.小提示:本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.考查了学生空间想象能力.解答题16、欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F (Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:三棱锥三棱柱正方体正八面体V 4 6 8____________________________.答案:(1)表格详见解析;(2)V+F−E=2分析:(1)通过认真观察图象,即可一一判断;(2)从特殊到一般探究规律即可.解:(1)填表如下:三棱锥三棱柱正方体正八面体V 4 6 8 6V+F−E=2.小提示:本题考查规律型问题,欧拉公式等知识,解题的关键是学会从特殊到一般探究规律的方法,属于中考常考题型.17、数轴上有A,B,C三点,A,B表示的数分别为m,n(m<n),点C在B的右侧,AC−AB=2.(1)如图1,若多项式(n−1)x3−2x7+m+3x−1是关于x的二次三项式,请直接写出m,n的值:(2)如图2,在(1)的条件下,长度为1的线段EF(E在F的左侧)在A,B之间沿数轴水平滑动(不与A,B 重合),点M是EC的中点,N是BF的中点,在EF滑动过程中,线段MN的长度是否发生变化,请判断并说明理由;(3)若点D是AC的中点.①直接写出点D表示的数____________(用含m,n的式子表示);②若AD+2BD=4,试求线段AB的长.答案:(1)m=−5,n=1 (2)不变化,理由见解析(3)①m+n2+1;②103分析:(1)由题可知,n-1=0,7+m=2,求出m,n;(2)设点E表示的数为x,则AE=x+5,AF=x+6,EC=3−x,BF=−x,再由中点的定义,得MC=ME=3−x2,NF=−x2,由MN=ME−EF−FN,得出MN的定值;(3)①根据两点间距离公式以及中点公式进行推导即可;②由题意,AD+2BD=4,依次表示出AD,BD的长,代入求解即可. (1)解:由题可知,n-1=0,7+m=2,∴n=1,m=−5所以答案是:m=−5,n=1(2)解:MN的长不发生变化,理由如下:由题意,得点C表示的数为3,设点E表示的数为x,则点F表示的数为x+1∴AB=6,BC=2,AE=x+5,AF=x+6,EC=3−x,BF=−x,∵点M是EC的中点,N是BF的中点∴MC=ME=3−x2,NF=−x2即MN=ME−EF−FN=3−x2−1−−x2=12(3)解:①∵A,B表示的数分别为m,n(m<n)又点C在B的右侧∴AB=n-m∵AC−AB=2∴AC= n-m+2∵点D是AC的中点∴AD =12AC = 12(n -m +2) ∴D 表示的数为:m + 12(n -m +2)=m+n 2+1②依题意,点C 表示的数分别为n +2∴AB =n −m ,AD =m+n 2+1−m =n−m 2+1 ∴BD =|m+n 2+1−n|=|m−n 2+1|,2BD =2|m−n 2+1|=|m −n +2|∵AD +2BD =4即n−m 2+1+|m −n +2|=4当m −n +2>0时.n−m 2+1+(m −n +2)=4m −n =2∵m <n∴m −n =2不符合题意,舍去当m −n +2<0时.n−m 2+1−(m −n +2)=4n −m =103综上所述,线段AB 的长为103.小提示:本题主要考查了数轴上的动点问题,以及两点间距离公式和中点公式的考查,利用数形结合思想表示出线段长是解决问题的关键.18、如图所示,C 是线段AB 上的一点,D 是AC 的中点,E 是BC 的中点,如果AB =9cm ,AC =5cm.求:⑴AD 的长;⑵DE 的长.答案:(1)AD =52cm ;(2)DE =92cm.分析:(1)根据中点的定义AD =12AC 计算即可;(2)根据DE =DC +CE ,求出CD 、CE 即可解决问题.解:(1)∵AC =5cm ,D 是AC 中点,∴AD =DC =12AC =52cm ,(2)∵AB =9cm ,AC =5cm ,∴BC =AB −AC =9−5=4cm ,∵E 是BC 中点,∴CE =12BC =2cm , ∴DE =CD +CE =52+2=92cm .小提示:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.。

人教版 数学 七年级 上册 第四章 几何图形初步 知识点

人教版 数学 七年级 上册 第四章 几何图形初步 知识点

第四章几何图形初步一.几何图形的概念和分类几何图形:我们把实物中抽象出来的各种图形叫做几何图形。

几何图形分为平面图形和立体图形。

平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。

立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。

二.常见的立体图形柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。

B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。

椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。

球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。

多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。

三.常见的平面图形多边形:由线段围成的封闭图形叫做多边形。

多边形中三角形是最基本的图形。

圆:一条线段绕它的端点旋转一周而形成的图形。

扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。

四.从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。

立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。

五.圆柱和圆锥的侧面展开图棱柱和棱锥的展开图:根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三角形(4个)-----三棱锥。

C展开图中含有圆和长方形-----圆柱;D展开图中含有扇形------圆锥。

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

人教版七年级数学上册第四章《几何形状初探》知识点汇总

人教版七年级数学上册第四章《几何形状初探》知识点汇总

人教版七年级数学上册第四章《几何形状初探》知识点汇总1. 点、线、线段和射线在几何形状中,我们首先要了解的是基本的元素,包括点、线、线段和射线。

- 点是没有大小和形状的,在几何图形中用字母标记,如A、B 等。

- 线是由无限多个点连在一起形成的,没有宽度和厚度,可以用AB表示。

- 线段是一段有起点和终点的线段,可以用AB表示。

- 射线有一个起点,无穷远处没有终点,可以用AB表示,其中A是起点。

2. 线段的比较在几何形状中,我们常常需要比较线段的大小。

- 如果两个线段的长度相等,我们称它们为相等线段。

- 如果一个线段的长度比另一个线段的长度大,我们称它为长线段;反之,称为短线段。

3. 角的概念在几何形状中,角是由两条射线共同确定的,有以下几种概念:- 零角:两条射线重合时形成的角,角度为0。

- 直角:两条互相垂直的射线形成的角,角度为90度,用∠ABC表示。

- 钝角:两条射线的夹角大于90度但小于180度,用∠ABC表示。

- 锐角:两条射线的夹角小于90度,用∠ABC表示。

4. 角的比较在几何形状中,我们也经常需要比较角的大小。

- 如果两个角的度数相等,我们称它们为相等角。

- 如果一个角的度数比另一个角的度数大,我们称它为大角;反之,称为小角。

5. 平行线和垂直线在几何形状中,还有两个常见的线的关系。

- 平行线:在同一个平面内,永远不会相交的两条线称为平行线,用符号∥表示。

- 垂直线:互相垂直的两条线称为垂直线,用符号⊥表示。

6. 一些常见的几何形状在几何形状中,我们还需要了解一些常见的几何图形和形状。

- 三角形:由三条线段围成的几何形状。

- 直角三角形:其中一个角是直角的三角形。

- 等腰三角形:两边长度相等的三角形。

- 正方形:四条边长度相等且四个角都是直角的四边形。

- 长方形:对边长度相等但不是正方形的四边形。

7. 总结本章主要介绍了几何形状的基本元素点、线、线段和射线,以及各种角的概念和比较,还介绍了平行线和垂直线的关系,最后还列举了一些常见的几何图形和形状。

初一数学几何知识点梳理

初一数学几何知识点梳理

初一数学几何知识点梳理七年级上册数学第四章几何图形初步知识点一、几何图形初步认识1、几何图形:把从实物中抽象出来的各种图形的统称。

(长方体、圆柱、球、长方形、正方形、圆、线段、点、以及小学学过的三角形、四边形等,都是从形形色色的物体中外形中得出的,都是几何图形。

)2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

(如线段、角、三角形、长方形、圆等)3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

(长方体、正方体、圆柱、圆锥、球等)4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、点,线,面,体包围着体的是面,面有平的面和曲的面两种。

面和面相交的地方形成线,线和线相交的地方是点。

①图形是由点,线,面构成的。

②线与线相交得点,面与面相交得线。

③点动成线,线动成面,面动成体。

二、直线、线段、射线1、线段:线段有两个端点。

2、射线:将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

3、直线:将线段的两端无限延长就形成了直线。

直线没有端点。

4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。

5、相交:两条不同的直线有一个公共点时,称这两条直线相交。

6、两条直线相交有一个公共点,这个公共点叫交点。

7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

8、线段的性质:两点的所有连线中,线段最短。

(两点之间,线段最短)9、距离:连接两点间的线段的长度,叫做这两点的距离。

三、角1、角:有公共端点的两条射线组成的图形叫做角。

角有顶点和两条边。

2、角的度量单位:度、分、秒。

3、角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

两条射线叫做角的两条边。

②一度的1/60是一分,一分的1/60是一秒。

角的度、分、秒是60进制。

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结第四章图形的初步认识1、几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

2、线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

3、直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点之间,线段最短。

4、角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线二、基础知识巩固1、如图所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。

(1)(2)(3)2、(1)过一个已知点的直线有多少条?答:(2)过两个已知点的直线有多少条?答:(3)过三个已知点的直线有多少条?答:(4)经过平面上三点A,B,C中的每两点可以画多少条直线?请画出图来。

(5)根据(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线,会有什么样的结果?如果不能画,请简要说明理由;如果能画,请画出图来。

3、(1)计算:①27°42′30″+1070′;②63°36′-36.36°。

(2)用度、分、秒表示48.12°。

(3)用度表示50°7′30″。

4、小明从A点出发,向北偏西33°方向走33 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm表示3m),并从图上求出点B,C的实际距离。

5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?6、如图,经过直线a外一点p的4条直线中,与直线a平行的直线有___,共有__条.∠A与∠C__________.7、如图,如果AB∥CD,那么8、如图中几何体的展开图形是()A B C D9、如图是某些几何体的表面展开图,则这些几何体分别是 图1: 图2: 图3:10、若要使图中平面展开图按虚线折叠成正方体后,相对面上 两个数之和为6,x=_ ___,y=______.11、俯视图为圆的立体图形可能是________或___________。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看; 2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七上数学第四章知识点总结人教版

七上数学第四章知识点总结人教版

七上数学第四章知识点总结人教版摘要:一、前言二、人教版七上数学第四章的知识点概述1.几何图形初步2.点、线、面的关系3.直线、射线、线段4.角的概念及分类5.角的度量6.三角形的性质和分类7.三角形的内角和定理8.四边形的性质和分类9.平行四边形的性质10.梯形的性质11.面积的计算三、重要公式和定理四、实际应用与例题解析五、总结与展望正文:一、前言人教版七上数学第四章主要涉及几何图形的初步知识,这对于培养学生空间观念和几何直观能力具有重要意义。

本章内容较为基础,但也为后续的几何学习打下良好基础。

二、人教版七上数学第四章的知识点概述1.几何图形初步:本章从最基本的点、线、面开始,让学生了解它们之间的关系,为后续的几何学习打下基础。

2.点、线、面的关系:点动成线,线动成面,面动成体。

学生需要理解并掌握这一基本关系。

3.直线、射线、线段:直线是无限延伸的,射线有一个起点,线段有两个端点。

理解它们的定义和性质有助于更好地理解几何图形。

4.角的概念及分类:角是由两条射线共同确定的图形,有锐角、直角、钝角等分类。

学生需要学会识别和分类各种角。

5.角的度量:角的大小可以用度数或弧度表示,学生需要熟练掌握角的度量方法。

6.三角形的性质和分类:三角形由三条边和三个顶点组成,根据边长和角度的不同,可以分为不等边三角形、等腰三角形和直角三角形等。

7.三角形的内角和定理:三角形三个内角的和等于180 度。

8.四边形的性质和分类:四边形由四条边和四个顶点组成,根据边长和角度的不同,可以分为矩形、平行四边形、菱形、梯形等。

9.平行四边形的性质:平行四边形的对边平行且相等。

10.梯形的性质:梯形有一对平行的边,另一对不平行的边。

11.面积的计算:本章介绍了三角形、平行四边形、梯形等图形的面积计算公式。

三、重要公式和定理1.三角形的面积公式:S = 1/2 * a * h,其中a 为底边长,h 为高。

2.平行四边形的面积公式:S = a * h,其中a 为底边长,h 为高。

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。

②几何图形分为图形和图形。

③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。

④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。

02、常见的立体图形①柱体:A棱柱: B 圆柱②椎体:A棱锥 B圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。

①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。

②圆锥的平面展开图是。

③n棱柱的侧面展开图是 n个形,n棱柱有个底面,都是,n棱柱的平面展开图是。

④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。

⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。

_____是构成图形的基本元素点动成_____、____动成____、____动成____。

06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。

②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。

08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。

人教版七年级数学上册第四章几何图形初步知识点归纳及练习

人教版七年级数学上册第四章几何图形初步知识点归纳及练习

人教版七年级数学上册第四章几何图形初步知识点归纳及练习知识点一:几何图形1、我们把从实物中抽象出的各种图形统称为几何图形。

2、有些几何图形的各部分不都在同一平面内,它们是立体图形。

如长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等。

3、有些几何图形的各部分都在同一平面内,它们是平面图形。

如线段、角、三角形、长方形、圆等。

4、立体图形与平面图形虽然是两类不同的几何图形,但是立体图形中某些部分是平面图形,对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。

有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形成为相应立体图形的展开图。

知识点二:点、线、面、体1、立体图形是几何体,简称体;包围着体的是面,面有平面和曲面;面和面相交的地方形成线,线有直线和曲线;线和线相交的地方是点。

2、几何图形都是由点、线、面、体组成,点是构成图形的基本元素。

知识点三:直线、射线、线段1、线段:直线上两个点和它们之间的部分叫线段,这两个点叫线段的端点。

射线:将线段向一个方向无限延长就形成了射线。

直线:将线段向两个方向无限延长就形成了直线。

2、点与直线的位置关系:点p在直线a上(或说直线a经过点p);点p不在直线a上(或说直线a不经过点p)。

过一点可画无数条直线,过两点有且仅有一条直线。

简述为:两点确定一条直线。

3、线段的中点:把一线段分成两相等线段的点。

两点的所有连线中,线段最短,简述为:两点之间,线段最短。

两点间的距离:连接两点间的线段的长度。

线段的长短比较:⑴度量法;⑵叠合法判断:①两点间的距离是指两点间的线段。

()②两点间连线的长度叫这两点间的距离。

()知识点四:角角:由两条具有公共端点引出射线组成的图形(也可看做是由一射线绕端点旋转而成)。

角的表示:三个大写字母;一个大写字母(不混淆情况下方可使用);一个数字;一个希腊字母。

角的要素:顶点和边,角的大小与边的长短无关。

角的单位:度,分,秒①1°的60分之一为1分,记作1′,即1°=60′②1′的60分之一为1秒,记作1″,即1′=60″角的大小比较:⑴度量法;⑵叠合法。

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结

人教版七年级上第四章《几何图形初步》知识点总结1 .几何图形相关概念L几何图形:从形形色色的物体外形中得出的图形是几何图形。

它分为立体图形和平面图形。

2、立体图形:有些几何图形的各部分不都在同一平面内,它们是立体图形(如长方体.正方体.圆柱.圆锥.球等)。

3、平面图形:有些几何图形的各部分都在同一平面内,它们是平面图形(如线段.角.三角形.长方形.圆等)。

4、立体图形的展开图:将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5、体:几何体简称为体。

6、面:包围着体的是面,面有平的面和曲的面两种。

7、体:面与面相交的地方形成线,线和线相交的地方是点。

8、点线面体关系:点动成面,面动成线,线动成体。

2.直线、射线、线段L直线基本事实:经过两点有一条直线,并且只有一条直线。

简单说成:两点确定一条直线(公理)。

2、直线表示方法:(1)用直线上任意表示两个点的大写字母表示,如直线AB ;(2 )用一个小写字母表示,如直线Io3、直线的特征:①无端点;②向两端无限延伸;③不可度量。

4、直线与点的位置关系:①点在直线上(直线经过点);②点在直线外(直线不经过点).5、直线相交:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

6、射线定义:直线上一点和它一旁的部分叫做射线,这一点叫做射线的端点。

7、射线的表示方法:(1)用射线的端点和射线上另一点的大写字母表示,如射线OA ;(2 )用一个小写字母表示,如射线I.8、射线的特性:①一个断定;②向一方无限延伸;③不可度量.9、线段概念:直线上两点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段的表示方法:IOs(1)用线段两个端点的大写字母表示,如线段AB ;(2 )用一个小写字母表示,如线段I.Ils线段的特征:①两个端点;②无方向;③可度量.12、线段的中点:点M把线段AB分成相等的两条线段AM和MB ,点M叫做线段AB的中点。

人教版 七年级数学 知识总结 第四章 几何图形初步

人教版 七年级数学 知识总结 第四章 几何图形初步
������
P ②点不在线上 点 P 不在直线 ������ 上
直线 ������ 不过点 P
P
������
������
O 反向延长射线 AB
������
O
注:延长线具有方向性
(5)等分点:将线段平均分成几份的点 ①两等分点(中点):点 B 将线段 AC 平均分成两 份(点 B 正好在线段 AC 的中间)。
第四章 几何图形初步
4.1 几何图形 4.1.1 立体图形与平面图形 4.1.2 点、线、面、体
4.2 直线、射线、线段 4.3.1 角
4.3 角 4.3.2 角的比较与运算 4.3.3 余角和补角
4.1 几何图形
4.1.1 立体图形与平面图形
(1)定义 平面图形:各部分都在同一平面内 立体图形:各部分不 都在同一平面内
������
������
������
O
第二步:用圆规量取������的长度,以 O 为圆心,������为半径画
弧,与直线������相交于点 A。则 OA=������.
������
O
A
第三步:以 A 为圆心,������为半径画弧,与直线������相交于点 B。则 OB=2������.
������
线
线与线相交

―9―
4.2 直线、射线、线段
(1)复习旧知: 直线:向两端无限延伸(无长度)。 射线:向一端无限延伸(无长度)。 线段:有两个端点(有长度)。
(4)延长线: ①延长线段
A
B
(2)记法:大写字母表示点,小写字母表示线;
①直线:取线上任意两个字母(两点确定一条直线)
������
A
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.以度、分、秒为单位的角的度量制,叫做角度制.
角的比较与运算
比较角的大小:量角器量或叠合
角平分线:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.度量法、折叠法、尺规作图法等。三等分线
人教版 数学 七年级上册 第四章 几何图形初步
第四章:几何图形初步
几何图形
几何图形都是从形形色色的物体外形中得出的,分为立体图形和平面图形.几何图形都是由点、线、面、体组成的。
立体图形与平面图形
立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,它们是立体图形.
平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一个平面内,它们是平面图形.


角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.
平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始边与终边旋转重合时,形成周角.
角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.
展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.
点、线、面、体
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体.
包围着体的是面。面有平面和曲面两种。面动成体
面和面相交的地方形成线。有直线和曲线,线动成面
中点:点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。三等分点、四等分点……
关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.比较两条线段长短的方法有两种:度量比较法、重合比较法.
距离:连接两点间的线段的长度,叫做这两点间的距离.(平面上任意两点间的距离指的是连接这两点的线段的长度,强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离)
课题学习:设计制作长方体形状的包装纸盒
②射线:直线的一部分,用一个小写字母表示,如:射线l,或用两个大些字母表示,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).
尺规作图:在数学中,我们常限ห้องสมุดไป่ตู้用无刻度的直尺和圆规作图,这就是尺规作图。
线和线相交的地方是点。点动成线。点是构成图形的基本元素。
直线、射线、线段
关于直线的基本事实:经过两点有一条直线,并且只有一条直线.简称:两点确定一条直线.
相交、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
直线、射线、线段的表示方法
①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB.
余角和补角
余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中每一个角是另一个角的余角.同角(等角)的余角相等.
补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.同角(等角)的补角相等.注意:余角(补角)与这两个角的位置没有关系,只要度数之和满足了定义,则它们就具备相应的关系.
相关文档
最新文档