北师大版八年级数学上册第一章勾股定理测试题(含答案)
北师大版八年级勾股定理练习题(含答案)
北师大版八年级数学上【1】勾股定理练习题一、基础达标:1. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边, 90∠A,则a2+b2=c2;=D.若 a、b、c是Rt△ABC的三边, 90∠C,则a2+b2=c2.=2. Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是()A.cb+ D.+ C. ca<bba>a=+ B. c2c22+a=b3.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+14. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42 或 32 D.37 或 337.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为()(A2d(B d(C)2d(D)d8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是.12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是,另外一边的平方是.18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是.19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是. 二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AE 重合, AC B你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 小汽车 小汽车 B C 观测点所求直角三角形面积为21158602cm ⨯⨯=.答案:260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9.解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11.解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。
北师大版八年级上册数学第一章 勾股定理含答案【参考答案】
北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B.3 C.4 D.52、如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q。
若QH=2PE,PQ=15,则CR的长为()A.14B.15C.8D.63、如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD 于F,则PE+PF等于()A. B. C. D.4、直角三角形的两条直角边长分别为4和6,那么斜边长是()A.2B.2C.52D.5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,在图中找出若干个图形,使得它们的面积之和恰好等于最大正方形①的面积.下列方案中,错误的是( )A. B. C. D.6、⊙O的弦AB的长为8cm,弦AB的弦心距为3 cm,则⊙O的直径为()A.4 cmB.5 cmC.8 cmD.10 cm7、⊙o的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A.7B.17C.7或17D.48、如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8C.9D.109、若一直角三角形两边长分别为12和5,则第三边长的平方为()A.169B.169或119C.169或225D.22510、如图所示,在矩形ABCD中,AD=8,DC=4,将△ADC按逆时针方向绕点A旋转到△AEF(点,A,B,E在同一直线上),连接CF,则CF=( )A.10B.12C.D.11、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是()A. B. C. D.12、如图,在边长为2的正方形中,点为对角线上一动点,于点,于点,连接,则的最小值为()A.1B.C.D.13、如图,在△ABC中, AB=3,AC=2.当∠B最大时,BC的长是()A.1B.5C.D.14、以下列各数为边长,不能组成直角三角形的是()A.3,4,5B.4,5,6C.5,12,13D.6,8,1015、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边=6+3 .其中正确的结论有()形AOBO′A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如果一个直角二角形的两条直角边的长分别是5和12,那么这个直角三角形斜边长是________。
北师大版数学八年级上册第一章勾股定理专项练习(含答案)
北师大版数学八年级上册第一章勾股定理专项练习(含答案)练习一1. 如图字母B 所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 1942.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远 的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和 岸边的水平刚好相齐,河水的深度为( ). A.2m B.2.5cm C.2.25m D.3m3.△ABC 中,若AB=15,AC=13,高AD=12,则△A BC 的周长是( ) A.42 B.32 C.42或32 D.37或334、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一 个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、155. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C. a 1+b 1=h 1D. 21a +21b =21h6.已知,如图,在矩形ABCD 中,P 是边AD 上的动点,AC PE ⊥于E ,BD PF ⊥于F ,如果AB=3,AD=4,那么( ) A.512=+PF PE ; B. 512<PF PE +<513; C. 5=+PF PE D. 3<PF PE +<47.(1)在Rt△ABC 中,∠C=90°.①若AB=41,AC=9,则BC=_______;②若AC=1.5,BC=2,则AB=______,△ABC 的面积为________.8.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,•他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上,•小虎应把梯子的底端放在距离墙________米处.9.在△ABC中,∠C=900,,BC=60cm,CA=80cm,一只蜗牛从C 点出发,以每分20cm 的 速度沿CA-AB-BC 的路径再回到C 点,需要______分的时间.10.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm , A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的 食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________B16925第6题11.已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0, 则第三边长为______.12.如图7所示,Rt△ABC 中,BC 是斜边,将△A BP 绕点A 逆时针旋转后,能与 △ACP′重合,如果AP=3,你能求出PP′的长吗?13.如图4为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的 长度至少需要多少米?14.如图2,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面 用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积15.如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积.CBA D16.如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,•则这条小路的面积是多少?5米3米317、4个全等的直角三角形的直角边分别为a 、b ,斜边为c .现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中 的道理吗?请试一试.b18. 如图3,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M 在CH 上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M,需要爬行的最短距离是多少?19.《中华人民共和国道路交通安全法》规定:小汽车在城市街路上行驶速度不得超过70km/h .如图,一辆小汽车在一条城市道路上直道行驶,某一时刻 刚好行驶到路对面车速检测仪的正前方30m 处,过了2s •后,测得小汽车 与车速检测仪间距离为50m .这辆小汽车超速了吗?小汽车观察点小汽车C A20.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想 一想,此时EC 有多长?BCB EF21.有一块三角形的花圃ABC,现可直接测得∠A=30,AC=40m,BC=25m,请你求出这 块花圃的面积.22.如图所示,△AB C 中,∠ACB=90°,CD⊥AB 于D,且AB+BC=18cm,若要求出CD •和AC 的长,还需要添加什么条件?DCA23.四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11 a ,按上述方法所作的正方形的边长依次为n a a a a ,,,,432 ,请求出432,,a a a 的值;⑵根据 以上规律写出n a 的表达式.24.已知:如图,在Rt△ABC 中,∠C=90°,∠ABC=60°,BC 长为3 p ,BB l 是∠ABC 的平分线交AC 于点B 1,过B 1作B 1B 2⊥AB 于点B 2,过B 2作B 2B 3∥BC 交AC 于点B 3,过B 3作B 3B 4⊥AB 于点B 4,过B 4作B 4B 5∥BC 交AC 于点B 5,过B 5作B 5 B 6⊥AB 于点B 6,…,无限重复以上操作.设b 0=BB l ,b 1=B 1B 2,b 2=B 2B 3,b 3=B 3B 4,b 4=B 4B 5,…,bn=BnBn +1,….(1)求b 0,b 3的长;(2)求bn 的表达式(用含p 与n 的式子表示,其中n 是正整数)25、已知:在Rt△ABC 中,∠C=900,∠A、∠B、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l . ⑴填表:⑵如果a +b -c =m ,观察上表猜想:S l=__________(用含有m 的代数式表示). ⑶证明⑵中的结论.26.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”.(1)求图(一)中四边形ABCD 的面积;(2)在图(二)方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.DCBA图(一) 图(二)练习二1. 有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52, 以各组数为边长,能组成直角三角形的个数为( ). A.1 B.2 C.3 D.42.三角形的三边长分别为6,8,10,它的最短边上的高为( ) A.6 B.4.5 C.2.4 D.83.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成 直角三角形的有( )A 、5组;B 、4组;C 、3组;D 、2组4.在同一平面上把三边BC=3,AC=4、AB=5的三角形沿最长边AB 翻折后得到 △ABC′,则CC′的长等于( ) A 、125 ; B 、135 ; C 、56 ; D 、2455、下列说法中, 不正确的是 ( )A. 三个角的度数之比为1:3:4的三角形是直角三角形B. 三个角的度数之比为3:4:5的三角形是直角三角形C. 三边长度之比为3:4:5的三角形是直角三角形D. 三边长度之比为5:12:13的三角形是直角三角形6、如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能 构成一个直角三角形三边的线段是( )A. CD 、EF 、GHB. AB 、EF 、GHC. AB 、CD 、GHD. AB 、CD 、EF7.如图4所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积的和是_______cm 2.7cmDCB A8.已知2条线段的长分别为3cm 和4cm ,当第三条线段的长为_______cm 时,这3条线段能组成一个直角三角形.9、在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是________.(第6题)10. 传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘米,______厘米,________厘米,其中的道理是______________________11.小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方法吗?12.给出一组式子:32+42=52,82+62=102,152+82=172,242+102=262……(1)你能发现上式中的规律吗?(2)请你接着写出第五个式子.13.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41……这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.如果132=b+c,则b、c的值可能是多少14.如图,是一块由边长为20cm的正方形地砖铺设的广场,一只鸽子落在点A 处,它想先后吃到小朋友撒在B、C处的鸟食,则鸽子至少需要走多远的路程?15.如图,在△ABC 中,AB=AC=13,点D 在BC 上,AD=12,BD=5,试问AD 平分∠BAC 吗?为什么?CAB16.如图,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm ,BC=12cm ,CD=13cm ,AD=4cm ,东东由此认为这个四边形中∠A 恰好是直角, 你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果 你认为他不正确,那你认为需要什么条件,才可以判断∠A 是直角?DCA B17. 学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a 2+b 2=c 2, 或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=______mm;b=_______mm;较长的一条边长c=_______mm. 比较a 2+b 2=______c 2(填写’’>’’ , ”<’’, 或’’=’’); (2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=______mm;b=_______mm;较长的一条边长c=_______mm.比较a 2+b 2=______c 2(填写’’>’’ , ”<’’, 或’’=’’); (3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:_________________. 对你猜想22a b 与2c 的两个关系,利用勾股定理证明你的结论.(1)B A(2)CB A(3)CBA18.如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条? (2)试比较立体图中BAC ∠与平面展开图中B A C '''∠的大小关系?AC B 第17题图(1) 第17题图(2) A ' C 'B ' 第17题图(1)A ' C 'B 'D ' 第17题图(2) A ' C 'B '练习一答案1.C2.A3.C4.C5.D6.A7.(1)①40;②2.5;1.58.0.7 9. 12 10.25dm11.22或13或5 12.PP′=3. 13. 7米 14. 100平方米 15.12.516.=∴EC=84-80=4(m),∴S 阴=4×60=240(m 2).17.由图可知,边长为a 、b 的正方形的面积之和等于边长为c 的正方形的面积18. 25cm19.超速,经计算的小汽车的速度为72km/h20.由条件可以推得FC=4,利用勾股定理可以得到EC=3cm .21.提示:分锐角、钝角三角形两种情况:(1)S △ABC 2;(2)S △ABC 2.22.提示:可给特殊角∠A=∠BCD=30°,也可给出边的关系,如BC:AB=1:2等等. 23解:⑴11=a ;211222=+=a ()()222223=+=a ;2222224=+=a⑵12-=n n a∵12111==-a ;22122==-a ;22133==-a222144==-a ∴12-=n n a24.(1)b0=2p在Rt△B 1B 2中,b 1=P .同理.b 2=3 p/2b 3=3p/4(2)同(1)得:b 4=(3 /2)2p .∴bn=(3 /2)n-1(n 是正整数).25、⑴填表:⑵S l =m 4⑶证明:∵a+b -c =m ,∴a+b =m +c , ∴a 2+2ab +b 2=m 2+c 2+2mc .∵a 2+b 2=c 2,∴2ab=m 2+2mc∴ab 2=14m(m +2c) ∴S l =12ab a +b +c =14m(m +2c)m +c +c =m 426解:(1)方法一:S =12×6×4 =12方法二:S =4×6-12×2×1-12×4×1-12×3×4-12×2×3=12 (2)(只要画出一种即可)练习二答案1.C2.D3.B4.D5.B6.B7.49 8.5cmcm 9. 108 10. 6,6,10 勾股定理的逆定理11.方法不惟一.如:•分别测量三角形三边的长a 、b 、c (a≤b≤c),然后计算是否有a 2+b 2=c 2,确定其形状12.(1)(n 2-1)2+(2n)2=(n 2+1)2(n>1).(2)352+122=372.13.•其中的一个规律为(2n+1)=2n (n+1)+[2n (n+1)+1].当n=6时,2n (n+1)、[2n (n+1)+1]的值分别是84、•8514.AB=5cm ,BC=13cm .•所以其最短路程为18cm15.AD 平分∠BAC.因为BD 2+AD 2=AB 2,所以AD⊥BC,又AB=AC ,所以结论成立16.不正确.增加的条件如:连接BD ,测得BD=5cm .17.解:若△ABC 是锐角三角形,则有222a b c +>若△ABC 是钝角三角形,C ∠为钝角,则有222a b c +<.当△ABC 是锐角三角形时,a cb DC BA证明:过点A 作AD ⊥BC ,垂足为D ,设CD 为x ,则有BD =a x -根据勾股定理,得22222()b x AD c a x -==--即222222b x c a ax x -=-+-.∴2222a b c ax +=+∵0,0a x >>,∴20ax >.∴222a b c +>.当△ABC 是钝角三角形时,a cb D C BA证明:过B 作BD ⊥AC ,交AC 的延长线于D .设CD 为x ,则有222BD a x =-根据勾股定理,得2222()b x a x c ++-=.即2222a b bx c ++=.∵0,0b x >>,∴20bx >,∴222a b c +<.18解:(1如图(1)中的A C '',在A C D '''Rt △中13C D A D ''''==,,由勾股定理得:A C ''∴==答:这样的线段可画4条(另三条用虚线标出).(2)立体图中BAC ∠为平面等腰直角三角形的一锐角, 45BAC ∴∠=.在平面展开图中,连接线段B C '',由勾股定理可得:A B B C ''''==又222A B B C A C ''''''+=,由勾股定理的逆定理可得A B C '''△为直角三角形. 又A B B C ''''=,A B C '''∴△为等腰直角三角形.45B A C '''∴∠=. 所以BAC ∠与B A C '''∠相等. D '。
北师大版八年级上册数学第一章 勾股定理 含答案
北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如果梯子的底端离建筑物5m,那么13m长的梯子可以达到建筑物的高度是( )A.10mB.11mC.12mD.13m2、如图,有两棵树,一棵高5米,另一棵高2米,两树相距5米,一只小鸟从一棵树飞到另一棵树的树梢,至少飞了( )米。
A. 米B.5 米C.4米D. 米3、如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. B. C. D.4、在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,能判断△ABC是直角三角形的是()A.a=,b=,c=B.a=b,∠C=45°C.∠A:∠B:∠C=3:4:5D.a=,b=,c=25、在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子解下来,可是他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13B.12C.4D.106、如图,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是()A.5B.7C.9D.117、如图,一艘船由A港沿北偏西60°方向航行10海里至B港,然后再沿北偏东30°方向航行10海里至C港.则下列说法正确的是()A.C港在A港的南偏西30°方向上B.C港在A港的北偏西30°方向上 C.C港在A港的北偏西15°方向上 D.C港在A港的南偏西15°方向上8、以下列各组数据中,能构成直角三角形的是()A.2,3,4B.3,4,7C.5,12,13D.1,2,39、如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为()A.10B.8C.5D.310、已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A.5B.C.D. 或511、已知△ABC的三边分别长为a,b,c,且满足,则△ABC是().A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形12、已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是()A.24cm 2B.30cm 2C.40cm 2D.48cm 213、直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A. B. C. D.14、将直角三角形的三条边长同时扩大为原来的2倍,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.无法确定15、如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,若AD=2AB,则下列结论错误的是( )A.四边形EFGH为菱形B.S四边形ABCD =2S四边形EFGHC.D.二、填空题(共10题,共计30分)16、如图,矩形中,点分别在边上,连接,将和分别沿折叠,使点恰好落在上的同一点,记为点F.若,,则________.17、直角三角形两直角边长分别为,,则斜边长为________.18、如图,矩形AOBC的边OA,OB分别在x轴,y轴上,点C的坐标为(﹣2,4),将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为________.19、如图,已知直线AB与⊙O相交于A、B两点,∠OAB=30°,半径OA=2,那么弦AB=________.20、某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要________元.21、如图,在 3×3 的正方形网格中标出了∠1 和∠2,则∠2-∠1=________°22、如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD 的长为________cm.23、菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2014秒时,点P的坐标为________.24、如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为________.25、如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是________ cm.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°。
(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》测试题(有答案解析)
一、选择题1.如图是由4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,大正方形面积为48,小正方形面积为6,若用x ,y 表示直角三角形的两直角边长(x>y ),则()2x y +的值为( )A .60B .79C .84D .902.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )A .12B .13C .15D .243.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是2,5,1,2.则最大的正方形E 的面积是( )A .10B .8C .6D .154.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条5.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 6.下列几组数中,能作为直角三角形三边长度的是( ) A .2,3,4a b c === B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 7.如图,原来从A 村到B 村,需要沿路A →C →B (90C ∠=︒)绕过两地间的一片湖,在A ,B 间建好桥后,就可直接从A 村到B 村.已知5km AC =, 12km BC =,那么,建好桥后从A 村到B 村比原来减少的路程为( )A .2kmB .4kmC .10 kmD .14 km 8.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 9.在Rt ABC 中,90C ∠=︒,且4c =,若3a =,那么b 的值是( )A .1B .5C .7D .510.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地 送行二步与人齐,五尺人高曾记. 仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB 长度为1尺.将它往前水平推送10尺时,即A C '=10尺,则此时秋千的踏板离地距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA 长为( )A .13.5尺B .14尺C .14.5尺D .15尺 11.满足下列条件时,ABC 不是直角三角形的是( ) A .41AB =,4BC =,5AC = B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .40A ∠=︒,50B ∠=︒ 12.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =1;再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,那么点P 表示的数是( )A .2.2B .5C .1+2D .6二、填空题13.直角三角形纸片的两直角边长分别为6,8.现将ABC 如图那样折叠,使点A 与点B 重合,折痕为DE .则CE CB的值是__________.14.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.15.已知一个直角三角形的两边长分别为3和4,则斜边上的高是_________. 16.如图,一只蚂蚁从长、宽都是2,高是5的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是________.17.现有两根木棒,长度分别为5dm 和12dm ,若要钉成一个直角三角形框架,那么所需的第三根木棒的长度可以是________dm .18.一根长16cm 牙刷置于底面直径为5cm 、高为12cm 的圆柱形水杯中.牙刷露在杯子外面的长度为hcm ,则h 的取值范围是___.19.已知等边三角形的边长为2,则其面积等于__________.20.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.三、解答题21.如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为10的线段PQ ,其中P 、Q 都在格点上;(2)面积为13的正方形ABCD ,其中A 、B 、C 、D 都在格点上.22.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求作图:(1)在图15(2)在图2中画一个面积为5的直角三角形.23.如图,在△ABC 中,∠ACB =90°,BC =AC =6,D 是AB 边上任意一点,连接CD ,以CD 为直角边向右作等腰直角△CDE ,其中∠DCE =90°,CD =CE ,连接BE .(1)求证:AD =BE ;(2)当△CDE 的周长最小时,求CD 的值;(3)求证:2222AD DB CE +=.24.(1)问题:如图①,在Rt ABC ∆中,AB AC =,D 为BC 边上一点(不与点,B C 重合),将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC ,则线段BC ,DC ,EC 之间满足的等量关系式为___________;(2)探索:如图②,在Rt ABC ∆与Rt ADE ∆中,AB AC =,AD AE =,将ADE ∆绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明结论;(3)应用:如图3,在四边形ABCD 中,45ABC ACB ADC ∠=∠=∠=︒.若12BD =,4CD =,求AD 的长.25.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b ,斜边长为c 的4个直角三角形,请根据图2利用割补的方法验证勾股定理.26.如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =60°,BC =CD =6,现将梯形折叠,点B 恰与点D 重合,折痕交AB 边于点E ,则CE =_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据勾股定理流出方程,进而利用完全平方公式解答即可.【详解】解:∵大正方形的边长是直角三角形的斜边长,∴根据勾股定理可得:2248x y +=,根据小正方形面积可得()26x y -=,∴2xy +6=48,∴2xy =42,则()222290x y x y xy +=++=,故选:D .【点睛】本题考查勾股定理、完全平方公式,解题的关键是利用方程的思想解决问题,学会整体恒等变形的思想.2.A解析:A【分析】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5,利用勾股定理即可解答.【详解】设旗杆的高度为x m ,则AC x =m ,AB=()1x +m ,BC=5m ,在Rt ABC 中,222AC BC AB +=()22251x x ∴+=+解得:12x =故选:A .【点睛】本题考查了勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,利用勾股定理与方程的结合解决实际问题. 3.A解析:A【分析】设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,则由勾股定理可得222+=a b c 及正方形面积公式可得正方形F 的面积为7,同理可求解问题.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,正方形F 的边长为c ,如图,由勾股定理可得222+=a b c ,∴由正方形的面积计算公式可得正方形F 的面积为2+5=7,同理可得正方形H 的面积为1+2=3,正方形E 的面积为7+3=10;故选A .【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.4.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】解:由勾股定理得:22345AC =+=,是有理数,不是无理数;222313BC =+=,是无理数;221526AB =+=,是无理数,即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 5.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴222DN CN DN +=.222DM CM DM +,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∴AC=12AB . ∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确. 故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.6.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键7.B解析:B【分析】直接利用勾股定理得出AB的长,进而得出答案.【详解】解:由题意可得:2222AB AC BC km51213则打通隧道后从A村到B村比原来减少的路程为:512134(km).故选:B.【点睛】此题主要考查了勾股定理的应用,正确得出AB的长是解题关键.8.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵∴1故选A.【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.9.C解析:C【分析】根据勾股定理计算,即可得到答案.【详解】在Rt△ABC中,∠C=90°,由勾股定理得,b=故选:C.【点睛】本题考查的是勾股定理,关键是掌握“如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2”.10.C解析:C【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【详解】解:设绳索有x尺长,则102+(x+1-5)2=x2,解得:x=14.5.故绳索长14.5尺.故选:C.【点睛】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.11.C解析:C【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【详解】A、22245=+符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;C、根据三角形内角和定理,求得各角分别为45°,60°,75°,故C选项不是直角三角形,符合题意;D、根据三角形内角和定理,求得各角分别为90°,40°,50°,故D选项是直角三角形,不符合题意.故选:C【点睛】.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.B解析:B【分析】根据题意可知AOB为直角三角形,再利用勾股定理即可求出OB的长度,从而得出OP 长度,即可选择.【详解】∵AB OA⊥∴AOB为直角三角形.∴在Rt AOB中,OB根据题意可知2=1OA AB =,, ∴OB又∵OB OP =,∴P故选:B .【点睛】本题考查数轴和勾股定理,利用勾股定理求出OB 的长是解答本题的关键.二、填空题13.【分析】先设CE=x 再根据图形翻折变换的性质得出AE=BE=8-x 再根据勾股定理求出x 的值进而可得出的值【详解】解:设CE=x 则AE=8-x ∵△BDE 是△ADE 翻折而成∴AE=BE=8-x 在Rt △B 解析:724【分析】先设CE =x ,再根据图形翻折变换的性质得出AE =BE =8-x ,再根据勾股定理求出x 的值,进而可得出CE CB的值. 【详解】 解:设CE =x ,则AE =8-x ,∵△BDE 是△ADE 翻折而成,∴AE =BE =8-x ,在Rt △BCE 中,BE 2=BC 2+CE 2,即(8-x )2=62+x 2,解得x =74, ∴CE CB =746=724, 故答案为:724. 【点睛】本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.14.【分析】根据勾股定理求出AC 根据全等三角形的性质得到AF =BC =6EF =AC =8求出FC 根据勾股定理计算得到答案【详解】解:在Rt △ABC 中AC =∵Rt △ACB ≌Rt △EFA ∴AF =BC =6EF =A解析:【分析】根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=6,EF=AC=8,求出FC,根据勾股定理计算,得到答案.【详解】解:在Rt△ABC中,AC=22221068AB BC-=-=,∵Rt△ACB≌Rt△EFA,∴AF=BC=6,EF=AC=8,∴FC=AC﹣AF=2,∴CE=222282217EF FC+=+=,故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.15.或【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3利用勾股定理求得第三边再利用等面积法即可得出斜边上的高【详解】解:分为两种情况:①3和4都是直角边由勾股定理得:第三边长∴斜边上解析:125或374【分析】分为两种情况:①3和4都是直角边;②斜边是4有一条直角边是3.利用勾股定理求得第三边,再利用等面积法即可得出斜边上的高.【详解】解:分为两种情况:①3和4都是直角边,由勾股定理得:第三边长22435=+=∴斜边上的高为3412 55⨯=;②斜边是4有一条直角边是3,由勾股定理得:第三边长22437=-,∴斜边上的高为373744⨯=; 故答案为:125或37. 【点睛】 本题考查勾股定理解直角三角形.注意分类讨论和等面积法(在本题中主要用到直角三角形的面积等于两直角边乘积的一半也等于斜边与斜边高的乘积的一半)的运用.16.【解析】如图(1)所示:AB=;如图(2)所示:AB=∵>∴最短路径为答:它所行的最短路线的长是故答案为点睛:本题考查了平面展开---最短路径问题解题的关键是将长方体展开构造直角三角形然后利用勾股定解析:41【解析】如图(1)所示:222(25)=53++如图(2)所示:2245=41+,∵5341∴414141点睛:本题考查了平面展开---最短路径问题,解题的关键是将长方体展开,构造直角三角形,然后利用勾股定理解答.17.13或【分析】分情况讨论当的木棒为直角边时以及当的木棒为斜边时利用勾股定理解答即可【详解】解:当的木棒为直角边时第三根木棒的长度为;当的木棒为斜边时第三根木棒的长度为;故答案为:13或【点睛】本题考 解析:13119【分析】分情况讨论当12dm 的木棒为直角边时以及当12dm 的木棒为斜边时,利用勾股定理解答即可.【详解】解:当12dm的木棒为直角边时,第三根木棒的长度为22+=;51213dm当12dm的木棒为斜边时,第三根木棒的长度为22125119dm-=;故答案为:13或119.【点睛】本题考查勾股定理的应用,分情况讨论是解题的关键.18.3≤h≤4【分析】先根据题意画出图形再根据勾股定理解答即可【详解】解:当牙刷与杯底垂直时h最大h最大=16-12=4cm当牙刷与杯底及杯高构成直角三角形时h最小如图所示:此时AB==13cm故h=1解析:3≤h≤4【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h最大,h最大=16-12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,2222AC BC+=+=13cm,125故h=16-13=3cm.故h的取值范围是3≤h≤4.故答案是:3≤h≤4.【点睛】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.19.【分析】根据等边三角形三线合一的性质可得D为BC的中点即BD=CD在直角三角形ABD中已知ABBD根据勾股定理即可求得AD的长即可求三角形ABC的面积即可解题【详解】等边三角形三线合一即D为BC的中3【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】等边三角形三线合一,即D 为BC 的中点,∴BD=DC=1,在Rt △ABD 中,AB=2,BD=1,∴AD==3,∴△ABC 的面积为BC•AD=333.20.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】 由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和310,由此可得线段PQ ;(2)由勾股定理可知当直角边为2和313可得到面积为13的正方形ABCD .【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.(1)见解析;(2)见解析【分析】(1)根据22521=+,可以得到作图方法;(2)根据22221212452⨯+⨯+=可以得到一种作图方法. 【详解】(1)如图1;(2)如图2.【点睛】本题考查给定边长或面积的作图问题,解题关键是熟练掌握面积的计算公式以及勾股定理的应用.23.(1)见解析;(2)323)见解析【分析】(1)先判断出∠ACD=∠BCE ,得出△ADC ≌△CBE (SAS ),即可得出结论;(2)先判断出2CD ,进而得出△CDE 的周长为(2)CD ,进而判断出当CD ⊥AB 时,CD 最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)∵∠ACB =∠DCE =90°,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2.∵BC =AC ,CD =CE ,∴△CAD ≌△CBE ,∴AD =BE .(2)∵∠DCE =90°,CD =CE .∴由勾股定理可得CE 2DC .∴△CDE 周长等于CD +CE +DE =22CD CD =(22)CD +.∴当CD 最小时△CDE 周长最小.由垂线段最短得,当CD ⊥AB 时,△CDE 的周长最小.∵BC =AC =6,∠ACB =90°,∴AB =2.此时AD =CD =11623222BD AB ==⨯ ∴当CD 32=时,△CDE 的周长最小.(3)由(1)易知AD =BE ,∠A =∠CBA =∠CBE =45°,∴∠DBE =∠CBE +∠CBA =90°.在Rt △DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt △CDE 中:222CD CE DE +=.222CE CE DE ∴+=∴2222AD BD CE +=.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD ⊥AB 时,CD 最短是解本题的关键.24.(1)BC =DC +EC ;(2) BD 2+CD 2=2AD 2,见解析;(3)8【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=12,根据勾股定理计算即可.【详解】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)探索 BD2+CD2=2AD2,理由如下:连接CE,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即,在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)应用作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAE(SAS),∴BD=CE=12,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴22222124128DE CE CD=-=-=∵∠DAE=90°,∠EDA=45°,∴BD2+CD2=EC2=2AD2=128∴AD=8【点睛】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.见解析【分析】根据总面积=以c为边的正方形的面积+2个直角边长为,a b的三角形的面积=以b为上底、(a+b)为下底、高为b的梯形的面积+以a为上底、(a+b)为下底、高为a的梯形的面积,据此列式求解.【详解】证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键.26.43【分析】连接DE ,BD ,由题意可证△BCD 是等边三角形,可得BD =BC =6,∠DBC =60°,由直角三角形的性质可求AD =3,AB =33,由直角三角形的性质可求BE =23,由勾股定理可求解.【详解】解:如图,连接DE ,BD ,∵∠BCD =60°,BC =CD =6,∴△BCD 是等边三角形,∴BD =BC =6,∠DBC =60°,∵∠B =90°,AD ∥BC , ∴∠DAB =90°,∠ABD =30°,∠ADB =∠DBC =60°,∴AD =12BD =3,AB 3=3 ∵折痕交AB 边于点E ,∴BE =DE ,∵∠DBE =∠BDE =30°,∴∠ADE =30°,∴DE =2AE ,∴BE =2AE ,∵AE +BE =AB =3∴BE =3∴EC 22BC BE +=3612+3,故答案为:3【点睛】本题考查了折叠和勾股定理的应用,解题的关键是掌握折叠的性质和勾股定理.。
北师大版八年级上册数学第一章勾股定理测试卷(附答案)
13.在
中, ∠ , ∠ , ∠ 的对边分别是 、 、 ,若 2 + 2 = 25, 2 − 2 = 7 ,又 = 5 ,则
最大边上的高为________.
14.如图,H 是△ABC 内一点,BH⊥CH,AH=6,CH=3,BH=4,D、E、F、G 分别是 AB、AC、CH、BH 的 中点,则四边形 DEFG 的周长是________.
理由如下:连接 OD. ∵OA=OD ∴∠ODA=∠A 又∵∠BDE=∠A ∴∠ODA=∠BDE ∵AB 是⊙O 直径 ∴∠ADB=90° 即∠ODA+∠ODB=90° ∴∠BDE+∠ODB=90° ∴∠ODE=90° ∴OD⊥DE ∴DE 与⊙O 相切; (2)∵R=5, ∴AB=10, 在 Rt△ABC 中
BC 中,∠ABC=90°,以 AB 为直径的⊙O 与 AC 边交于点 D,过点 D 的直线交 BC 边于点 E, ∠BDE=∠A. (1)判断直线 DE 与⊙O 的位置关系,并说明理由. (2)若⊙O 的半径 R=5,tanA=34 , 求线段 CD 的长.
15.已知 △
,
延长线于 G,连接
= , ⊥ ,点 F 在 上,作 ⊥ , ∠ = 2∠ , = = 2 ,则
,直线 交 于 E,交 的长为________.
三、解答题(共 7 题;共 55 分)
16.如图,在△ABC 中,AD 是 BC 边上的高,tanC=
1 2
,AC=3
5 ,AB=4,求△ABC 的周长.
19.如图,一个梯子 AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动 后停在 DE 的位置上,测得 BD 长为 0.2 米,求梯子顶端 A 下落了多少米?
八年级数学上册《第一章 勾股定理的应用》练习题-带答案(北师大版)
八年级数学上册《第一章勾股定理的应用》练习题-带答案(北师大版)一、选择题1.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里B.16海里C.20海里D.28海里2.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是( )A.6mB.8mC.10mD.12m3.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A.6秒B.5秒C.4秒D.3秒4.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m5.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8米B.10米C.12米D.14米6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )A.5≤h≤12B.5≤h≤24C.11≤h≤12D.12≤h≤247.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C 两村之间的距离为( )A.250kmB.240kmC.200kmD.180km8.如图,O是Rt△ABC的角平分线的交点,OD∥AC,AC=5,BC=12,OD等于( )A.2B.3C.1D.1二、填空题9.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.10.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.13.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.14.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.三、解答题15.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,请算出旗杆的高度.16.如图①,一架梯子AB长2.5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5m,梯子滑动后停在DE的位置上.如图②所示,测得BD=0.5m,求梯子顶端A下滑的距离.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?18.如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?19.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.C.2.D.3.C4.A.5.B6.C.7.C.8.A.9.答案为:12,24.10.答案为:8.11.答案为:10.12.答案为:13,1.13.答案为:17m.14.答案为:7或25.15.解:设旗杆的高度为x米,根据勾股定理得x2+52=(x+1)2解得:x=12;答:旗杆的高度为12米.16.解:在Rt△ABC中,AB=2.5m,BC=1.5m故AC=2m在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)=2m 故EC=1.5m故AE=AC﹣CE=2﹣1.5=0.5m答:梯子顶端A下落了0.5m.17.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.18.解:过B作BD⊥公路于D.∵82+152=172∴AC2+BC2=AB2∴△ABC是直角三角形,且∠ACB=90°.∵∠1=30°∴∠BCD=180°﹣90°﹣30°=60°.在Rt△BCD中∵∠BCD=60°∴∠CBD=30°∴CD=0.5BC=0.5×15=7.5(km).∵7.5÷2.5=3(h)∴3小时后这人距离B送奶站最近.19.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.20.解:(1)设存在点P,使得PA=PB此时PA=PB=2t,PC=4﹣2t在Rt△PCB中,PC2+CB2=PB2即:(4﹣2t)2+32=(2t)2解得:t =∴当t =时,PA =PB ;(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1在Rt △BEP 中,PE 2+BE 2=BP 2即:(2t ﹣4)2+12=(7﹣2t)2解得:t =83∴当t =83时,P 在△ABC 的角平分线上.。
初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
北师大版八年级上册数学第一章 勾股定理 含答案
北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图(如图1).,图 2 为小明同学根据弦图思路设计的.在正方形 ABCD 中,以点 B 为圆心,AB 为半径作 AC,再以CD 为直径作半圆交 AC 于点E,若边长AB=10,则△CDE 的面积为()A.20B.C.24D.2、如图,在Rt△ABC中,AC=3,BC=5,阴影部分是以AB为边的一个正方形,则此正方形的面积为()A.4B.15C.16D.343、如图所示,折叠矩形,使点落在边的点处,为折痕,已知,,则的长等于()A. B. C. D.4、已知直角三角形的周长是2+ ,斜边长为 2,则它的面积是()A. B.1 C. D.5、如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为 .A. B. C. D.16、如图,在正方形ABCD中,AB=4,E是CD的中点,将BCE沿BE翻折至BFE,连接DF,则DF的长度是()A. B. C. D.7、下列四组线段中,能组成直角三角形的是()A.a=2,b=3,c=4B.a=3,b=4,c=5C.a=4,b=5,c=6 D.a=7,b=8,c=98、如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)9、在Rt△ABC中,斜边AB=1,则BC2+AC2的值是 ( )A.1B.4C.6D.810、尺规作图是初中数学学习中一个非常重要的内容.小明按以下步骤进行尺规作图:①将半径为的六等分,依次得到六个分点;②分别以点为圆心,长为半径画弧,两弧交于点;③连结.则的长是()A. B. C. D.11、如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是()A.3B.C.2D.212、如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.9B.35C.45D.无法计算13、年月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是,小正方形的面积是,直角三角形的较短直角边为,较长直角边为,那么的值为()A. B. C. D.14、直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是()A. ab=h2B. a2+b2=2 h2C. +=D. +=15、若△ABC的三边长分别为a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形二、填空题(共10题,共计30分)16、过⊙O内一点P,最长的弦为10cm,最短的弦长为8cm,则OP的长为________.17、如图,将矩形ABCD沿对角线AC折叠,E是点D的对称点,CE交AB于点F.若AB=16,BC=8,则BF的长为________.18、如图,ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.若BE=6,CF=8,则DEF的面积是________19、如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为________ cm.20、如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将∆ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为________.21、如图,在中,,点分别在上,且,点分别为的中点,则的长为________.22、直角三角形两直角边分别为a、b,斜边为c,已知:a=6,b=8,则c=________.23、平面直角坐标系内,A(-1,0),B(1,0),C(4,﹣3),P 在以 C 为圆心 1 为半径的圆上运动,连接 PA,PB,则的最小值是________ .24、如图,G为正方形ABCD的边AD上的一个动点,AE⊥BG,CF⊥BG,垂足分别为点E、F,已知AD=4,则AE2+CF2=________25、已知直角三角形两边长、满足,则第三边长为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,点C在⊙O的直径BA的延长线上,AB=2AC,CD切⊙O于点D,连接CD,OD.(1)求角C的正切值:(2)若⊙O的半径r=2,求BD的长度.28、如图,每个小正方形的边长为1,A、B、C为小正方形的顶点,求证:∠ABC=45°.29、如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=.求证:△ABC是直角三角形.30、如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、A5、B6、D7、B8、B9、A10、C11、B12、C13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)
第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。
北师大版八年级上册数学第一章 勾股定理含答案
北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图的网格中,每个小正方形的边长为1,A,B,C三点均在格点上,结论错误的是()A.AB=2B.∠BAC=90°C.D.点A到直线BC的距离是22、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S;④AG+DF=FG.则下列结论正确有( )△FGHA.①②④B.①③④C.②③④D.①②③3、如图,以的三边为直角边分别向外作等腰直角三角形,若,则图中阴影部分的面积为()A. B. C. D.34、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )A.24cm 2B.36cm 2C.48cm 2D.60cm 25、正方形的面积是4,则它的对角线长是()A.2B.C.2D.46、下列各组数中,能作为直角三角形三边长的是()A.1,2,3B.4,5,6C. , 2,D.6,8,107、如图,在△ABC中,∠C=90°,AB=13,AC=12,下列三角函数表示正确的是()A. =B. =C. =D. =8、如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF的长度()A.随圆的大小变化而变化,但没有最值B.最大值为4.8C.有最小值D.为定值9、在5×5的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m,水平部分的线段的长度之和记作n,则m﹣n=()A.0B.0.5C.﹣0.5D.0.7510、如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6B.C.D.411、如图,的弦垂直平分半径,垂足为,若,则的长为()A. B. C. D.12、以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4B.1、1、C.D.5、12、1313、在Rt△ABC中,∠C=90°,AC=9,BC=12,则C点到AB的距离为()A. B. C. D.14、以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,3,4B.4,5,6C.1,,D.2,,415、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或二、填空题(共10题,共计30分)16、如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1= ;再过P1作P1P2⊥OP1且P 1P2=1,得OP2= ;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得=________.17、如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为________.18、如图,四边形ABCD中,∠A=90°,AB=2,AD= ,CD=3,BC=5,则四边形ABCD的面积是________.19、将正方形ABCD中的△ABP绕点B顺时针旋转能与△CBP′重合,若BP=4,则PP′=________20、如图,梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,且AC平分∠DAB,∠B=60°,梯形的周长为40cm,则AC=________.21、如图,以矩形ABCD的对角线AC为一边向左下方作正方形ACEF,延长AB 交EF于点G,若AB=3,BC=4,则EG的长为________.22、有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,,点,分别在射线,上,长度始终保持不变,,为的中点,点到,的距离分别为4和2.在此滑动过程中,猫与老鼠的距离的最小值为________.23、我们知道,给出两边及其中一边的对角的三角形不一定是唯一的.例如中,,,,我们可以作,截取,以B为圆心,6为半径作弧,与射线交于点,,则和均为满足条件的三角形.已知,平行四边形中,,,边上的高为12,则平行四边形面积为________.24、已知点与在同一条平行轴的直线上,且到原点的距离为,则点的坐标为________.25、如图,矩形ABCD中,AD= ,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________三、解答题(共5题,共计25分)26、在Rt△ABC中,∠ACB=90°,AC=3,tanB= ,求AB的值.27、如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.28、如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.29、如图,矩形ABCD的边AB过⊙O的圆心,E、F分别为AB、CD与⊙O的交点,若AE=3cm,AD=4cm,DF=5cm,求⊙O的直径.30、如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE 交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、A6、D7、B8、C9、A10、B11、D12、A13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
北师大版八年级上册数学第一章《勾股定理》测试卷(含答案)
北师大版八年级上册数学第一章《勾股定理》测试卷(含答案)一.选择题1.下列线段不能构成直角三角形的是()A.5,12,13B.2,3,C.4,7,5D.1,,2.下列各组数中,能构成直角三角形的三边的长度是()A.3,5,7B.,,C.0.3,0.5,0.4D.5,22,233.如图,某公园处有一块长方形草坪,有极少数人为了避开拐角∠AOB走“捷径”,在花圃内走出了一条“路”AB.他们踩伤草坪,仅仅少走了()A.4m B.6m C.8m D.10m4.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.不能确定5.传说,古埃及人常用“拉绳”的方法画直角,有一根长为m的绳子,古埃及人用这根绳子拉出了一个斜边长为n的直角三角形,那么这个直角三角形的面积用含m和n的式子可表示为()A.B.C.D.6.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.77.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.178.有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.2022B.2021C.2020D.19.下列各组数中,不是勾股数的是()A.6,8,10B.9,41,40C.8,12,15D.5k,12k,13k(k为正整数)10.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2二.填空题11.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为.12.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.13.如图,在△ABC中,AB=AC=10,BD是边AC上的高,CD=2,则BD=.14.将一副三角尺如图所示叠放在一起,如果AB=10cm,那么AF=cm.15.若△ABC的三边a、b、c,其中b=1,且(a﹣1)2+|c﹣|=0,则△ABC的形状为.16.如图,已知在Rt△ABC中,∠BCA=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1,S2,则S1+S2=.17.如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为.18.请写出两组勾股数:、.19.如图,某开发区有一块四边形的空地ABCD,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,则要投入元.20.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.三.解答题21.如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2﹣BN2=AC2.22.如图,∠B=90°,AB=4,BC=3,CD=12,AD=13,点E是AD的中点,求CE的长.23.如图,将Rt△ABC绕其锐角顶点A旋转90°得到Rt△ADE,连接BE,延长DE、BC 相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.24.如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.25.如图,在数轴上作出表示的点(不写作法,要求保留作图痕迹).26.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.27.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c 根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1(n为正整数)时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.参考答案一.选择题1.解:A、52+122=169=132,故是直角三角形,不符合题意;B、22+()2=9=32,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、12+()2=()2,故是直角三角形,不符合题意.故选:C.2.解:A、∵32+52=34≠72,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵()2+()2=7≠()2 ,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵(0.3)2+(0.4)2=0.25=(0.5)2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵52+222=509≠232,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选:C.3.解:在Rt△AOB中,AB==10m,∴AO+BO﹣AB=6+8﹣10=4m.即少走了4m.故选:A.4.解:根据题意得:如图:OA=40×20=800m.OB=40×15=600m.在直角△OAB中,AB==1000米.故选:C.5.解:设这个直角三角形的两直角边分别为a,b,由题意可得,,∴2ab=(a+b)2﹣(a2+b2)=(m﹣n)2﹣n2=m2﹣2mn,∴这个直角三角形的面积=ab=.故选:A.6.解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.7.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.8.解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2021次后形成的图形中所有的正方形的面积和为2022.故选:A.9.解:A、62+82=102,能构成直角三角形,是正整数,故是勾股数;B、92+402=412,能构成直角三角形,是正整数,故是勾股数;C、82+122≠152,不能构成直角三角形,故不是勾股数;D、(5k)2+(12k)2=(13k)2,能构成直角三角形,是正整数,故是勾股数;故选:C.10.解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.二.填空题11.解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,矩形KLMJ的面积为10×11=110.故答案是:110.12.解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.13.解:由已知得:AD=AC﹣CD=8,AB=10,∵BD是高,∴△ADB是直角三角形,∴BD2+AD2=AB2,∴BD==6.14.解:在Rt△ACB中,∠ACB=90°,∠B=30°,∴AC=AB=5,∵FC∥DE,∴∠AFC=∠D=45°,由勾股定理得,AF==5(cm),故答案为:5.15.解:∵(a﹣1)2+|c﹣|=0,∴a﹣1=0,c﹣=0,解得a=1,c=,∵12+12=()2,∴△ABC的形状为等腰直角三角形.故答案为:等腰直角三角形.16.解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.17.解:在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S=AC×BC﹣AD×CD=×10×24﹣×8×6=96(m2).阴影故答案是:96m218.解:两组勾股数是:3、4、5;6、8、10;故答案为:3、4、5;6、8、10.19.解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,S 四边形ABCD =S △BAD +S △DBC =,==36. 所以需费用36×200=7200(元).故答案为:720020.解:三级台阶平面展开图为长方形,长为8dm ,宽为(2+3)×3dm , 则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理得:x 2=82+[(2+3)×3]2=172,解得x =17.故答案为:17.三.解答题21.证明:∵MN ⊥AB 于N ,∴BN 2=BM 2﹣MN 2,AN 2=AM 2﹣MN 2∴BN 2﹣AN 2=BM 2﹣AM 2,又∵∠C =90°,∴AM 2=AC 2+CM 2∴BN 2﹣AN 2=BM 2﹣AC 2﹣CM 2,又∵BM =CM ,∴BN 2﹣AN 2=﹣AC 2,即AN 2﹣BN 2=AC 2.22.解:在Rt △ABC 中,∠B =90°,∴,∵CD =12,AD =13,∵AC 2+CD 2=52+122=169,AD 2=169,∴AC 2+CD 2=AD 2,∴∠C =90°,∴△ACD 是直角三角形,∵点E 是AD 的中点,∴CE =.23.(1)△ABE 是等腰直角三角形,证明:∵Rt △ABC 绕其锐角顶点A 旋转90°得到在Rt △ADE ,∴∠BAC =∠DAE ,∴∠BAE =∠BAC +∠CAE =∠CAE +∠DAE =90°,又∵AB =AE ,∴△ABE 是等腰直角三角形;(2)∵四边形ABFE 的面积等于正方形ACFD 面积,∴四边形ABFE 的面积等于:b 2.(3)∵S 正方形ACFD =S △BAE +S △BFE即:b 2=c 2+(b +a )(b ﹣a ),整理:2b 2=c 2+(b +a )(b ﹣a )∴a 2+b 2=c 2.24.解:(1)△ABC 为直角三角形,理由:由图可知,,BC =,AB ==5,∴AC 2+BC 2=AB 2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.25.解:所画图形如下所示,其中点A即为所求;.26.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S=BC•AD=×14×12=84.△ABC27.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.。
北师大版八年级数学上册第一章勾股定理测试题含答案
第 1 页八年级上北师大版第一章勾股定理测试题一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,412. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ).(A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 及D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )85. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ).(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )1360 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,则这只蚂蚁再沿边长爬行一周需 ( ).(A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形及中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,则2)(b a + 的值为 ( ).(A )49 (B )25 (C )13 (D )1 10. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ).(A )20 (B )24 (C )28 (D )32二、填空题(每小题3分,共30分)第 2 页11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为 .(2)斜边x= .4AB =,分别 13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且及AE 重合,则CD 的长为 .三、简答题(50分)16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,以线段AB 为边画正方形并计算所画正方形的面积,解释你的计算方法.(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?18.(8分)如图11,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=2m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)19.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已知展开图中每个正方形的边长为1.(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条.///C B A ∠的大(2)试比较立体图中∠ABC 及平面展开图中小关系.21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,则梯子的底部在水平方向也滑动了4米吗? 22.(8分)有一块直角三角形的绿地,量得两直角边长分别为6m m ,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.1. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形及中间的一个小正方形拼成的一个大正方形(如图1第 3 页 图1所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,则2)(b a 的值为 ( ).(A )1(B )12(C )13(D )252. 以下列各组数为边长,能构成直角三角形的是 ( ). (A )532、 (B )1086、 (C )222543、、 (D )1、2、33. 如图2,等腰三角形ABC 中,AB=AC ,AD 是底边上的高.若AB=5cm ,BC=6cm ,则AD= cm.4. 正方体的棱长为2cm ,用经过A 、B 、C 三点平面截这个正方体,所得截面的周长是 cm.5. 如图4,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=2m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)6. 为了打击索马里海盗,保护各国商船顺利通行,我海军某部奉命前往某海域执行保航任务.某天我护航舰正在某小岛A 北偏西45°并距该岛20海里的B 处待命.位于该岛正西方向C 出的某外国商船招到海盗袭击,船长发现在其北偏东60°方向有我军护航舰(图5),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.该船舰需要多少分钟可以达到商船所在位置处?(结果精确到个位)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上北师大版第一章勾股定理测试题
一、选择题(每小题3分,共30分)
1. 下列各组中,不能构成直角三角形的是 ( ).
(A )9,12,15 (B )12,16,20 (C )16,30,32 (D )9,40,41
2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).
(A )6 (B )8 (C )10 (D )12
3. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ABE 的面
积为 ( ).
(A )9 (B )3 (C )49 (D )2
9 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).
(A )11 (B )10 (C )9 (D )8
5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ).
(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形
6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).
(A )6 (B )8.5 (C )1320 (D )13
60 7. 高为3,底边长为8的等腰三角形腰长为 ( ).
(A )3 (B )4 (C )5 (D )6
8. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再
沿边长爬行一周需 ( ).
(A )6秒 (B )5秒 (C )4秒 (D )3秒
9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个
大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2
)(b a + 的值为 ( ).
(A )49 (B )25 (C )13 (D )1
10. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ).
(A )20 (B )24 (C )28 (D )32
二、填空题(每小题3分,共30分)
11. 写出两组直角三角形的三边长 .(要求都是勾股数)
12. 如图6(1)、(2)中,(1)正方形A 的面积为 .
(2)斜边x= . 13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积
分别记为1S ,2S ,则1S +2S 的值等于 .
14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有
个直角三角形.
15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线
AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 .
三、简答题(50分)
16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.
17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.
(1)在方格纸上,以线段AB 为边画正方形并计算所画正方形的面积,解释你的计算方法.
(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?
18.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20
秒,飞机距离这个男孩头顶5000米.飞机每小时飞行多少千米?
21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.
(1)这个梯子底端离墙有多少米?
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?
一、选择题
1.C
2.B
3.C
4.B
5.D
6.D
7.C
8.C
9.A 10.A
二、填空题
11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 3
三、简答题
16. 在Rt △ABC 中,AC=54322=+.
又因为22213125=+,即222CD AC AD =+.
所以∠DAC=90°.
所以1252
14321⨯⨯+⨯⨯=+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 17.略
18. 如图12,在Rt △ABC 中,根据勾股
定理可知,
BC=30004000500022=-(米).
3000÷20=150米/秒=540千米/小时.
所以飞机每小时飞行540千米.
20. (1)10;(2)4条
21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x 米,得方程, 2
22)424(25--=x ,解得x=15,所以梯子向后滑动了8米.。