用计算器求一个数的算术平方根
九年级英数学下册用计算器求一个数的算术平方根(2)
用计算器求一个数的算术平方根学习目标:1.会用计算器求算术平方根。
2.经历运用计算器探求数学规律的活动,发展学生的探究能力和合情推理的能力。
学习重难点:会用计算器求算术平方根。
预习导学: 你能用计算器计算89.5吗?计算器屏幕显示为_____________________, 所以,89.5≈____________(精确到0.01),89.5≈____________(精确地0.01)89.5≈____________(保留三位有效数字)学习过程:一、1.开方运算要用到键 ,键 和键 。
2.用计算器计算,并写出屏幕显示的结果:(1)89.5 (2)15+ (3)π-⨯76二、利用计算器,求下列各式的值(结果保留4个有效数字):(1)800 (2)58.0三、学习例1练习:利用计算器比较下组数的的大小(1)215+和711 四、 “议一议”归纳总结:1、运用计算器计算时,部分计算虽然原式没有括号,但按键过程中要添加括号。
如计算4103+,215+等。
2、要注意题目对结果的要求,区分如四位有效数字,精确到0.1,误差小于1等语句。
课堂练习:随堂练习课后作业:拓展与提高: 借助计算器求下列各式的值,2234+≈ 223344+≈ 22333444+≈ 你能发现什么规律?利用你发现的规律试写出2233334444+≈------------------------ 赠予-----------------------【名师心得】1. 因材施教,注重创新。
所讲授的每门课程应结合不同专业、不同知识背景的学生来调整讲授的内容和方法。
不仅重视知识的传授,更要重视学生学习能力、分析和解决问题能力的培养,因为这些才是学生终生学习的根本。
注重教学创新,不仅体现在教学模式、教学方法方面,更主要的是体现在内容的创新与扩充、实践环节的同步改革上。
2. 学高为师,身正为范。
不但要有崇高的师德,还要有深厚而扎实的专业知识。
要做一名让学生崇拜的师者,就要不断的更新知识结构,拓宽知识视野,自己不断的钻研学习,加强对教材的驾御能力才能提高自己的教学方法,才能在学生心目中树立起较高的威信。
七年级数学下册 第六章 实数 6.1 算术平方根 用计算器求一个正数的算术平方根
纸片裁出符合要求的纸片吗?
2021/12/11
第十五页,共十七页。
活动(huó dòng)5
归纳小结深 本节课你有哪些(nǎxiē)收获? 化新知
师生共同回顾本节课所学内容,并请学生回答以下问题: (1)利用逼近法来求算术平方根的近似值的依据是什么? (2)利用计算器可以求出任意正数的算术平方根或近似值吗? (3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是? (4)怎样的数是无限(wúxiàn)不循环小数?
规定:0的算术平方根是0,即 0 0.
根号
(ɡēn hào)
a
被Hale Waihona Puke 方数2021/12/11a的算术平方根 第二页,共十七页。
活动1
梳理(shūlǐ) 旧知
铺垫新知
请用算术(suànshù)平方根定义填表格
a
4
(a˃0) 2 5
1
1.9 2.2 65
4
9
16
a
2
5 1 1.4 1.5 2 3 4
若 ab0 ab0.
体验 估算 (tǐyàn)
1.(2016年天津中考)估计 19 的值在( C )
A. 2和3之间
B. 3和4之间
C. 4和5之间
D.5和6之间
2.(2012天津中考)估计 61 的值在(B )
A. 2到3之间
B. 3到4之间
C. 4到5之间
D. 5到6之间
2021/12/11
第十页,共十七页。
活动4 初步应用 巩固新知
2021/12/11
第七页,共十七页。
活动3 问题探究学
习(xuéxí)新知用计算器求下列(xiàliè)各式的值:
用计算器求一个数的算术平方根
用计算器求一个数的算术平方根算术平方根是一个数学概念,用来描述一个数的平方等于另一个数的情况。
计算器是一种电子设备,用于进行数学计算。
在计算器上求一个数的算术平方根可以通过以下步骤进行。
1.打开计算器。
通常计算器都有一个开关按钮或者是滑盖来进行开机。
2.定义要求算术平方根的数。
可以在计算器的屏幕上输入数字,或者是按下相应数字键来输入。
3.选择算术平方根功能。
大多数计算器上都有一个"√"符号来表示算术平方根。
可以通过按下该符号键或者是选择相应的功能键来选择算术平方根功能。
4. 输入被求平方根的数。
在选择了算术平方根功能后,计算器通常会提示你输入被求平方根的数。
输入数字后,通常可以按下 "Enter" 键或者是 "=" 键来确认输入。
5.计算结果。
计算器会自动计算输入数的算术平方根,并将结果显示在屏幕上。
如果求平方根的数是一个完全平方数,结果会是一个整数。
否则,结果会是一个很长的十进制小数或者是分数。
在实际使用计算器进行算术平方根的计算时,可能还会遇到以下一些注意事项:1.确保选择了正确的算术平方根功能。
有些计算器上可能有多个开根号的符号,表示不同的开方操作。
要确保选择的是算术平方根的功能。
2.注意负数的情况。
算术平方根定义在非负实数范围内,所以如果你输入一个负数,计算器会显示错误或者是不可计算的结果。
3.精度问题。
计算器的算术平方根计算结果通常是有限精度的,可能只显示一定位数的小数或者是分数。
对于一些无理数或者是无限循环小数的平方根,可能无法完全准确地显示。
需要注意的是,虽然计算器对于大多数数的算术平方根进行了预设的计算功能,但是它只是一种工具,而不是解决问题的唯一方法。
在一些情况下,特别是涉及更复杂的数学问题时,可能需要使用更高级的数学工具和技术来求解算术平方根。
典型例题:用计算器开平方
典型例题:用计算器开平方
例1(1)求24的近似值(保留五个有效数字).
(2)求62483的平方根(精确到0.1).
(3)求95
12的平方根(保留三个有效数字).
解:(1)按键 4.898979486,∴.8990.424≈
(2)按键249.9659977,∴62483的平方根是±250.0.
(3)按键显示:3.543381938,∴9
5
12的平方根是±3.54.
说明:(1)计算器显示的是一个非负数的算术平方根,求一个非负数的平方根时,只要在算术平方根前加“±”号即可.(2)通常求一个分数的平方根时,要先把这个分数化成小数,化小数的方法除了例题(3)中介绍的方法外,还可以用如下
. 例2 用计算器求4的平方根. 解:用计算器求4±的步骤如下:
∴4±=2±
说明:要熟练掌握计算器的用法.
例3 用计算器求456.3(结果保留4个有效数字). 解:
∴ 859.1456.3≈
说明: ①命题目的:考查用计算器求一个数的平方根.
③错题剖析:.a 把4的平方根写成2,或错写成24±=..b 不同的计算器,显示器所能显示的数的数位不尽相同,一般地最多能显示10个位数,如果题目没有给出特别要求,计算结果只保留4个有效数字. 例4 用计算器求001045.0,按键的顺序是___________.
分析:本题要求用计算器求一个数的平方根,主要是注意按键的步骤.
解答:按键的步骤是说明:利用按键上方的功能时需要先按第二功能键“2F”.。
数学七年级下学期《用计算器求算术平方根及其大小比较》教学设计
数学七年级下学期《用计算器求算术平方根及其大小比较》教学设计一. 教材分析《用计算器求算术平方根及其大小比较》这一节内容,主要让学生掌握如何使用计算器求解算术平方根,以及如何比较不同数的大小。
教材通过具体的例子,引导学生了解算术平方根的概念,以及计算器在求解过程中的应用。
本节内容是学生在七年级数学学习过程中的重要组成部分,也是学生数学思维能力的一次提升。
二. 学情分析学生在进入七年级下学期时,已经具备了一定的数学基础,对数学知识有一定的理解。
但计算器的使用在数学课堂中还属于新生事物,学生可能对其存在好奇心和陌生感。
因此,在教学过程中,教师需要关注学生的学习兴趣,引导学生正确使用计算器,提高他们的数学解题能力。
三. 教学目标1.知识与技能目标:让学生掌握用计算器求算术平方根的方法,能熟练使用计算器进行计算。
2.过程与方法目标:通过小组合作,培养学生运用计算器解决数学问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养他们善于动脑、动手的能力。
四. 教学重难点1.重点:用计算器求算术平方根的方法。
2.难点:如何比较不同数的算术平方根的大小。
五. 教学方法1.情境教学法:通过设置具体的问题情境,引导学生运用计算器求解。
2.小组合作学习:让学生在小组内互相交流、讨论,共同解决问题。
3.实例教学法:通过具体的例子,讲解算术平方根的概念及求解方法。
六. 教学准备1.准备计算器,确保每名学生都有机会使用。
2.准备相关的数学题目,用于练习和巩固。
3.准备PPT或黑板,用于展示解题过程。
七. 教学过程1.导入(5分钟)教师通过一个简单的数学问题,引入本节内容。
例如:“请问5的平方根是多少?”然后引导学生思考:“我们如何用计算器快速求解这个问题?”2.呈现(10分钟)教师通过PPT或黑板,展示算术平方根的定义,以及如何使用计算器求解。
同时,解释算术平方根的概念,以及计算器在求解过程中的应用。
3.操练(10分钟)教师发放练习题,学生独立或小组合作,使用计算器求解。
七年级下册数学第六章实数《平方根:用计算器求算数平方根,用有理数估计算术平方根的大小》听课记录
2024七年级下册数学第六章实数《平方根:用计算器求算术平方根,用有理数估计算术平方根的大小》听课记录一、教师行为1.1 导入•激发兴趣:教师展示一个正方形的图片,询问学生如果正方形的面积是25平方单位,那么它的边长是多少?•引出概念:从面积的求解引出算术平方根的概念,解释算术平方根在求解正方形边长等实际问题中的应用。
1.2 教学过程•算术平方根概念讲解:•清晰定义算术平方根:一个非负数的非负平方根称为它的算术平方根。
•强调算术平方根的非负性,并给出几个简单的例子。
•计算器求算术平方根:•展示如何使用计算器上的平方根键(通常是√)来求一个数的算术平方根。
•给出几个具体的例子,如√4, √9, √25等,让学生跟随操作并观察结果。
•强调计算器使用的准确性和便利性。
•用有理数估计算术平方根的大小:•引导学生通过已知的有理数平方来估计一个数的算术平方根的大小。
•例如,通过比较3²和4²来估计√10的大小。
•强调这种估计方法是一种近似方法,但可以快速给出算术平方根的大致范围。
•练习与讨论:•提供一系列练习题,包括使用计算器求算术平方根和用有理数估计算术平方根的大小。
•鼓励学生互相讨论,分享解题思路和方法。
•教师巡视课堂,及时纠正学生的错误,并给予指导。
二、学生活动•积极思考:在导入环节,学生积极思考教师提出的问题,并尝试给出答案。
•认真听讲:在算术平方根概念讲解和计算器使用的教学过程中,学生认真听讲,记录关键信息。
•动手实践:在练习环节,学生积极参与,使用计算器求算术平方根,并尝试用有理数估计算术平方根的大小。
•互相讨论:学生之间互相讨论,分享解题思路和方法,共同解决问题。
三、过程点评•导入环节:教师通过实际问题引出算术平方根的概念,直观易懂,有助于激发学生的学习兴趣。
•概念讲解:教师清晰、准确地讲解了算术平方根的定义和性质,有助于学生正确理解概念。
•计算器操作:教师展示了如何使用计算器求算术平方根,并提供了足够的练习机会,有助于提高学生的计算能力。
利用计算器求平方根、立方根
( 任编辑 责 周 雪芳 )
八 年 级 数 学 ・ 合 华 师 大 教 材 配
5 1
用计算 器 求 3 6的 算 术 平 方 根 .
的步骤 如下 :
表 1
解 : 计 算 器 求 用
按 键
显 示
国 固
I dI 2 F n
3 6
2 F
I _l 国 日
所以 3 6的 算 术 平 方 根 是 6 .
3 6 2 6
点 评 : 果 是 求 平 方 根 , 注 意 在 写 结 论 时 , 填 上 “ 号 , 上 例 中 如 则 应 ±” 如
.
配 合 华 师 大 教 材
表 2
按 键
显 示
图 囤 固 陋 国
『d 2 F n
0 4 .5 8 6
2 F
j
i
0 4 .5 8 6
国 目
・ . .
3 04 6 .5 9
弋 俪 丽
= . 56 09 . 4
点 评 : 立 方 根 和 求 平 方 根 十 分 类 似 , 别 是 在 倒 数 第 二 步 将 l 改 求 区 2 l 为 l , 是 次数 不 同. 外 , 果要 求 一 个 负数 的 立 方根 , 以先 求 它的 3 只 l 另 如 可
相 反 数 的 立 方根 . 在 结 果 前 加 上 负号 即 可. 再 三 、 用 计 算 器 探 求 数 学 规 律 利 例 3 借 助计 算器 求 下面式 子 的值 .
; 2) ( 、 二 ; 3) '5 -4 42. ( V — 52—4 5
( 、 1) /
仔细观察上面几个式子的运算结果, 试猜想、 20二垂 臣 至 08个 5 = = V 20 0 8个 4
用计算器求平方根
用计算器求平方根摘要本文介绍了如何使用计算器来求解平方根。
首先,我们会讨论平方根的定义和计算方法。
然后,我们会介绍两种常用的计算器求平方根的方法:使用根号键和使用指数运算符。
最后,我们会提供一些实际问题的例子,展示如何在计算器上使用这些方法来求解平方根。
1. 平方根的定义和计算方法平方根是数学中的一个重要概念,指的是一个数的算术平方的反函数。
对于非负实数x,其平方根为y,表示为y = √x。
平方根的计算方法有很多种,包括牛顿迭代法、二分法和用计算器直接计算等。
2. 使用根号键求平方根大多数计算器都有一个根号键,可以直接用它来求平方根。
如果你的计算器上有这个键,那么你只需要按下它,然后输入要求平方根的数,最后按下等号即可得到结果。
例如,要求解4的平方根,你可以按下根号键,然后输入4,最后按下等号得到2。
这种方法非常直观和简单,适用于求解任意非负实数的平方根。
3. 使用指数运算符求平方根如果你的计算器上没有根号键,或者你想求解非非负实数的平方根,那么你可以使用指数运算符来求平方根。
下面是求解平方根的通用公式:y = x^(1/2)其中,x表示要求平方根的数,y表示该数的平方根。
例如,要求解9的平方根,你可以将9的1/2次方输入到计算器中,然后按下等号得到3。
这种方法也非常简单,只需要记住要输入的公式即可。
4. 实际问题的例子下面是一些实际问题的例子,展示了如何在计算器上使用上述方法来求解平方根。
4.1 例子1假设你想知道一个正方形的边长为16个单位时,该正方形的面积是多少。
你可以使用计算器来求解。
首先,你可以使用根号键来求出16的平方根,得到4。
然后,你可以将4的平方(4^2)作为正方形的边长来计算面积,得到16。
因此,当正方形的边长为16个单位时,其面积为16平方单位。
4.2 例子2假设你有一个买了很多苹果的篮子,你想知道篮子里有多少个苹果。
你可以使用计算器来求解。
首先,你可以使用指数运算符来求出篮子里所有苹果的总数量的平方根。
人教版七年级数学下册《用计算器求算术平方根、算术平方根估值》教学设计
活动五 巩固练6 之间 B.6~7 之间 C.7~8 之间 D. 8~9 之间 2.利用规律计算:已知 2 1.414 , 20 4.472 ,则 0.2 _0_._4_4_7. 2 3. 用计算器计算下列各式的值(精确到 0.01).
32
121
-36没有算术 平方根.
只有非负数才有算术平方根,算术平
方根是非负的.
0.09 0.3
25 5 121 11
3.你知道 2有多大吗?
2
0 0 3 3
2的算术平方根是 2 .
指数
am
幂
底数
乘方是已知底数和指数,求幂 的运算
要做一张面积是36 d㎡的正方 形地垫,你能算出它的边长是 多少吗?
活动三 应用工具 发现规律
课本第39页引言
同学们,你们知道宇宙飞船离开地球进入轨道正常运行的速度在 什么范围内吗?这时它的速度要大于第一宇宙速度 v1(单位:m/s),而小 于第二宇宙速度 v2(单位:m/s).v1、v2 的大小满足 v12=gR,v22=2gR,其中 g 是 物 理 中 的 一 个 常 数 ( 重 力 加 速 度 ),g=9.8 m/s2,R 是 地 球 半 径,R 6.4106 m.怎样求 v1、v2 呢?
的边长是多少?
活动七 分层作业 提高能力
作业(选做题):
7.请你观察思考下列计算过程.
∵112 121, ∴ 121 11. ∵1 121 1 2 , ∴3 2112 321 111 . 由此猜想: 12 345 678 987 654 321 ______ .
8. 根据下表回答问题. x 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7
是
七年级数学人教版下册第六章用计算器求一个数的算术平方根课件
5.求一个正数的算术平方根,有些数可以直接求得,如 4,有 些数则不能直接求得,如 5,但可以通过计算器求得,还可 以通过一组数的内在联系,运用规律求得.请同学们观察下 表:
(1)表中所给的信息中,你能发现被开方数的小数点向左或向右移 动 2n 位,算术平方根的小数点就向左或向右移动___n_____ 位.
A.0.30
B.0.31
C.0.32
D.0.33
归纳新知
1 知识小结
1. 利用计算器求一个正数的算术平方根,有时它的 算术平方根是准确数,有时它的算术平方根是近 似数.
2. 采用算术平方根比较法比较大小时,被开方数大 的算术平方根就大;即若a≥b≥0时, a ≥ b ≥0; 反之亦成立.
2 易错小结
如图,把两个小正方形分别沿对角线剪开,将所得的4 个直角三角形拼在一起,就得到一个面积为2 dm2的大 正方形. 你知道这个大正方形的边长是多少吗? 设大正方形的边长为x dm,则x2 = 2. 由算术平方根的意义可知x= 2 , 所以大正方形的边长是 dm.
探究2 2 有多大? 因为 12 = 1,22=4,所以1< 2 <2; 因为 1. 42 = 1. 96,1. 52=2. 25,所以 1.4< 2 <1.5; 因为 1.412 = 1.988 1,1.422 = 2.016 4, 所以 1.41< 2 <1.42; 因为 1. 4142 = 1. 999 396,1. 4152=2. 002 225, 所以 1.414< 2 <1.415;
因为 4 0 0 =20,所以正方形纸片的边长只有20 cm. 这样,长方形纸片的长将大于正方形纸片的边长. 答:不能同意小明的说法. 小丽不能用这块正方
《6.1第2课时用计算器求一个正数的算数平方根》同步练习含答案
第2课时数的估计及大小比较关键问答①用计算器计算一个正数的算术平方根的步骤是什么?②估算一个正数的算术平方根的大小时,常需要用到什么知识?③比较两个数的大小的方法有哪些?1.①用计算器计算44.86的值为(精确到0.01)( )A.6.69 B.6.7 C.6.70 D.±6.702.②2017·天津估计38的值在( )A.4和5之间B.5和 6之间C.6和7之间D.7和8之间3.③比较大小:10__________ 11.命题点1 用计算器求正数的算术平方根[热度:86%]4.2017·淄博运用科学计算器(如图 6-1-1 是其面板的部分截图)进行计算,按键顺序如下:( 3.5 - 4.5 )×3图6-1-1 x2 +4则计算器显示的结果是________.5.天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h来估计,其中h(单位:m)是眼睛离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是1.5 m时,能看到多远(精确到0.01km)?如果登上一个观望台,当眼睛离海平面的高度是35m时,能看到多远(精确到0.01km)?命题点2 数的估算[热度:88%]6.④2018·台州估计7+1的值在( )A.2和3之间B.3和 4之间C.4和5之间D.5和6之间解题突破④7介于哪两个连续整数之间?7.⑤17的整数部分是__________,小数部分是________.模型建立⑤若a(a>0)的整数部分为n,则其小数部分为a-n.8.规定用符号[=________.x]表示一个数的整数部分,例如[3.69]=3,[ 3]=1,按此规定[ 13-1] 9.⑥如图6-1-2所示,在数轴上点A和点B之间表示整数的点有________个.图6-1-2解题突破⑥-2与7分别介于哪两个连续整数之间?10.⑦用“逐步逼近”的方法可以求出7的近似值.先阅读,再答题:因为22<7<32,所以2<7<3.2+3第一步:取=2.5,由2.52=6.25<7,得2.5<7<3.22.5+3第二步:取=2.75,由2.752=7.5625>7,得2.5<7<2.75.2请你继续上面的步骤,写出第三步,并通过第三步的结论对7十分位上的数字作估计.方法点拨⑦本题需先取数,再计算所取数的平方,最后比较大小.命题点3 数的大小比较[热度:92%]11.在数-5,0,3,2中,比3大的数是( )A.-5 B.0 C.3 D. 212.⑧2017·酒泉估计5-1 5-1与0.5的大小关系:________0.5(填“>”“<”或“=”).22方法点拨⑧作差法是比较两个数大小的一种常用方法.13.比较5-3与5-2的大小.2命题点4 算术平方根的应用[热度:94%]14.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块面积为18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形工件的长和宽的比为3∶2,则能用这块正方形工料裁剪出符合要求的长方形工件吗?15.⑨在地球引力的作用下,物体从某一高度落下,速度会越来越快,即地球引力会使下落的物体加速下落.在物理学中,把地球引力给下落物体带来的加速度称为重力加速度,用g表示,g=9.8 m/s2,物体自由下落的高度h(m)与物体下落的时间t(s)之间的函数关系是1h=gt2.某人头顶上空490m处有一杀伤半径为50m的炸弹自由下落,此人发现后,立即以26m/s的速度逃离,那么此人能脱离危险吗?解题突破⑨炸弹落在地面上的时间是多少?在这个时间内,此人跑的路程是多少?16.⑩一个标有高度的圆柱形容器,加入一些水后观察水面高度如图6-1-3①所示,这时将一个直径为2 cm的圆柱形玻璃棒竖直插至容器底部,水面高度如图②所示,求容器的内口直径(圆柱的容积=底面圆面积×高).(精确到0.1cm)图6-1-3解题突破⑩玻璃棒在水中部分的体积是多少?容器中插入玻璃棒后,水面以下部分的体积比原来多了多少?17. 用计算器计算:(1)9×9+19=__________;(2)99×99+199=__________;(3)999×999+1999=__________;(4)9999×9999+19999=__________.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:__________.方法点拨利用计算器计算结果,观察9的个数与结果之间存在的规律.典题讲评与答案详析1.C 2.C 3.<4.-7 [解析] 根据按键顺序可得算式为(3.5-4.5)×32+4=(-1)×9+2=-9+2=-7.5.解:把h=1.5代入s2=16.88h,得s2=16.88×1.5=25.32,所以s≈5.03.即当眼睛离海平面的高度是1.5 m时,能看到的最远距离约为5.03km.把h=35代入s2=16.88h,得s2=16.88×35=590.8,所以s≈24.31.即当眼睛离海平面的高度是35 m时,能看到的最远距离约为24.31 km.6.B [解析] 由于2<7<3,所以7+1的值在3和4之间.7.4 17-48.2 [解析]∵3< 13<4,∴2< 13-1<3,∴[ 13-1]=2.9.4 [解析] 由于-2<-2<-1,2<7<3,所以-2与7之间的整数有-1,0,1,2,所以A,B两点之间的整数点有4个.2.5+2.7510.解:第三步:取=2.625,2由2.6252=6.890625<7,得2.625<7<2.75,所以7十分位上的数字可能是6或7.11.C1 5-1 112.>[解析]∵0.5=,又5>2,∴5-1>1,即> .2 2 213.解:∵4<5<9,∴2<5<3,∴5-3<0,5-2 5-2 >0,∴5-3<.2 214.解:(1)5分米.(2)设长方形工件的长为3x(x>0)分米,宽为2x(x>0)分米.根据题意,得3x·2x=18,解得x= 3.∴长方形工件的长为33分米,宽为2 3分米.∵33>5,∴不能用这块正方形工料裁剪出符合要求的长方形工件.15.解:能脱离危险.1当h=490时,即490=×9.8×t2,解得t=10,2在这个时间内,此人跑的路程为6×10=60(m)>50 m,所以此人能脱离危险. 16.解:圆柱形玻璃棒的底面半径为2÷2=1(cm).设圆柱形容器的内口半径为r cm,则有πr2×(8-7)=π×12×8,πr2=8π,r2=8,r=8,8≈5.7(cm).所以圆柱形容器的内口直径为2×8=217.(1)10 (2)100 (3)1000①先按键,再输入这个正数,最后按=键.②一个正数越大,它的算术平方根越大;另外需记住正整数如2,3,5等的算术平方根.③正数大于 0,0 大于负数,正数大于负数,两个负数比较大小时,绝对值大的负数反而小.还可以用作差法、作商法等.。
7.7 用计算器求平方根和立方根
> (2) 3 100 ________ 21;
3 < (3) - 0.2________ 0.07
.
பைடு நூலகம்
课堂小结
通过本课时的学习,我们学习了
1. 用计算器求平方根和立方根. 2. 牢记计算器求平方根和立方根的按键顺序 .
课本69页 练习 1、2
3
【课堂练习】
1.一个正方形的草坪,面积为 658 m2, 这个草坪的周长 约是( D ) A.6.42 m C.25.65 m B.2.565 m D.102.6 m
±0.169 7 保留四个有效数字). 2.0.028 8 的平方根为___________( 3.用“<”、“>”或“=”号填空:
= ,
显示结果为17. 即 (2)按键 0 .
289 =17.
4
2
=
,
显示结果为0.648 074 069.
即 0.42 =0.648 074 069.
例2 利用计算器求
3
-47.2的值.
解:按键
2ndF
-
4
7
.
2
=
,
显示结果为-3.613 937 739. 按精确到0.001取近似值, -47.2 ≈-0.3614 .
7.7 用计算器求平方根 和立方根
学会用计算器求平方根和立方根.
用计算器求平方根或立方根
1.求一个数的算术平方根的按键顺序:先按
键,再输入被开方数,最后按 = 键.
2.求一个数的立方根的按键顺序:3
= .
、被开方数、
例1 利用计算器求下列各式的值: (1) 289; (2) 0.42 .
名师导学——3.4 用计算器进行数的开方
3.4用计算器进行数的开方【课前热身】1.利用计算器求一个数的算术平方根需要用到计算器上的键,求-个数的立方根需要用到计算器上的键.2.对于开平方运算,按键顺序为,被开方数,;对于开立方运算,按键顺序为,,被开方数, .3.如果被开方数是负数,则应先按键;如果被开方数是分数,在按数字键前后分别要按和键.4.利用计算器求5= .(结果保留4个有效数字)5.利用计算器求39= .(结果保留4个有效数字)6.312327.【课堂演练】典型例题1 任意找一个你认为很大的正数,利用计算器对它进行开平方运算,对所得结果再进行开平方运算……,随着开方次数的增加,你发现了什么?(2)改用另一个小于1的正数试试看,是否有类似的规律.巩固练习1 任意给定一个负数,利用计算器不断进行开立方运算,随着开立方次数的增加,结果越来越接近 ( )A.1B.0C.-1D.无法确定典型例题2 利用计算器比较下列各数的大小,并用“<”连接. 33,2,8,π巩固练习2 若数轴上的点A,B,C,D分别表示-1,0,2,3,则表示2-7的点应在线段 ( )A.AB之间B.BC之间C.CD之间D.BD之问【跟踪演练】-、选择题1.求8的值正确的按键顺序是 ( )2.估计11+1的值 ( )A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间3.用科学计算器计算时,按键顺序是3 4 . 2 =,则它表示的算式是 ( )A.34×2B.32.4C.324 D.以上均不对4.用计算器计算各数时,结果是近似数的为 ( ) A.96.1 B.32.4 C.196 D.196001 =、填空题5.面积为5.4m 2的正方形的边长是 (精确到0.01)6.3413-≈ (结果保留4个有效数字).7.一个正方体水池能装80t 水,计算:水池注满水时水的深度约为 (结果保留4个有效数字).三、解答题8.用计算器计算(结果保留3个有效数字): (1)81.0; (2)335.4; (3)3271; (4)31234.0-; (5)516.9.利用计算器比较大小: 2 3310 π;(3)3π 31111-. 10.面积都是50m 2的圆形和正方形,它们的周长哪个大?大多少?(精确到0.1m)参考答案:【课前热身】1. 32. = SHIFT 3 =3. - ()4.2.2365.2.0806.<【课堂讲练】典型例题1 (1)(2)运算结果都越来越接近1. 解析:(1)通过实际操作,可以发现随着开方次数的增加运算结果越来越接近1; (2)仍有类似于(1)的规律.巩固练习1 C典型例题2 2<33<2<π.巩固练习2 A【跟踪演练】1.D2.C3.B4.B5.2.32m6.-1.4817. 4.309m8.(1)0.900 (2)2.O8 (3)0.333 (4)-0.498 (5)1.799.(1)<50≈4.0m,周长为(2)> (3)> 10.根据S=πr2,得圆的半径为r=.314L=2πr≈25.1m;正方形得边长为l=50≈7.1m,周长L’=41≈28.4m.∴L’-L≈3.3m。
八年级数学用计算器开方(新编201912)
C.25.65 m
D.102.6 m
2.0.028 8 的平方根为__±__0_._1_6_9_7__(保留四个有效数字).
3.用“<”、“>”或“=”号填空:
(1) 14____<____ 3 56 ;
(2) 3 100 ____>____ 21;
(3)- 0.2____<____ 3 -0.07.
6.用计算器求下列各数的算术平方根(保留四个有效数字), 并观察这些数的算术平方根有什么规律.
(1)78 000,780,7.8,0.078,0.000 78; (2)0.000 65,0.065,6.5,650,65 000. 解:略.
规律:被开方数的小数点向左(右)移动两位,则其平方根的 小数点就向左(右)移动一位.
5 用计算器开方
用计算器求平方根或立方根(重点) 1.求一个数的算术平方根的按键顺序:先按 键,再输 入被开方数,最后按 = 键. 2.求一个数的立方根的按键顺序: 、被开方数、 = .
随堂小练
1.一个正方形的草坪,面积为 658 m2, 这个草坪的周长
约是( D ) A.6.42 m
B.2.5Байду номын сангаас5 m
利用计算器 【例题】用计算器求 3 52 的值(结果保留 4 个有效数字).
; 公众号助手 https:// 公众号助手
;
纪录片《拉面之神》,我以为会跟《寿司之神》一样,讲一个神一样的人怎么做出了神级的寿司或者神级的拉面,然而不是的,《拉面之神》拍了一个人,胖胖的老爷爷,雪白头发,用他的魔术手,做出了最好吃的拉面,每个客人都可以吃得饱饱的离开。“同学们都说我们很像啊,我们就结了 婚,开了这家面店,一起做拉面,直到她患癌病离开。家乡?我只在新婚后和妻子一起回去过一
七年级数学人教版下册配套课件:6.1.2 用计算器求一个正数的算术平方根
基础课堂·精讲精练
精练
1
估算
1.(2015·嘉兴改编)与 31 最接近的整数是( C )
A.4
B.5
C.6
D.7
2.(中考·滨州)估计 5 在( C )
A.0~1之间
B.1~2之间
C.2~3之间
D.3~4之间
3.(中考·安徽)设n为正整数,且n< 65 <n+1,则n
的值为( D )
A.5
B.6
C.7
14.填空找规律. (1)利用计算器分别求:
0.5 ≈ 0.707 1 , 5 ≈ 2.236 , 50 ≈ 7.071 , 500≈ 22.36 .
(2)由(1)的结果,我们发现所得的结果与被开方数间 的规律是_一__个__正__数__的__小__数__点__向__右__(_或__向__左__)_移__动__两__位__, _则__这__个__正__数__的__算__术__平__方__根__的__小__数__点__向__右__(_或__向__左__)_移__ _动__一__位___.
第2课时
用计算器求一个正数的算术平方根
基础课堂·精讲精练 课堂小结·名师点金 提升拓展·考向导练 精炼方法·教你一招 资源素材包
基础课堂·精讲精练
1
估算
精讲
求一个正数(非完全平方数)的算术平方根的近似值,一般 采用夹逼法. “夹”就是从两边确定__取___值__范__围___;“逼”就是一点一
点加强限制,使其所处范围_越__来__越__小__,从而达到理想的
精确程度. 要点精析:会用完全平方数的算术平方根估计非完全平方 数的算术平方根的大小是本章的基本要求,它利用与被开 方数比较接近的完全平方数的算术平方根来估计这个数的
人教版七年级下册数学第6章 实数 用计算器求一个数的算术平方根
6.已知 23≈4.80, 230≈15.17,则 0.002 3的值约为( B ) A.0.480 B.0.048 0 C.0.151 7 D.1.517
【点拨】0.002 3 是由 23 的小数点向左移动四位得到的,则它的 算术平方根是由 23的小数点向左移动两位得到的.本题易错之 处在于小数点移动方向或位数出现错误.
2.【2020·自贡】与 14-2 最接近的自然数是 2 .
3.【2019·湘西州】如图是一个简单的数值运算程序,当输入 x 的值为 16 时,输出的数值为 3 .(用科学计算器 计算或笔算)
*4.【中考·潍坊】用计算器依次按键如图①所示,显 示的结果在数轴上(如图②)对应点的位置介于 之间.( A )
(2)观察表中数据,你发现被开方数 a 与它的算术平方根之 间有什么规律?
解:一个正数的小数点每向右(或向左)移动两位,则这个正数 的算术平方根的小数点就向右(或向左)移动一位; (3)利用(2)中的规律解答:若 1.25≈1.118 0, 12.5≈3.536,
求 0.012 5的值.(结果精确到 0.001) 0.012 5≈0.112.
8.国际比赛的足球场长在 100 m 到 110 m 之间,宽在 64 m 到 75 m 之间,为了迎接某次奥运会,某地建设了一个长 方形的足球场,其长是宽的 1.5 倍,面积是 7 560 m2,请 你判断这个足球场能用作国际比赛吗?并说明理由.
解:这个足球场能用作国际比赛.理由如下: 设足球场的宽为 x m,则足球场的长为 1.5x m,由题意,得 1.5x2 =7 560.∴x2=5 040.∵x>0,∴x= 5 040. 又∵702=4 900,712=5 041,∴70< 5 040<71. ∴70<x<71.∴105<1.5x<106.5. ∴符合要求.∴这个足球场能用作国际平方根 第2课时用计算器求一个数的算术平
用计算器求正数的算术平方根
因为 1.4142 1.999396 ,1.4152 2.002225, 而 1.999396 2 2.002225 ,所以1.414 2 1.415.
学习目标:
(1)能估计类似 2这样的数的大致范围,并 初步体验“无限不循环小数”的含义.
(2)用计算器求一个非负数的算术平方根.
拼成的这个面积为 2 的大正方形的 边长应该是多少呢?
?
1.解决问题
2 有多大呢? 因为 1.42 1.96 ,1.52 2.25,而 1.96 2 2.25 , 所以1.4 2 1.5 .
5.例题讲解
解:设剪出的长方形的两边长分别为3x cm和2x cm, 则有3x∙2x=300 ,
6x2=300 , x2=50, x 50 ,
故长方形纸片的长为3 50 cm ,宽为 2 50 cm .
因为 50>49,得 50>7 ,所以3 50 >3×7=21,
比原正方形的边长更长,这是不可能的.所以,小 丽不能用这块纸片裁出符合要求的纸片.
……
1.解决问题
2
你以前见过这种数吗? 2有多大呢?
2.用计算器求算术平方根
例1 用计算器求下列各式的值:
(1) 3136 ; (2) 2 (精确到 0.001 ).
解:(1) 依次按键 3136 , 显示:56. ∴ 3136 56 .
(2) 依次按键 2 , 显示:1.414213562. ∴ 2 1.414 .
2
5.例题讲解
小丽想用一块面积为400 cm2为的正方形纸片, 沿着边的方向剪出一块面积为300 cm2的长方形 纸片,使它的长宽之比为3:2.她不知能否裁得 出来,正在发愁.小明见了说:“别发愁,一定 能用一块面积大的纸片裁出一块面积小的纸片.” 你同意小明的说法吗?小丽能用这块纸片裁出符 合要求的纸片吗?
苏版初一下册算术平方根《用计算器求一个正数的算术平方根》教学设计
最新苏版初一下册算术平方根《用计算器求一个正数的算术平方根》教学设计—、内容和内容解析1.内容:用估算法或计算器求一个数的算术平方根的近似值2.内容解析:使用计算器可以求任何一个正数的算术平方根(或近似值),这个内容学生独立完成.基于以上分析,可以确定本节课的教学重点:掌握用有理数估计一个(无理)数的大小.二、目标和目标解析1.目标(1)能用估算法求一个数的算术平方根的近似值,体验"无限不循环小数“的含义,感受不同于有理数的一类新数的存在,目标(2)会用计算器求一个数的算术平方根;理解被开方数的扩大(或缩小)与其算术平方根的扩大(或缩小)之间的规律•2.目标解析目标(1):用估算法求一个数的算术平方根的近似值的过程体现了“数学中的无限逼近的思想”,使学生体验"无限不循环"小数的特点,并且会利用估算比较大小.目标(2):用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根(或其近似值),再通过一些特殊的例子找出一些正数的算术平方根的规律:被开方数小数点向右(或向左)移动2位,它的算术平方根就相应地向右(或向左)移动1位.三、学生问题诊断分析用有理数估计一个无理数的大致范围,并让学生在这个过程中体验"无限不循环小数"的含义,需要多次采用逼近法进行估计,而逼近法在以前的学习中从未出现过,学生一下子很难体会它的妙处,思维也很难展开,这些对学生综合运用知识的能力有较高的要求.基于以上分析,本节的难点:逼近法估计一个(无理)数的大小的思想,认识无限不循环小数的特点.四、教学策略分析本节课采用"复习回顾--问题情境--自主探究一小组合作一综合应用"的模式展开教学,以学生为主体,充分发挥学生的主观能动性,充分调动学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,五、教学过程设计1梳理旧知,铺垫新知(1)算术平方根的概念(2)利用概念填表,并归纳所得结论a (a>0)4251 1.96 2.2549164~a师生活动:学生代表回答,如出现错误或不完整,请其他学生修正或补充,得出结论:对于所有正数:被开方数越大,对应的算术平方根也越大,反之,亦然.设计意图:有意识的让学回顾上节课内容,为后面学习逼近法估算做好铺垫.2.创设情境,引入新知[问题1】用一个面积为4的正方形纸片.(1)你能否利用此折出面积为1的小正方形?(2)你能折出面积为2的小正方形吗?师生活动:教师提出问题,学生动手折叠,教师参与帮助指导学生完成折纸活动.设计意图:通过折纸活动,调动学生思维的积极性,建立初步的空间观念,发展形象思维.【追问11折出的面积为1的小正方形的对角线是多少?【追问2]面积为2的正方形的边长是多少?师生活动:学生独立思考,数形结合,容易得到,小正方形的对角线的长就是大正方形的边长VL设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个有理数的平方数的情况,激发学生学习积极性,追问(1注要为后面介绍用数轴上的点表示扼做准备•[追问3]V2背后有怎样的故事呢?师生活动:学生知道的,学生介绍;若不知道,教师介绍.设计意图:通过很背后的故事,学习无理数之父希帕索斯不畏权威,敢于创新,勇于追求真理的精神,同时大大提高学生探究扼的兴趣,3.问题探究,学习新知【问题2】V2有多大?为了弄清这个问题,请同学们探究V2"在哪两个相邻整数之间?"师生活动:先让学生思考讨论并大概估计有多大,数形结合,直观可知扼大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大“说明理由,教师板书推理过程•[追问1】㈤是1点几呢?你能不能得到V2的更精确的范围?师生活动:在梳理旧知的表格里,已经做好铺垫,学生试验可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1 .5,所以扼大于].4 而小于1.5.......用类似的方法反复上述过程,说明是姻一个无限不循环小数,以及什么是无限不循环小数•[追问2】许多正有理数的算术平方根都是无限不循环小数,如J?、布、、僧、、斤等.根据估计扼的大小的方法,请你估计布的整数部分是多少?师生活动:学生在独立思考的基础上,学生交流,在与学生沟通的过程中及时发现学生探究过程中的困难,给予及时指导帮助,引导学生对探究结果进行总结和交流,设计意图:在探究活动中加强培养学生的估算能力,渗透估算的思想和方法,感受两个方向无限逼近的数学思想,发展学生的抽象思维.了解无限不循环小数的特征,为后面学习实数做铺垫.追问(2)主要为及时巩固估算方法.[问题3]你对正数a的算术平方根西的结果有怎样的认识呢?师生活动:学生自己归纳总结,相互完善.最后一致得出:、伤的结果有两种,当a能表示成有理数的平方时,扃是一个有理数;当a不能表示成有理数的平方时,扃是一个无限不循环小数.设计意图:让学生对带有根号的数能进行分类.[问题4】用计算器求下列各式的值.(1)71136(2)V2(精确到0.001)师生互动:学生独立思考,动手完成.设计意图:通过用计算器求算术平方根,使学生进一步体会无限不循环小数的现实性和存在性,发展数感■4.初步应用,巩固新知[问题5】体验估算1.(2019年天津中考)估计719的值在()A、2和3之间B、3和4之间C、4和5之间D、5和6之间2.(2019天津中考)估计把+1的值在()A、2到3之间B、3到4之间C、4到5之间D、5到6之间3.(2019中考)已知a,b为两个连续的整数,且a<<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 填空找规律.
(1)利用计算器分别求: 0.5 ≈________, 5 ≈________, 50 ≈________, 500 ≈________.
(2)由(1)的结果,我们发现所得的结果与被开方数间
的
规律______________________________________ . (3)运0.0用5 (2)中的规律,直接50写00出结果:
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____
例3 观察下列式子,并填空:
0.314 0.5604, 3.14 1.772,
31.4 5.604; 314 17.72;
7.16 2.676,
___7_1_6_____ 26.76.
总结
对于此类规律探究题要从两个方向进行比较;第一, 把被开方数进行比较;第二,把它们的结果进行比较,从 中发现规律.从已知中发现:被开方数的小数点不断向右 移动,并且每次移动两位,其算术平方根的小数点也不断 向右移动,并且每次移动一位,于是猜测出小数点的移动 规律. 讨论:如果我们从被开方数及算术平方根的大小变化情况 去比较,它们又有什么样的变化规律?
19、别因为落入了一把牛毛就把一锅奶 油泼掉 ,别因 为犯了 一点错 误就把 一生的 事业扔 掉。——蒙古 20、许多人之所以在生活中一事无成, 最根本 原因在 于他们 不知道 自己到 底要做 什么。 在生活 和工作 中,明 确自己 的目标 和方向 是非常 必要的 。只有 在知道 你的目 标是什 么、你 到底想 做什么 之后, 你才能 够达到 自己的 目的, 你的梦 想才会 变成现 实。
17、在人生的竞赛场上,没有确立明确 目标的 人,是 不容易 得到成 功的。 许多人 并不乏 信心、 能力、 智力, 只是没 有确立 目标或 没有选 准目标 ,所以 没有走 上成功 的途径 。这道 理很简 单,正 如一位 百发百 中的神 射击手 ,如果 他漫无 目标地 乱射, 也不能 在比赛 中获胜 。 18、生活就像海洋,只有意志坚强的人 ,才能 到达彼 岸。——马克 思
5、一个人在科学探索的道路上,走过弯 路,犯 过错误 ,并不 是坏事 ,更不 是什么 耻辱, 要在实 践中勇 于承认 和改正 错误。 ——爱 因斯坦 6、瓜是长大在营养肥料里的最甜,天才 是长在 恶性土 壤中的 最好。 ——培 根 7、发光并非太阳的专利,你也可以发光 。
8、人们常用“心有余而力不足”来为自 己不愿 努力而 开脱, 其实, 世上无 难事, 只怕有 心人, 积极的 思想几 乎能够 战胜世 间的一 切障碍 。 9、如果你希望成功,当以恒心为良友, 以经验 为参谋 ,以当 心为兄 弟,以 希望为 哨兵。 ——爱 迪生
≈________,
≈________.
2 已知 6 ≈2.449,不再利用其他工具,能确定近 似值的是( )
A. 0.6
B. 60
C. 600
D. 6000
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
10、涓滴之水终可磨损大石,不是由于 它力量 大,而 是由于 昼夜不 舍的滴 坠。只 有勤奋 不懈的 努力才 能够获 得那些 技巧, 因此, 我们可 以确切 地说: 说:不 积跬步 ,无以 致千里 。——贝多芬 11、一定要做最适合自己的事情,不要 迎合别 人的口 味而去 做一件 不属于 自我的 “难事 ”。一 旦“发 现自我 ”,就 要尽力 而为, 但要全 面了解 自己和 周围的 环境, 知道适 可而止 。 12、要有自信,然后全力以赴--假如具有 这种观 念,任 何事情 十之八 九都能 成功。 ——威 尔逊 13、莫找借口失败,只找理由成功。 14、一个有坚强心志的人,财产可以被 人掠夺 ,勇气 却不会 被人剥 夺的。 ——雨 果 15、积极的人在每一次忧患中都看到一 个机会 ,而消 极的人 则在每 个机会 都看到 某种忧 患。 16、不是境况造就人,而是人造就境况 。
六、词语点将(据意写词)。
1.看望;访问。 ( ) 2.互相商量解决彼此间相关的问题。 ( )
3.竭力保持庄重。 ( ) 4.洗澡,洗浴,比喻受润泽。 ( )
5.弯弯曲曲地延伸的样子。 ( ) 七、对号入座(选词填空)。
冷静 寂静 幽静 恬静 安静
1.蒙娜丽莎脸上流露出( )的微笑。
2.贝多芬在一条( )的小路上散步。 3.同学们( )地坐在教室里。
解:(1)依次按键
2 =,
显示:1.414213562,精确到0.01,得 2 1.41.
(2) 1830 42.78.
(3) 0.876 0.94.
(4)在计算器上一次键入:
即可得
5 ≈0.85.
7
( 5÷7 ) =
总结
分数利用除法输入时不要忘记加括号.
本章引言中提到的速度v2是第二宇宙速度, v2 2gr ,
21、怠惰是贫穷的制造厂。 22、先知三日,富贵十年。 23、自信是向成功迈出的第一步。——爱因斯 坦 24、一个人除非自己有信心,否则不能 带给别 人信心 ;已经 信服的 人,方 能使人 信服。 ——麦 修·阿诺 德 25、凡是挣扎过来的人都是真金不怕火 炼的; 任何幻 灭都不 能动摇 他们的 信仰: 因为他 们一开 始就知 道信仰 之路和 幸福之 路全然 不同, 而他们 是不能 选选择 的,只 有往这 条路走 ,别的 都是死 路。这 样的自 信不是 一朝一 夕所能 养成的 。你绝 不能以 此期待 那些十 五岁左 右的孩 子。在 得到这 个信念 之之前 ,先得 受尽悲 痛,流 尽眼泪 。可是 这样是 好的, 应该要 这样… …——罗 曼·罗 兰 26、一个人在科学探索的道路上,走过 弯路, 犯过错 误,并 不是坏 事,更 不是什 么耻辱 ,要在 实践中 勇于承 认和改 正错误 。——爱因斯 坦88我 们的理 想应该 是高尚 的。我 们不能 登上顶 峰,但 可以爬 上半山 腰,这 总比待 在平地 上要好 得多。 如果我 们的内 心为爱 的光辉 所照亮 ,我们 面前前 又有理 想,那 么就不 会有战 胜不了 的困难 。——普列姆 昌德 27、旁观者的姓名永远爬不到比赛的计 分板上 。
十、理解感悟。
(一)
蒙娜丽莎那微抿的双唇,微挑( )的嘴角,好像有话要跟你说。在 那极富 个性的 嘴角和 眼神里 ,悄然 流露出 恬静、 淡雅的 微笑。 那微笑 ,有时 让人觉 得舒畅 温柔, 有时让 人觉得 略含哀 伤,有 时让人 觉得十 分亲切 ,有时 又让人 觉得有 几分矜 ( )持。蒙娜丽莎那“神秘的微笑”是 那样耐 人寻味 ,难以 捉摸。 达·芬奇 凭着他 的天才 想象为 和他那 神奇的 画笔, 使蒙娜 丽莎转 瞬即逝 的面部 表情, 成了永 恒的美 的象征 。
第6章 实数
6.1 平方根、立方根
第3课时 用计算器求一个数 的算术平方根
1 课堂讲解 用计算器求一个正数的算术平方根
算术平方根的小数点移位法则
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
利用科学计算器怎样进行开方运
算?
3
开方运算要用到键 和键 .
对于开平方运算,按键顺序为:
被开方数 = S D .
___________________________________ ______ ______ ______ ______ ______ ______ ______ 4.她的光辉照耀着每一个有幸看到她 的人。
“把”字句:_______________________ ______ ______ ______ ______ ______ ______ ______ “被”字句:_______________________ ______ ______ ______ ______ ______ ______ ______
知识点 2 算术平方根的小数点移位法则
探究 (1)利用计算器计算下表中的算术平方根,并将计算结
果填在表中,你发现了什么规律?你能说出其中的 道理吗?
…
0.0625 0.625 6.25 62.5
625 6250
…
62500
…
…
(2)用计算器计算 3 (精确到0.01),并利用你在(1)中发 现的规律说出 0.03, 300, 30000, 的近似值,你 能根据 3 的值说出 30 是多少吗?
3、别想一下造出大海,必须先由小河川 开始。 4、自信是所有成功人士必备的素质之一 ,要想 成功, 首先必 须建立 起自信 心,而 你若想 在自己 内心建 立信心 ,即应 像洒扫 街道一 般,首 先将相 当于街 道上最 阴湿黑 暗之角 落的自 卑感清 除干净 ,然后 再种植 信心, 并加以 巩固。 信心建 立之后 ,新的 机会才 会随之 而来。
其操作方法是按顺序进行按键输入: a =
小明按键输入 1 6 = ,显示结果为4,
则他按键输入
1 6 0 0 = ,显示结
果应为________.