导体棒绕固定点转动切割磁感线专题高考物理

合集下载

2020年高考物理100考点- 转动切割磁感线问题

2020年高考物理100考点- 转动切割磁感线问题

2020年高考物理100考点最新模拟题(选修3-2)第四部分 电磁感应专题4.32 转动切割磁感线问题(基础篇)一.选择题1.(6分)(2019石家庄二模)如图,半径为L 的小圆与半径为3L 的圆形金属导轨拥有共同的圆心,在小圆与导轨之间的环形区域存在垂直于纸面向外、磁感应强度大小为B 的匀强磁场。

现将一长度为3L 的导体棒置于磁场中,让其一端O 点与圆心重合,另一端A 与圆形导轨良好接触。

在O 点与导轨间接入一阻值为r 的电阻,导体棒以角速度ω绕O 点做逆时针匀速圆周运动,其它电阻不计。

下列说法正确的是( )A .导体棒O 点的电势比A 点的电势低B .电阻r 两端的电压为C .在导体棒旋转一周的时间内,通过电阻r 的电荷量为D .在导体棒旋转一周的时间内,电阻r 产生的焦耳热为2.(2019全国高考猜题卷6)如图所示,单匝矩形闭合导线框abcd 处于磁感应强度大小为B 、方向垂直纸面向里的水平匀强磁场中,线框面积为S ,电阻为R .线框绕与cd 边重合的竖直固定转轴以角速度ω从中性面开始匀速转动,下列说法中正确的是( )A .线框转过π6时,线框中的电流方向为abcdaB .线框中感应电流的有效值为2BSω2RC .线框转一周过程产生的热量为2πωB 2S 2RD .线框从中性面开始转过π2过程,通过导线横截面的电荷量为BS R3. (2018洛阳联考)1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲).它是利用电磁感应的原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘良好接触.使铜盘转动,电阻R 中就有电流通过.若所加磁场为匀强磁场,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,下列说法中正确的是( )A. 铜片D 的电势高于铜片C 的电势B. 电阻R 中有正弦式交变电流流过C. 铜盘转动的角速度增大1倍,流过电阻R 的电流也随之增大1倍D. 保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生4.(2018·上海闵行区模拟)如图5所示,在外力的作用下,导体杆OC 可绕O 轴沿半径为r 的光滑的半圆形框架在匀强磁场中以角速度ω匀速转动,磁感应强度大小为B ,方向垂直纸面向里,A 、O 间接有电阻R ,杆和框架电阻不计,则所施外力的功率为( )A.B 2ω2r 2R B.B 2ω2r 4R C.B 2ω2r 44R D.B 2ω2r 48R5.(2016·全国卷Ⅱ,20)(多选)法拉第圆盘发电机的示意图如图11所示。

高中物理-专题 单导体棒切割磁感线问题(计算题)(基础篇)(解析版)

高中物理-专题 单导体棒切割磁感线问题(计算题)(基础篇)(解析版)

2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.16 单导体棒切割磁感线问题(计算题)(基础篇)计算题1.(13分) (2020浙江稽阳联考)如图为二根倾角θ=300的平行金属导轨,上端有一个电动势为E =5 V 、内阻为r =1 Ω的电源,以及一个电容为C 的电容器,导轨通过单刀双掷开关可分别与1、2相连。

导轨中间分布有两个相同的有界磁场AA’CC’及DD’FF’,磁场方向垂直导轨向下,磁场内外边界距离等于导轨间距L ,L =1 m ,磁场的上下边界距离如图所示均为d =2 m ,CC’到DD’的距离也为d 。

除电源内阻外,其它电阻忽略不计,导体棒与导轨光滑接触。

初始时刻,开关与1相连,一根质量为m =1 kg 的导体棒恰好能静止在导轨上AA’位置,导体棒处于磁场之中。

当开关迅速拨向2以后,导体棒开始向下运动,它在AA’CC’、 CC’DD’两个区域运动的加速度大小之比为4/5。

(1)求磁感应强度B 的大小;(2)求导体棒运动至DD’时的速度大小v 2;(3)求电容C 的值;(4)当导体棒接近DD’时,把开关迅速拨向1,求出导体棒到达FF’的速度v 3。

【参考答案】(1)B =ELmgr sin (2)v 2=6m/s (3)C=0.25 F (4)v t =4m/s 【名师解析】(1)由平衡条件知,初始时刻mg sin θ=Bil (1分)i=E r(1分) 得B =ELmgr θsin 代入数据得B =1T 。

(1分)(2) 从CC’到DD’,导体棒做的匀加速运动,加速度为a 2=g sin θ=5m/s 2由题意知,导体棒在AA’CC’运动的加速度a 1=4m/s 2(1分)其到达CC’的速度满足 v 12=2a 1d从CC’到DD’, 有v 22-v 12=2a 2d (1分)计算得v 1=4m/sv 2=6m/s (1分)(3)开关拨向2后,导体棒开始在磁场中运动,当速度为v 时,由牛顿运动定律得mg sin θ-BiL =mai =Δq Δt(1分) q =CU (1分)U =BLv (1分)可得a =22sin L CB m mg +θ计算得C=0.25 F (1分)(4)进入第二个磁场后,导体棒受到重力、弹力、安培力,其动力学方程可写作mg sin θ-BiL =ma其中i =rBLv E + 代入后mg sin θ-r BEL -rv L B 22=ma (1分) 注意到B =ELmgr θsin ,上式写为-r v L B 22=ma 可等效为导体棒在仅受安培力作用下的运动,上式变形可得-rx L B 22=mv t -mv 2 (1分) 代入x =2m ,得v t =4m/s ,即到达FF’时的速度为4m/s 。

高考物理(电磁感应)精选训练-导体杆转动切割产生感应电动势问题解析版

高考物理(电磁感应)精选训练-导体杆转动切割产生感应电动势问题解析版

一. 选择题1.如图1所示,竖直平面内有一金属环,半径为a ,总电阻为R (指剪开拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 连接的长度为2a 、电阻为R2的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时导体棒AB 两端的电压大小为( )A.Bav 3B.Bav 6C.2Bav 3D.Bav 【参考答案】 A2. 如图10,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上。

当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c 。

已知bc 边的长度为l 。

下列判断正确的是( )A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿a -b -c -aC.U bc =-12Bl 2ω,金属框中无电流D.U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a【参考答案】 C 【名师解析】3.如图3所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A.由c 到d ,I =Br 2ωRB.由d 到c ,I =Br 2ωRC.由c 到d ,I =Br 2ω2RD.由d 到c ,I =Br 2ω2R【参考答案】 D 【名师解析】由右手定则判定通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动势E =12Br 2ω,所以通过电阻R 的电流大小是I =Br 2ω2R。

选项D 正确。

4如图所示,导体杆OP 在作用于OP 中点且垂直于OP 的力作用下,绕O 轴沿半径为r 的光滑半圆形框架在匀强磁场中以一定的角速度转动,磁场的磁感应强度为B ,AO 间接有电阻R ,杆和框架电阻不计,回路中的总电功率为P ,则A .外力的大小为2P RB .外力的大小为2PRC .导体杆旋转的角速度为22PRBrD .导体杆旋转的角速度为22Br P R【参考答案】C【命题意图】本题考查了电磁感应、闭合电路欧姆定律、电功率,圆周运动等知识点。

高中物理-专题 双导体棒切割磁感线问题(基础篇)(解析版)

高中物理-专题 双导体棒切割磁感线问题(基础篇)(解析版)

2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.22 双导体棒切割磁感线问题(基础篇)一.选择题1. (2019新疆三模)如图所示,两金属细杆L 1、L 2在宽窄不同的水平导轨上分别做匀变速运动,整个装置处在匀强磁场中,磁场方向垂直导轨所在平面。

已知回路中的感应电流始终保持不变。

则( )A. 若两金属细杆运动方向相同,则两杆加速度方向相同B. 若两金属细杆运动方向相同,则两杆加速度方向相反C. 若两金属细杆运动方向相反,则两杆加速度方向相同D. 若两金属细杆运动方向相反,则两杆加速度方向相反【参考答案】.AC【名师解析】,根据法拉第电磁感应定律,产生的感应电动势:E=t ∆Φ∆=S t∆∆B , 由题意可知,回路中的感应电流始终保持不变,根据闭合电路欧姆定律,感应电动势E 保持不变,则回路面积变化率S t ∆∆保持不变。

如果两金属细杆的运动方向相同,回路面积减小,为保证保持不变,两金属杆的都做匀加速或匀减速直线运动,加速度方向相同,大小不相等,选项A 正确,B 错误;如果两金属杆的运动方向相反,回路面积增大,为保证S t∆∆保持不变,两杆应一个做加速运动,一个做减速运动,由于杆的速度方向相反,则两杆的加速度方向相同,选项C 正确,D 错误。

2. (2017·江西省名校联盟教学质量检测)如图6所示,水平面上固定着两根相距L 且电阻不计的足够长的光滑金属导轨,导轨处于方向竖直向下、磁感应强度为B 的匀强磁场中,铜棒a 、b 的长度均等于两导轨的间距、电阻均为R 、质量均为m ,铜棒平行地静止在导轨上且与导轨接触良好。

现给铜棒a 一个平行导轨向右的瞬时冲量I ,关于此后的过程,下列说法正确的是( )A.回路中的最大电流为BLI mRB.铜棒b 的最大加速度为B 2L 2I 2m 2RC.铜棒b 获得的最大速度为I mD.回路中产生的总焦耳热为I 22m【参考答案】B【名师解析】 给铜棒a 一个平行导轨的瞬时冲量I ,此时铜棒a 的速度最大,产生的感应电动势最大,回路中电流最大,每个棒受到的安培力最大,其加速度最大,I =mv 0,v 0=I m,铜棒a 电动势E =BLv 0,回路电流I 0=E 2R =BLI 2mR ,选项A 错误;此时铜棒b 受到安培力F =BI 0L ,其加速度a =F m =IB 2L 22Rm 2,选项B 正确;此后铜棒a 做变减速运动,铜棒b 做变加速运动,当二者达到共同速度时,铜棒b 速度最大,据动量守恒,mv 0=2mv ,铜棒b 最大速度v =I 2m ,选项C 错误;回路中产生的焦耳热Q =12mv 20-12·2mv 2=I 24m,选项D 错误。

导体切割磁感线产生的感应电动势-2019届高考物理---精校解析 Word版

导体切割磁感线产生的感应电动势-2019届高考物理---精校解析 Word版

(3)相对性:E=Blv中的速度v是相对于磁场的速度,若磁场也运动时,应注意速度间的相对关系。

2. 转动切割当导体在垂直于磁场的平面内,绕一端以角速度ω如图所示。

如图所示,长为l的金属棒ab,绕b端在垂直于匀强磁场的平面内以角速度小为B,ab棒所产生的感应电动势大小可用下面两种方法推出。

方法一:棒上各处速率不同,故不能直接用公式正比,故可用棒的中点的速度作为平均切割速度代入公式计算。

ωlA.磁感应强度的大小为0.5 TB.导线框运动的速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外(1)根据法拉第电磁感应定律(2)已知B=0.2 T,L=A.回路电流I1∶B.产生的热量A .因右边面积减少B .因右边面积减少A.θ=0时,杆产生的感应电动势为B.θ=π3时,杆产生的感应电动势为C.θ=0时,杆受到的安培力大小为A .感应电流方向始终沿顺时针方向不变B .CD 段直导线始终不受安培力A .I =Br 2ωR ,由c C .I =Br 2ω2R ,由cA.C点电势一定高于B.圆盘中产生的感应电动势大小为C.电流表中的电流方向为由D.若铜盘不转动,使所加磁场磁感应强度均匀增大,在铜盘中可以产生涡旋电流A.B2ω2r2RB.C.B2ω2r4D.A.金属棒中电流从BB.金属棒两端电压为C.电容器的M板带负电A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿C.U bc =-12Bl由力的平衡可知由动能定理可得故D,则感应电动势最大值为届江西省红色七校高三第一次联考)A. R1中无电流通过错误;感应电动势为:的电压为:ab克服安培力做的功等于电阻棒经过环心时所受安培力的大小为棒运动过程中产生的感应电流在棒中由A流向Cat,故=,故=正确。

选修3-2电磁感应导体棒绕固定点转动切割磁感线有答案

选修3-2电磁感应导体棒绕固定点转动切割磁感线有答案

导体棒绕固定点转动切割磁感线问题研究一、基本知识。

导体棒在磁场中转动切割磁感线时,由于各点切割的线速度不同,不能直接用E=BLVsin θ来计算,然导体棒绕定轴转动时依V=rω可知各点的线速度随半径按线性规律变化,因此通常用中点的线速度来替代,即ω2LV=或2BAVVV+=二、例题讲解。

例1:一根导体棒oa 长度为L,电阻不计,绕o 点在垂直于匀强磁场B 的平面内以角速度ω做匀速圆周运动,求其产生的电动势。

解法:利用法拉第电磁感应公式的导出公式E=Blv 求解。

由于杆上各点的线速度都不相同,并且各点的线速度大小正比于该点到o点的距离。

o点速度为零,a点速度最大,为ωl,则整个杆的平均速度为2ωl,相当于棒中点瞬时速度的大小。

产生的电动势由右手定则可以判断电动势的方向为o→a,a 点的电势高于o 点的电势,即a 点相当于电源的正极。

拓展1:存在供电电路例2:金属棒长为l,电阻为r,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R,圆环电阻不计,求Uoa。

解析:图中装置对应的等效电路如图6 所示。

由题根可知,oa 切割磁感线产生的电动势为:,注意,由于棒有内阻。

由全电路欧姆定律:(因为a 点电势高于o 电势)。

点评:①见到这些非常规电路画等效电路是很必要也很有效的方法。

②之所以题目设计为求Uoa,是为了体现求解电势差的注意点。

拓展2:磁场不是普通的匀强磁场例3:其他条件同例3,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。

解析:由于B 变化,棒oa 切割磁感线产生的电动势不再是恒定值,而是随时间作周期性变化的交变值,由题根可知:此电势差也随时间作周期性变化拓展3:有机械能参与的能量转化问题例4:如图8 所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。

高考物理电磁感应中单棒切割磁感线的模型分类总结

高考物理电磁感应中单棒切割磁感线的模型分类总结

电磁感应中单棒切割磁感线的模型汇总电磁感应中金属棒沿"U"型框架或平行导轨运动,要涉及磁场对电流的作用,法拉第电磁感应定律,含源电路的计算等电学知识和力学知识,其中单棒切割磁感线是这类习题的基础。

导体棒运动可分为给一定初速或在外力作用下的两种情况,在高中阶段我们常见的电学元件有电阻、电源、电容器、电感线圈,组合在一起一共有八种典型模型,下面我们具体来讨论这八种模型遵循的规律。

模型(一)匀强磁场与导轨导体棒垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,初速度为v ,水平导轨光滑。

除电阻R 外,其它电阻不计。

(1)电路特点∶导体棒相当于电源。

(2)动态分析∶R BLV R E I ==,R V L B BIL F A 22==,ma=A F ↓↓→↓→↓→a V A F I ,导体棒做a 减小的减速运动,最后回路中电流等于零,a=0、v=0,棒静止。

(3)电量关系∶设此过程中导体棒的位移为xRBLX R =∆=φn q 0mv -0q =-BL (4)能量关系∶回路中焦耳热为Q ,20mv 210--=A W QW A =模型(二)匀强磁场与导轨导体棒垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,,初速度为零,在恒力F 作用向右运动;水平导轨光滑。

除电阻R 外,其它电阻不计。

(1)电路特点∶导体棒相当于电源。

(2)动态分析∶R BLV R E I ==,R V L B BIL F A 22==,ma=-A F F ↓↑→↑→↑→a V A F I ,导体棒做a 减小的加速运动。

最后的稳定状态为:当安培力F A 等于外力F 时,电流达到恒定值,导体棒以v m 做匀速直线运动。

22m v L B FR =(3)电量关系∶如果导体棒位移为x ,RBLX R =∆=φn q 0-mv q t m =-BL F (4)能量关系∶回路中焦耳热为Q ,0-mv 21-FX 2m =A W QW A =模型(三)匀强磁场与导轨垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,电阻为R ,初速度为零;电源电动势为E ,内阻为r ;水平导轨光滑,电阻不计。

2025年高考物理-法拉第电磁感应定律的理解及应用(解析版)

2025年高考物理-法拉第电磁感应定律的理解及应用(解析版)

法拉第电磁感应定律的理解及应用考点考情命题方向考点法拉第电磁感应定律2024年高考甘肃卷2024年高考广东卷2024年高考北京卷2023年高考湖北卷2023高考江苏卷2022年高考天津卷法拉第电磁感应定律是电磁感应的核心知识点,年年考查,一般与安培力、动力学、功和能结合考查。

题型一对法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 的变化引起时,则E =nΔB ·S Δt ;当ΔΦ仅由S 的变化引起时,则E =n B ·ΔSΔt;当ΔΦ由B 、S 的变化同时引起时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt.3.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.1(2024•泰州模拟)如图所示,正三角形ABC 区域存在方向垂直纸面向里、大小随时间均匀增加的磁场。

以三角形顶点C 为圆心,粗细均匀的铜导线制成圆形线圈平行于纸面固定放置,则下列说法正确的是()A.线圈中感应电流的方向为顺时针B.线圈有扩张趋势C.线圈所受安培力方向与AB 边垂直D.增加线圈匝数,线圈中感应电流变小【解答】解:AB 、磁场垂直纸面向里,磁感应强度增大,穿过线圈的磁通量增加,根据楞次定律可知,感应电流的方向为逆时针。

因感应电流的磁场要阻碍磁通量的变化,所以线圈有收缩趋势,故AB 错误;C 、线圈的有效长度与AB 边平行,根据左手定则可知,线圈所受安培力方向与AB 边垂直,故C 正确;D 、设B =kt (k >0,且为常数),圆形线圈的半径为l ,电阻为R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导体棒绕固定点转动切割磁感线问题研究
一、基本知识。

导体棒在磁场中转动切割磁感线时,由于各点切割的线速度不同,不能直接用E=BLVsin θ来计算,然导体棒绕定轴转动时依V=r ω可知各点的线速度随半径按线性规律变化,因此通常用中点的线速度来替代,即ω2L V =或2B
A V V V +=
二、例题讲解。

例1:一根导体棒oa 长度为L ,电阻不计,绕o 点在垂直于匀强磁场B 的平面以角速度ω做匀速圆周运动,求其产生的电动势。

解法:利用法拉第电磁感应公式的导出公式E=Blv 求解。

由于杆上各点的线速度都不相同,并且各点的线速度大小正比于该点到o 点的距离。

o 点速度为零,a 点速度最大,为ωl ,则整个杆的平均速度为2ωl ,相当于棒中点瞬时速度的大小。

产生的电动势
由右手定则可以判断电动势的方向为o→a ,a 点的电势高于o 点的电势,即a 点相当于电源的正极。

拓展1:存在供电电路
例2:金属棒长为l ,电阻为r ,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R ,圆环电阻不计,求Uoa 。

解析:图中装置对应的等效电路如图6 所示。

由题根可知,oa 切割磁感线产生的电动势为:,注意,由于棒有阻。

由全电路欧姆定律:
(因为a 点电势高于o 电势)。

点评:①见到这些非常规电路画等效电路是很必要也很有效的方法。

②之所以题目设计为求Uoa,是为了体现求解电势差的注意点。

拓展2:磁场不是普通的匀强磁场
例3:其他条件同例3,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。

解析:由于B 变化,棒oa 切割磁感线产生的电动势不再是恒定值,而是随时间作周期性变化的交变值,由题根可知:
此电势差也随时间作周期性变化。

拓展3:有机械能参与的能量转化问题
例4:如图8 所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。

解析:此题中由于重物下落,带动圆轮转动,辐条oa 做切割磁感线运动产生电动势,oa 相当于电源,与电阻R 构成闭合电路,a 端为正极,o 端为负极,如图9 所示。

由于oa 边受到的安培力阻碍圆环转动,并且随着转速逐渐增大,安培力也逐渐增大,最终达到一稳定速度,解此速度可用两种方法解,一种是根据力矩平衡解,另一种根据能量守恒解。

点评:在处理伴有能量转化的物理问题时,解题方法通常不唯一,可以从纯力学角度下手,也可以利用能量守恒,很显然,利用能量关系解题往往较简捷,故下面的关于能量拓展系列都用此法解。

变式(1):如果原题中的辐条有电阻,且电阻r,求最终系统平衡的速度。

解析:如果辐条有电阻,则方法二中的能量关系方程应为:
变式(2):如果把原题中的辐条由一根变成四根,如图10所示,且相邻两根辐条的夹角是90°,辐条电阻不计,求重物最终下落的稳定速度。

解析:由一根辐条变成四根辐条,则当圆环转动时相当于产生了四个电源,且四个电源是并联关
系,总电动势还是等于每个辐条产生的电动势,由于电阻不计,故用能量守恒方法解的能量守恒方程依然是:,最终速度还是:
变式(3):如果把变式(2)中的四根辐条变成一金属圆盘,且不计金属圆盘阻,求重物最终下落的稳定速度,如图11 所示:
解析:金属圆盘可看作是无数根金属辐条并联而成,此时圆盘转动产生的总电动势依然等于每根辐条产生的电动势:。

最终速度也是:形式虽然变了,本质依然没变。

变式(4):如果变式(2)中的四根辐条的电阻都是r,则重物下落的最终稳定速度为多少?
解析:当四根辐条都有电阻时,且是并联关系,并联后总电阻为,电动势还是,则利用能量守恒求最终速度的方程变为:
变式(5):在变式(4)的情况下,去掉定值电阻R,环的电阻不可忽略,大小为R,且改变圆环右半边所在区域磁场的方向,如图12 所示,磁感应强度的大小都是B,MN 左侧磁场垂直纸面向里,MN 右侧磁场垂直纸面向外,求重物最终下落的稳定速度。

相关文档
最新文档