第二章 线性规划及其单纯形法习题

合集下载

单纯形法习题

单纯形法习题
线性规划的练习题
习题一 下表为求极大化的单纯形表,问表中 a1,a2,c1,c2,d为何值及表中变量为哪一类型时, (1)表中解为唯一最优解;(2)表中解为无穷多最 优解之一;(3)表中解为退化的可行解;(4)下一 步迭代将以x1替代基变量x5;(5)该问题具有无界解; (6)该问题无可行解; XB X3 X4 X5 b d 2 3 x1 4 -1 a2 x2 a1 -5 -3 x3 1 0 0 x4 0 1 0 X5 0 0 1
习题三 已知某线性规划问题的初始单纯形表和用 单纯形法迭代后得到的表如下所示,试求括号中未 知数a~l的值。
基变量 X4 X5 cj-zj b 6 1 X1 (b) -1 (a) X2 (c) 3 -1 X3 (d) (e) 2 X4 1 0 0 X5 0 1 0
X1
X5
(f)
4
Hale Waihona Puke (g)(h)2
(i)
Cj-Zj
c1
c2
0
0
继续
0
返回
习题二 线性规划的目标函数是maxZ,在用标准的 单纯形法求解的过程中,得到下表(其中a、b是常 数,部分数据有缺失)
基变量
X6 X2
CB
X1 2 0 a
X2 5
X3 8 3
X4 0
X5 0 0 0.5
X6 0
b
20 b
X4 Cj-Zj
-2
-1 -2
1
8
(1)在所有的空格中填上适当的数(其中可含a、b参数) (2)判断以下四种情况在什么时候成立,并简要说明理由。 1.此解为最优解,试写出相应的基解和目标函数值; 2.此解为最优解,且此规划有无穷多最优解; 3.此规划有无界解; 4.此解不是最优解,且能用单纯形法得到下一个基可行解。

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

单纯形法的计算题

单纯形法的计算题

单纯形法的计算题
单纯形法是一种求解线性规划问题的数学方法。

下面是一道使用单纯形法求解的线性规划问题的例子:
求最大化目标函数z = -2x1 + 3x2,
约束条件:
1. x1 + x2 <= 4
2. 3x1 + 4x2 <= 12
3. x1, x2 >= 0
用单纯形法求解此问题,需要进行以下步骤:
1. 建立初始单纯形表格:根据约束条件,我们可以确定初始单纯形表格的基变量和非基变量。

2. 计算目标函数的系数和:根据目标函数的系数,我们可以计算出目标函数的系数和。

3. 检查退出条件:如果目标函数的系数和大于零,则无法找到可行解;如果目标函数的系数和小于等于零,则已经找到最优解。

4. 迭代计算:如果未达到最优解,需要继续迭代计算,更新单纯形表格,直到找到最优解为止。

5. 输出结果:最终的单纯形表格中,最优解对应的基变量和非基变量的值即为所求的最优解。

具体到这个例子中,可以使用线性规划软件包或编程语言实现单纯形法来求解。

通过输入约束条件和目标函数,可以得到最优解。

第二章 线性规划与单纯形法(补充例题123页开始)

第二章  线性规划与单纯形法(补充例题123页开始)
难点
Chapter 2 线性规划与单纯形法
引言
线性规划是用线性数学模型表示不同的生 产活动、营销活动、金融活动或其他活 动的计划。
线性规划(Linear Programming,缩写为LP)是运筹 学的重要分支之一,在实际中应用得较广泛,其方法 也较成熟,借助计算机,使得计算更方便,应用领域 更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运行等 问题。例如,当任务或目标确定后,如何统筹兼顾, 合理安排,用最少的资源 (如资金、设备、原标材料、 人工、时间等)去完成确定的任务或目标;企业在一 定的资源条件限制下,如何组织安排生产获得最好的 经济效益(如产品量最多 、利润最大)。
练习
例2 某工厂用钢与橡胶生产3种产品A、B、C,有关资料如下表
产品 单位产品钢消耗量 单位产品橡胶量 单位产品利润
A B C
2 3 1
3 3 2
40 45 24
已知每天可获得100单位的钢和120单位橡胶,问每天生产A、B、C各多 少使总利润最大?
解:设x1,x2, x3分别为A、B、C日产量,则有 目标函数: max z=40x1+45x2 +24x3 •约束条件
vj 的产品数。 问题的目标是总运输成本最小
化,总运输成本可以表示为:
总运输成本 = 7.5x15+3 x14+8.2x25+3.5 x24+2.3 x45+3.4 x34+2.3x46+9.2 x36
数学模型 min Z 7.5 x15 3 x14 8.2 x25 3.5 x24 2.3 x45
装修费限制
1000x1+600x2≤8000 x1≥0 , x2≥0

第二章 线性规划习题(附答案)

第二章 线性规划习题(附答案)
z
x1
x2
x3
x4
x5
x6
RHS
z
1
0
2
0
1/5
3/5
-1/5
27
x1
3
1
-1/3
0
1/3
-1/3
2
5
x3
4
0
1
1
-1/5
2/5
-4/5
3
由于增加决策变量 后求得的最优单纯形表为:
z
x1
x2
x3
x4
x5
x6
RHS
z
1
1/10
89/30
0
7/30
17/30
0
55/2
x6
3
1/2
-1/6
0
1/6
-1/6
习题
2-1判断下列说法是否正确:
(1)任何线性规划问题存在并具有惟一的对偶问题;
(2)对偶问题的对偶问题一定是原问题;
(3)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;
(4)若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优解;
(8)已知yi为线性规划的对偶问题的最优解,若yi>0,说明在最优生产计划中第i种资源已经完全耗尽;若yi=0,说明在最优生产计划中的第i种资源一定有剩余。
2-2将下述线性规划问题化成标准形式。
解:(1)令 ,增加松弛变量 ,剩余变量 ,则该问题的标准形式如下所示:
(2)令 , , ,增加松弛变量 ,则该问题的标准形式如下所示:
则可知,最优解变为 ,最优值变为27。
(3)先将原问题最优解变量值代入,因有

运筹学原理单纯形法练习题

运筹学原理单纯形法练习题

四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。

建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。

月销售分别为250,280和120件。

问如何安排生产计划,使总利润最大。

2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 6—10 10一14 14—18 18—22 22—24 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。

并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。

已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10XlX2 X3 X4 —10 b-1 f g X3 2 C O 1 1/5 Xlade1(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解 第四章 线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Yl﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。

运筹学 第二章线性规划 第三讲 单纯形法

运筹学 第二章线性规划 第三讲 单纯形法
1 -2 4 2
[1] 1 2 -1↑
1 0 0 0
1 0 0 0
1 -1 -2 1
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
5→ 6 21
5 1 11
5 6 21/2
表中λj≥0( j=1,2,…,5), 所以最优解为X=(0,5,0,1,11 )T , 最 优值 Z=2x1-2x2-x4=-2×5-1=-11。
大值,因此原问题只要有可行解,新的线性规划问
题的最优解中人工变量的取值一定为0, 这种方
法称为大M单纯形法(简称大M法)。
2.5 单纯形法 Simplex Method
Chapter 1 线性规划 Linear Programming
大M法中加入人工变量后新的线性规划问题为
max Z’=c1x1+c2x2+…+cnxn –Mxn+1 – … –Mxn+m
【解】首先将数学模型化为标准形式
2.5 单纯形法 Simplex Method
Chapter 1 线性规划 Linear Programming
max Z 3x1 2 x 2 x3
式中x4,x5为松弛变量,x5可 4 x1 3x 2 x3 x 4 4 作为一个基变量,第一、三 x x 2 x x 10 约束中分别加入人工变量x6 、 1 2 3 5 x7 , 目 标 函 数 中 加 入 2 x1 2 x 2 x3 1 ―Mx6―Mx7一项,得到人工 x j 0, j 1,2,,5 变量单纯形法数学模型
0 0 1
Z=2 x1 2 x2 (6 x1 x2 ) 6 x1 x2

《运筹学》习题线性规划部分练习题及答案整理版

《运筹学》习题线性规划部分练习题及答案整理版

《运筹学》线性规划部分练习题一、思考题1.什么是线性规划模型,在模型中各系数的经济意义是什么?2 .线性规划问题的一般形式有何特征?3.建立一个实际问题的数学模型一般要几步?4.两个变量的线性规划问题的图解法的一般步骤是什么?5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

7•试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

8•试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。

9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢?11 •什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段?二、判断下列说法是否正确。

1.线性规划问题的最优解一定在可行域的顶点达到。

2.线性规划的可行解集是凸集。

3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。

5 .线性规划问题的每一个基本解对应可行域的一个顶点。

6.如果一个线性规划问题有可行解,那么它必有最优解。

7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与j' 0对应的变量都可以被选作换入变量。

8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。

9.单纯形法计算中,选取最大正检验数二k对应的变量xk作为换入变量,可使目标函数值得到最快的减少。

10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

三、建立下面问题的数学模型1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到第三年年初都可以投资。

第二章 线性规划典型习题

第二章 线性规划典型习题
求解如下的线性规划问题
max Z = 10 x1 + 15 x2 + 12 x3 5 x1 + 3 x2 + x3 ≤ 9 − 5 x1 + 6 x2 + 15 x3 ≤ 15 2 x1 + x2 + x3 ≥ 5 x1 , x2 , x3 ≥ 0
化标准型
max Z = 10 x1 + 15 x2 + 12 x3 5 x1 + 3x2 + x3 ≤ 9 − 5 x1 + 6 x2 + 15 x3 ≤ 15 2 x1 + x2 + x3 ≥ 5 x1 , x2 , x3 ≥ 0
max Z = 10 x1 + 15 x2 + 12 x3 − Mx7 5 x1 + 3 x2 + x3 + x4 = 9 − 5 x1 + 6 x2 + 15 x3 + x5 = 15 2 x1 + x2 + x3 − x6 + x7 = 5 x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥ 0
2 - 4 取子矩阵D 取子矩阵 3,D3 = -1 7
D3 ≠ 0
D3为一个基
对于D 基变量为X 为非基变量, 对于 3 ,基变量为 1、X4,X2、X3为非基变量,令 X2、X3=0 X1 =34/5、X4=7/5 、
可行解
P2、P3
3 -1 取子矩阵D 取子矩阵 4,D4 = 2 - 6
在每根7.4米长的原料钢筋上截取2.9米、2.1米和1.5米的料各1 在每根7.4米长的原料钢筋上截取2.9米 2.1米和1.5米的料各1 7.4米长的原料钢筋上截取2.9 米和1.5米的料各 这样每根原料就都剩下了0.9米长的废料无法利用。 0.9米长的废料无法利用 根,这样每根原料就都剩下了0.9米长的废料无法利用。 所谓合理利用原材料,就是要使废料最少, 所谓合理利用原材料,就是要使废料最少,因此考虑如何在原 材料上合理套裁,以下几种方法都是能节省材料的较好方案: 材料上合理套裁,以下几种方法都是能节省材料的较好方案:

第二章 线性规划与单纯形法14节

第二章 线性规划与单纯形法14节

2、标准形式的特征???
2018/10/11 10
二、 线性规划的标准形
3、线性规划的标准化方法
(1)把最小化目标函数转化为求最大化问题。 (2)约束条件右端项为负时两边同乘以-1 (3)把约束方程中的不等式转化为等式。具体做法是:对于≤的 情况,引进松弛变量,对于≥的情况,引进剩余变量。 (4)将变量中的非正限制或无限制转化为非负限制。其中,对 于无限制变量的处理:一是同时引进两个非负变量,然后用它 们的差代替无限制变量,即令 二是从约束方程 ' " xk x k xk 中任取一个包含无限制变量的等式约束,解出该变量,并把它 代入目标函数和其他约束方程中去,以消除该无限制变量。
2018/10/11
13


1.什么是线性规划,掌握线性规划在管理中的几个应用 例子 2.线性规划数学模型的组成及其特征 3.线性规划数学模型的一般表达式和标准形式。 4.
返回首页
2018/10/11
图解法
Exit
14
第二节 线性规划的图解法
1.图解法的含义 在直角坐标系中,描绘出约束条件和变量限制的公 共区域,然后通过观察确定符合目标要求的变量的取值。 2.几个概念 ( 1 )可行解 : 由约束条件和变量取值限制围成的公共 区域中的每一个点都称为线性规划问题的可行解。 (2)可行域:所有可行解的集合,构成线性规划问题的 可行域。 (3)等值线:使目标函数取相等值的所有点的集合,称 为目标函数的等值线。 (4)法向量: 与等值线垂直的向量。分为正法向量和负 2018/10/11 15 法向量。
基:约束系数矩阵A中,m个线性无关的列向量,称为
m维实空间中的一个基。其中,每个列向量称为基向 量,全部基向量构成基矩阵(也可简称为基),剩下 的n-m个列向量称为非基向量,所有的非基向量构成 非基矩阵。

线性规划单纯形法(例题)资料

线性规划单纯形法(例题)资料

线性规划单纯形法(例题)《吉林建筑工程学院城建学院人文素质课线性规划单纯形法例题》⎪⎩⎪⎨⎧≥=++=+++++=⎪⎩⎪⎨⎧≥≤+≤++=0,,,24261553).(002max ,,0,24261553).(2max 14.18432142132143214321212121x x x x x x x x x x t s x x x x z x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。

分别用图解法和单纯形)】(页【为初始基变量,选择43,x x)1000(00)0010(01)2050(12)6030(24321=⨯+⨯-==⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ为出基变量。

为进基变量,所以选择41x x3/1)6/122/10(00)0210(03/1)3/1240(10)1200(24321-=⨯+-⨯-==⨯+⨯-==⨯+⨯-==⨯+⨯-=σσσσ为出基变量。

为进基变量,所以选择32x x24/724/528/11012/112/124/1100021110120124321-=⨯+-⨯-=-=-⨯+⨯-==⨯+⨯-==⨯+⨯-=)()()()(σσσσ4334341522max ,)43,415(),(2112=+⨯=+===x x z x x X TT 故有:所以,最优解为⎪⎪⎩⎪⎪⎨⎧≥=++=+=+++++=⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,,,,18232424).(0002max ,,,0,182312212).(52max 24.185432152142315432154321212121x x x x x x x x x x x x t s x x x x x z x x x x x x x x x t s x x z 标准型得到该线性规划问题的,分别加入松驰变量在上述线性规划问题中法求解线性规划问题。

数学建模 - 第二章 线性规划及单纯形法

数学建模 - 第二章 线性规划及单纯形法
p j a1 j , a2 j ,, amj 为A的第j列向量
T
max s.t.
p
j 1
n
j
xj b
x0
13
§2 线性规划问题的图解法
max s.t.
z cx Ax b x0
(1) (2) (3)
定义1 在LP 问题中,凡满足约束条件(2)、(3)的 解 x = (x1,x2,…,xn)T 称为LP 问题的可行解, 所有可行解的集合称为可行解集(或可行域)。 记作 D={ x | Ax = b ,x≥0 }。 定义2 设LP问题的可行域为D,若存在x*∈D,使得 对任意的x∈D 都有c x*≥c x,则称x*为LP 问题
设 xj 没有非负约束,若 xj ≤0,可令 xj = - xj’ ,
则 xj’ ≥0;
又若 xj 为自由变量,即 xj 可为任意实数,
可令 xj = xj’ - xj’’,且 xj’ , xj’’ ≥0
11
第二章
线性规划及单纯形法
max z’= x1-2x2+3x4- 3x5 s.t. x1+x2+x4-x5+x6=7 x1-x2+x4-x5-x7=2 3x1-x2-2x4+2x5=5 x1,x2,x4,x5,x6,x7≥0
x2
2x1 x2 2
x1 4x2 4
max z = 2x1 + 2x2 s.t. 2x1 – x2 ≥ 2 -x1 + 4x2≤ 4 x1,x2 ≥ 0
Note:
可行域为无界区域,
目标函数值可无限
增大,即解无界。
(1,0)
O
A
x1
称为无最优解。

第二章 线性规划及单纯形法

第二章 线性规划及单纯形法

标准形式
目标函数: 目标函数: 约束条件: 约束条件: Max z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn = b1 a21 x1 + a22 x2 + … + a2n xn = b2 …… …… am1 x1 + am2 x2 + … + amn xn = bm x1 ,x2 ,… ,xn ≥ 0,bi ≥0 ,
(一)一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn ≥(=, ≤)b1 a21X1+ a22X2+…+ a2nXn ≥(=, ≤)b2 … … … am1X1+ am2X2+…+ amnXn ≥(=, ≤)bm Xj ≥0(j=1,…,n) 0( )
三、线性规划问题的标准形式 线性规划问题的标准形式
2、约束条件不是等式的问题: 约束条件不是等式的问题: 设约束条件为
ai1 x1+ai2 x2+ … +ain xn ≤ bi
可以引进一个新的变量s ,使它等于约束右边与左 边之差
s=bi–(ai1 x1 + ai2 x2 + … + ain xn ) (
一、问题提出
Ⅰ 设备A 设备 设备B 设备 调试工序 利润 0 6 1 2
例1生产计划问题
Ⅱ 5 2 1 1 每天可用能力 15 24 5
两种家电各生产多少, 可获最大利润? 两种家电各生产多少, 可获最大利润

运筹学各章的作业题答案解析

运筹学各章的作业题答案解析
3、什么是资源的影子价格?它和相应的市场价格之间有什么区别?
4、如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检验数之间的关系?
5、利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?
6、在线性规划的最优单纯形表中,松弛变量(或剩余变量) ,其经济意义是什么?
7、在线性规划的最优单纯形表中,松弛变量 的检验数 ,其经济意义是什么?
(2)对c1=2进行灵敏度分析,求出c1由2变为4时的最优基和最优解。
(3)对第二个约束中的右端项b2=4进行灵敏度分析,求出b2从4变为1时新的最优基和最优解。
(4)增加一个新的变量x6,它在目标函数中的系数c6=4,在约束条件中的系数向量为 ,求新的最优基和最优解。
(5)增加一个新的约束x2+x32,求新的最优基和最优解。
x1,
x2
≥0
3、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
max
z=
2x1
+x2
-x3
s.t.
x1
+ x2
+2x3
≤6
x1
+4x2
-x3
≤4
x1,
x2,
x3
≥0
4、用单纯形表求解以下线性规划问题
(1)
max
z=
x1
-2x2
+x3
s.t.
x1
+x2
+x3
≤12
2x1
+x2
-x3
5、某工厂用甲、乙、丙三种原料生产A、B、C、D四种产品,每种产品消耗原料定额以及三种原料的数量如下表所示:
产品
A

运筹学第四版第二章线性规划及单纯形法

运筹学第四版第二章线性规划及单纯形法

方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目

设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。

第2章 线性规划及单纯形法1-2节

第2章 线性规划及单纯形法1-2节
2x1+ x2 400
A
B
最优解 (50, 250)
x2 250
x1 + x2 300
C
100 —
50 —
可 行 域
x1+ x2=300 x2=250
O0 50x1 + 100x2 =0
| | | |D | | | | 50 100 150 200 250 300 350 400
x1
二、线性规划问题解的存在情况:
例5:
Max z =1500x1+2500x2 s.t. 3x1+2x2≤ 65 (A) 2x1+x2≤ 40 (B) 3x2≤ 75 (C)
x1 ,x2 ≥0 (D、E)
B
x2
(5,25)T
A
40
C
25
目标函数 等值线
Z
0
20
Z
x1
存在唯一最优解
例6: 目标函数变为: Max z = 1500 x1 + 1000 x2
线性规划问题的规范形式和标准形式
规范形式:
Max Z =c1x1+c2x2+…+cnxn s.t. a11x1 +a12x2 +…+a1nxn ≤b1 a21x1 +a22x2 +…+a2nxn ≤b2 am1x1 +am2x2 +…+amnxn ≤bm x1 , x2 ,… , xn ≥0
矩阵型式:
§2.3 线性规划的图解法
一、线性规划的图解法
概念
线性规划的图解法(解的几何表示)对于只有 两个变量的线性规划问题,可以在二维直角 坐标平面上作图表示线性规划问题的有关概 念,并求解。 图解法有助于理解LP问题的求解原理。

运筹学第2章线性规划和单纯形法-习题解答PPT

运筹学第2章线性规划和单纯形法-习题解答PPT
运筹学 第2章 习题解答
影像科学与技术实验室 东南大学计算机学院 伍家松 jswu@
1
第一次作业完成的比较好的同学名单
71115134 朱鑫 71115142 刘茂林 71115204吕庆香 71115223 李竞 71115226 王思根 71115241蔡健宇
71115314 张轩奕 71115317 张东旭 71115338 姚雪飞 71115339肖君彦 71115344 李威 71116439 农思平
3x2 2 x2
8 3
11
课后练习题 2.3(1)
2 x1 x3 8
x1
6 x3
3
没有必要再计算目标函数z的值
2 x1 x1
4 x4 7 x4
8 3
12
课后练习题 2.3(1)
3x2 x3 8
2
x
2
6 x3
3
3 2
x2 x2
4 x4 7 x4
8 3
13
课后练习题 2.3(1)
作业的分数越高。 自己做的作业,对于作业中的题目提出自己独到的
创新性的个性的解法(不管解法是正确还是错误)
对于平时的作业,错误并不可怕, 可怕的是解法的平庸,最可怕的是抄袭!
5
理论类型作业
第2章 线性规划与单纯形法 (P55-56)
2.3 (1) 2.8
6
实验类型作业
第2章 线性规划与单纯形法 实验类型作业只交电子版 (准备一份WORD)
8
课后练习题(运筹学第4版)
第2章 线性规划与单纯形法
2.3 (1) 2.8
9
课后练习题 2.3(1)
2.3
10
课后练习题 2.3(1)

第二章线性规划及其单纯形法习题

第二章线性规划及其单纯形法习题


2x 2

3x 3

2x 4
x 2x 3x 4x 7
s.t. 21x1

2
2x 2

3
x 3

4
2x 4

3

x 0( j 1,...., 4) j
4、已知线性规划问题 :
max Z x1 3x2
x1
x3
5
1
st.

x1

2x2 x2
x4
s.t.

5 x1 10
3 x2 8
max Z 5x1 6x2
2x1 x2 2 s.t. 2x1 3x2 2
x1, x2 0
min Z 2x1 3x2
4x1 6x2 6 s.t 2x1 2x2 4
x1, x2 0
25
st.4xx11
3x2 7x2
x3
x4 2x4
x5
30 85
x1 x2 x3 x4 x5 0
判断下列各点是否为该线性规划问题可行域上的顶点:
X (5,15, 0, 20, 0)
X (9, 7, 0, 0,8) X (15,5,10, 0, 0)
试说明,能否在基变量中同时出现,为什么?
4、 下表为用单纯形法计算时某一步的表格。已知该线
性规划的目标函数为 max Z 5x1 3x2约束形式为
x3、x4为松弛变量,表中解代入目标函数后得Z=10
X1
X2
X3
x4
X3 2 c
0
1
1/5
X1 a d
e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

st.
x1 x2 x3 4 2 x1 x2 x3 6
x1 0, x2 0, x3无约束
.
3 对下述线性规划问题找出所有基解,指出那些是基可行 解,并确定最优值。
min
Z
5 x1
2x 2
3x 3
2x 4
x 2x 3x 4x 7
s.t.
1
2x 1
2
2x 2
3
x 3
4
2x 4
A
2
4
3
0
0
B
10
0
-5
0
4
C
3
0
2
7
4
D
1
4.5
4
0
-0.5
E
0
2
.5
6
2
F
0
4
5
2
0
5 已知某线性规划问题的约束条件为
2x1 x2 x3
25
st.4xx11
3x2 7x2
x3
x4 2x4
x5
30 85
x1 x2 x3 x4 x5 0
判断下列各点是否为该线性规划问题可行域上的顶点:
X(5,15,0,20,0)
m ax Z x1 x2
6x1 10x2 120
s
.t .
5 x1 10
3 x 2 8
Байду номын сангаас
m in Z 2 x1 3 x 2
4 x1 6 x2 6
s .t
2
x
1
2x2
4
.
x 1, x 2 0
2、将下述线性规划问题化成标准形式
min Z 2 x1 2 x2 3x3
.
5、已知某线性规划问题的初始单纯形表和用单纯刑法迭代 后得到的表如下所示,试求括弧中未知数a~l的值
项目 X1 X2 X3 X4
X5
X4 6 (b) (c) (d) 1 0
X5 1 -1
3 (e) 0 1
Cj-ZJ
(a) -1 2
00
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
课后练习(一)
1 用图解法求下列线性规划问题,并指出问题具有唯一 最优解、无穷多最优解、无界界还是无可行解。
m ax Z 3x1 2 x2
2 x1 x2 2
s
.t
.
3
x1
4
x
2
12
x 1, x 2 0
m ax Z 5 x1 6 x2
2 x1 x2 2
s
.t
.
2
x
1
3x2
2
x 1, x 2 0
Cj-ZJ
0
-7. (j) (k) (l)
6、设 X 0 是线性规划问题 m z a C x ,A X X b ,X 0
的最优解。若目标函数中用 C 代替 C后,问题的最
优解变为 X
求证: (C C )X (X0)0
.
X(9,7,0,0,8) X(15,5,10,0,0)
.
课后练习(二)
1、分别用图解法和单纯形法求解下述线性规划问题,并 指出单纯形法迭代的每一步相当于图解法可行域中的哪一 个顶点
m ax Z 2 x1 x2
s
t
.
3 6
x1 x1
5 x2 2 x2
15 24
x 1 , x 2 0
.
m ax Z 10 x1 5 x2
s
t
.
3 5
x1 x1
4 2
x2 x2
9 8
x 1 , x 2 0
2 用单纯形法求解下列线性规划问题
max Z 2x1 x2 x3
3x1
st.
x1 x1
x2
x3 60
x2
2x3 10
x2
x3 20
xj 0 ( j 1, 2,3)
3
x 0( j 1,...., 4) j
.
4、已知线性规划问题 :
max Z x1 3x2
x1
x3
5
1
st.x1
2x2 x2
x4
10 2
x5 4
3
x1 ... x5 0
4
下表中所列的解均满足约束条件1-3,试指出表中哪些是可行 解,哪些是基解,哪些是基可行解。
序号
X1
X2
X3
X4
X5
0。
试说明,能否在基变量中同时出现,为什么?
.
4、 下表为用单纯形法计算时某一步的表格。已知该线
性规划的目标函数为 maxZ5x13x2约束形式为
x3、x4为松弛变量,表中解代入目标函数后得Z=10
X1
X2
X3
x4
X3 2 c
0
1
1/5
X1 a d
e
0
1
Cj-Zj b
-1
f
g
(1)a~g的值 (2) 表中给出的解是否为最优解
maxZ 6x1 2x2 10x3 8x4
5x1
st.
3x1 4x1
6x2 3x2 2x2
4x3 2x3 x3
xj 0
( j 1,2,3,4) .
4x4 8x4 3x4
20 25 10
3、求解线性规划问题当某一变量的取值无约束时,通
常用 xj
x'j
x'j'
来替换,其中
x
' j
0
,x
'' j
相关文档
最新文档