五年级下册奥数知识点:数阵图练习题
经典奥数数阵图问题例题
1.把1至6分别填入图18-1的各方格中,使得横行3个数的和与竖列4个数的和相等.[分析与解]记横行的中间一个数为a,则有1+2+3+…+6+a=21+a=2倍对应和,所以a 可以填奇数,即1,3,5,对应和为11,12,13,下面给出几种填法:其中的每个图形的横行左右可调换位置,每个竖列的后三个数字位置任意排列.2.把l0至20这11个数分别填入图18-2.的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.[分析与解]设中间圆圈内的数为a,有a被加了5次,而其他位置圆圈内的数字在计算5次和是都只被加了1次,所以有5个和=(10+11+…+19+20)+4a=165+4a,因为5个和,165都是5的倍数,所以4a也应该是5的倍数,则a应是5的倍数,所以a可取10,15,20.当a为10时,有5个和=165+4×10=205,所以每条线段上的和为205÷5=41,如下左图;当a=15时,有5个和=165+4×15=225,所以每条线段上的和为225÷5=45,如下中图;当a=20时,有5个和=165+4×20=245,所以每条线段上的和为245÷5=49,如下右图.3.请分别将l,2,4,6这4个数填在图18-3的各空白区域内,使得每个圆圈里4个数的和都等于15.[分析与解]在计算3个圆圈内的数字和时,已经填出的3个数字各计算了2次,中间的数字计算了3次,另外3个位置只计算了1次,中间的数字较另外3个位置多计算了2次.设中间那个数为a,有2a+2×(5+7+3)+(1+2+4+6)=15+15+15,即2a+43=45,有a=1.于是得到下图:4.在图18-4的7个圆内填入7个连续自然数,使得每两个相邻圆内所填数的和都等于连线上的已知数.那么标有*的圆内填的数是多少?[分析与解]我们知道在计算图中所有线段两端数字的和时,每个圆圈内的数字都被加了2次,于是有这7个连续自然数和的2倍为10+6+9+12+8+11+14=70,即这7个连续自然数的和为35,则中间数为35÷7=5,于是这7个数为2,3,4,5,6,7,8.能得到14的只有6+8,如果*填8那么和为14的线段另一端为6,则和为11的线段另一端为5,和为8的另一端为3,则和为12的线段另一端无法填出;所以,*只能填6,可以如上分析得到填完的下图:5.图18-5的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填入圆圈内,使每条线上各数的和都等于23.[分析与解]当六条线上的数分别相加时,数6只加了1次,其余各数分别加了两次.又已知每条对角线上各数之和都等于23,所以这九个连续自然数之和应是(6×23+6)÷2=72.于是九个数的中间数是72÷9=8,由此可知这九个连续自然数是4,5,6,7,8,9,10,11,12.其中显然只有11+12=23,故x=11,y=12和x=12,y=11.首先考虑x=11,y=12的情况.注意7若不与x或y在一条线上,则23-7=16,只能表示成10+6,而过7的线段却有两条,所以必须f=7,于是c =4,d=5,再由a+b=23-6=17,可知a、b均不为10,e=10,a=8,b =9,于是得到下图:当x=12,y=11时,同理可得:6.将1,2,3,…,9,10这10个数分别填入图18-6中的圆圈内,使得每条线段两端的数相乘的积,除以13都余2.问这5个商数的和是多少?[分析与解]在2~90中被13除余2的数有2,15,28,41,54,67,80.其中可以被分解成1~10中两数乘积的有:2=1×2,15=3×5,28=4×7,54=6×9,80=8×10,正好1~10中每个数字出现了一次,因此可得如下的结果,当然将下图对称变换,旋转变换得到的图形仍然符合题意.有2×1÷13=0……2;3×5÷13=1……2;4×7÷13=2……2;6×9÷13=4……2;8×10÷13=6……2.这些商的和为0+1+2+4+6=13.7.在图18-7的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这3个差数之和.那么这个差数之和的最小值是多少?[分析与解]中间数只要在19与65之间,19和65与它的差数(大数减小数)之和都是65-19=46,所以中间的数填48,三个差数之和最小.那么差数之和为65-48+48-48+48-19=65-19=46.8.请在图18-8中的7个小圆圈内各填入一个自然数,使得图中给出的每个数都是相邻两个圆圈中所填数的差(大数减小数),并且所填的7个数之和是1997.[分析与解]设1左边圈内的数为a,则从a开始顺时针依次对给出的七个差做加法或减法运算,最后结果仍等于a,也就是说,加上的数的和应等于减去的和.又1+2+3+4+5+6+7+8=28,于是给出的七个数应当分成和为14的两组.经分析可知仅有4种不同的分法:①7+6+1=2+3+4+5,②7+5+2=1+3+4+6,③7+4+3=1+2+5+6,④7+4+2+1=3+5+6.其中①又可以分为两种情况:☆加上2、3、4、5,减去7、6、1,这时七个数的总和时7a+32,★加上7、6、1,减去2、3、4、5,这时七个数的总和时7a-32.同样②③④也都分两种情况.②的第一种情况就是加上1、3、4、6,减去7、5、2,七个数的和时7a+16.因为1994=7×285+2,所以①的两种情况都无法使总和为1994,这是因为32-2与32+2都不是7的倍数,而②的第一种情况满足,此时a=283(1994=7×283+16),具体填法如下:9.图18-9是奥林匹克的五环标志,其中a,b,c,d,e,f,g,J,h,i 处分别填入整数l至9.如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?[分析与解]设每个圆内的数字之和为k,则五个圆圈内的数字之和时5k,它等于1~9的和即45,再加上两两重叠处的四个数之和.而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,有5k在(45+10=)55~75(=45+30)之间的,那么k在11~15之间.验证,当k=11,13,14时对应有如下填法,当时当k=12,15时无解.所以,这个相等的和最大是14,最小为11.评注:这道题,同学往往只是计算到k在11~15之间,然后说最大为15,最小为11,但是没有进一步去验证是否存在这样的填法,导致错误,所以同学们以后在自己认为已经解决问题时,不妨验证一下,对于有些问题,不妨深究深究.[分析与解]10个连续自然数中,9是其中第三大的数,所以这10个连续自然数为2,3,4,5,6,7,8,9,10,11.图中三个2×2的正方形中四数之和相等,所以2+3+…+11再加上两个重复的数,和倍3整除.因为2+3+…+11=65,要使和数最小,两个重复数的和应最小,这两个数可以取2与5,或3与4.这和数是24.和数为24是可能的,如下两图:[分析与解]图中十个数点和为45,除去中心圆圈中的数后是3的倍数,因此中心圆圈只可能为0,3,6,9.当中心为0时,每个阴影三角形三顶点和为15.考虑包括中心圆圈的三个阴影三角形中,除0以外另两个数和为15.而0~9中这样的数组只有(6,9),(7,8)两组,因此中心为0时没有正确填图;当中心为9时,同理可知也不存在正确的填图;当中心为3时,阴影三角形三顶点和为14,含3的三个阴影三角形中另两个数和为11,这样的数组只有(2,9),(4,7),(5,6).简单尝试可知中心为3时也没有正确的填图;当中心填6时,经尝试有如下的结果:13.如图18-13,大三角形被分成了9个小三角形.试将1,2,3,4,5,6,7,8,9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形3条边的每5个数相加的和相等.问这5个数的和最大可能是多少?[分析与解]1~9和为45.设3个只属于一条边的数和为3k,则每条边上五个数字和为(45×2-3k)÷30=30-k.3k最小时,取3k=1+2+3=6,一条边上的和为30-6÷3=28;3k最大时,取3k=9+8+7=24,一条边上的和为30-24÷3=22.因此这个和最大为28,最小为22.以和为28为例,此时三边中间的小三角形内的数为1,2,3,有上方两个三角形和+1+左边两个三角形和=28;左边两个三角形和+3+右边两个三角形和=28;右边两个三角形和+2+上方两个三角形和=28;于是有2倍(上方两个三角形和+左边两个三角形和+右边两个三角形和)+1+3+2=28+28+28,即上方两个三角形和+左边两个三角形和+右边两个三角形和=39.可得上方两个三角形和为14,左边两个三角形和为13,右边两个三角形和为12.下面我们给出一种填法:每边和为22时,同理可得,我们给出一种填法:14.将1,2,3,4,5,6,7,8这8个数分别填入图l8-14的8个空格中,使四边正好组成加、减、乘、除4个正确的等式.[分析与解]除式只有4种可能:8÷4=2,6÷3=2,8÷2=4和6÷2=3,其中后两种情况乘法式子将无法满足,前两种情况对应着如下两种填法:15.图18-15包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?[分析与解]如下图所示,设最左边的四个数为a,b,c,d,则第一组数算式计算结果为a+b,c+d,a+c,b+d.而最右边圆圈内数为,a+b+c+d,也就是四个数的和,因此我们可以重新理解题目为找到四个自然数,使它们两两相加的四个和与它们自身全不相等,求它们和的最小值.最小的四个数(1,2,3,4)易知不符合题意,同样(1,2,3,5)也不成立,当这四个数为(1,2,3,6)时有正确填图如下,因此最右边的数最小为12.。
五年级下册数学奥数有趣的数阵图人教版
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
假设重叠数是a、b、c 5+6+7+8+9+10+a+b+c=24×3
45+a+b+c=72 a+b+c=27
8+9+10=27
8 76 9 5 10
2 9 561 3 8 45~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
中间的三个数只加一次, 三个角上的数都加了两次, 有三个数要设字母吗?
例4:把5~10这六个数,分别填入图中三角形三条边的六 个○内,使每边上的三个○内数的和都是24。
1
3
2
1+2+…+7+8+a+b=21×2 6
5
36+a+b=42 a+b=6
4
8
7
1+5=6或2+4=6
将1、3、5、7、9、11、13、15这八个数,分别填入图中的 八个○内,使得每个大圆上五个○内数的和都是39。
1+3+5+……+15=64
3
5
1
39×2-64=14
7
9
中间的两个圆圈数重叠一次, 15 13 11
例5:将1~8这八个数分别填入下图的○中,使两个大圆 上的五个数之和都等于21。
假设重叠数是a、b
2
3
1
1+2+…+7+8+a+b=21×2 6
小学奥数专题之数阵图练习题例
66666小学奥数专题之数阵图练习题例(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--小学奥数专题之——————数阵图数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。
解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。
20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。
只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。
确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。
例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。
解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。
设中心数为a,则a被重复使用了2次。
即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。
(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。
小学数学 《数阵图》练习题(含答案)
小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。
小学奥数:数阵图(二).专项练习及答案解析
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题 【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就例题精讲知识点拨教学目标5-1-3-2.数阵图是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分 【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3) (1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】1789411215【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图【难度】3星【题型】填空【解析】为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k(A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2C+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
五年级奥数《数阵》练习题
第四讲:数阵练习 (必做与选做)1. 如下图,每行、每列、每条对角线上数的和都相等,那么a 、b 、c 、d 有什么关系?A. a >b >c >dB. a <b <c <dC. a=b=c=dD. 无法判断 解析:c b c a b a =→+=+d c d c c a =→+=+d a c b d c b a =→=+=+,,那么由此可推出d c b a ===。
选C 。
2. 如下图,在五个小圆圈内分别填上1、2、3、4、5这五个数,使每条直线上的三个数字之和都相等。
C 处分别可以填多少?A. 1、3、5B. 1C. 1、3D. 3、5 解析:中间的c 是两条直线上公共的点,所以如果将两条直线上的数都相加,是1+2+3+4+5+c=15+c ,因为两条直线上的三个数的和相等,所以(15+c )必须能被2整除,即c必须为奇数,c可以是1、3、5。
选A。
3.阿派将1、2、3、4、5、6、7这七个数填入下图的七个方框里,每个数只填一次,使得三条直线上的三个数之和恰好分别是8、11、15,e可以怎么填?A. 5B. 7C. 3D. 1解析:将三条线上的数都加在一起,中间的e加了3次,其它数都加了一次,所以三条线上三个数的和=1+2+……+7+2e=28+2e,条件又说三条线上三个数的和分别是8、11、15,所以28+2e=8+11+15,e=3。
选C。
4.将1~5填入右图的○中,使得横、竖、大圆上的几个数之和都相等每个数只能用一次,e处分别可以填什么?A. 1B. 5C. 3D. 无正确答案解析:先看“十字”上的两条直线,中间的e被加了两次,如果将两条直线上的数都相加,是1+2+3+4+5+e=15+e,因为两条直线上的三个数的和相等,所以(15+e)能被2整除,即e为奇数,e可以是1、3、5。
当e=1时,其它四个数的和是2+3+4+5=14,14÷2=7,7+1=8,即每条直线上数的和是8,但是圆上的数的和是14,所以不满足;当e=3时,其它四个数的和是1+2+4+5=12,12÷2=6,6+3=9,即每条直线上数的和是9,但是圆上的数的和是12,所以不满足;当e=5时,其它四个数的和是1+2+3+4=10,10÷2=5,5+5=10,即每条直线上数的和是10,圆上的数的和也是10,满足条件。
小学数学 《数阵图》练习题(含答案)
小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。
一起学奥数-填数阵图(五年级)(重要知识)
因为这13个圆圈分别填上1~13这十三个数,所以 A+B+C+D+4+E+H+I+F+G+K+3+J=91 43+A+H+B+C+D=91 43+43+H=91 H=5
A=4+E=4+5+I=9+I,因为A≤13,所以I≤4,3、4已经给出,则I=1或2
J+K=G G+K=D 即J+K+K=D≤13,所以K≤6。当K=6时,J=1,则C=4(不符),而3 、4、5已经给出,所以K=1或2
观察图形,结合之前学过的知识,如何利用位置规律来填数
重点辅导
12
例3、如下图所示,试分别填入1、2、3、4、5、6、7、8这八个数字,使得图中 用线段连结的两个小圆圈内所填的数字之差(大数字减小数字)恰好是1、2、3、 4、5、6、7这七个数字。
E
G
【分析】先问大家一个问题,1、2、3……8,这8个数中 任意两个数相减(大数减小数),差最大是多少?
重点辅导
13
知识点小结
重点辅导
14
数阵图:把一些数字按照一定的要求,排成的各种各样的图形
辐射型数阵图
数阵图的 三种类型
封闭型数阵图 复合型数阵图
通过局部到整体,再到局部的 解题方法,具体可以分三步走:
区分数阵图中的普通点和关键点(方格)
01
通过已得到的信息进行尝试,或者 运用综合的数学方法进行填数
c1= b1+b2
c2= b2+b3 c3= b3+b4 则有b1+3b2+3b3+b4 =50
小学奥数:数阵图(三).专项练习及答案解析
1.了解数阵图的种类2.学会一些解决数阵图的解题方法3.能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1.定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.【考点】数阵图与数论【难度】3星【题型】填空【关键词】迎春杯,三年级,初赛,第8题【解析】设顶点分别为A、B、C 、D、E,有45+A+B+C+D+E=55,所以A+B+C+D+E=10,所以A、B、C、D、E分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a1,公差为d.利用求和公式5(a1+a1+4d)2=55,得a1+2d=11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.例题精讲知识点拨教学目标5-1-3-3.数阵图【答案】2种可能【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
小学数学《数阵图》练习题(含答案) (1)
小学数学《数阵图》练习题(含答案)课前复习1.在下面的○里填上适当的数,使每条线上的三个数之和都是16.【答案】【答案】2.在空格内填入适当的数,使得每行、每列和两条对角线上的三个数的和都为18.【答案】3. 在空格内填上适当的数,使得图中每行、每列及两对角线上四个数的和都是64.【答案】在神奇的数学王国里,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷.它就是数阵.到底什么是数阵呢?我们先观察下面2个图:在空格内填上适当的数,使得图中每行、每列及两条对角线上三个数的和都是15.认真观察,你发现每个图中的数字有什么特点?左上图有两条直线,每条直线上都有3个数字,它们的和都分别等于15;而右上图,将l~9九个数字排成三行、三列,每一行、每一列、每一斜行上的3个数字的和都等于15.数阵就是用数(一般指自然数)按一定的要求和规律,组成特定的形状或布成特定的阵势.它一般分为辐射型(左上图)和封闭型(右上图).要把一些数字按一定的规则填入图形中,有没有巧妙的方法来填呢?今天这节课我们就一起来学习.辐射型数阵图【例1】把1,2,3,4,5这5个数分别填入图中的圆圈内,使得横行3个数的和与竖列3个数的和都等于10.【分析】横行的三个数之和加上竖列的三个数之和,只有重叠数a被加了两次,即重叠了一次,其余各数均被加了一次.因为横行的三个数之和与竖列的三个数之和都等于10,所以(1+2+3+4+5)+a=10×2,a=5.剩下4个数中每两个数之和应该等于5,,1+4=2+3。
【例2】把4~8这五个数填入图中(已填入6),使两条直线上的三个数之和相等.【分析】方法一:把6除外,还剩4,5,7,8,这四个数,在这四个数中4+8=5+7,这样可以填出答案。
方法二:与例1不同之处是已知“重叠数”为6,而不知道两条直线上的三个数之和都等于什么数.可以先求出这个“和k”.(4+5+6+7+8)+6=k×2.K=18。
五年级奥数-数阵图与数字谜(含解析)
数阵图与数字谜教学目标1. 熟悉数阵图与数字谜的题目特点;2. 掌握数阵图与数字谜的解题思路。
精讲讲练数阵图数阵图是把一些数按照一定规则填在某一特定图形的规定位置上而来的图形,有时简称数阵。
【例1】 (2007年“希望杯”第二试)在右图所示○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点的三个数的和是__________。
【分析】 由于每条边上的三个数的和都是12,所以把这三条边上的三个数的和都加起来,总和应为12336⨯=,在其中,A 、B 、C 各算了一次,三个顶点的三个数各算了两次,所以三个顶点的三个数的和为(3618)29-÷=。
【例2】 (2007年天津“陈省身杯”国际青少年数学邀请赛)将112:这十二个自然数分别填入右图的12个圆圈内,使得每条直线上的四个数之和都相等,这个相等的和为__________。
【分析】 由于每条直线上的四个数之和都相等,设这个相等的和为S ,把所有6条直线上的四个数之和相加,得到总和为6S ;另一方面,在这样相加中,由于每个数都恰好在两条直线上,所以每个数都被计算了两遍。
所以,6(12312)2S =++++⨯L ,得到26S =,即所求的相等的和为26。
【例3】 (2007年“走进美妙的数学花园”决赛)如右图所示,A ,B ,C ,D ,E ,F ,G ,H ,I ,J 表示110:这10个各不相同的数字。
表中的数为所在行与列的对应字母的和,例如“14G C +=”。
请将表中其它的数全部填好。
C BA【分析】 由于5A F +=,14B F +=,所以1459B A -=-=,所以A 和B 只能是0和9。
因此可以推出:0A =,9B =,6C =,3D =,2E =,5F =,8G =,1H =,4I =,7J =。
可得右下图。
【例4】 (2007年“走进美妙的数学花园”初赛)从1、2、3…20这20个数中选出9个不同的数放入33⨯的方格表中,使得每行、每列、每条对角线上的三个数的和都相等。
小学奥数训练题 数阵
数阵1.在下列各图中,将从1开始的连续自然数填入图中的○内,要求每边上的数字之和都相等,中心○处各有几种填法?(每小题给出一个解)2.将1~11填入左下图的○内,使每条虚线上的三数之和都等于18。
3.将1~6填入右上图的○中,要求四条直线上的数字之和都等于10。
4.将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k 的取值范围。
5.将1~6填入右上图的六个○中,使每个大圆周上的四数之和都等于16。
6.将1~9这九个自然数分别填入左下图中的九个○内,使三角形每边上的四数之和都等于20,且有一个顶点○内的数字为1。
7.将1~10填入右上图的10个○中,使得每个菱形的4个顶点数之和都等于定数k。
问:k的最大值与最小值各是多少?请各给出一种填法。
8.将1~9这九个自然数填入左下图的九个小三角形中,使得每个由四个小三角形构成的三角形内的四个数字之和都等于17。
9.将1~8这八个自然数分别填入右上图中的八个○内,使四边形每条边上的三数之和都相等且尽可能大。
10.将自然数1~8填在右图的八个○内,使每个小三角形三个顶点数字之和都等于13,并且8位于大正方形的一个顶点上。
11.将1~8这八个自然数填入右图的四个圆相互分割的八个部分中,使每个圆内的三个数字之和都相等,并且这个和尽量小。
12.将自然数1~10这10个自然数分别填入左下图的10个○内,使五边形每条边上的3数之和都等于17,并且数字1位于一个顶点上。
13.将1~8填入右上图的八个○中,使小正方形的四个顶点数之和是大正方形的四个顶点数之和的两倍,并且大正方形每条边上的三个数之和都相等。
14.小明玩布阵游戏,他要用360名士兵守卫一座城池(见左下图,图中间表示城区,四周表示城墙,方格中的数表示兵力分布),要求四个角的兵力相同。
现在的兵力分布恰好每边有100名士兵,如果小明想使每边有150名士兵,那么兵力应如何分布?15.有座一长方形城堡,四周有10个掩体(如右上图)。
五年级奥数数阵问题
课时3 数阵问题(一)一.数阵填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。
这里,主要讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。
待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。
试验法就是根据题中所给条件选准突破口,确定填数的可能范围。
把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
二.例题精析例1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。
先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D +E=35,A+E+B+C+E+D=21×2=42。
把两式相比较可知,E=42-35=7,即中间填7。
然后再根据5+9=6+8便可把五个数填进方格,如图b。
小试牛刀把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2、把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3、将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
例2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。
在1——10这十个数中1+4=5,2+3=5。
当a和b是1和4时,每个大圆上另外四个数分别是(2、6,8,9)和(3、5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1、5,9,10)和(4,6,7,8)。
小试牛刀1、把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。
2、把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。
五年级下册奥数知识点:数阵图练习题
练习1、将1、2、3、4、5这5个自然数分别填入右图中的5个方格中,使图中横行3个数的和与竖行3个数的和都是10。
2、把1~10这10个自然数填入下图“六一”的10个空格里,使在同一条直线上的各数和都是12。
练习1、将1、2、3个自然数分别3数之和为11。
2、把1~9练习1、将1~6这○内,使每个圆上例4、将1~10这31,4,7,28,5,20,(),12…4、王明参加一次数学竞赛,全卷共20道竞赛题,做对一道得5明20道题都做了,共得76分,他做对了()题。
5、同学们站成3层空心方阵,最外层每边站20人,一共有学生()人。
6、小明的邮票比小红多15张,小明的邮票张数是小红的4倍,小红有()张邮票7、一条小青虫,它的身长每天延长1倍,长到第10天的时候身长是20厘米,请问,在身长是10厘米的时候,它已经生长了()天。
8、士兵排成一个实心方阵,最外一层一周的人数为80人,问方阵外层每边有()人。
这个方阵共有()个士兵。
9、长方形的长是20厘米,截去一个最大的正方形后,余下一个长方形,这个长方形的周长是()厘米。
10、植树节到了,同学们在一条90米长的小路的一旁植树,每隔3米种一棵。
(1)如果两端都各栽一棵,需要()棵树。
(2)如果只有一端栽树,需要()棵树。
(3)如果两端都不栽树,需要()棵树。
11、甲班和乙班共有图书480本,甲班的图书本数是乙班的3倍,甲班有图书()本,乙班有图书()本。
13、小明买科技书和文艺书共34本,科技书比文艺书多6本。
小明买科技书()本,文艺书()本。
14、在一次活动中,老师把学生组成一个正方形方队,其中有两行、两列都是男生,男生共有20人,其余是女生,问参加组成这个方队的学生共有()人15、有两堆棋子,第一堆有87个,第二堆有113个,那么从第二堆拿()个棋子到第一堆,就能使第一堆棋子数是第二堆的3倍。
16、刘老师准备把一些课外书分发给某班的同学们。
若发给每位同学3本,还余31本;发给每位同学5本,还差69本,问王老师一共有()本课外书。
五年级奥数分册第10周 数 阵-专题训练.doc
第10周数阵专题简析:填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。
这里,和同学们讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。
待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。
试验法就是根据题中所给条件选准突破口,确定填数的可能范围。
把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
例题1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。
先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。
把两式相比较可知,E=42-35=7,即中间填7。
然后再根据5+9=6+8便可把五个数填进方格,如图b。
练习一1,把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2,把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3,将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
例题2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2,即55+a+b=60,a+b=5。
在1——10这十个数中1+4=5,2+3=5。
当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8)。
练习二1,把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。
2,把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。
小学五年级奥数精品专项训练-数阵_周期问题
一、数阵一、知识要点填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。
这里,和同学们讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。
待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。
试验法就是根据题中所给条件选准突破口,确定填数的可能范围。
把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
二、精讲精练【例题1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a 使横行三个数的和与竖行三个数的和都是21。
【思路导航】先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。
把两式相比较可知,E=42-35=7,即中间填7。
然后再根据5+9=6+8便可把五个数填进方格,如图b。
练习1:1.把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2.把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3.将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
【答案】1.7、1、5、6、2、10、3、9、4、8(答案不唯一)2.1、2、3、8、5、4、9、6、7(答案不唯一)3.2、6、4、1、5、3、7(答案不唯一)【例题2】将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
【思路导航】设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2.即55+a+b=60,a+b=5。
在1——10这十个数中1+4=5,2+3=5。
当a和b是1和4时,每个大圆上另外四个数分别是(2.6,8,9)和(3.5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1.5,9,10)和(4,6,7,8)。
数阵图练习题库
数阵图练习题库数阵图是一种常见的数学练习题形式,它由一组数字按照特定规律排列形成的图形。
通过解题时观察、分析和推理数阵图中的规律,可以帮助学生培养逻辑思维和问题解决能力。
本文将介绍一些常见的数阵图练习题,并提供详细的解题方法和思路。
1. 数阵图基本概念数阵图是由一组数字按照规律排列形成的图形,通常呈现为方状或矩形的结构。
数阵图中的每个数字都占据一个位置,并且有一定的顺序关系。
在解决数阵图问题时,关键是要观察和分析数字的排列规律,找出其中隐藏的规律并加以利用。
2. 数阵图解题方法解题时,可以采用逐行逐列或者逐列逐行的方式观察数字的变化规律。
常见的变化规律包括数值递增或递减、等差数列、等比数列、斐波那契数列等。
根据观察到的规律,可以推测出图中缺失的数字或下一个可能出现的数字。
3. 数阵图练习题示例以下是一些常见的数阵图练习题。
题目一:1 1 21 3 45 8 ?观察第一行中的数字,可以看出第二个数字是前两个数字的和,即1 + 1 = 2。
观察第二行中的数字,可以看出第三个数字是前两个数字的和,即1 + 3 = 4。
根据同样的规律,可以推测第三行的数字是第一行和第二行的和,即2 + 4 = 6。
所以,缺失的数字是6。
题目二:2 4 63 7 108 ? 19观察第一行中的数字,可以看出第二个数字比第一个数字大2,第三个数字比第二个数字大2。
观察第二行中的数字,可以看出第一个数字比第三行第一个数字小5,第三个数字比第一个数字大3。
根据同样的规律,缺失的数字是13。
4. 总结数阵图练习题是培养学生逻辑思维和问题解决能力的重要工具。
通过观察和分析数阵图中数字的变化规律,可以帮助学生提高解题能力。
解题时应该注意观察细节,运用已有的数学知识来推理和解决问题,从而达到提升数学能力的目的。
本文介绍了数阵图的基本概念和解题方法,并提供了一些常见的练习题示例。
希望通过这些例子的讲解,读者能够对数阵图有更加深入的理解,并在实际练习中能够灵活运用所学知识解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习1、将1、2、3、4、5这5个自然数分别填入右图中的5
个方格中,使图中横行3个数的和与竖行3个数的和都是10。
2、把1~10这10个自然数填入下图“六一”的10个空格里,使在同一条直线上的各数和都
是12。
练习1、将1、2、3、4、5、6这6个自然数分别
填入右图的○内,使三角形每边上的3数之
和为11。
2、把1~920.
练习1、将1~6这6个自然数分别填入下图中两圆的
○内,使每个圆上4个数的和相等,两圆交点上的
两个○内的数有几种填法?
例4、将1~10这10个自然数填入右图中的○内,使图中
每条线段上的数之和都相等。
请写出各种填法。
3、下面一列数是按一定规律排列的,那么括号中的数是()。
1,4,7,28,5,20,(),12…
4、王明参加一次数学竞赛,全卷共20道竞赛题,做对一道得5分,做错一道倒扣3分,王明20道题都做了,共得76分,他做对了()题。
5、同学们站成3层空心方阵,最外层每边站20人,一共有学生()人。
6、小明的邮票比小红多15张,小明的邮票张数是小红的4倍,小红有()张邮票
7、一条小青虫,它的身长每天延长1倍,长到第10天的时候身长是20厘米,请问,在身长是10厘米的时候,它已经生长了()天。
8、士兵排成一个实心方阵,最外一层一周的人数为80人,问方阵外层每边有()人。
这个方阵共有()个士兵。
9、长方形的长是20厘米,截去一个最大的正方形后,余下一个长方形,这个长方形的周长是()厘米。
10、植树节到了,同学们在一条90米长的小路的一旁植树,每隔3米种一棵。
(1)如果两端都各栽一棵,需要()棵树。
(2)如果只有一端栽树,需要()棵树。
(3)如果两端都不栽树,需要()棵树。
11、甲班和乙班共有图书480本,甲班的图书本数是乙班的3倍,甲班有图书()本,乙班有图书()本。
13、小明买科技书和文艺书共34本,科技书比文艺书多6本。
小明买科技书()本,文艺书()本。
14、在一次活动中,老师把学生组成一个正方形方队,其中有两行、两列都是男生,男生共有20人,其余是女生,问参加组成这个方队的学生共有()人
15、有两堆棋子,第一堆有87个,第二堆有113个,那么从第二堆拿()个棋子到第一堆,就能使第一堆棋子数是第二堆的3倍。
16、刘老师准备把一些课外书分发给某班的同学们。
若发给每位同学3本,还余31本;发给每位同学5本,还差69本,问王老师一共有()本课外书。
该班有()位同学。
17、王叔叔把18米长的圆钢锯成3米长的小段,每锯断一次要5分钟,还要休息2分钟,共需()分钟。
18、女儿今年18岁,母亲今年48岁,()年以前母亲的年龄是女儿的3倍。
19
左图中有()个长方形。
1、一个饲养小组一共养鸡、兔55只,共有脚160只,求鸡兔各多少只?
答:鸡有()只,兔有()只。
2、同学们参加篮球定位投篮比赛,按规定,每投中一球得5分,投不中倒扣1分,于辉投了20个球,得了64分,求于辉投中了多少个球?
答:于辉投中了()个球。
3、2头牛和4只羊一天一共吃青草30千克,2头牛和6只羊一天一共吃青草36千克。
1
头牛和1只羊一天分别吃青草()、()千克。
4、甲、乙两人共储蓄35元,乙、丙两人共储蓄27元,甲、丙两人共储蓄32元,甲、乙、丙三人各储蓄多少元?
答:甲储蓄()元,乙储蓄()元,丙储蓄()元。
奥数综合练习姓名__________
1、果园里一共种桃树和杏树480棵,其中桃树的棵数是杏树的3倍,桃树和杏树各种多少棵?
答:桃树()棵,杏树()棵。
2、果园里一共种桃树和杏树460棵,其中桃树的棵数比杏树的3倍还少20棵,桃树和杏
树各种多少棵?
答:桃树()棵,杏树()棵。
3、甲箱乒乓球的个数是乙箱的4倍,如果从甲箱取出30个放入乙箱,则两箱个数相等,两箱原来各有多少个乒乓球??
答:甲箱原有乒乓球()个,乙箱原有乒乓球()个。
4、果园里一共种桃树和杏树480棵,其中桃树比杏树多80棵,桃树和杏树各种多少棵?答:桃树()棵,杏树()棵。
5、女儿今年9岁,母亲今年39岁,几年后母亲的年龄正好是女儿的3倍?
答:()后母亲的年龄正好是女儿的3倍。
6、少先队员植树,如果每人种5棵,则剩下13棵;若每人种7棵,则差21棵。
参加植树活动的少先队员有多少人?这批树有多少棵?
答:参加植树活动的少先队员有()人,这批树有( )棵。
7、鸡兔同笼,共54个头,140只脚,求鸡和兔各多少只??
答:鸡有()只,兔有()只。
8、同学们参加篮球定位投篮比赛,按规定,每投中一球得5分,投不中倒扣1分,于辉投了20个球,得了64分,求于辉投中了多少个球?
答:于辉投中了()个球。
9、甲、乙两人共储蓄35元,乙、丙两人共储蓄27元,甲、丙两人共储蓄32元,甲、乙、丙三人各储蓄多少元?
答:甲储蓄()元,乙储蓄()元,丙储蓄()元。
10、甲、乙两人收藏的图书共3200本,乙、丙两人收藏的图书共2400本,甲、丙两人收藏的图书2800本,求甲、乙、丙三人收藏的图书各是多少本?
答:甲收藏图书()本,乙收藏图书()本,丙收藏图书()本。
11、菜市场共有三种蔬菜,其中茄子、辣椒共重50千克,辣椒、菜瓜共有70千克,茄子、菜瓜共重60千克,茄子多少千克?辣椒多少千克?菜瓜多少千克?
答:茄子()元,辣椒()千克,菜瓜()千克。