圆锥的体积练习ppt
合集下载
北师大版数学第十二册《圆锥体积的应用》课件
二、判断:
1. 圆柱体的体积一定比圆锥体的体积大( × ) (√ )
1 2. 圆锥的体积等于和它等底等高的圆柱体的 3
3. 正方体、长方体、圆锥体的体积都等于底面积 ×高。 ( ×) 4. 等底等高的圆柱和圆锥,如果圆柱体的体积是 27立方米,那么圆锥的体积是9立方米。
(√Biblioteka )三、填表: 已知条 件
圆锥底面半径2厘米,高9厘米 圆锥底面直径6厘米,高3厘米
体积
37.68立方厘米 28.26立方厘米 6.28立方分米
圆锥底面周长6.28分米,高6分 米
有一根底面直径是6厘米,长是15厘米的圆 柱形钢材,要把它削成与它等底等高的圆锥形 零件。要削去钢材多少立方厘米?
6厘米
15厘米
一个用水泥筑成的圆锥形雕塑, 底面周长是18.84米,高是2.5米。如果 按每立方米水泥重1.5吨来计算,筑这 个雕塑大约用了多少吨水泥?
(6)求高粱的重量
将一个底面是15.7平方厘米,高 10厘米的圆柱形钢材锻造成一个与它 底面积相等的圆锥,圆锥的高是多少 分米?
一个圆锥形的沙堆,底面积是12.56 平方米,高1.2米。用这堆沙在10米宽的 公路上铺2厘米厚的路面,能铺多长?
1.8米
一、填空: 1. 圆锥的体积=( 1 用字母表示是(V= 3 s h 锥的体积相等。
1 3 ×底面积×高 ),
)。
1 2. 圆柱体积的 3 与和它( 等底等高)的圆
3. 一个圆柱和一个圆锥等底等高,圆柱的 体积是3立方分米,圆锥的体积是( 1 ) 立方分米。 4. 一个圆锥的底面积是12平方厘米,高是 6厘米,体积是( 24 )立方厘米。
教学目标
• 1.通过解决实际问题,使同学们进一步掌 握求圆锥体积的计算公式; • 2.能熟练应用圆锥体的体积计算公式解答 有关圆锥体体积的实际问题,提高同学们 解答实际问题的能力。
圆锥的体积公式推导PPT课件
22
板书:
• 圆锥的认识 • 圆锥的底面是个圆,侧面是一个曲面。 • 从圆锥的顶点到底面圆心的距离是圆锥
的高。
23
2020/1/14
24
圆锥体积公式的推导
1
教学目标:
• 【教学内容】 • 圆锥的认识。(教材第31~32页例1及教材第35页练习六的第1、
2题)。 • 【教学目标】 • 1、认识圆锥,掌握它的各部分名称及特征。 • 2、认识圆锥的高,掌握测量圆锥的高的方法。 • 3、通过观察圆锥建立空间观念,培养学生的观察能力,以及从
13
圆柱体积=底面积 高
14
圆柱体积=底面积 高 圆锥体积=
15
ቤተ መጻሕፍቲ ባይዱ
圆柱体积=底面积 高 圆锥体积=
16
圆柱体积=底面积 高 圆锥体积=
17
圆柱体积=底面积 高
圆锥体积=底面积
高
1 3
18
一个圆锥的零件,底面积是19平方 厘米,高是12厘米。这个零件的体 积是多少?
1
-×19×12=76(立方厘米) 3
实物抽象到几何的能力。 • 【重点难点】 • 认识圆锥的高及高的测量方法。 • 【教学准备】 • 圆柱纸筒,布,圆锥形的实物,圆锥模型,木板,多媒体课件,
米(或沙子),三角板,长方形,半圆形硬纸片。
2
说出圆柱和圆锥各部分的名称及特征:
高 有无数条 侧面 展开后是长方形或正方形 底面 有两个底面,是相等的圆形
已知条 件
体积
圆锥底面半径2厘米,高9厘米 37.68立方厘 圆锥底面直径6厘米,高3厘米 米28.26立方厘 圆锥底面周长6.28分米,高6分米 米6.28立方分米
21
有一根底面直径是6厘米,长是15厘米的 圆柱形钢材,要把它削成与它等底等高的圆锥 形零件。要削去钢材多少立方厘米?
板书:
• 圆锥的认识 • 圆锥的底面是个圆,侧面是一个曲面。 • 从圆锥的顶点到底面圆心的距离是圆锥
的高。
23
2020/1/14
24
圆锥体积公式的推导
1
教学目标:
• 【教学内容】 • 圆锥的认识。(教材第31~32页例1及教材第35页练习六的第1、
2题)。 • 【教学目标】 • 1、认识圆锥,掌握它的各部分名称及特征。 • 2、认识圆锥的高,掌握测量圆锥的高的方法。 • 3、通过观察圆锥建立空间观念,培养学生的观察能力,以及从
13
圆柱体积=底面积 高
14
圆柱体积=底面积 高 圆锥体积=
15
ቤተ መጻሕፍቲ ባይዱ
圆柱体积=底面积 高 圆锥体积=
16
圆柱体积=底面积 高 圆锥体积=
17
圆柱体积=底面积 高
圆锥体积=底面积
高
1 3
18
一个圆锥的零件,底面积是19平方 厘米,高是12厘米。这个零件的体 积是多少?
1
-×19×12=76(立方厘米) 3
实物抽象到几何的能力。 • 【重点难点】 • 认识圆锥的高及高的测量方法。 • 【教学准备】 • 圆柱纸筒,布,圆锥形的实物,圆锥模型,木板,多媒体课件,
米(或沙子),三角板,长方形,半圆形硬纸片。
2
说出圆柱和圆锥各部分的名称及特征:
高 有无数条 侧面 展开后是长方形或正方形 底面 有两个底面,是相等的圆形
已知条 件
体积
圆锥底面半径2厘米,高9厘米 37.68立方厘 圆锥底面直径6厘米,高3厘米 米28.26立方厘 圆锥底面周长6.28分米,高6分米 米6.28立方分米
21
有一根底面直径是6厘米,长是15厘米的 圆柱形钢材,要把它削成与它等底等高的圆锥 形零件。要削去钢材多少立方厘米?
青岛版小学数学六年级下册圆锥的体积ppt教学课件
15厘米
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
1 1、圆锥的体积=( 3 ×底面积×高 1
),
二、判断:
1、圆柱体的体积一定比圆锥体的体积大( × ) (√ )
1 2、圆锥的体积等于和它等底等高的圆柱体的 3
3、正方体、长方体、圆锥体的体积都等于底面 积×高。 ( × ) 4、等底等高的圆柱和圆锥,如果圆柱体的体积 是27立方米,那么圆锥的体积是9立方米。 ( ) √
高ቤተ መጻሕፍቲ ባይዱ
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
一个圆锥形的零件,底面积是 19平方厘米,高是12厘米。这个 零件的体积是多少?
义务教育课程标准实验教科书 数学 (青岛版)六年级下册
圆锥的体积
想一想:
• 圆柱和圆锥的底和高有什么 关系?
圆柱和圆锥等底等高
• 等底等高的圆柱和圆锥的体 积之间有什么关系?
你发现了什么? 圆柱的体积是与它等底 等高圆锥体积的3倍.
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
1 1、圆锥的体积=( 3 ×底面积×高 1
),
二、判断:
1、圆柱体的体积一定比圆锥体的体积大( × ) (√ )
1 2、圆锥的体积等于和它等底等高的圆柱体的 3
3、正方体、长方体、圆锥体的体积都等于底面 积×高。 ( × ) 4、等底等高的圆柱和圆锥,如果圆柱体的体积 是27立方米,那么圆锥的体积是9立方米。 ( ) √
高ቤተ መጻሕፍቲ ባይዱ
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
一个圆锥形的零件,底面积是 19平方厘米,高是12厘米。这个 零件的体积是多少?
义务教育课程标准实验教科书 数学 (青岛版)六年级下册
圆锥的体积
想一想:
• 圆柱和圆锥的底和高有什么 关系?
圆柱和圆锥等底等高
• 等底等高的圆柱和圆锥的体 积之间有什么关系?
你发现了什么? 圆柱的体积是与它等底 等高圆锥体积的3倍.
北师大版六年级下册《圆锥的体积练习课》优秀ppt教学课件
(米,圆锥体体 积是( 2)立方厘米。
应用题
• 一个圆锥形煤堆,高3米,底面 周长12.56米,如每立方米的煤 重1.4吨,这堆煤重多少吨?
圆锥的体积练习课
教学目标
• 1.通过练习,进一步理解和掌握圆锥体积公 式,能运用公式正确迅速地计算圆锥的体 积。
• 2.通过练习,进一步深刻理解圆柱和圆锥体 积之间的关系。
• 3.进一步培养将所学知识运用和服务于生活 的能力。
口答
1.一个圆柱体积是27立方分米,与它等 底等高的圆锥体积是( 9 )立方分米.
• 3.一个圆锥的底面周长是18.84米,高是 4米,它的体积是多少?
判断题
1.圆柱体积是圆锥体积的3倍。 (× )
2.一个圆柱木块削成一个最大的圆锥, 削去了圆柱体积的 2 。 (√ )
3
1 3
3分.一米个,圆体锥积,1底立面方积分是米13。平(方分√ )米,高是
27
填空
(1)一个圆锥体的体积是a立方分米, 和它等底等高的圆柱体体积是(3 a )立方 分米。
2.一个圆锥体积是150立方厘米,与它等 底等高的圆柱体积是( 450 )立方厘米.
求圆柱的体积。
1.圆柱的底面积是3平方米,高5米。 3×5=15(立方米)
2.圆柱的底面半径是2分米,高10分米。 3.14×22 ×10=125.6(立方分米)
3.圆柱的底面直径是2米,高3米。 3.14×12 ×3=9.42(立方米)
4.圆柱的底面周长是62.8米,高4米。 3.14×102 ×4=1256(立方米)
把圆柱体削成圆锥体
V=1413立方厘米
V=?
V=1413立方厘米
4V71=厘? 米
做一 做 • 1.一个圆锥的底面积是25平方分米,高
应用题
• 一个圆锥形煤堆,高3米,底面 周长12.56米,如每立方米的煤 重1.4吨,这堆煤重多少吨?
圆锥的体积练习课
教学目标
• 1.通过练习,进一步理解和掌握圆锥体积公 式,能运用公式正确迅速地计算圆锥的体 积。
• 2.通过练习,进一步深刻理解圆柱和圆锥体 积之间的关系。
• 3.进一步培养将所学知识运用和服务于生活 的能力。
口答
1.一个圆柱体积是27立方分米,与它等 底等高的圆锥体积是( 9 )立方分米.
• 3.一个圆锥的底面周长是18.84米,高是 4米,它的体积是多少?
判断题
1.圆柱体积是圆锥体积的3倍。 (× )
2.一个圆柱木块削成一个最大的圆锥, 削去了圆柱体积的 2 。 (√ )
3
1 3
3分.一米个,圆体锥积,1底立面方积分是米13。平(方分√ )米,高是
27
填空
(1)一个圆锥体的体积是a立方分米, 和它等底等高的圆柱体体积是(3 a )立方 分米。
2.一个圆锥体积是150立方厘米,与它等 底等高的圆柱体积是( 450 )立方厘米.
求圆柱的体积。
1.圆柱的底面积是3平方米,高5米。 3×5=15(立方米)
2.圆柱的底面半径是2分米,高10分米。 3.14×22 ×10=125.6(立方分米)
3.圆柱的底面直径是2米,高3米。 3.14×12 ×3=9.42(立方米)
4.圆柱的底面周长是62.8米,高4米。 3.14×102 ×4=1256(立方米)
把圆柱体削成圆锥体
V=1413立方厘米
V=?
V=1413立方厘米
4V71=厘? 米
做一 做 • 1.一个圆锥的底面积是25平方分米,高
3.《圆锥的体积练习课》课件(09)[1]
7.把一个长9.42分米、宽5分米、高2 分米的长方体铁块熔铸成一个底面半径 是3分米的圆锥,圆锥的高是多少分米?
一个圆锥形小麦堆,底面周长是 15.7米,高是3米,把这堆小麦装进 底面直径为4米的圆柱形粮囤里,可 以装多少高?
h=3米
C=15.7米
练习六
8. 小明家去年秋季收获的稻 谷堆成了圆锥形,高2m,底面 直径是3m。 (1)这堆稻谷的体积是多少? (2)如果每立方米稻谷重650kg,这堆稻谷重多少千 克(?1)13 ×3.14×(3÷2)²×2≈4.71(m³) 答:这堆稻谷的体积是4.71m³。
(2)650×4.71=3061.5(千克)
答:这堆稻谷重3061.5千克。
练习六
(3)小明家有0.4公顷稻田,平均每公顷产稻谷多 少千克?
3061.5÷0.4=7653.75(千克) 答:平均每公顷产稻谷7653.75千克。 (4)如果每千克稻谷售价为2.8元,这些稻谷能卖 多少钱?
一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。
(1 )如果把它捏成同样底面大小的圆锥,这个圆锥的 高是多少?
15cm
(2)如果把它捏成同样高
的圆锥,这个圆锥的底面
积是多少?
36cm2
第二关——巧思考
2.有两个空的玻璃容器,先在 圆水锥倒形入12容圆×器柱13里形=注容4(满器厘,水圆米,再 柱)形把容这 器里的水深多少厘米?
侧面 底面
圆锥的侧面和底面
侧面
底面
圆锥的侧面展开图是扇 形,底面是一个圆形。
底面周长等于扇形弧线的长度。
圆锥如果从顶点沿着高切成两个半圆锥,是什么样子的?
圆锥从顶点沿着高切开后,多出了两个等腰三角形的面, 每个三角形的底是圆锥的底面直径,三角形的高就是圆 锥的高。每个三角形的面积=底面直径×高÷2
圆锥的体积PPT课件
You Know, The More Powerful You Will Be
20
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
16
实验说明,等底等高的圆柱和 圆锥它们的体积有怎样的关系?
圆锥的体积是与它等底等高 的圆柱体体积的 1
3
共倒了
3次
17
1
圆锥的体积=等底等高的圆柱体体积×
1
3
=底面积×高×
3
用字母表示:
1
V= Sh
3
18
19
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
圆锥的体积
1
这是什么体?
(圆柱体)
2
圆柱体的体积公式:
圆柱体的体积=底面积×高 V = S×h
3
计算下面圆柱体的体积:单位(厘米) 3
4 7
8
3.14×(4÷2)2×8 =12.56× 8 =100.48(立方厘米)
3.14×3 2×7 =3.14 ×63 =197.82(立方厘米)
4
常见的物体
21
5
6
7
8
9
10
圆锥的特点
圆锥的侧面是一个曲面 底面是个圆
11
圆锥的特点 。 圆锥的
12
20
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
16
实验说明,等底等高的圆柱和 圆锥它们的体积有怎样的关系?
圆锥的体积是与它等底等高 的圆柱体体积的 1
3
共倒了
3次
17
1
圆锥的体积=等底等高的圆柱体体积×
1
3
=底面积×高×
3
用字母表示:
1
V= Sh
3
18
19
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
圆锥的体积
1
这是什么体?
(圆柱体)
2
圆柱体的体积公式:
圆柱体的体积=底面积×高 V = S×h
3
计算下面圆柱体的体积:单位(厘米) 3
4 7
8
3.14×(4÷2)2×8 =12.56× 8 =100.48(立方厘米)
3.14×3 2×7 =3.14 ×63 =197.82(立方厘米)
4
常见的物体
21
5
6
7
8
9
10
圆锥的特点
圆锥的侧面是一个曲面 底面是个圆
11
圆锥的特点 。 圆锥的
12
圆锥的体积练习课上课用
二、回答下面的问题,并列出算式。 回答下面的问题,并列出算式。 一个圆柱形水桶,底面半径10分米 分米, 分米。 一个圆柱形水桶,底面半径 分米,高20分米。 分米 给这个水桶加个盖,是求哪个部分? ①给这个水桶加个盖,是求哪个部分? 给这个水桶加个箍,是求哪个部分? ②给这个水桶加个箍,是求哪个部分? 给这个水桶的外面涂上油漆,是求哪个部分? ③给这个水桶的外面涂上油漆,是求哪个部分? 这个水桶能装多少水,是求哪个部分? ④这个水桶能装多少水,是求哪个部分?
狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 选择了圆锥形木材。狐狸占到便宜了吗? 选择了圆锥形木材。狐狸占到便宜了吗?
18分米 分米 6分米 4分米 4分米 分米
狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸和小白兔来帮山羊伯伯搬运盖房子的木材, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 狐狸抢先选择了圆柱形木材,小白兔笑了笑, 选择了圆锥形木材。狐狸占到便宜了吗? 选择了圆锥形木材。狐狸占到便宜了吗?
2米
2米 米
底面积: 平方米 底面积:4平方米
底面积:12平方米 底面积: 平方米
山羊伯伯送给狐狸和小白兔各一堆粮食, 山羊伯伯送给狐狸和小白兔各一堆粮食,狐狸 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 认为圆锥形的粮食多,就抢先要了圆锥形的粮堆, 小白兔又笑了笑,要了圆柱形粮堆。 小白兔又笑了笑,要了圆柱形粮堆。狐狸占到便宜 了吗? 了吗?
18.84÷6= 3.14 dm2
20÷4= 5 dm
5×3.14= 15.7 dm3
一个圆柱形玻璃容器的底面直径是20厘米, 一个圆柱形玻璃容器的底面直径是20厘米, 20厘米 现在把一块石块放入容器里的水中, 现在把一块石块放入容器里的水中,水面上升 厘米。这块石块的体积是多少? 了2厘米。这块石块的体积是多少?
北师大版数学第十二册《圆锥的体积练习》课件
计算下面各圆锥的体积。
3dm 3.6m 8dm 8cm 12cm
s 9m
2
列式计算,求体积。
底面积800平 方米,高90米。
V=800×90÷3
小宇的房子 底面积5平方 米,高12米
V=5×12÷3
• 小娇的房子 • 底面直径4米,高6 米。
V=3.14×(4÷2)2×6÷3
张在新的房子底面周 长125.6米,高 30米。
圆锥的体积练习
教学目标
1.通过练习,使同学们进一步掌握求圆锥 体积的计算公式; 2.能熟练应用圆锥体的体积计算公式解答 有关圆锥体体积的实际问题,提高同学 们解答实际问题的能力。
高 5 米
圆柱的体积: V=SH =20×5 =100(立方米)
底面积20平方米
高 5 米
底面积20平方米
圆锥的体积: V=SH/3 =20×5÷3 ≈33.33(立方米)
1 3
思考 • 一个直角三角板两直角边分别是5 厘米和8厘米,绕着它的一条直角 边旋转一周,得到什么图形?它的 体积是多少?
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
1 V= 3
sh
判断
• ① 圆锥的体积等于圆柱体积的3倍。 • (× ) • ② 一个圆锥的底面半径扩大3倍,高不变, 它的体积也扩大3倍。 (√,削掉部 分是60厘米,这个圆柱的体积是( C ) 立方厘米。 • A、20 B、30 C、90 D、180 • ② 一个圆柱体积可以熔铸成( B)个与 它等底等高的圆锥体零件。 • A、4 B、3 C、2 D、1
《圆锥认识》PPTPPT课件
解释
这个公式是通过将圆锥侧面展开成一 个扇形来推导的,扇形的弧长等于圆 的周长,扇形的半径等于圆锥的斜边 长。
圆锥的底面积
公式
圆锥的底面积 = π × r^2
解释
这个公式是通过圆的面积公式推导出来的,其中r 是圆的半径。
应用
在计算圆锥的表面积时,需要加上圆锥的底面积 和侧面积。
圆锥的体积
公式
圆锥的体积 = (1/3) × π × r^2 ×h
《圆锥认识》PPT课 件
目录
CONTENTS
• 圆锥的初步认识 • 圆锥的面积和体积 • 圆锥的表面积计算 • 圆锥的展开图 • 圆锥的旋转体
01 圆锥的初步认识
圆锥的定义
圆锥定义
圆锥是由一个圆形底面和一个点 (称为顶点)通过圆心与底面圆 周上的任意一点相连所形成的立 体图形。
圆锥的表示方法
圆锥可以用顶点和底面圆心所确 定的直线(称为圆锥的轴线)以 及底面圆来表示。
解释
这个公式是通过将圆锥的体积看 作是一个圆柱的体积的三分之一 来推导的,其中r是圆柱的半径,
h是圆柱的高。
应用
在计算圆锥的体积时,需要知道 圆锥的底面半径和高。
03 圆锥的表面积计算
圆锥表面积的计算公式
圆锥表面积计算公式
圆锥的表面积 = π × r × (l + l'),其 中 r 是底面半径,l 是圆锥的斜高,l' 是圆锥的母线。
圆锥旋转体的分类
根据圆锥旋转体的形状,可以分为正圆锥旋转体和斜交圆锥旋转体。
圆锥旋转体的几何特性
圆锥旋转体的表面积
01
圆锥旋转体的表面积等于其底面圆盘的面积加上侧面圆锥的侧
面积。
圆锥旋转体的体积
圆锥的体积公式的推导 ppt课件
ppt课件
29
ppt课件
30
ppt课件
31
ppt课件
32
ppt课件
33
ppt课件
34
ppt课件
35
ppt课件
36
ppt课件
37
ppt课件
38
ppt课件
39
ppt课件
40
ppt课件
41
ppt课件
42
ppt课件
43
ppt课件
44
ppt课件
45
想一想:
圆柱变成圆锥的过程中, 什么没有变化?
ppt课件
73
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
74
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
75
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
76
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
7
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
8
圆柱变成圆锥的过程中,什么没 有变化?
ppt课件
9
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
10
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
11
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
12
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
69
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
70
课件《圆锥的体积》盐湖区解放路示范学校 王丽红
1 圆锥的体积是与它等底等高圆柱体积的 3 还可以怎么说? 尝试用比的知识说一说
圆柱的体积是与它等底等高圆锥体积的3倍
圆柱的体积与它等底等高圆锥体积的比是3:1
圆锥的体积与它等底等高圆柱体积的比是1 : 3
1.一个圆柱和一个圆锥的底面积和高分别相等,圆锥 的体积是圆柱体积的( 1 ),圆柱体积是圆锥体积 的( 3 )倍。 3 2.一个圆柱的体积是63立方厘米,和它等底等高圆锥 的体积是( 21 )立方厘米。 3.一个圆锥的体积是4.5立方米,与它等底等高圆柱的 体积是( 13.5 )立方米. 差 是36立 4.等底等高的一个圆柱和一个圆锥体积之 和 方分米,圆锥的体积是( 18 9 )立方分米,圆柱体积 54 )立方分米。 是( 27
1
2
3
1
2
3
北师大版 六年级下册 第一单元 圆柱与圆锥
执教者:王丽红
1
提示一:
圆锥的体积与我们刚才温习过的一个立体图 形的体积有着密不可分的关系?
V = Sh
圆柱与圆锥体积之间有什么秘密?
2
提示二:
任何大胆的猜想都可能是科学定律产生的前 奏,请大家用实际行动去验证自己的猜想,走进 科学实验站揭开圆柱圆锥体积之间的秘密吧!
当圆柱与圆锥体积相等, 圆锥的底面积是圆柱底面积的3倍 1 高也相等时 圆柱的底面积是圆锥底面积的 3
在圆柱里削一个最大的圆锥
3cm
1.削去部分的体积是多少?
2.削去部分的体积与圆柱 3 2 体积的的比是( ):( )
S=12.56平方厘米
通过本节课的学习 我的表现: 我的收获: 我的疑惑: 我的不足:
实验内容:
在等底等高的情况下,圆柱圆锥的体积关系是什么?
六年级数学下册 圆锥的体积课件 青岛版
圆柱和圆锥等底等高
你发现了什么? 圆柱的体积是与它等底 等高圆锥体积的3倍。
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
答:这个零件的体积是76立方 厘米。
例2 在打谷场上,有一个近似于 圆锥的小麦堆,测得底面直径是4 米,高是1.2米。每立方米小麦约 重735千克,这堆小麦约有多少千 克?(得数保留整千克)
1.2米
4米
一、填空: 1.圆锥的体积=( 1 字母表示是( V= 3 s h )。 1 2.圆柱体积的 3 与和它(等底等高 )的圆 锥的体积相体积公式, 会计算圆锥的体积。
1 3 ×底面积×高 ),用
3.一个圆柱和一个圆锥等底等高,圆柱的 体积是3立方分米,圆锥的体积是( 1 ) 立方分米。
二、判断:
1.圆柱体的体积一定比圆锥体的体积大。 ( ) 2.圆锥的体积等于和它等底等高的圆柱体的 √ ( )。 ×
1 3
× 3.正方体、长方体、圆锥体的体积都等于底面 积×高。 ( ) 4.等底等高的圆柱和圆锥,如果圆柱体的体积 √ 是27立方米,那么圆锥的体积是9立方米。( )
复习:
口算下列圆柱的体积。 ①底面积是5平方厘米,高 6 厘米, 体积 = ? ②底面半径是 2 分米, 高10分米, 体积 = ? ③底面直径是 6 分米, 高10分米, 体积 = ?
想一想:
圆柱和圆锥的底和高有什么关系?
三、填表: 已知条 件
圆锥底面半径2厘米,高9厘米 圆锥底面直径6厘米,高3厘米
体积
37.68立方厘米 28.26立方厘米 6.28立方分米
1.4圆锥的体积
6.一个圆柱形橡皮泥,底面积是12cm2,高是5cm。 ⑴ 如果把它捏成同样底面大小的圆锥,这个圆 锥的高是多少? ⑵ 如果把它捏成同样高的圆锥,这个圆锥的底 面积是多少?
5×3=15(cm)
12×3=36(cm2)源自1.下图中,圆锥的体积与哪个圆柱的体积相等?说 说你是怎么想的。
2.计算下面各圆锥的体积。
3.如图,测量中经常使用铅锤。这个铅锤的体积是 多少立方厘米?
1 2 3.14 (5 2) 4 3
≈26.17(cm3)
4.有一座圆锥形帐篷,底面直径约5m,高约3.6m。 ⑴ 它的占地面积约是多少平方米? ⑵ 它内部的空间约是多少立方米?
3.14×(5÷2)2=19.625(m2)
1 19.625 3.6 =23.55(m3) 3
5.张大伯家有一堆小麦,堆成了圆锥形,张大伯量 得它的底面周长是9.42m,高是2m,这堆小麦的 体积是多少立方米?如果每立方米小麦的质量为 700kg,这堆小麦约重约重多少千克?
底面积:3.14×(9.42÷3.14÷2)2=7.065(m2) 1 3 7 . 065 2 = 4 . 71 ( m ) 体积: 3 质量: 4.71×700=3297(kg)
北师大版 六年级下册 第一单元 圆柱与圆锥
V = Sh
准备等底等高的 圆柱形容器和圆 锥形容器各一个。
将圆锥形容器 装满沙子,再 倒入圆柱形容 器,看几次能 倒满。
圆柱的体积等于和它等底等高的圆锥的体积的3倍。
1 V= Sh 3
如果小麦堆的底面半径为2m,高为1.5m。小麦堆 的体积是多少立方米? 1 3.14 2 2 1.5 3 =6.28(m3) 答:小麦堆的体积是6.28m3。
人教版《圆锥的体积》(完美版)PPT课件7(共11张PPT)
=
3V 圆锥
圆锥的体积等于与它等底等高圆柱体积的
1 3
Ⅴ圆锥 = 31Ⅴ圆柱=
1 3
sh
圆锥的体积=
1 3
×底面积×高
返回
课堂练习
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙 子的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约 重多少吨?(得数保留两位小数。)
(3)沙堆重: 6.28×1.5=9.42(t)
答:这堆沙子的体积大约是6.28m³,这堆沙 子大约重9.42吨。
小结
1. 圆锥的体积等于与它等底等高的圆柱体积的 1 。
3
2.
圆锥的体积公式用字母表示为V=
1 3
Sh
或V= 1 πr²h。 3
底面积×高
圆锥的体积等于与它等底等高圆柱体积的
目录
CONTENTS
知识讲解
课堂练习
小节
2
导入导入导导入 回顾圆柱的体积公式推导过程
V =Sh=πr2h
知识讲解
圆锥的体积与圆柱的体积有怎样的关系 呢?
●
●
圆柱和圆锥等底等高。
返回
小组活动
1次
返回
28m³,这堆沙子大约重9. 回顾圆柱的体积公式推导过程 圆锥的体积等于与它等底等高圆柱体积的 难点名称:圆锥体积公式的推导过程
28m³,这堆沙子大约重9. 28m³,这堆沙子大约重9.
难点名称:圆锥体积公式的推导过程
28m³,这堆沙子大约重9. 5t,这堆沙子大约重多少吨?(得数保留两位小数。 工地上有一堆沙子,近似于一个圆锥(如下图)。 3个圆锥的体积=1个圆柱体积 首先读题,找出已知和未知。 (2)沙堆的体积:V= Sh
答:这堆沙子的体积大约是6. Ⅴ =Ⅴ = 圆锥的体积= ×
3V 圆锥
圆锥的体积等于与它等底等高圆柱体积的
1 3
Ⅴ圆锥 = 31Ⅴ圆柱=
1 3
sh
圆锥的体积=
1 3
×底面积×高
返回
课堂练习
工地上有一堆沙子,近似于一个圆锥(如下图)。这堆沙 子的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约 重多少吨?(得数保留两位小数。)
(3)沙堆重: 6.28×1.5=9.42(t)
答:这堆沙子的体积大约是6.28m³,这堆沙 子大约重9.42吨。
小结
1. 圆锥的体积等于与它等底等高的圆柱体积的 1 。
3
2.
圆锥的体积公式用字母表示为V=
1 3
Sh
或V= 1 πr²h。 3
底面积×高
圆锥的体积等于与它等底等高圆柱体积的
目录
CONTENTS
知识讲解
课堂练习
小节
2
导入导入导导入 回顾圆柱的体积公式推导过程
V =Sh=πr2h
知识讲解
圆锥的体积与圆柱的体积有怎样的关系 呢?
●
●
圆柱和圆锥等底等高。
返回
小组活动
1次
返回
28m³,这堆沙子大约重9. 回顾圆柱的体积公式推导过程 圆锥的体积等于与它等底等高圆柱体积的 难点名称:圆锥体积公式的推导过程
28m³,这堆沙子大约重9. 28m³,这堆沙子大约重9.
难点名称:圆锥体积公式的推导过程
28m³,这堆沙子大约重9. 5t,这堆沙子大约重多少吨?(得数保留两位小数。 工地上有一堆沙子,近似于一个圆锥(如下图)。 3个圆锥的体积=1个圆柱体积 首先读题,找出已知和未知。 (2)沙堆的体积:V= Sh
答:这堆沙子的体积大约是6. Ⅴ =Ⅴ = 圆锥的体积= ×
人教六年级数学下册圆锥的体积(练习课)
稻谷的占地面积
米稻谷重650kg,每千克稻谷售价
稻谷的质量
为2.8元,这些稻谷能卖多少钱?
①稻谷的体积:
②稻谷的质量:
平均每公顷产稻谷多少千克? ③每公顷的质量:
①稻谷的体积: ②稻谷的质量: ③每公顷的质量:
×3.14×(23)²×2=4.71(m³) 4.71×650 = 3061.5(kg) 3061.5÷0.4=7653.75(kg)
答:平均每公顷产稻谷7653.75kg。
4. 考考你
把一个棱长是6厘米的正方体木块,加工成一个最大
的圆锥,圆锥的体积是多少立方厘米? 可以画一个
简单的示意
×3.14×(62)²×6=56.52(cm³)
图帮助我们 思考哦!
答:圆锥的体积是56.52立方厘米。
现在可以按下暂停键,独立解答
状元成才路
12
3
V圆柱
V圆锥∶V圆柱∶V削=1∶3∶2
综合练习,提升能力 1. 一个圆锥形谷堆,高1.5米,占地面积16平方米,将 其装入粮仓,正好占粮仓容积的15%,求粮仓的容积。 (得数保留整数) 单位“1”
①谷堆体积:
×16×1.5=8(m³)
②求粮仓的容积: 8÷15% ≈ 53(m³) 答:粮仓的容积约是53m³。
圆柱
h=V圆锥 ×3 ÷ S
专项练习,归纳方法 1. 算一算
V圆锥=
1 3
V圆柱
(1)一个圆柱的体积是6cm³,与它等底等高的圆
锥的体积是多少立方厘米?6÷3=2(cm³)
(2)有一个圆柱和一个圆锥,它们的底面半径相
等,高也相等,圆锥的的体积是18dm³,圆柱的体
积是多少立方分米?
18×3=54(dm³)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件!
精品课件!
哪个圆锥的体积比较大?
2、一个圆锥与一个圆柱等底等体积, 已知圆柱的高是 12 厘米, 圆锥的 高是( )。
3、一个圆锥与一个圆柱等高等体积, 已知圆柱的底面积是 314 平方米, 圆锥的底面积是( )。
判断
(1)一个圆锥,底面面积是20平方厘米, 高是12厘米,它的体积是20×12。 ( ) × (2)圆锥的体积是24立方厘米,底面积是6 平方厘米,那么高是4厘米。 (× ) (3)在等底、等高的条件下,圆锥的体积和圆 柱体的体积相差2倍。 ( √)
1 680 (立方厘米) × 170 × 12= 3
答:这个零件的体积是680立方 厘米。
2、一个圆柱体体积为57立方厘米, 与它等底等高的圆锥的体积是多少?
57÷3=19(立方厘米)
答:与它等底等高的圆锥的体积 是19立方厘米。
请回答:
•
• • • •
已知一个圆柱体和一个圆锥体的底面 积相等, 高也相等,圆柱的体积和圆锥 体积的关系是: A. 圆柱的体积是圆锥体积的——。 B. 圆锥的体积是圆柱体积的——。 C. 圆柱的体积比圆锥体积——。 D. 圆锥的体积比圆柱体积——。
①等底等高,体积不等。
1 圆锥体积等于圆柱的 3 ,
圆柱体积是圆锥的3倍。
②等底,等体积,高不等。
圆锥的高是圆柱高的3倍,
圆柱的高是圆锥高的
。
③等高,等体积,底面积不等。
.
h
r
h r
圆柱的底面积是圆锥底面积的 , 圆锥的底面积是圆柱底面积的3倍。
1、一个圆锥与一个圆柱等底等高, 已知圆锥的体积是 18 立方米, 圆柱的体积是( )。
你准备好了吗?
判断:
1、圆柱的体积相当于圆锥的3倍。 ( ) 2、一个圆柱体木料,把它加工成最大 的圆锥体,削去的部分和圆锥的体积 比是2:1。 ( ) 3、一个圆柱体铅块,可以铸成2个等底 等高的圆锥体零件。 ( )
1、一个圆锥形的零件,底面积 是170平方厘米,高是12厘米。 这个零件的体积是多少?