武汉理工大学《材料力学》考试复习重点笔记

合集下载

武汉理工大学材料力学(应力状态复习)资料重点

武汉理工大学材料力学(应力状态复习)资料重点

t
A
s
s1 81 MPa , s 2 0, s 3 31 MPa
或:
sr4
sr4 s 2 3t 2 100(MPa )
12([ s1 s 2)2 (s 2 s 3)2 (s 3 s1)2 ]
12[s
2 1
s
2 3
(s
3
s
1
)2
]
12[812 312 (3181)2] 100(MPa )
十一、复杂应力状态下的强度条件
强度条件: s r ≤ [s ] 其中,sr—相当应力。
s1
相当
sr
sr
s2
s3
十二、相当应力
s r1 s1
s r2 s 1 s 2 s 3
sr3 s1 s 3
sr4
12[s1 s 2 2 s 2 s 3 2 s 3 s1 2]
十三、典型二向应力状态的相当应力
s3
一点的最大切应力为:
t
max
s
1
s
2
3
y s3 t
0 45
t
x
t s1 t
九、广义胡克定律
x
1 E
s
x
s
y
s
z
y
1 E
s
y
s z
s
x
z
1 E
sz
s
x
s
y
xy
t xy
G
yz
t yz
G
zx
t zx
G
1
1 E
s
1
s
2
s
3
2
1 E
s
2
s
3

(完整版)武汉理工大学材料力学期末复习课件

(完整版)武汉理工大学材料力学期末复习课件

fx
Mx EI
; x
Qx EI
第二部分
复杂变形部分
三向应力分析
o 3
max
2
1
1 2 3
max
1
2
3
平面应力分析
x
2
y
x
2
y
cos 2
xy
sin 2
x
2
y
sin 2
xy cos 2
平面内的主应力
max min
x
y
2
x
2
y
2
2 xy
3
主 单元体
tan 2 0
2 xy x
y
1
0
变形能的应用: 求位移和解决动载问题
(1) 自 由 落 体:
2h
Kd 1
1 j
△j:冲击物落点的静位移
(2) 水 平 冲 击:
Kd
v2 gj
材料试验
1、容许应力: jx
n
2、极限应力: jx s , 0.2 , b
3、安全系数:n
三个弹性常数
G
E 2(1
)
E
G
泊松比(或横向变形系数)
k
8DP
d 3
;
其中:
k 4C 1 0.615 ; C D 为弹簧指数
4C 4 C
d
64PR3n Gd 4
P K
其中: K
Gd 4 64R3n
非对称截面梁发生平面弯曲的条件 P
(1)外力必须作用在主惯性面内,
z
(2)中性轴为形心主轴,
o
(3)若是横向力,还必须过弯曲中心。
y
x
积分法求挠曲线方程(弹性曲线)

材料力学复习测重点及其公式

材料力学复习测重点及其公式

外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。

当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549enP M=当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024enP M=拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N F Aσ=(3-1)式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。

公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力co s p ασα= (3-2) 正应力 2cos ασσα=(3-3)切应力1sin 22ατα=(3-4)式中σ为横截面上的应力。

正负号规定:α由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论:(1)当0α=时,即横截面上,ασ达到最大值,即()m axασσ=。

当α=090时,即纵截面上,ασ=090=0。

(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即m ax()2αατ=1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。

如图3-2。

图3-2轴向变形1l l l ∆=-轴向线应变 l lε∆=横向变形1b b b ∆=- 横向线应变 b bε∆'= 正负号规定 伸长为正,缩短为负。

材料力学 复习提纲与考核重点要点

材料力学 复习提纲与考核重点要点

材料力学复习提纲与考核重点第二章1、重要公式拉伸、压缩时横截面上正应力计算公式σ=FN AFN≤[σ] A∆l线应变计算公式ε= l强度条件σ=拉伸、压缩时杆的伸长量计算公式∆l=FNl EAεy泊松比计算公式μ=|| εx胡克定律σ=Eε注意正应力的正负号确定方法2、考题类型一个大题拉伸与压缩时杆的强度计算,可能的题型包含了强度校核、设计截面和确定许用载荷。

第三章1、重要公式PnP Me=702 P单位马力,n单位r/min n外加扭矩计算公式 Me=954 P单位KW,n 单位r/min切应力的计算公式τ=Tρ Ip最大切应力计算公式τmax=记忆常用截面的Ip和Wt实心圆截面Ip=TmaxWtWt=Ipρmax扭转截面系数πd432,Wt=πd316空心圆截面Ip=πd432(1-α),Wt=4πd316(1-α4) α=d D扭转强度条件τmax=Tmax≤[τ] Wt相对扭转角计算公式ϕ=Tl GIpTili GIpi多段扭转变形的扭转角ϕ=∑单位长度扭转角计算公式ϕ'=dϕT =dxGIp扭转刚度条件ϕ'max≤[ϕ']胡克定律τ=Gγ2、考题类型一个大题一段或两段扭转杆件的强度计算和刚度计算的综合解题过程中需注意杆件的变形形式,给出杆件的扭矩图,方可找到最大的扭矩,以及杆件的扭转角计算形式,尤其注意分清扭矩的正负号。

常见题型为给定杆件的扭转受力情况,要求进行强度校核和刚度校核,或是根据给定的受力情况进行按照刚度进行截面设计,然后再进行刚度校核第四、五、六章及附录1、重要公式弯曲时横截面上正应力计算公式σ=Mzy Iz最大正应力σmax=MmaxIWz=z 弯曲截面系数 Wzymax各种常见截面的Iz和Wz圆截面Iz=πd464,Wz=πd332bh3bh2矩形截面 Iz=,Wz= 126弯曲正应力强度条件σmax≤[σ]FSSz* Izb弯曲切应力计算公式τ=截面几何性质 Sy=zdA Sz=A⎰⎰AydAIz=⎰Ay2dA Sz*=⎰A*ydA形心计算公式 yc=SySz zc=AAIy1=Iy+b2A平行移轴定理 Iz1=Iz+aA2Ix1y1=Ixy+abAIy、Iz为相对于过过形心的主轴的惯性矩d2wM(x)挠曲线微分方程 =2dyEI积分法求梁的挠度不同支座形式的位移边界条件和光滑连续条件(略)叠加原理EI∑w''=EI(∑w)''=M(x) iii=1i=1nn叠加法求梁的挠度2、考题类型两个大题一个问题综合强度计算和挠度计算,横截面为矩形或圆形,需画出梁的内力图(剪力图和弯矩图),进行强度校核、设计截面或确定许用载荷,并根据给出的挠度表格(叠加法)或使用积分法计算某一位置的挠度或梁的最大挠度。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学总复习重点

材料力学总复习重点
M (1)应力分布规律: y Iz M
y
M x
Mechanic of Materials
M、 Iz ——所求应力点所 在横截面的弯矩、惯性矩 。 y ——点到所在横截面的中 性轴的距离 ①应力随离中性层的距离线 性变化
z
中性轴
M
x
②正应力沿高度线性分布,同一y 值,y 相同;中性轴上正 应力等于 0,离中性轴最远的上下边缘,应力 达到最大。
1.6 杆件变形的基本形式 杆件变形的四种基本形式: 1.轴向拉压
Mechanic of Materials
2.剪切与挤压
3.扭转
4.弯曲
二、轴向拉伸与压缩 2.2 轴向拉伸或压缩时的应力
Mechanic of Materials
1、杆横截面上的内力 1)求轴力。
2)内力的正与负是如何规定的?
3)如何画轴力图?
M max
10kN (a)
Engineering Mechanics
A C
4m 26kN 2m
50kN
B
4m 34kN
z
D
max =
Wz
Wz
2
(b )
26 +
16 34
104 136 +
M max

6
2
3
136 103
FS(kN)
170 106
3
2
3
400 10 m 400 10 mm
(5)正应力强度校核:由于拉压强度不同,必须同 时考虑B、C这两个具有最大正负弯矩的截面。
B截面 :
B ,max
yC=139
Engineering Mechanics

材料力学复习总结知识点

材料力学复习总结知识点

A、30 B、 35 C、 40 D、 70
基工本字变 形形截面方拉:校(形压核) 主销应力将扭。转两块等弯曲厚度的板连接在一起,上面的板中同时
根据弯矩图判断可能的危险截面为:A和D左截面,可能的危险点为:A截面的上边缘点和D左截面的下边缘点产生最大的拉应力,D左
存在拉应力σ、剪应力τ、挤压应力σ ,比较其数值大小 截已面知的 轴上的边许缘用点剪产应生力最为大[τ]的=压60应MP力a,. 剪变模量为G=80GPa,许用转角为[θ]=20/mb。s
m ax [ ]
二、应力状态
1. 平面应力状态: 解析法(公式)
2. 三向应力状态:
ma x1, ma x1 23
3. 广义胡克定律:
1
1 E
[ 1
( 2
3 )]
2
1 E
[ 2
( 3
1 )]
3
1 E
[ 3
( 1
2 )]
4. 强度理论:建立复杂应力状态下的强度条件
r [] 其中
r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr
2 EI ( l)2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
可得( ) 基本变形 拉(压)
扭转
弯曲
基本变形 拉(压) 扭转
弯曲
材料力学的两项基本任务:
BC杆为正方形截面,边长a=70mm,C端也是球铰。

“材料力学”重点归纳

“材料力学”重点归纳

“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。

重点掌握:掌握各种力系的简化和平衡方程应用。

了解材料力学的发展沿革,理解本课程的任务、内容、目的。

第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。

重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。

第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。

应力分析理论、应变分析理论。

重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。

第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。

重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。

第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。

(完整版)材料力学复习重点汇总

(完整版)材料力学复习重点汇总
4.小范围屈服: 塑性区的尺寸较裂纹尺寸及净截面尺寸小一个数量级以上的屈服,这就称为小范围屈服。【P71】
6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

材料力学考研复习笔记

材料力学考研复习笔记

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。

为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。

【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。

【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。

刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。

稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。

杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。

根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。

二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。

(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。

这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。

(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。

按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。

(三)各向同性假设——沿各个方向均具有相同力学性能。

具有该性质的材料,称为各向同性材料。

综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。

三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。

外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。

当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。

材料力学笔记(第一章)要点

材料力学笔记(第一章)要点

材料力学(土)笔记第一章绪论及基本概念1.材料力学的任务1.1 对构件正常工作的要求①强度:在荷载作用下,构件应不至于破坏(断裂或失效)②刚度:在荷载作用下,构件产生的变形应不超过工程上允许的范围③稳定性:承受荷载的作用时,构件在其原有形态下的平衡应保持为稳定的平衡1.2 材料的力学性能材料的力学性能:在外力作用下材料变形与所受外力之间的关系,抵抗变形与破坏的能力2.材料力学发展概述3.可变形固体的性质及其基本假设可变形固体:固体在荷载作用下,物体尺寸和形状改变3.1 料的物质结构金属具有晶体结构,晶体是由排列成一定规则的原子所构成塑料有场链分子组成玻璃、陶瓷是由按某种规律排列的硅原子和氧原子所组成3.2 想化材料三个基本假设材料力学性能所反映的是无数个随机排列的基本组成部分力学性能的统计平均值对可变形固体制成的构件计算时,略去一些次要因素,抽象化为理想化的材料①连续性假设:认为物体在整个体积内连续地充满了物质而毫无空隙根据这一假设,可以在受力构件内任意一点处截取一体积单元进行研究几何相容条件:变形后的固体既不引起“空隙”,也不产生“挤入”现象②均匀性假设:物体内任意一点取出的体积单元,其力学性能都能代表整个物体的力学性能体积单元的尺寸随材料的组织结构不同而有所不同体积单元最小尺寸必须保证再起体积中包含足够多数量的基本组成部分以使其力学性能的统计平均值能保持一个恒定的量③各向同性假设:认为材料沿各个方向的力学性能是相同的木材和纤维增强层复合材料等,力学性能有着明显的方向性,按各向异性计算3.3 料的变形材料力学中,有些构件其变形与构件原始尺寸相比通常甚小,可略去不计与此相反,有些构件在受力变形后,必须按照其变形后的形状来计算弹性变形:在卸除荷载后能完全消失的那一部分变形塑性变形:再卸除载荷后不能完全消失的那一部分变形4.材料力学主要研究对象(杆件)的几何特征4.1 件的几何特征材料力学研究的主要构件从几何上多抽象为杆,大多数为直杆直杆:纵向(长度方向)尺寸远大于横向(垂直于长度方向)尺寸的构件横截面:沿垂直于直杆长度方向的截面轴线:所有横截面形心的连线变截面杆:横截面沿轴线变化的杆5.杆件变形的基本形式5.1 轴向拉伸或轴向压缩一对作用线与直杆轴线重合的外力F作用下直杆的主要变形是长度的改变简单桁架在荷载作用下,桁架中的杆件就发生轴向拉伸或轴向压缩5.2 剪切一对相距很近的大小相同,指向相反的横向外力F的作用下直杆的主要变形是横截面沿外力作用方向发生相对错动一般在剪切变形的同时,杆件还存在其他形式的变形5.3 扭转一对转向相反、作用面垂直于直杆轴线的外力偶(其矩为Me)作用下直杆的相邻横截面将绕轴线发生相对转动,杆件表面纵向线将变成螺旋线,轴线仍维持直线5.4 弯曲一对转向相反、作用面在杆件的纵向平面内的外力偶(其矩为Me)作用下,直杆的相邻横截面将绕垂直于杆轴线的轴发生相对转动变形后杆件轴线将弯成曲线这种变形形式称为纯弯曲梁在横向力作用下的变形将是弯曲和剪切的组合,通常称为横力弯曲。

材料力学知识点总结(重、难点部分)

材料力学知识点总结(重、难点部分)

第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。

(2)理解变形固体的基本假设、条件及其意义。

(3)明确内力的概念、初步掌握用截面法计算内力的方法。

(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。

(5)了解杆件变形的受力和变形特点。

二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。

在外力作用下,构件内部两部分间的附加相互作用力称为内力。

内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。

2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。

截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。

一点处的全应力可以分解为两个应力分量。

垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。

应力单位为Pa 。

1MPa=610Pa, 1GPa=910Pa 。

应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。

3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。

利用截面法求内力的四字口诀为:切、抛、代、平。

一切:在欲求内力的截面处,假想把构件切为两部分。

二抛:抛去一部分,留下一部分作为研究对象。

至于抛去哪一部分,视计算的简便与否而定。

三代:用内力代替抛去部分队保留部分的作用力。

一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。

四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。

4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。

材料力学章节重点和难点

材料力学章节重点和难点

材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。

2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。

3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。

2.重点:剪力方程和弯矩方程、剪力图和弯矩图。

3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。

第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。

2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。

3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。

2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。

3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。

第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。

2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。

3.难点:主应力方位确定。

第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。

3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。

材料力学考试知识点

材料力学考试知识点

材料力学考试知识点材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

对于工科学生来说,这是一门非常重要的基础课程。

以下是材料力学考试中常见的知识点。

一、拉伸与压缩1、内力与轴力图在拉伸或压缩杆件时,杆件内部产生的相互作用力称为内力。

通过截面法可以求得内力,将杆件沿某一截面假想地切开,取其中一部分为研究对象,根据平衡条件求出内力。

用轴力图可以直观地表示轴力沿杆件轴线的变化情况。

2、应力正应力是垂直于截面的应力,计算公式为σ = N/A ,其中 N 为轴力,A 为横截面面积。

切应力是平行于截面的应力。

3、胡克定律在弹性范围内,杆件的变形与所受外力成正比,与杆件的长度成正比,与杆件的横截面面积成反比,与材料的弹性模量成反比。

表达式为Δl = FNl/EA ,其中Δl 为伸长量, FN 为轴力,l 为杆件长度,E 为弹性模量,A 为横截面面积。

4、材料的拉伸与压缩力学性能通过拉伸试验可以得到材料的力学性能,如屈服极限、强度极限、延伸率和断面收缩率等。

二、剪切与挤压1、剪切的实用计算假设剪切面上的切应力均匀分布,根据平衡条件计算剪切面上的剪力和切应力。

2、挤压的实用计算考虑挤压面上的挤压应力,通常假定挤压应力在挤压面上均匀分布。

三、扭转1、扭矩与扭矩图扭矩是杆件受扭时横截面上的内力偶矩。

扭矩图用于表示扭矩沿杆件轴线的变化情况。

2、圆轴扭转时的应力与变形横截面上的切应力沿半径呈线性分布,最大切应力在圆轴表面。

扭转角的计算公式为φ = Tl/GIp ,其中 T 为扭矩,l 为杆件长度,G 为剪切模量,Ip 为极惯性矩。

四、弯曲内力1、剪力和弯矩剪力是横截面切向分布内力的合力,弯矩是横截面法向分布内力的合力偶矩。

通过截面法可以求出剪力和弯矩。

2、剪力图和弯矩图用图形表示剪力和弯矩沿杆件轴线的变化规律,有助于分析杆件的受力情况。

五、弯曲应力1、纯弯曲时的正应力推导得出纯弯曲时横截面上正应力的计算公式σ = My/Iz ,其中 M 为弯矩,y 为所求应力点到中性轴的距离,Iz 为惯性矩。

最新材料力学知识点归纳总结(完整版)

最新材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)------------------------------------------作者xxxx------------------------------------------日期xxxx材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法.2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。

3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。

构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5。

变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。

任何固体在外力作用下都会发生形状和尺寸的改变-—即变形。

因此,这些材料统称为变形固体.第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。

按照外力作用方式的不同,外力又可分为分布力和集中力。

2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。

已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。

首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。

因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡.由平衡条件就可以确定内力.例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。

2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。

材料力学重点总结材料力学重点

材料力学重点总结材料力学重点

材料力学阶段总结一. 材料力学(de)一些基本概念1.材料力学(de)任务:解决安全可靠与经济适用(de)矛盾. 研究对象:杆件强度:抵抗破坏(de)能力 刚度:抵抗变形(de)能力 稳定性:细长压杆不失稳.2. 材料力学中(de)物性假设连续性:物体内部(de)各物理量可用连续函数表示. 均匀性:构件内各处(de)力学性能相同. 各向同性:物体内各方向力学性能相同.3. 材力与理力(de)关系, 内力、应力、位移、变形、应变(de)概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体.内力:附加内力.应指明作用位置、作用截面、作用方向、和符号规定.应力:正应力、剪应力、一点处(de)应力.应了解作用截面、作用位置(点)、作用方向、和符号规定.正应力⎩⎨⎧拉应力压应力应变:反映杆件(de)变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲.4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内. 5. 材料(de)力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段. 拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12塑性材料与脆性材料(de)比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1(de)系数,使用材料时确定安全性与经济性矛盾(de)关键.过小,使构件安全性下降;过大,浪费材料. 许用应力:极限应力除以安全系数. 塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学(de)研究方法1) 所用材料(de)力学性能:通过实验获得.2)对构件(de)力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用(de)未来状态.3)截面法:将内力转化成“外力”.运用力学原理分析计算.8.材料力学中(de)平面假设寻找应力(de)分布规律,通过对变形实验(de)观察、分析、推论确定理论根据.1) 拉(压)杆(de)平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等. 2) 圆轴扭转(de)平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度.横截面上正应力为零. 3) 纯弯曲梁(de)平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁(de)纵向纤维;正应力成线性分布规律.9 小变形和叠加原理 小变形:① 梁绕曲线(de)近似微分方程 ② 杆件变形前(de)平衡③切线位移近似表示曲线④力(de)独立作用原理叠加原理:①叠加法求内力②叠加法求变形.10 材料力学中引入和使用(de)(de)工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载.2) 单元体,应力单元体,主应力单元体.3) 名义剪应力,名义挤压力,单剪切,双剪切.4) 自由扭转,约束扭转,抗扭截面模量,剪力流.5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量.6) 相当应力,广义虎克定律,应力圆,极限应力圆.7) 欧拉临界力,稳定性,压杆稳定性.8)动荷载,交变应力,疲劳破坏.二. 杆件四种基本变形(de)公式及应用1. 四种基本变形:2. 四种基本变形(de)刚度,都可以写成:刚度 = 材料(de)物理常数×截面(de)几何性质 1)物理常数:某种变形引起(de)正应力:抗拉(压)弹性模量E ; 某种变形引起(de)剪应力:抗剪(扭)弹性模量G . 2)截面几何性质:拉压和剪切:变形是截面(de)平移: 取截面面积 A ; 扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩ρI ;梁弯曲:各截面绕轴转动一角度:取对轴(de)惯性矩Z I . 3. 四种基本变形应力公式都可写成:应力=截面几何性质内力对扭转(de)最大应力:截面几何性质取抗扭截面模量maxρ=ρI W p对弯曲(de)最大应力:截面几何性质取抗弯截面模量max y I W ZZ =4. 四种基本变形(de)变形公式,都可写成:变形=刚度长度内力⨯因剪切变形为实用计算方法,不考虑计算变形.弯曲变形(de)曲率221dxyd x ±=ρ)(,一段长为 l (de)纯弯曲梁有: z x EI l M x l=ρ=θ)(补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆(de)轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲(de)组合变形问题;杆(de)压缩问题,要注意它(de)长细比λ(柔度).这里(de)简单压缩是指“小柔度压缩问题”. 2、关于“剪切”实用性(de)强度计算法,作了剪应力在受剪截面上均匀分布(de)假设.要注意有不同(de)受剪截面: a.单面受剪:受剪面积是铆钉杆(de)横截面积; b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积.c.圆柱面受剪:受剪面积以冲头直径d 为直径,冲板厚度 t 为高(de)圆柱面面积. 3.关于扭转表中公式只实用于圆形截面(de)直杆和空心圆轴.等直圆杆扭转(de)应力和变形计算公式可近似分析螺旋弹簧(de)应力和变形问题是应用杆件基本变形理论解决实际问题(de)很好例子. 4.关于纯弯曲纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立.横力弯曲(剪切弯曲)可以视作剪切与纯弯曲(de)组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出(de)正应力公式可以在剪切弯曲中使用.5.关于横力弯曲时梁截面上剪应力(de)计算问题为计算剪应力,作为初等理论(de)材料力学方法作了一些巧妙(de)假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上(de)是集中力还是分布力,在梁(de)宽度上都是均匀分布(de).故剪应力在宽度上不变,方向与荷载(剪力)平行.2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有Q bdh h n=τ⎰)(,因 )(h τ=τ (de)函数形式未知,无法积分.但由剪应力互等定理,考虑微梁段左、右内力(de)平衡,可以得出:bI QS z Z *=τ剪应力在横截面上沿高度(de)变化规律就体现在静矩*z S 上, *z S 总是正(de).剪应力公式及其假设: a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q(de)方向一致; 假设2:横截面上同一层高上(de)剪应力相等. 剪应力公式:b I y QS y z z )()(*=τ ,⎥⎦⎤⎢⎣⎡-=22*22y y b y S Z)()( 平均ττ2323max=⋅=bh Q b. 非矩形截面积假设1: 同一层上(de)剪应力τ作用线通过这层两端边界(de)切线交点,剪应力(de)方向与剪力(de)方向.假设2:同一层上(de)剪应力在剪力Q 方向上(de)分量y τ相等.剪应力公式:z z y I y b y QS y )()()(*=τ2322*)(32)(y R y S z -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ℜ•=222134)(R y Q y y πτ 平均ττ34max =c.薄壁截面假设1:剪应力τ与边界平行,与剪应力谐调. 假设2:沿薄壁t,τ均匀分布. 剪应力公式:zz tI QS *=τ学会运用“剪应力流”概念确定截面上剪应力(de)方向. 三.梁(de)内力方程,内力图,挠度,转角遵守材料力学中对剪力 Q 和弯矩 M (de)符号规定.在梁(de)横截面上,总是假定内力方向与规定方向一致,从统一(de)坐标原点出发划分梁(de)区间,且把梁(de)坐标原点放在梁(de)左端(或右端),使后一段(de)弯矩方程中总包括前面各段.均布荷载 q 、剪力Q 、弯矩M 、转角θ、挠度 y 间(de)关系:由: ,M dxyd EI =22 Q dx dM =, q dx dQ = 有 )()(x q dxyd EI x Q dx dMdxy d EI ===4433设坐标原点在左端,则有:q: q dxyd EI =44, q 为常值Q : A qx dxyd EI +=33:M B Ax x q dx y d EI ++=2222 :θC Bx x A x qdx dy EI +++=2326:y D Cx x B x A x q y EI ++++=⋅2342624 其中A 、B 、C 、D 四个积分常数由边界条件确定. 例如,如图示悬臂梁:则边界条件为:430080600000lq D y lq C B M A Q l x l x x x =→=-=→=θ=→==→=====|||| 8624434ql x ql x q y EI +-=⋅EIql yx 84==截面法求内力方程:内力是梁截面位置(de)函数,内力方程是分段函数,它们以集中力偶(de)作用点,分布(de)起始、终止点为分段点;1)在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2)在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3)剪力等于脱离梁段上外力(de)代数和.脱离体截面以外另一端,外力(de)符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上(de)外力、外力偶对截面形心截面形心(de)力矩(de)代数和.外力矩及外力偶(de)符号依弯矩符号规则确定.梁内力及内力图(de)解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M(de)关系作内力图;关系:()()()()()()⎪⎩⎪⎨⎧+=+====⎰⎰dcdcCDCDxdxQMMxdxqQQxQdxdMxqdxdQdxMd,22规定:①荷载(de)符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正.剪力图和弯矩图(de)规定:剪力图(de) Q轴向上为正,弯矩图(de) M轴向下为正.5)作剪力图和弯矩图:①无分布荷载(de)梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载(de)梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③ Q=0(de)截面,弯矩可为极值;④集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图(de)斜率也突变,弯矩图有尖角;⑤集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥在剪力为零,剪力改变符号,和集中力偶作用(de)截面(包括梁固定端截面),确定最大弯矩(maxM);⑦指定截面上(de)剪力等于前一截面(de)剪力与该两截面间分布荷载图面积值(de)和;指定截面积上(de)弯矩等于前一截面(de)弯矩与该两截面间剪力图面积值(de)和.共轭梁法求梁(de)转角和挠度:要领和注意事项:1)首先根据实梁(de)支承情况,确定虚梁(de)支承情况2)绘出实梁(de)弯矩图,作为虚梁(de)分布荷载图.特别注意:实梁(de)弯矩为正时,虚分布荷载方向向上;反之,则向下.3)虚分布荷载()x q (de)单位与实梁弯矩()xM单位相同()mKN⋅若为,虚剪力(de)单位则为2mKN⋅,虚弯矩(de)单位是3mKN⋅4)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等.计算时需要这些图形(de)面积和形心位置.叠加法求梁(de)转角和挠度:各荷载对梁(de)变形(de)影响是独立(de).当梁同时受n 种荷载作用时,任一截面(de)转角和挠度可根据线性关系(de)叠加原理,等于荷载单独作用时该截面(de)转角或挠度(de)代数和.四. 应力状态分析 1.单向拉伸和压缩应力状态划分为单向、二向和三向应力状态.是根据一点(de)三个主应力(de)情况而确定(de). 如:x σ=σ1,032==σσ 单向拉伸有:EXX σε=,x z Y v εεε-==主应力只有x σ=σ1,但就应变,三个方向都存在.若沿 α 和 2π+α 取出单元体,则在四个截面上(de)应力为: ⎪⎪⎩⎪⎪⎨⎧ασ-=τασ=σασ=τασ=σπ+απ+ααα22222222Sin Sin Sin Cos x x x x ,, 看起来似乎为二向应力状态,其实是单向应力状态.2.二向应力状态. 有三种具体情况需注意1)已知两个主应力(de)大小和方向,求指定截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ασ-σ=τασ-σ+σ+σ=σαα22222212121Sin Cos由任意互相垂直截面上(de)应力,求另一任意斜截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ατ+ασ-σ=τατ-ασ-σ+σ+σ=σαα2222222Cos Sin Sin Cos x y xx yx Y x由任意互相垂直截面上(de)应力,求这一点(de)主应力和主方向⎪⎪⎩⎪⎪⎨⎧σ-στ-=ατ-σ-σ±σ+σ=⎭⎬⎫σσyx xxy x y x tg 222202221)((角度 α 和 0α 均以逆时针转动为正)2) 二向应力状态(de)应力圆 应力圆在分析中(de)应用:a) 应力圆上(de)点与单元体(de)截面及其上应力一一对应;b) 应力圆直径两端所在(de)点对应单元体(de)两个相互垂直(de)面; c)应力圆上(de)两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角(de)两倍2;d) 应力圆与正应力轴(de)两交点对应单元体两主应力;e)应力圆中过圆心且平行剪应力轴而交于应力圆(de)两点为最大、最小剪应力及其作用面.极点法:确定主应力及最大(小)剪应力(de)方向和作用面方向.3) 三方向应力状态,三向应力圆,一点(de)最大应力(最大正应力、最大剪应力)广义虎克定律:弹性体(de)一个特点是,当它在某一方向受拉时,与它垂直(de)另外方向就会收缩.反之,沿一个方向缩短,另外两个方向就拉长. 主轴方向:[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=ε213313223211111v E v E v E )( 或()()()()[]()()()()[]()()()()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧ε+ε+ε+-+=σε+ε+ε--+=σε+ε+ε--+=σ213313223211121112111211v v v V E v v v v E v v v v E非主轴方向:()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=εy x z z x z y y z y x x v E v E v E 111体积应变:()32132121σσσεεε++-=++Ev五. 强度理论1.计算公式.强度理论可以写成如下统一形式:[]σσ≤r其中:r σ:相当应力,由三个主应力根据各强度理论按一定形式组合而成.[]σ:许用应力,[]nσσ=,0σ:单向拉伸时(de)极限应力,n :安全系数.1)最大拉应力理论(第一强度理论)11σ=σr , 一般:[]nbσσ=2) 最大伸长线应变理论(第二强度理论)()3212σσσσ+-=v r ,一般:[]nbσσ=3) 最大剪应力理论(第三强度理论)313σσσ+=r , 一般:[]nsσσ=4) 形状改变比能理论(第四强度理论)()()()[]213232221421σσσσσσσ-+-+-=r , 一般:[]nsσσ=5) 莫尔强度理论[][]31σσσ-σ=σ-+M , []n+=σσ, 0+σ:材料抗拉极限应力强度理论(de)选用:1)一般,脆性材料应采用第一和第二强度理论;塑性材料应采用第三和第四强度理论.2)对于抗拉和抗压强度不同(de)材料,可采用最大拉应力理论3)三向拉应力接近相等时,宜采用最大拉应力理论;4)三向压应力接近相等时,宜应用第三或第四强度理论.六.分析组合形变(de)要领材料服从虎克定律且杆件形变很小,则各基本形变在杆件内引起(de)应力和形变可以进行叠加,即叠加原理或力作用(de)独立性原理.分析计算组合变形问题(de)要领是分与合:分:即将同时作用(de)几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应力和位移.合:即将各基本变形引起(de)应力和位移叠加,一般是几何和.分与合过程中发现(de)概念性或规律性(de)东西要概念清楚、牢记.斜弯曲:平面弯曲时,梁(de)挠曲线是荷载平面内(de)一条曲线,故称平面弯曲;斜弯曲时,梁(de)挠曲线不在荷载平面内,所以称斜弯曲.斜弯曲时几个角度间(de)关系要清楚:ϕ力作用角(力作用平面):α斜弯曲中性轴(de)倾角:斜弯曲挠曲线平面(de)倾角:θϕ=αtg I I tg y zϕ=θtg I I tg yzθ=α∴即:挠度方向垂直于中性轴一般,α≠ϕθ≠ϕ或即:挠曲线平面与荷载平面不重合.强度刚度计算公式:[]σ≤⎪⎪⎭⎫ ⎝⎛ϕ+ϕ=σsin cos max max c z zW W W M 22z y f f f +=ϕ==cos zz y y EI pl EI l P f 3333ϕ==sin yy z z EI pl EI l P f 3333拉(压)与弯曲(de)组合:拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别偏心拉压问题,有时要求截面上下只有一种应力,这时载荷(de)作用中心与截面形心不能差得太远,而只能作用在一个较小(de)范围内这个范围称为截面(de)核心.强度计算公式及截面核心(de)求解:[]σ≤±=σzW M A N max minmax012020=++yp zp iz z iy y⎪⎪⎩⎪⎪⎨⎧-=-=pyzpz y z i a y i a 22扭转与弯曲(de)组合形变:机械工程中常见(de)一种杆件组合形变,故常为圆轴. 分析步骤:根据杆件(de)受力情况分析出扭矩和弯矩和剪力.找出危险截面:即扭矩和弯矩均较大(de)截面.由扭转和弯曲形变(de)特点,危险点在轴(de)表面.剪力产生(de)剪应力一般相对较小而且在中性轴上(弯曲正应力为零).一般可不考虑剪力(de)作用.弯扭组合一般为复杂应力状态,应采用合适(de)强度理论作强度分析,强度计算公式:[]σ≤τ+σ=σ2234r[]σ≤⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=σ2234P T r W M A P[]σ≤τ+σ=σ2243r[]σ≤⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=σ2243PT r W M A P 扭转与拉压(de)组合:杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析.强度计算公式[]σ≤+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=τ+σ=σ22222231244T T r M M WW M W M[]σ≤+=τ+σ=σ2222475013T r M M W.七.超静定问题:总结:分析步骤关键点:变形协调条件—力力—简单超静定梁问题拉压压杆的超静定问⎪⎭⎪⎬⎫求解简单超静定梁主要有三个步骤:1) 解得超静定梁(de)多余约束而以其反力代替;2) 求解原多余约束处由已知荷载及“多余”约束反力产生(de)变形; 3)由原多余支座处找出变形协调条件,重立补充方程.能量法求超静定问题:⎰⨯=ldx U 022刚度内力⎰⎰⎰⎰A +I M +EI M +EA N =ρτl l l ldx G kQ dx G dx dx U 002202022222卡氏第一定理:应变能对某作用力作用点上该力作用方向上(de)位移(de)偏导数等于该作用力,即:i iP U=δ∂∂注1:卡氏第一定理也适用于非线性弹性体; 注2:应变能必须用诸荷载作用点(de)位移来表示.卡氏第二定理:线弹性系统(de)应变能对某集中荷载(de)偏导数等于该荷载作用点上沿该荷载方向上(de)位移,即i iP Uδ=∂∂*若系统为线性体,则:U U=*注1: 卡氏第二定理仅适用于线弹性系统;卡氏第二定理(de)应变能须用独立荷载表示.注2: 用卡氏定理计算,若得正号,表示位移与荷载同向;若得负号,表示位移与荷载反向.计算(de)正负与坐标系无关.八.压杆稳定性(de)主要概念压杆失稳破坏时横截面上(de)正应力小于屈服极限(或强度极限),甚至小于比例极限.即失稳破坏与强度不足(de)破坏是两种性质完全不同(de)破坏.临界力是压杆固有特性,与材料(de)物性有关(主要是E),主要与压杆截面(de)形状和尺寸,杆(de)长度,杆(de)支承情况密切相关.计算临界力要注意两个主惯性平面内惯矩I和长度系数μ(de)对应.压杆(de)长细比或柔度表达了欧拉公式(de)运用范围.细长杆(大柔度杆)运用欧拉公式判定杆(de)稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线经验公式是最简单实用(de)一种.折剪系数ψ 是柔度 λ (de)函数,这是因为柔度不同,临界应力也不同.且柔度不同,安全系数也不同.压杆稳定性(de)计算公式:欧拉公式及ψ系数法(略)九. 动荷载、交变应力及疲劳强度 1.动荷载分析(de)基本原理和基本方法:1)动静法,其依据是达朗贝尔原理.这个方法把动荷(de)问题转化为静荷(de)问题.2) 能量分析法,其依据是能量守恒原理.这个方法为分析复杂(de)冲击问题提供了简略(de)计算手段.在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理(de)结果.构件作等加速运动或等角速转动时(de)动载荷系d k 为:stdd k σσ=这个式子是动荷系数(de)定义式,它给出了 d k (de)内涵和外延. d k (de)计算式,则要根据构件(de)具体运动方式,经分析推导而定.构件受冲击时(de)冲击动荷系数 d k 为:stdst d d k ∆∆σσ==这个式子是冲击动荷系数(de)定义式,其计算式要根据具体(de)冲击形式经分析推导而定.两个d k 中包含丰富(de)内容.它们不仅能给出动(de)量与静(de)量之间(de)相互关系,而且包含了影响动载荷和动应力(de)主要因素,从而为寻求降低动载荷对构件(de)不利影响(de)方法提供了思路和依据.2.交变应力与疲劳失效基本概念:应力循环,循环周期,最大、最小循环应力,循环特征(应力比),持久极限,条件持久极限,应力集中系数,构件(de)尺寸系数,表面质量系数,持久极限曲线等.应力寿命曲线:表示一定循环特征下标准试件(de)疲劳强度与疲劳寿命之间关系(de)曲线,称应力寿命曲线,也称S —N 曲线:持久极限曲线:构件(de)工作安全系数:m a r k n σψ+σβεσ=σσ=σσσ-σ1max构件(de)疲劳强度条件为:nn ≥σ十.平面图形(de)几何性质:意义总结:计算公式、物理心主惯矩及其计算公式惯性主轴、主惯矩、形惯矩、惯积的转轴公式公式惯矩、惯积的平行移轴性积及其求解惯性矩、极惯性矩、惯静矩、形心及其求解⎪⎪⎪⎭⎪⎪⎪⎬⎫1.静矩:平面图形面积对某坐标轴(de)一次矩.定义式:⎰=Ay zdA S ,⎰=Az ydA S量纲为长度(de)三次方.2. 惯性矩:平面图形对某坐标轴(de)二次矩.⎰=Ay dA z I 2,⎰=Az dA y I 2量纲为长度(de)四次方,恒为正.相应定义:惯性半径AI i y y =,AI i zz=为图形对y 轴和对 z轴(de)惯性半径.3. 极惯性矩:⎰=Ap dA I 2ρ因为222zy +=ρ所以极惯性矩与(轴)惯性矩有关系:()z y Ap I I dA z y I +=+=⎰224. 惯性积:⎰=Ayz yzdA I定义为图形对一对正交轴y 、z轴(de)惯性积.量纲是长度(de)四次方. yz I 可能为正,为负或为零. 5. 平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I A a I I C C CC z y yzz z y y 226. 转轴公式:αα2sin 2cos 22211yz zy zy Ay I I I I I dA z I ---+==⎰αα2sin 2cos 221yz zy zy z I I I I I I +--+=αα2cos 2sin 211yz zy z y I I I I +-=7. 主惯性矩(de)计算公式:()2242120yzz y z y y I I I I I I +-++=()2242120yzz y zy z I I II I I +--+=截面图形(de)几何性质都是对确定(de)坐标系而言(de),通过任意一点都有主轴.在强度、刚度和稳定性研究中均要进行形心主惯性矩(de)计算.。

材料力学考试知识点

材料力学考试知识点

《材料力学》考试知识点1).绪论变形固体的基本假设,内力的概念,截面法,应力概念,正应力和切应力,线应变和切应变,杆件变形的基本形式。

2).轴向拉伸与压缩和材料的力学性能轴力及轴力图,横截面与斜截面上的应力,圣维南原理,应力集中,强度条件,许用应力,失效应力,拉压杆的变形,胡克定律,纵向变形,横向变形,拉压刚度,弹性模量,泊松比,桁架的节点位移,简单拉压超静定问题,垂线代替圆弧法,装配应力,温度应力,拉压杆的应变能,应变比能。

低碳钢拉伸时的力学性能(4个阶段,4个极限应力,2个弹性指标,2个强度指标,2个塑性指标),铸铁拉伸时的力学性能,低碳钢与铸铁压缩时的力学性能,塑性材料与脆性材料的性质。

剪切与挤压的实用计算。

3).扭转圆轴扭转剪应力,薄壁圆筒扭转剪应力,纯剪切,剪切虎克定律,剪切弹性模量,剪应力互等定理,剪切应变能,剪切应变比能,极惯性矩,抗扭截面模量,强度条件,圆轴扭转变形,扭转角,单位长度扭转角,抗扭刚度,扭转刚度条件,简单扭转超静定问题。

4). 截面几何性质静矩,形心,形心轴,极惯性矩,轴惯性矩,惯性积,惯性半径,平行移轴公式,转轴公式,主惯性矩,主惯性轴,形心主惯性轴,形心主惯性矩,组合截面的惯性矩和惯性积计算。

5).弯曲内力平面弯曲,静定梁,剪力,弯矩,剪力方程,弯矩方程,剪力、弯矩图,载荷集度、剪力和弯矩间的微分关系,平面刚架的内力方程和内力图。

6).弯曲应力纯弯曲,横力弯曲,平面假设,中性层,中性轴,纯弯曲梁横截面上的正应力,横力弯曲梁横截面上的正应力,弯曲切应力,弯曲强度条件。

7).弯曲变形挠曲线,挠度,挠曲线方程,转角,转角方程,挠曲线的曲率公式,弹性挠曲线近似微分方程,计算梁变形的积分法,边界条件,计算梁变形的叠加法,简单超静定梁,变形比较法,梁的刚度条件。

8).应力状态分析和强度理论一点应力状态,单元体,主应力,主方向,主平面,主单元体,应力状态的类型,平面应力状态下应力、应变分析,应力莫尔圆,平面应力分析的解析法和图解法,三向应力状态下的最大正应力和最大切应力,广义虎克定律,E、G、 关系,体积应变,复杂应力状态下的应变比能,体积改变比能,形状改变比能,强度理论的概念,经典强度理论,相当应力。

武汉理工大学材料力学总复习

武汉理工大学材料力学总复习

使惯性积为零的坐标轴称为主轴。平面图形对主轴的惯性
矩称为主惯性矩。 主轴过形心时,称其为形心主轴。平面图形对形心主轴之 惯性矩,称为形心主惯性矩。 如果图形有对称轴,则对称轴就是形心主惯性轴。
一、弯曲正应力公式
M y Iz
M z
x
max
二、最大正应力 y
M max Wz
三、抗弯截面系数 矩形 实心圆 空心圆
1、若q=0,则FS=常数,M是斜直线; 2、若q=常数,则FS是斜直线,
dM ( x ) FS ( x ) dx
dM 2 ( x ) q( x ) 2 dx
四、简易作图法
M为二次抛物线;
3、M的极值发生在FS=0的截面上。
利用内力和外力的关系及特殊点的内力值来作图的方法。 特殊点:端点、分区点(外力变化点)和驻点等。
C

w
C1
F x

dw dx
二、用积分法求弯曲变形
M ( x ) ——挠曲线近似微分方程 w EI z
EIw M ( x )
EIw M ( x )dx C
EIw ( M ( x )dx )dx Cx D
积分常数C、D由边界条件确定。
三、用叠加法求弯曲变形 F
八、剪切和挤压的实用计算 剪切的实用计算
FS ≤ A
挤压的实用计算
F bs ≤ bs Abs
一、 扭转的特点
受力特点:在垂直于杆件轴线的平面内作用有力偶。
变形特点:杆件各截面绕轴线发生相对转动。
Me
Me
二、扭转时的内力——扭矩
Me
Me
T
x Me Me
T
构件受扭时,横截面上的内力为力偶,称为扭矩,记作“T ”

材料力学复习要点

材料力学复习要点

材料力学复习要点一、 固体力学的基本概念、材料的力学性能、应力、应变关系(广义胡克定律)、强度理论、应力应变状态(主应力、主方向、主平面、最大剪应力、主应变、主方向、最大正应变)二、 杆件分析1、 杆件的内力轴力、扭矩、剪力、弯矩内力的符号规定用截面法求内力利用内力荷载之间的微积分关系(()()dx x dM x Q =、()()dx x dQ x q =)画出杆件结构的内力图杆件的危险截面的确定(第一个层次)2、 杆件的应力(强度)A P N =σ (拉压)⎪⎪⎭⎫ ⎝⎛==P P W T I T max τρτ(上述公式的推导过程 )(扭转) z I My =σz W M =max σ(上述公式的推导过程 )(弯曲)*注意中性轴是对称轴和非对称轴的区别危险面上的正应力和切应力的计算Z Z bI QS *=τ A Q k =max τ记住k 值,且最大切应力总是出现在中性层上杆的危险点的确定(第二个层次)3、 杆件的变形(刚度)EA Nl l dx EA N l l =∆⇒=∆⎰0(等截面的二力杆) l l ∆=ε P l P GI Tl dx GI T =⇒=⎰ϕϕ0 l ϕθ= (等截面且扭矩为常数)梁的挠度v v v v v '''''''''',,,,,θ用积分法和叠加法求梁的挠度4、超静定问题拉压、扭转、弯曲超静定问题5、 组合变形:拉、弯;拉、弯、扭;斜弯曲(圆轴不存在斜弯曲)的应力分析,变形分析,单元体的描述,主应力的求解及相当应力的计算和四个常用强度准则的应用6、杆件横截面的几何性质、平行移轴公式等 7、 杆件稳定性问题(压杆稳定)?=cr F ?=cr σs P λλλ,,大、中、小柔度杆的分类计算及其用安全系数法的强度校核三、 应力、强度理论???2tan ?2tan ????max ,==='=====τσααγετσααααj i 强度理论?)4,3,2,1(==i eqi σ第三、第四强度理论在拉弯扭及弯扭组合变形形式下的具体应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试复习重点资料(最新版)
资料见第二页


第1页
材料力学笔记
§1-1材料力学的任务
1.几个术语
·构件与杆件:组成机械的零部件或工程结构中的构件统称为构件。

如图1-1a 所示桥式起重机的主梁、吊钩、钢丝绳;图1-2所示悬臂吊车架的横梁AB,斜杆CD都是构件。

实际构件有各种不同的形状,所以根据形状的不同将构件分为:杆件、板和壳、块体.
杆件:长度远大于横向尺寸的构件,其几何要素是横截面和轴线,如图1-3a
所示,其中横截面是与轴线垂直的截面;轴线是横截面形心的连线。

按横截面和轴线两个因素可将杆件分为:等截面直杆,如图1-3a、b;变截面直杆,如图1-3c;等截面曲杆和变截面曲杆如图1-3b。

板和壳:构件一个方向的尺寸(厚度)远小于其它两个方向的尺寸,如图1-4a 和b所示。

块体:三个方向(长、宽、高)的尺寸相差不多的构件,
如图1-4c所示。

在本教程中,如未作说明,构件即认为是
指杆件。

·变形与小变形:在载荷作用下,构件的形状及尺寸发生变化称为变形,如图1-2所示悬臂吊车架的横梁AB,受力后将由原来的位置弯曲到AB′位置,即产生了变形。

小变形:绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时,通常不考虑变形的影响,而仍可以用变形前的尺寸,此即所谓“原始尺寸原理”。

如图1-1a所示桥式起重机主架,变形后简图如图1-1b所示,截面最大垂直位移f一般仅为跨度l
的l/1500~1/700,B支撑的水平位移Δ则更微小,在求解支承反力R
A 、R
B
时,
不考虑这些微小变形的影响。

2.对构件的三项基本要求
强度:构件在外载作用下,具有足够的抵抗断裂破坏的能力。

例如储气罐不应爆破;机器中的齿轮轴不应断裂等。

刚度:构件在外载作用下,具有足够的抵抗变形的能力。

如机床主轴不应变形过大,否则影响加工精度。

稳定性:某些构件在特定外载,如压力作用下,具有足够的保持其原有平衡状态的能力。

例如千斤顶的螺杆,内燃机的挺杆等。

构件的强度、刚度和稳定性问题是材料力学所要研究的主要内容。

3.材料力学的任务
1)研究构件的强度、刚度和稳定性;
2)研究材料的力学性能;
3)为合理解决工程构件设计中安全与经济之间的矛盾提供力学方面的依据。

构件的强度、刚度和稳定性问题均与所用材料的力学性能有关,因此实验研究和理论分析是完成材料力学的任务所必需的手段。

§1-2变形固体及其基本假设
在外力作用下,一切固体都将发生变形,故称为变形固体,而构件一般均由固体材料制成,所以构件一般都是变形固体。

由于变形固体种类繁多,工程材料中有金属与合金,工业陶瓷,聚合物等,性质是多方面的,而且很复杂,因此在材料力学中通常省略一些次要因素,对其作下列假设:
1.连续性假设:认为整个物体所占空间内毫无空隙地充满物质。

2.均匀性假设:认为物体内的任何部分,其力学性能相同。

3.各向同性假设:认为物体内在各个不同方向上的力学性能相同。

§1-3外力及其分类
外力是外部物体对构件的作用力,包括外加载荷和约束反力。

1.按外力的作用方式分为:体积力和表面力
1)体积力:连续分布于物体内部各点上的力,如物体的自重和惯性力。

2)表面力:作用于物体表面上的力,又可分为分布力和集中力。

分布力是连续作用于物体表面的力,如作用于船体上的水压力等;集中力是作用于一点的力,如火车轮对钢轨的压力等。

2.按外力的性质分为:静载荷和动载荷
1)静载荷:载荷缓慢地由零增加到某一定值后,不再随时间变化,保持不变或变动很不显著,称为静载荷。

2)动载荷:载荷随时间而变化。

动载荷可分为构件具有较大加速度、受交变载荷和冲击载荷三种情况。

交变载荷是随时间作周期性变化的载荷;冲击载荷是物体的运动在瞬时内发生急剧变化所引起的载荷。

§1-4内力、截面法和应力的概念
1.内力
由于构件变形,其内部各部分材料之间因相对位置发生改变,从而引起相邻部分材料间因力图恢复原有形状而产生的相互作用力,称为内力。

注意:材料力学中的内力,是指外力作用下材料反抗变形而引起的内力的变化量,也就是“附加内力”,它与构件所受外力密切相关。

2.截面法
假想用截面把构件分成两部分,以显示并确定内力的方法。

如图1-5所示:(1)截面的两侧必定出现大小相等,方向相反的内力;(2)被假想截开的任一部分上的内力必定与外力相平衡。

例1-1钻床如图1-6a所示,在载荷P作用下,试确定截面m—m上的内力。

解:(1)沿m—m截面假想地将钻床分成两部分。

取m—m截面以上部分进行研究(图1-6b),并以截面的形心O为原点。

选取坐标系如图所示。

(2)为保持上部的平衡,m—m截面上必然有通过点O的内力N和绕点O的力偶矩M。

(3)由平衡条件

因此用截面法求内力可归纳为四个字:
1)截:欲求某一截面的内力,沿该截面将构件假想地截成两部分。

2)取:取其中任意部分为研究对象,而弃去另一部分。

3)代:用作用于截面上的内力,代替弃去部分对留下部分的作用力。

4)平:建立留下部分的平衡条件,由外力确定未知的内力。

3.应力
参照图1-7,围绕K点取微小面积。

根据均匀连续假设,上必存在分
布内力,设它的合力为,与的比值为
是一个矢量,代表在范围内,单位面积上的内力的平均集度,称为平均
应力。

当趋于零时,的大小和方向都将趋于一定极限,得到
称为K点处的(全)应力。

通常把应力分解成垂直于截面的分量和切于截面的分量,称为正应力,称为剪应力。

应力即单位面积上的内力,表示某微截面积处内力的密集程度。

应力的国际单位为N/m2,且1N/m2=1Pa(帕斯卡),1GPa=1GN/m2=109Pa,
1MN/m2=1MPa=106N/m2=106Pa。

在工程上,也用kg(f)/cm2为应力单位,它与国际单位的换算关系为1kg/cm2=0.1MPa。

§1-5变形与应变
对于构件上任“一点”材料的变形,只有线变形和角变形两种基本变形,它们分别由线应变和角应变来度量。

1.线应变
通常用正微六面体(下称微单元体)来代表构件上某“一点”。

如图1-8,微单元体的棱边边长为,变形后其边长和棱边的夹角都发生了变化。

变形前平行于x轴的线段MN原长为,变形后M和N分别移到M′和N′,
的长度为,这里
于是。

相关文档
最新文档