量子力学复习提纲汇总
量子力学复习提纲
量⼦⼒学复习提纲`2010级材料物理专业《量⼦⼒学》复习提纲要点之⼀1. 19世纪末到20世纪初,经典物理学在解释⿊体辐射、光电效应、原⼦的光谱线系和固体的低温⽐热等实验结果时遇到了严重的困难,揭露经典物理学的局限性。
2. 普朗克提出“ 能量⼦ ”(内容是能量单位hv?)的假设,解决了⿊体辐射问题;爱因斯坦在普朗克“ 能量⼦ ”假设的启发下,提出了“光量⼦” (内容是以速度c 在空间运动的粒⼦?)的假设,成功解释了光电效应现象。
爱因斯坦的的光量⼦理论1924年被康普顿效应(内容是散射光中除了有原波长λ0的x 光外,还产⽣了波长λ>λ0 的x 光,其波长的增量随散射⾓的不同⽽变化。
这种现象称为康普顿效应(Compton Effect)?)证实,被物理学界接受。
3. 德布罗意在光的波粒⼆象性的启⽰下,提出⼀切微观粒⼦(原⼦、电⼦、质⼦等)也具有波粒⼆象性的假说,在⼀定条件下,表现出粒⼦性,在另⼀些条件下体现出波动性。
德布罗意的假说的正确性,在1927年为戴维孙(Davission )和⾰末(Germer )所做的电⼦衍射实验所证实。
4. 描述光的粒⼦性的能量E 和动量P与描述其波动性的频率ν波⽮K由 Planck- Einstein ⽅程联系起来,即:ων ==h E (其中的各物理量的意义?)。
5. 描述微观粒⼦(如原⼦、电⼦、质⼦等)粒⼦性的物理量为能量E 和动量P,描述其波动性的物理量为频率ν(或⾓频率ω)和波长λ,它们间的关系可⽤德布罗意关系式表⽰,即:ων ==h E(其中的各物理量的意义);。
7. 正⽐例,即描写粒⼦的波可认为是⼏率波,反映了微观粒⼦运动的统计规律。
8. 波函数在全空间每⼀点应满⾜单值、有限、连续三个条件,该条件称为波函数的标准条件。
8. 通常将在⽆穷远处为零的波函数所描写的状态称为束缚态,属于不同能级的束缚定态波函数彼此正交,可表⽰为)(0*n m dx n m ≠=?ψψ。
量子力学复习重点
1 e 2
2 2
x
e
i Px
dx
e
1 2 x2 2
e
i Px
dx
1 2 1 2 1 2
e
1 ip p2 2 ( x 2 )2 2 2 2 2
dx
2 e
4 2 1 ( 3 2a0 a0
0
r 2 r / a0 (2r )e dr a0
2 2 a0 a0 4 2 2 ( 2 ) 4 2 4 4 2a0 2a0
(r , , )d (5) c( p) * p (r )
c( p ) 2
p2 ; 2
(3)动量的几率分布函数。
解:(1) U
1 1 2 x 2 2 2 2
x 2 e
2
x2
dx
1 1 1 2 1 1 2 2 2 2 2 2 2 2 4 2 2
1 4
(2) T
4 3 a0
0
r 3 a 2 r / a0 dr
4 3! 3 a0 3 4 2 a0 2 a 0
(2) U (
e2 e2 ) 3 r a0
0 0
2
0
1 2 r / a0 2 e r sin drd d r
e2 3 a0 4e 2 3 a0
解: U ( x)与t 无关,是定态问题。其定态 S—方程
教务处量子力学复习提纲
《量子力学》总复习一. 波粒二象性---微观粒子特性(1) 态的描述经典态(),P r →量子态(态矢—一般表示)或波函数:),...,(),,(t P t x Φψ(不同的具体表象)),(t x ψ的意义:t 时刻,x 附近,单位体积内找到粒子的几率幅 ),(t x ψ的性质:1)单值,2)连续,3)归一(2) 力学量的描述QQ ˆ→,对易关系,测不准问题 (3) 德布洛意关系 k P E ==,ω (粒子量与波量)二.力学量算符(1)Qˆ 出现的场合:Q ˆ ,(2)Q ˆ的性质:1)线性性 nnn n Q CC Q ψψ∑∑=ˆˆ(态的叠加原理的要求) 2)厄米性 Q Q ˆˆ=+ 或⎰⎰=τψψτψψd Q d Q **)ˆ(ˆ (Qˆ的本征值、平均值为实数的要求) (3)Qˆ的表示:不同表象有不同的表示 x 表象中:,ˆ,ˆxi P x xx∂∂== P 表象中:,ˆ,ˆxx xP P P i x=∂∂-= n 表象中:ˆˆˆ)xaa +=+, 注:1)<Qˆ>与表象的选择无关! 2)算符相等的定义:ψ=ψB A ˆˆ(ψ为任意态),则B Aˆˆ= (4) 力学量算符的对易关系2ˆˆˆˆˆ[,],[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆ[,]0j k j kj kj k llxy z yz x zx yix P i L L i LL L i L L L i L L L i L L L δε==⎧=⎪⎪↔=⎨⎪=⎪⎩= ,其中110ijkε⎧⎪=-⎨⎪⎩当下标排列(,,)i j k 为偶排列时ijk ε值为1;为奇排列时ijk ε值为-1;当下标(,,)i j k 中有两个下标相同时ijk ε值为0 注:对易关系与表象的选择无关! (5) 测不准关系222]ˆ,ˆ[41)ˆ()ˆ(B A B A -≥∆∆ 表明:1)0]ˆ,ˆ[≠B A,B A ˆ,ˆ无共同的本征态,B A ,不可能同时测准; 2)0]ˆ,ˆ[=B A,B A ˆ,ˆ有共同的本征态,B A ,有可能同时测准,即 在它们的共同本征态上可同时测准。
量子力学复习资料
《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。
2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。
意义:解决了黑体辐射问题。
3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。
意义:解释了光电效应。
【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。
②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。
(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。
6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。
7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。
(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。
9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。
10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。
量子力学复习资料
量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
量子力学总复习
量子力学教程(第二版) 复习纲要
第七章 1 表象的定义 2 态和力学量算符的矩阵表示 幺正变换 3 s方程 平均值 本征方程的矩阵表示 4 Dirac符号 完备性关系 第九章 1 粒子数算符,产生,湮灭算符的定义 和相关性质 2 产生,湮灭算符对粒子数本征态的作用 3 角动量的本征值和本征态的一般形式,各种量子数 的取值方式 , 上升,下降算符的作用
12.3 分子结构
量子力学教程(第二版) 复习纲要
第十章 1 微扰论的主要思想,适用条件 2 非简并态微扰理论 能级一级,二级修正公式 波函 数的一级修正 3 简并态微扰理论 能级的一级修正 零级波函数的选 取 4 变分法 变分原理(了解)
12.3 分子结构
量子力学教程(第二版) 考试说明
1 闭卷 120分钟 A B C卷随机抽取 2 填空题 3分一题 7题 共21分 简答题 10分一题 2题 共20分 证明题 10分一题 2题 共20分 计算题 13分一题 3题 共39分 3 没讲的肯定不考 讲了的也不一定会考,课堂上讲过 的习题应该要掌握 4 卷面成绩60%
12.3 分子结构
量子力学教程(第二版) 复习纲要
第四章 1 守恒量的概念,证明,守恒量和定态的区别 2 海森堡方程 3 全同粒子波函数应满足的性质 全同性原理 泡利不 相容原理 两个全同粒子波函数的构造(玻色子, 费米子) 第五章 1 中心力场中角动量守恒的证明 2 氢原子的能级公式,能级简并度,本征态下标的含 义
量子力学教程(第二版) 复习纲要
第一章 1 普朗克能量量子化 爱因斯坦的光电效应解释 玻 尔的原子结构理论 德布罗意的波粒二象性 2 玻恩的波函数统计解释 波函数的标准化条件 常见 的力学量算符(动量,动能) 3 s方程应满足的基本条件 s方程的最基本形式 定 态s方程(即能量本征方程) 定态的概念和性质 定 域几率守恒的证明 4 量子态叠加原理
量子力学基本概念复习要点
量子力学基本概念复习要点量子力学基本概念复习要点1.波函数的性质完整描述微观粒子的状态概率密度几率流密度波函数的归一化重要例子: 德布罗意平面波能够描述自由粒子的状态2.薛定谔方程描述了状态随时间的变化3.定态概念定态的性质(定态下的概率密度和几率流密度)4.定态薛定谔方程(能量本征方程)的求解(无限深势阱问题)定解条件(波函数的三大标准条件、周期性条件)5.书上常见力学量的算符形式(在坐标或动量表象下,坐标算符、动量算符、动能算符、势能算符、角动量算符、哈密顿算符等等)不是所有算符都有经典对应(例如自旋算符)6.算符本征态、本征值的概念、物理含义(量子力学基本假定P56)7.厄米算符的定义、算符是否为厄米算符的判断证明(PPT第三章第一节相关例题)厄米算符的本征值8.熟练掌握氢原子的状态、能级的性质,三个量子数(n、l、m)的物理含义及它们之间的关系。
简并度的计算结合氢原子能级公式解决能量跃迁问题9.掌握厄米算符本征函数的正交归一性以及有关定理的证明常见本征函数的正交归一式10.厄米算符本征函数构成完备系波函数展开系数的物理含义(量子力学基本假定P84)会计算力学量的平均值、可能值和相应的概率(典型例题P102 3.6 3.9 PPT上有关例题)11.会计算两个算符之间的对易关系算符对易的物理含义(掌握有关定理并会证明)、书上常见算符的对易式不对易式和测不准关系式之间的关系(典型例题PPT 讲义例题例一、例三)12.知道表象变换的含义态的列矩阵表示知道矩阵元的含义13.算符的矩阵表示(矩阵元,厄米矩阵、自身表象下矩阵形式)14.知道幺正变换的定义及它在表象变换中所起的作用(态的变换和算符的变换),知道并会证明其性质(不改变量子力学的规律, 例如迹、本征值)15.常见本征矢封闭性和正交归一性的狄拉克符号表示法16.应用微扰论求解简单的微扰问题(典型例题P173 5.3,幻灯片例题)适用条件(以氢原子为例)数学要求:常用的简单积分公式和积分方法(分部积分法、换元法)常用的三角函数公式(倍、半、和角公式等等)。
量子力学基本知识点总概括
En 1 n 0*H ˆ n 0d
En 2
l
'E H n 0ln -H E ln (0)ll
'En H 0n -E 2ll0
H'nm n 0*H ˆm 0d
实际应用:案例(习题集二、25-27)
例转1动P惯18量0求为电I、介电质偶的极极矩化为率D 。的空间转子处在均匀电场中的
能量。
返回
返回
五个基本假设
• 公设一:量子力学对物质系统的描述方式。微观体系的运动状 态由相应的波函数(r,t)完全描述,归一化的波函数是几率波 振幅;
• 公设二:量子力学对物质系统的运动状态规律。微观体系的运 动状态波函数(r,t)随时间变化的规律遵从薛定谔方程;
• 公设三:量子力学对物质系统的力学量的描述方式。微观体系 的力学量由相应的线性厄米算符表示。基本对应关系是: x ,p 。完全确定一个系统的状态需要一组完全的力 学量集合,代表它们的算符两两对易;
问题。O r * r r,tO ˆ rr r,td r r=c n2n n
如:1.用直接积分法和周期性边界条件求轨道
角动量的
Lˆz
i
Z分量算符的本征值和本
征态,并求本征态的归一化常数。2.无限深势
阱波函数。
返回
表象问题
比如:
Fmn mFˆ n
F11
F21
Fn1
F12 F22
• 公设四:量子力学对物质系统的力学量的确定方法。它们之间 有确定的对易关系(称为量子条件),因此力学量算符由其相 应的量子条件确定;
• 公设五:量子力学对全同多粒子系统的波函数的特点。全同的 多粒子体系的波函数对于任意一对粒子交换而言具有对称性, 玻色子系的波函数是对称的,费米子系的波函数是反对称的。 返回
量子力学复习提纲
量子力学复习提纲一波函数一、波函数的意义及性质在量子力学理论体系中,体系的状态用波函数来描述,一般记为),(t rψ=ψ,其物理意义是玻恩的几率解释:在时刻t ,在),,(z y x 附近体积元dxdydz 内发现粒子(体系)的几率为dxdydz t r 2|),(|ψ。
对波函数,要认识一下几个问题: 1、关于波函数的归一化问题(1)几率描述中实质问题是相对几率,即要求任意两点的几率比值相同即可,因此),(t r ψ和),(t r Cψ描述的是同一个几率波。
这导致波函数总有一个不确定的常数因子。
(2)根据(1),我们一般要求波函数归一化,即选择常数C ,使1||2=ψ?τd C不过这样选择的常数C ,还有一个不确定的相因子,我们把满足这个条件的常数C ,叫归一化常数。
(3)由于我们关注的是相对几率,因此在某些情形下,我们也使用一些非归一化的波函数,如自由粒子平面波函数r p i e r=2/3)2(1)(πψ 粒子的位置本征函数)()(0r r r-=δψ2、波函数的标准化条件(1)既然波函数是几率波,因此要求波函数模方为有限,是必然的。
即=ψ2||有限值。
但实际上,只要波函数满足=ψτd 2||有限就可以了。
例如对粒子位置本征函数就是这样。
而这种放宽的条件会导致波函数在某点的值变为无穷大。
这也是允许的。
(2)波函数的连续性要根据定态薛定谔方程来确定。
)()()](2[222x E x x V dx d ψψμ=+- 因此,如果)(x V 是x 的连续函数,则)(x ψ和dxd ψ必为x 的连续函数。
如果><=ax V a x Vx V 21)(,其中21,V V 是常数,且)(12V V -有限,则波函数及其一阶导数连续。
证明:将薛定谔方程在a x =邻域积分,得0)(])([2)0()0(2l i m''=-?→?=--+?+-dx x E x V a a a a ψμψψεε所以,)('x ψ连续,从而)(x ψ也连续。
量子力学期末考试复习重点、复习提纲
量子力学期末考试复习重点、复习提纲量子力学期末考试复习重点、复习提纲第一章绪论1、了解黑体辐射、光电效应和康普顿效应。
2、掌握玻尔—索末菲的量子化条件公式。
3、掌握并会应用德布罗意公式。
4、了解戴维逊-革末的电子衍射实验。
第二章波函数和薛定谔方程1、掌握、区别及计算概率密度和概率2、掌握可积波函数归一化的方法3、理解态叠加原理是波函数的线性叠加4、掌握概率流密度矢量5、理解定态的概念和特点6、掌握并会应用薛定谔方程求解一维无限深方势阱中粒子的波函数及对应能级7、掌握线性谐振子的能级8、定性掌握隧道效应的概念及应用。
第三章量子力学中的力学量1、会算符的基本计算2、掌握厄米算符的定义公式,并能够证明常见力学量算符是厄米算符。
3、了解波函数归一化的两种方法4、掌握动量算符及其本征方程和本征函数5、掌握角动量平方算符和z分量算符各自的本征值,本征方程6、掌握三个量子数n,l,m的取值范围。
7、了解氢原子体系转化为二体问题8、掌握并会求氢原子处于基态时电子的最可几半径9、掌握并会证明定理属于不同本征值(分立谱)的两个本征函数相互正交10、力学量算符F的本征函数组成正交归一系的表达式(分立谱和连续谱)11、理解本征函数的完全性,掌握波函数按某力学量的本征函数展开(分立谱),会求展开系数,理解展开系数的意义。
12、掌握两个计算期望值的公式,会证明其等价性,能应用两公式计算期望值13、掌握坐标、动量算符之间的对易关系,掌握角动量算符之间的对易关系。
14、掌握并会证明定理如果两个算符有一组共同本征函数,而且本征函数组成完全系,则两个算符对易15、掌握不确定关系不等式。
第四章态和力学量的表象(4.1~4.3节)1、理解和掌握什么是表象2、理解不同表象中的波函数描写同一状态。
3、理解态矢量和希尔伯特空间4、了解算符F在Q表象中的表示形式,算符在其自身表象中的表示形式。
《量子力学》复习提纲
)(Et r p i p Ae-⋅=ψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射:∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=** i j 0=⋅∇+∂∂j tρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H μ)(,)(),(r er t r n tE i n n nψψψ-=n n n E H ψψ=附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性 (3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ψ描写,τψτψψd d 2*=表示在t 时刻,空间r处体积元τd 内找到粒子的几率(设ψ是归一化的)。
3.态叠加原理:设 n ψψψ,,21是体系的可能状态,那么,这些态的线性叠加∑=nnn c ψψ也是体系的一个可能状态。
量子力学主要知识点复习资料
大学量子力学主要知识点复习1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。
这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍 对频率为ν 的谐振子, 最小能量ε为: 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。
波粒二象性是量子力学中的一个重要概念。
在经典力学中,研究对象总是被明确区分为两类:波和粒子。
前者的典型例子是光,后者则组成了我们常说的“物质”。
1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。
1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。
根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。
德布罗意公式3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具εεεεεn ,,4,3,2,⋅⋅⋅νh =εh νmc E ==2λh m p ==v有的波粒二象性。
波函数满足薛定格波动方程粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。
所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。
从这个意义出发,可将粒子的波函数称为概率波。
自由粒子的波函数波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
表示粒子出现在点(x,y,z )附近的概率。
表示点(x,y,z )处的体积元中找到粒子的概率。
这就是波函数的统计诠释。
自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ)](exp[Et r p i A k -⋅=ψ=ψ2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y zτ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V是 的函数:,其平均值由概率论,可表示为 再如,动量 的平均值为: 为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。
量子力学复习提纲
在
Sˆz 表象下,1
2
1
0
,
0
1 2
1
2
Sˆ
2 x
Sˆ
2 y
Sˆ
2 z
1ˆ 4
对两个Fermi子体系:
A
Sˆ z
2
1
0
(
A)
1(
S) Ms
0 1 ,
Sˆ x
2
0
1
Ms 0, 1
1
0
,
Sˆ y
2
0
i
i
0
(
S
)
( A) 00
总复习要点
波粒二象性是微观粒子的基本禀性,是量子理论的物理基础。 由微观粒子具有波粒二象的性质这个基本观念出发,运用物理逻辑推理的思 维,可以推论出贯穿全部量子理论的 3 个基本特征:概率解释、量子化现象、不 确定关系。 接着,采用 5 条假设:波函数假设、基本方程假设、算符假设、测量假设、 全同性原理假设,就能逻辑地支撑起非相对论量子理论框架。
能量量子化是束缚态粒子的共同特性,是微观世界的特有现象。 束缚态问题中,势场是已知的,求束缚态的能级和相应的波函数以及在外界作用下的 量子跃迁概率。
3、游离态(散射态 Scattering state): 在无穷远处波函数不为零的状态为游离态。
游离态波函数不能归一化,能量可以连续取值,组成连续谱。 游离态问题中,势场和粒子的能量是已知的,求游离态的反射系数、透射系数和相 应的波函数以及角分布(散射截面)。
Fˆ f
cf
2
df
* r Fˆ
r d
3、微扰理论(定态)
a) 非简并
H H 0 H ,
Hˆ 0
量子力学复习提纲
量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)h p n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ 和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w*=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂(4)定态薛定谔方程()()ˆH r E r ψ=ψ (5)其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+ , ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l + , m .(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式 di H dtψ=ψ(22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()()()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n it n n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt i ω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m nmnωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦(36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m k εεω=± (37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω ;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40) 2. 自旋算符的矩阵形式 01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭ , 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭ , 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵 01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭ (42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44) (2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的.7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。
量子力学复习提要
量子力学内容提要一、量子力学的研究对象和应用领域量子力学是研究微观粒子运动规律的一种基本理论。
它是上个世纪二十年代在总结大量实验事实和在旧量子论的基础上建立起来的。
它不仅在近代物理学中占有极其重要的位置,而且还被广泛地应用到化学、电子学、材料学、现代光学、计算机、天体物理等许多现代科技领域,凡是涉及到微观粒子(比如分子、原子、电子等)的各门学科和新兴技术,都几乎离不开应用量子力学的基本原理。
二、目的要求量子力学是20世纪自然科学的重大进展之一,也是近代物理学两大支柱之一。
设置量子力学课程的主要目的是:⑴了解微观世界矛盾的特殊性和微观粒子的运动规律,深入理解微观粒子的运动特性;(2)初步掌握量子力学的基本概念、基本原理、基本方法及量子力学的数学描述形式,并能运用量子力学基本理论和方法处理简单的微观体系问题。
(3) 了解量子力学在现代科学技术中的广泛应用,深化和扩展在普通物理中学过的有关知识,为以后从事物理教学或进一步深造打下扎实的学科基础。
三、主要内容I.绪论:量子力学的研究对象和方法特点,经典物理学的困难,量子力学发展简史,光的波粒二象性,早期的量子论,微观粒子的波粒二象性。
II.波函数和薛定谔方程:波函数的统计解释,态迭加原理,薛定谔方程,一维定态问题。
III.力学量的算符表示:表示力学量的算符,算符的本征值和本征函数,动量算符和角动量算符,厄米算符本征函数的正交归一完备性,算符与力学量的关系,算符的对易关系,两个力学量同时有确定值的条件,测不准关系,力学量期望值及其随时间的变化,对称性与守恒律。
电子在库仑场中的的运动,氢原子。
IV.态和力学量的表象:态的表象,算符的矩阵表示,量子力学公式的矩阵表述,幺正变换。
V.近似方法:定态微扰理论,变分法的基本原理及方法,含时微扰理论(跃迁几率、光的发射和吸收、选择定则)。
VI.电子自旋与角动量:电子自旋,自旋算符和波函数,角动量耦合,涉及自旋-轨道耦合时的处理方法。
量子力学期末复习
e 1 2 [ n n | n 1 n 1 n | n 1 ]
0
x 1 2 [aˆ aˆ ]
aˆ | n n | n 1
aˆ | n n 1 | n 1
6、表象变换
1
7、近似方法的应用(微扰、变分)
8、电子体系考虑自旋时的态函数、泡利算符
9、含时微扰(跃迁概率)
三、几个重要模型
1、一维无限深势阱(宽为 a、2a;对称、非对称)
2、线性谐振子
3、氢原子
相关的结论须记住!
4、双电子体系(不考虑自旋间的相互作用)
四、常见题型
1、薛定谔方程
2、算符理论
3、表象理论
(0)
(0)
En En 1
En En 1
e 2 2
2 2
由于势场不再具有空间反射对称性,所以波函数没
有确定的宇称。这一点可以从下式扰动后的波函数ψn
时再加上沿x方向的较弱的磁场 = ( , , ),从而
= + = ( , , ),求 > 时粒子的自旋态,以
及测得自旋“向上”( =1)的几率。
解: (1)在 表象中,H的矩阵表示为:
ˆ
ˆ
ˆ
H m B
mˆ mB (ˆ x ex ˆ y ey ˆ z ez )
2
21
能量二级修正:
E n( 2 )
mn
2
1
2
|
e
[
n
n
1
]
量子力学 题纲
一. 量子力学基本原理原理1 态与波函数● 微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。
波函数一般应满足连续性,有限性和单值性三个条件。
● 数学上,波函数是希尔伯特空间中的矢量。
相差一个复数因子的两个矢量,描写同一状态。
波函数归一化。
● 波函数的几率解释。
z y x ∆∆∆2)(r ψ:在r 点处的体积元d x y z τ=∆∆∆中找到粒子的概率。
● 定义一个量子体系的任意两个波函数ψ 与ϕ 的内积⎰=ϕψτϕψ*d ),(,原理2 力学量与算符● 描写微观系统物理量的是希尔伯特空间中的厄米算符。
● 如果在经典力学中有相应的力学量,在量子力学中表示这个力学量的算符,由经典表示式中将动量p 换成算符∇- i 得出:位置算符r r →,动量算符∇-=→ i ˆpp , 角动量∇⨯-=⨯=r pr Li ˆˆ。
直角坐标分量表示。
角动量算符Lˆ的模方(L ˆ的平方):22222ˆˆˆˆˆˆˆzy x L L L L ++=⋅==L L L . 角动量在球面坐标系的表示:]sin 1)sin (sin 1[ˆ222ϕθθθθθ∂∂+∂∂∂∂-= Lϕ∂∂-= i ˆz Lθθθθθ222sin ˆ)sin (sin ˆz L L +∂∂∂∂-= ● 厄密算符的定义,性质和运算规则:算符Aˆ的复共轭算符*ˆA ,算符A ˆ的转置算符~ˆA ,)*ˆ*,()ˆ,(~ψϕϕψA A = 算符A ˆ的厄米共轭算符或伴随算符+A ˆ:),ˆ()ˆ,(ϕψϕψA A=+, 厄米算符(自伴算符):AAˆˆ=+ 厄米算符的本征值必为实数,厄米算符的属于不同本征值的本征函数彼此正交。
厄米算符的本征函数组成正交归一函数系。
厄米算符所有本征函数组成的函数系构成完备系。
● 算符Aˆ的本征值方程 n n nA A ψψ=ˆ● 物理量所能取的值,是相应算符的本征值。
如果用测量仪器测量这个力学量的取值,则只能测得其本征值。
量子力学期末复习资料教学提纲
简答第一章 绪论什么是光电效应?爱因斯坦解释光电效应的公式。
答:光的照射下,金属中的电子吸收光能而逸出金属表面的现象。
这些逸出的电子被称为光电子用来解释光电效应的爱因斯坦公式:221mv A h +=ν第二章 波函数和薛定谔方程1、如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c +=(1c ,2c 是复数)也是这个体系的一个可能状态。
答,由态叠加原理知此判断正确4、(1)如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c += (1c ,2c 是复数)是这个体系的一个可能状态吗?(2)如果1ψ和2ψ是能量的本征态,它们的线性迭加:2211ψψψc c +=还是能量本征态吗?为什么?答:(1)是(2)不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态1、 经典波和量子力学中的几率波有什么本质区别?答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变;6、若)(1x ψ是归一化的波函数, 问: )(1x ψ, 1)()(12≠=c x c x ψψ )()(13x e x i ψψδ= δ为任意实数是否描述同一态?分别写出它们的位置几率密度公式。
答:是描述同一状态。
)()()()(1*1211x x x x W ψψψ== 212*22*22)()()()()()(x x x dx x x x W ψψψψψ==⎰ 213*33)()()()(x x x x W ψψψ==第三章 量子力学中的力学量2能量的本征态的叠加一定还是能量本征态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 粒子的双缝实验的结论是什么?答:粒子具有波动性2. 在量子力学中,波函数的波动方程是什么?它是定态薛定谔方程吗?答:量子力学中波函数的波动方程是),()](2[),(22t r r V mt r t i →→→+∇-=∂∂ψψ ,它不是定态薛定谔方程,定态薛定谔方程是假设势能V 不显含时间t ,其形式是:)()](2[)(22→→→+∇-=r r V mr E ψψ3. 波函数除了归一化要求之外的三个标准条件是什么?答:单值、连续、有限。
4. 写出一维无限深方势阱的能量本征函数及能量本征值。
答:5. 写出一维线性谐振子的能量本征函数及能量本征值。
答:6. 什么叫做粒子的共振穿透?请举例说明。
答:当粒子射入势阱时,将发生反射和折射,当粒子的能量满足一定的条件时会使透222220,0(),ˆ,()()2()sin(),1,2,3,,1,2,3ˆ(2,2ˆ)n n n n nx x a U x x others H x E x n xx n a an E n P U x a H ψψπψπμμ<<⎧=⎨∞∈⎩=⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭==+={}222222221()2ˆ,()()()(),0,1,2,ˆ11(),0,1,2,2ˆ22n n nx nn n n x U x x H x E x x P Hx N H x en E n n αμωψμωψψωμα-=====+==+射系数T=1,这种现象就叫做共振穿透。
如上图所示,粒子在有限深势阱中,我们设222221)(2,2 o V E k E k -==μμ则透射系数l k k k k k k k T 222222122212221sin )(44-+= 当πn L k =2即022)(2V Ln E n +=πμ 时,1=T ,产生共振穿透。
7. 什么叫做粒子的遂穿效应?请举例说明。
答:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为隧道效应。
金属电子冷发射和ɑ衰变等现象等都是隧道效应产生的,还有基于两字隧道效应的扫描隧道显微镜。
8. 粒子的共振穿透与粒子的遂穿效应有何区别?答:共振穿透的物理意义是,入射粒子进入势阱后,碰到两侧阱壁时将发生反射和透射,如粒子能量合适,使它在阱内波长'λ满足a n 2'=λ(a 为阱的宽度),则经过各次反射而透射出去的波的相位相同,因而彼此相干叠加,使透射波波幅大增,从而出现共振透射。
而遂穿效应其实是粒子具有波动性的表现。
9. 什么叫做厄米算符?它有什么性质?答:如果算符∧F 满足ˆˆ()F dv F dv ψϕψϕ**=⎰⎰,则称算符∧F 为厄米算符。
厄米算符有三点性质,一是体系的任何状态下,其厄米算符的平均值必为实数;二是厄米算符的本征值必为实数;三是厄米算符属于不同本征值的本征函数彼此正交。
10. 量子力学中两个基本力学量是什么?在坐标表象中,用什么算符表示?答: 量子力学中两个基本力学量是坐标→r 和动量→p ,在坐标表象中,坐标→r 用坐标算符∧r表示,动量用动量算符∇-=∧2p 表示。
11. 动量算符的本征函数和本征值是什么?其本征函数如何归一?答:动量算符的本征函数是:)ex p()2(1)(23r p ir p ⋅=πψ ,其本征值为p 。
其只能归以为函数δ函数,即)()()('*'p p d r r pp -=⎰∞δτϕϕ。
12. 在三维直角坐标系中,角动量算符的表示式是什么?动量(矢量)算符的本征函数和本征值是什么?答:ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆxz y yx z zy x L yp zp i y z z y L zp xp i z x xz L xp yp i x y y x ⎛⎫∂∂=-=-- ⎪∂∂⎝⎭∂∂⎛⎫=-=-- ⎪∂∂⎝⎭⎛⎫∂∂=-=-- ⎪∂∂⎝⎭动量算符的本征函数和本征值如上。
13.在球坐标系中,角动量平方算符的表示式又是什么?它的本征函数和本征值是什么?其中什么是轨道角动量量子数(角量子数)?取值范围是哪些数值?答222221sinˆsinDθθθθ⎛∂-+∂⎝⎡∂-⎢∂⎣∂⎛∂∂⎝2,))(,)(,)lmlmYm Yθϕθϕθϕ=l表征轨道角动量的大小,称为轨道角动量角量子数,l=0,1,2,……m则称为轨道角动量的磁量子数,对应于一个l的值,m可取(2l+1)个值,m=l,l-1,l-2,…,1,0,-1,-2,…,-l14.在球坐标系中,角动量在极轴上的投影算符如何表达?其本征函数和本征值是什么?其中什么是轨道角动量磁量子数(磁量子数)?取值范围是哪些数值?答:答案如上15.量子力学中关于波函数与力学量的两个假设,告诉你什么结论,试用你自己的语言归纳出5条结论。
答:量子力学基本假设Ⅰ描写物理系统的态函数的总体,构成一个希尔伯特空间。
系统的每一个动力学变量,由对这些态函数施加作用的一个厄米算符描写。
量子力学基本假设Ⅱ当系统处于状态ϕ时,对与算符ˆF对应的动力学变量进行足够多次的测量,得到的测量结果的算术平均值ˆF为:33ˆˆF d r Fdrϕϕϕϕ**=⎰⎰若ϕ已经归一化,则有:3ˆˆF F d r ϕϕ*=⎰结论:1、 对于一个微观体系其状态可以用波函数ϕ表示,ϕ的绝对值的平方描述了粒子的几率密度。
2、 当体系的势能表达式中不显含时间时,可用定态薛定谔方程描述其状态。
3、 体系的波函数要具备连续、单值、有限的特性。
4、 量子力学中表征力学量的算符都是厄米算符,其本征值都是实数。
5、 体系的波函数是两两正交,自归一算符本征函数。
16. 什么是对易算符?他们的本征函数有什么性质?什么是非对易算符?非对易算符能有共同的本征函数吗?答:若两算符∧A 和∧B 满足(∧A ,∧B )=0,则称算符∧A 和∧B 为对易算符,如果两个算符∧A 和∧B 为对易算符,则说明两个算符有共同的完备的本征函数组,在他们共同的本征函数描述的状态下,测量这两个算符对应的力学量,可以同时得到对应的本征值。
若两算符∧A 和∧B 不满足(∧A ,∧B )=0,则其不是对易算符,没有共同的本征函数。
如果两个力学量A 和B 的对易子不等于零,则说明两个算符没有共同的完备的本征函数组即不存在共同的本征态,使测量的两个力学量同时有确定值。
也就是说,我们不能同时准确得到他们对应的本征值。
17. 归纳学习过的对易算符和非对易算符。
答2ˆˆˆˆˆˆ,0,x y z xy L L i L L L L⎣⎦⎣⨯=⎡⎤⎡=⎣⎦⎣18. 什么叫做力学量的完全集合?答:要完全确定体系所处的状态(消除简并),需要有一组相互对易的力学量(即通过它们的本征值来完全确定体系所处的状态)。
这一组完全确定体系状态的力学量成为力学量的完.....全集合...。
在完全集合中,力学量的数目一般与体系的自由度的数目相等。
19. 用什么方式表示非对易算符在某一个状态下的不确定性?答:非对易算符力学量在同一个态中的不确定程度可以用下列方式表示:偏差:ˆˆˆˆˆˆ,FF F GG G ∆=-∆=-,方差:()()2222ˆˆˆˆˆ(),()F F F G G G ∆=-∆=-,均方偏差:()()2222ˆˆˆˆˆ(),()FF FG GG ∆=-∆=-均方根偏差(标准差):()()22ˆˆˆˆ,F F FG G G ∆=-∆=-20. 坐标和动量的测不准原理是什么?答:坐标和动量没有共同的本征函数,故不能同时被准确确定。
由海森堡不确定关系:()()()()22222ˆˆˆ,,ˆˆˆˆˆˆ,ˆˆˆ,,ˆˆˆˆ,1ˆˆˆ4F G i F FF GG G F G i F F F G GG FGκκκ⎡⎤=⎣⎦∆=-∆=-⎡⎤∆∆=⎣⎦∆=-∆=-∆∆≥对于一维坐标和动量算符:Assignment 1 for Quantum Mechanics1. 什么理论支持光的波动性?什么实验又体现了光的粒子性?光的粒子性表现在光子的能量和动量表达式中,请写出他们。
答:光的干涉和衍射理论都支持光的波动性;光电效应实验体现了光的粒子性;光子的能量和动量表达式为:→→====k n h p w h E λν,。
2. 什么实验表明了电子的波动性?什么实验说明微观粒子的波是几率幅波?答:电子双缝干涉实验表明了电子的波动性;氢原子核外电子的电子云实验说明了微观粒子的波是几率幅波。
3. 对于相干的光波,什么物理量是可以叠加的?对于非相干的光波,什么物理量是不可以叠加的?什么物理量是可以叠加的?答:对于相干的光波,其波函数是可以叠加的;对于非相干的光波,其波函数是不可以叠加的,其光强是可以叠加的。
4. 对于不相干的宏观粒子,几率可以相加吗?对于微观粒子,几率可以相加吗?几率幅可以相加吗?答:对于不相干的宏观粒子,几率可以叠加;对于不相干的微观粒子,几率可以叠加,几率幅不可以叠加。
5. 什么叫做波函数的强度?答:波函数振幅绝对值的平方。
6. 什么叫做几率密度?用什么表示?答:在时刻t ,在(x ,y ,z )点附近单位体积内找到粒子的几率,用归一化后的波函数的平方表示,即2|),,,(|t z y x ψ。
7. 什么叫做波函数归一化?答:设在空间点(x ,y ,z )处单位体积找到粒子的几率为几率密度,用),,,(t z y x w 表示,则2|),,,(|),,,(),,,(t z y x C d t z y x dW t z y x w φτ==,其中),,,(t z y x φ是描写离子状态的波函数,则对上式在全空间积分,得到粒子在全空间出现的几率,这个几率等于1,所以有⎰∞=1|),,,(|2τφd t z y x C ,若存在波函数),,,(),,,(t z y x C t z y x φψ=,则这两个波函数所描述的是同一个状态。
若⎰∞=1|),,,(|2τψd t z y x ,则称),,,(t z y x ψ为归一化波函数,上式称为归一化条件把),,,(t z y x φ换为),,,(t z y x ψ的步骤称为归一化,常数C 称为归一化常数。
8. 写出自由粒子波函数。
答:)(),(t E r p i p o o o eA t r -⋅→→→⋅=ψ9. 希尔伯特空间的基矢有和性质?在希尔伯特空间中,写出任意矢量的表达式。
答:∑==Nn nnC 1ψψ,希尔伯特空间的基矢是正交归一的。
10. 什么是平方可积函数?什么是束缚态?其波函数有何特点?答:波函数的平方在全空间的积分是有限值,即⎰∞<全空间dr r 2|)(|ψ,无限远处为零的波函数多描述的状态称为束缚态,其特点是当0)(,=∞→r r ψ。
11. “量子力学只能告诉我们粒子处于某一状态的几率(或几率幅)是多少,而不能告诉我们粒子何时处在这个状态上”,这句话对吗? 答:对。