直线射线线段专题培优训练(含答案)
人教版数学四年级上册《线段、直线、射线》练习卷(含答案)
人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。
①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。
这个游戏规则不公平。
①如果被除数末尾有2个0,那么商的末尾至少有1个0。
①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。
A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。
5.下面的图形中哪些是线段?在其下面的()里画“○”。
()()()()()()()()6.下图中有______条线段。
7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。
( )9.放风筝时的风筝线可以看成是一条直线。
( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。
( )12.两个直角就是一个平角。
()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。
根据这一原理人们制作了度量角的工具——量角器。
( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。
( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。
画一条比1分米短1厘米的线段。
18.画一条比3厘米长15毫米的线段,并标出长度。
4.2 线段、射线、直线 能力培优训练(含答案)
4.2 线段、射线、直线专题一与线段、射线、直线有关的操作问题1. 如图,把一条绳子折成3折,用剪刀从中剪断,得到绳子的条数是()A.3 B.4 C.5 D.62. 一根绳子弯曲成如图1所示的形状,当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b平行a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+53. 由河源到广州的某一次列车,运行途中停靠的车站依次是:河源-惠州-东莞-广州,那么要为这次列车制作的火车票有()A.3种B.4种C.6种D.12种专题二线段、射线、直线有关的探究问题4.平面内有三点A、B、C,过其中任意两点画直线,有如下两种情况:(1)若平面内有四个点A、B、C、D,过其中任意两点画直线,有多少种情况?请画图说明;(2)若平面内有6个点,过其中任意两点画直线,最多可以画多少条直线?(3)若平面内有n个点,过其中任意两点画直线,最多可以画多少条直线?(直接写出结果)5.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…;把上述探究的结果进行整理,列表分析:(1)当直线条数为5时,把平面最多分成部分,写成和的形式;(2)当直线为10条时,把平面最多分成几部分?(3)当直线为n条时,把平面最多分成几部分?(不必说明理由)状元笔记【知识要点】1.像长方体的棱、长方形的边,这些图形都是线段;将线段向一个方向无限延长就得到了射线;将线段向两个方向无限延长就形成了直线.射线和线段都是直线的一部分. 2.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.3.两条直线相交只有一个交点.【方法技巧】1. (1)从端点的个数看,直线没有端点,射线有一个端点,线段有两个端点.(2)从长度来讲,线段有确定的长度,可以度量,而直线、射线却不能度量其长度. (3)从表示方法上来说,尽管三者都可以用两个大写字母表示,但表示射线时表示端点的大写字母必须写在前面.2. “经过两点有一条直线,并且只有一条直线”包含两层意思:○1过两点存在一条直线;○2过两点的直线虽然存在,但只有唯一的一条.参考答案1. B解析:把一条绳子从中剪断,得到两条;折一次,从中剪断,得到三条,折两次,从中剪断得到四条.故选B.2.A解析:设段数为x,则依题意得:n=0时,x=1;n=1,x=5;n=2,x=9;n=3,x=13;…所以当n=n时,x=4n+1.故选A.3. D解析:画线段,动手操作,由河源要经过3个地方,所以要制作3种车票;由惠州要经过2个地方,所以要制作2种车票;由东莞要经过1个地方,所要制作1种车票,这次列车制作的火车票的总数=3+2+1=6(种).故选C.4. 解:(1)如图:(2)最多可画:1+2+3+4+5=15(条).(3)最多可画:1+2+3+…+n=(1)2n n-(条).5. 解:(1)根据表中规律,当直线条数为5时,把平面最多分成16部分,1+1+2+3+4+5=16;(2)根据表中规律,当直线为10条时,把平面最多分成56部分,为1+1+2+3+----+10=56;(3)设直线条数有n条,分成的平面最多有m个.有以下规律:n m2 13 1+1+24 1+1+2+3::n m=1+1+…+(n-1)+n=(1)12n n++.。
4.2_直线、射线、线段_能力培优练习(含答案)
4.2 直线、射线、线段专题一直线、射线、线段的概念与性质1.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()2.下列语句正确的是()A. 画直线AB=5厘米B. 过任意三点A、B、C画直线ABC. 画射线OB=5厘米D.画线段AB=5cm3.平面上有四个点A、B、C、D,根据下列语句画图:(1)画直线AB、CD交于E点; (2)画线段AC、BD交于点F; (3) 作射线BC;(4)连结E、F交BC于点G; (5)取一点P,使P在直线AB上又在直线CD上.4.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2013”在哪条射线上?5.通过阅读所得的启示来回答问题(阅读中的结论可直接用) 阅读:在直线上有n 个不同的点,则此图中共有多少条线段? 分析:通过画图尝试,得表格:问题:(1)某学校九年级共有8个班进行辩论赛,规定进行单循环赛(每两班之间赛一场),那么该校初三年级的辩论赛共有多少场次?(2)有一辆客车,往返两地,中途停靠三个车站,问有多少种不同的票价?要准备多少种车票?专题二 两点之间线段最短的应用 6.如图,从A 到B 最短的路线是( )A. A —G —E —BB. A —C —E —BC. A —D —G —E —BD. A —F —E —B6=1+2+3 直线上点的个数共有线段条数图形两者关系2 3 4 5 1 3 6 10 ......n......(1)2n n -=1+2+……+(n -1) (1)2n n -10=1+2+3+4 3=1+2 1=1 A 1 A 2 A 1 A 3 A 1 A 2 A 2 A 2 A 3 A 1 A 3 A 3 A 1 A 4 A 2 A 5 A 4A 4 A n……7.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )8、知识是用来为人类服务的,我们应该把它们用于有意义的方.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题。
北师大版七年级数学上册第4章 4.1 线段、射线、直线 培优训练(含答案)
北师版七年级上册第四章基本平面图形4.1线段、射线、直线培优训练卷一.选择题(共10小题,3*10=30)1.手电筒发射出去的光可看作是一条( )A.线段B.射线C.直线D.折线2.下列表示线段的方法中,正确的是( )A.线段A B.线段ABC.线段ab D.线段Ab3.如图,下列表示直线正确的方式有( )A.1个B.2个C.3个D.4个4.下列写法正确的是( )A.直线A,B相交于点MB.过a,b两点画直线lC.直线a,b相交于点MD.直线a,b相交于点n5.如图所示,A,B,C是同一直线上的三点,下面说法正确的是( )A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线6.下列关于作图的语句中,正确的是( )A .画直线AB =10厘米B .延长线段AB 到C ,使AC =12AB C .画射线OB =10厘米D .过A ,B 两点画一条直线7.下列语句能正确表达如图特点的共有( )①直线l 经过C ,D 两点;②点C ,点D 在直线l 上;③l 是点C ,点D 两点确定的直线;④l 是一条直线,C ,D 是任意两点.A .4个B .3个C .2个D .1个8.经过任意三点中的两点,共可以画出的直线的条数是( )A .一条或三条B .三条C .两条D .一条9.下列说法错误的是( )A .过一点可以作无数条直线B .过已知三点可以画一条直线C .一条直线通过无数个点D .两点确定一条直线10.京广高铁全线通车后,一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制车票( )A .6种B .12种C .15种D .30种二.填空题(共8小题,3*8=24)11. 如图,①线段有_______条;②直线有_______条;③射线有_______条.12.如图,能用点O ,A ,B ,C 中的两个字母表示的不同射线有_______条.13.过平面内的任意一点可作直线的条数是______________.14.如图,图中共有____条线段.15.我们玩气枪时,总是半闭着眼,对着准星和目标,用数学知识解释为_________________________.16.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是_________.17.下列语句中正确的有_____________.(填序号)①直线MN与直线NM是同一条直线;②射线AB与射线BA是同一条射线;③线段PQ与线段QP是同一条线段;④直线上一点把这条直线分成的两部分都是射线.18. 如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为____.三.解答题(共7小题,46分)19. (6分) 如图,分别以点A,B,C,D,E,F为端点的线段共有几条?分别把它们写出来.20. (6分)平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n等于多少?21. (6分) 如图,直线上有4个点,问:图中有几条线段?几条射线?几条直线?22. (6分) 如图,已知A,B,C,D四个点,读下列语句,画出图形.(1)画线段BC,AD;(2)画直线AB,CD相交于点E;(3)延长线段AD到F,使DF=CD;(4)画射线CA,BD.23. (6分) 如图所示,读句画图.(1)连接AC和BD,交于点O.(2)延长线段AD,BC,它们交于点E.(3)延长线段CD与AB的反向延长线交于点F.24. (8分) 按要求画图,并回答问题.(1)画直线l,在直线l上取A,B,C三点,使点C在线段AB上,在直线l外取一点P,画直线BP,射线PC,连接AP;(2)在题(1)所画的图形中,能用字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.(不另添加字母)25. (8分) 动手画一画,再数一数.(1)过一点A能画几条直线?(2)过两点A,B能画几条直线?(3)已知平面上共有三个点A,B,C,过其中任意两点画直线,能画几条直线?(4)已知平面上共有四个点A,B,C,D,过其中任意两点画直线,能画几条直线?(5)已知平面上共有n个点(n为不小于3的整数),其中任意三个点都不在同一直线上,连接任意两点,能画几条直线?参考答案1-5 BBBCC 6-10DAABD11. 6,1,812. 713.无数条14. 615. 两点确定一条直线16.射线AC17.①③④18. 1019. 解:图中分别以点A,B,C,D,E,F为端点的线段共有14条,分别为线段AB,AC,AD,AE,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF.20. 解:6条直线交于一点时,交点个数最少,即m=1;6条直线两两相交于不同点时,交点个数最多,即n=15.即m+n=16.21. 解:线段AB,线段AC,线段AD,线段BC,线段BD,线段CD共6条线段;以每个点为端点的射线有2条,共8条;直线有1条.22. 解:如图所示:23. 解:如图所示:24. 解:(1) 如图所示:(2)直线有两条分别为直线l,直线PB;射线有7条,分别是射线AC,射线CA,射线CB,射线BC ,射线PC ,射线PB ,射线BP ;线段有6条,分别是线段PA ,线段PC ,线段PB ,线段AC ,线段CB ,线段AB25. 解:(1)过一点A 能画无数条直线.(2)过两点A ,B 只能画1条直线.(3)①若三点共线则可画1条,②若三点不共线则可画3条,故可画1条或3条.(4)①若四点共线则可画1条,②若三点共线则可画4条,③若任意三点不共线则可画6条,故可画1条或4条或6条.(5)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任何三点都不在一条直线上的四点的直线有6条,按此规律由特殊到一般可得:共可画12n(n -1)条直线.。
初中数学直线射线线段综合练习题(附答案)
初中数学直线射线线段综合练习题一、单选题1.下列说法正确的是( )A.画射线3cm OA =B.线段AB 和线段BA 不是同一条线段C.点A 和直线l 的位置关系有两种D.三条直线相交一定有3个交点 2.从重庆站乘火车到北京站,沿途经过5个车站方可到达北京站,那么在重庆与北京两站之间需要安排不同的车票___________种.3.若平面内有点,,A B C ,过其中任意两点画直线,则最多可以画的条数是( )A.3B.4C.5D.64.如图,点O 与射线AB 的位置关系是( )A.点O 一定在射线AB 上B.点O 一定不在射线AB 上C.点O 可能在射线AB 上,也可能不在射线AB 上D.射线AB 可能会经过点O5.下列图示中,直线表示方法正确的有( )A.①②③④B.①②C.②④D.①④6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A.7 cmB.3 cmC.7cm 或3cmD.5 cm7.如图,,C B 是线段AD 上的两点,若,2AB CD BC AC ==,那么AC 与CD 的关系为( )A.2CD AC =B.3CD AC =C.4CD AC =D.不能确定二、解答题8.如图,P 是线段AB 上任意一点,12cm,,AB C D =两点分别从,P B 同时向A 点运动,且C 点的运动速度为2cm/s,D 点的运动速度为3cm/s ,运动的时间为s t .(1)若8cm AP =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2s,1cm t CD ==,试探索AP 的值.9.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.10.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度;(2)若3cm,1cm AC CP ==,求线段PN 的长度.11.如图,在一条不完整的数轴上从左到右有,,A B C 三点,其中2,1AB BC ==.设点,,A B C 所对应的数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .12.如图,已知线段6AD =cm ,线段4AC BD ==cm,EF 分别是线段,AB CD 的中点,求线段EF 的长.13.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?14.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.15.如图,平面上有,,,A B C D 四个村庄,为了丰富人们的生活,政府准备投资修建一个文化活动中心H ,使它到四个村庄的距离之和最小,你认为文化活动中心应建在哪里?并说明理由.16.如图(1),直线AB 上有一点P ,点,M N 分别为线段,PA PB 的中点,14AB =.(1)若点P 在线段AB 上,且8PA =,求线段MN 的长度;(2)若点P 在直线AB 上运动,设,PA x PB y ==,请分别计算下面情况时MN 的长度; ①当P 在,A B 之间(含A 或B );②当P 在A 左边;③当P 在B 右边.你发现了什么规律?(3)如图(2),若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PA PB PC-的值不变;②PA PB PC +的值不变.请选择一个正确的结论并求其值. 三、填空题17.给出下列说法:①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点.其中正确说法的序号为___________.18.平面内有3条直线,它们的交点个数是_________.19.如图,画的是一条直线和两个点的位置关系,现有4种叙述:①直线AB 在点C 上;②点C 在直线AB 上;③点O 不经过直线AB ;④直线a 经过点C .其中叙述正确的有(填序号):__________.参考答案1.答案:C解析:射线没有长度,故A 错误;线段AB 和线段BA 是同条线段,故B 错误;点A 和直线l 的位置关系有两种:点A 在直线上或在直线外,故C 正确;三条直线相交可能有1个或2个或3个交点,故D 错误.2.答案:42解析:因为共有(52)+个车站,把它们看作直线上的7个点,则直线上线段的条数为7(71)212⨯-=(条),而每条线段对应两种不同的车票,故需要安排不同的车票共42种. 3.答案:A解析:平面内有点,,A B C ,过其中任意两点画直线,最多可以画的直线条数是3.4.答案:B解析:射线AB 是有方向的,是从“A ”到“B ”的方向,图中的射线AB 是向右无限延伸的,向左到端点A 终止,故点O 一定不在射线AB 上.5.答案:D解析:用两个点表示直线时,这两个点必须是大写字母,故②③错误,①正确;用一个字母表示直线时,这个字母必须是小写的,且不能在直线上标点,④正确.6.答案:D解析:当点C 在线段AB 上时,则1115cm 222MN AC BC AB =+==;当点C 在线段AB 的延长线上时,则11725(cm)22MN AC BC =-=-=.综合上述情况,线段MN 的长度是5cm . 7.答案:B解析:因为AB CD =,所以AC BC BC BD +=+,即AC BD =.又因为2BC AC =,所以2BC BD =.所以33CD BD AC ==.8.答案:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=.因为8cm,12cm AP AB ==,所以1284(cm)PB AB AP =-=-=.所以2433(cm)CD CP PB DB =+-=+--.②因为8cm,12cm AP AB ==,所以1284(cm),(82)(cm)PB AC AP CP t =-==-=-.所以(43)(cm)DP PB DB t =-=-.所以243(4)(cm)CD CP DP t t t =+=+-=-.因为822(4)t t -=-,所以2AC CD =.(2)当2s t =时,224(cm),326(cm)CP DB =⨯==⨯=.当点D 在C 的右边时,如图所示:由于1cm CD =,所以167(cm)CB CD DB =+=+=.所以1275(cm)AC AB CB =-=-=,所以549(cm)AP AC CP =+=+=.当点D 在C 的左边时,如图所示;1266(cm)AD AB DB =-=-=.所以61411(cm)AP AD CD CP =++=++=.综上所述,9cm AP =或11cm .解析:9.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===.所以10cm AD AB BC CD =++=.因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=.因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=.1010220(cm)AD x ==⨯-.解析:10.答案:(1)因为,M N 分别是,AC BC 的中点,所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=.因为P 是线段AB 的中点,所以28cm AB AP ==.所以5cm CB AB AC =-=.因为N 是线段CB 的中点,1 2.5cm 2CN CB ==. 所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 11.答案:解:(1)若以B 为原点,则C 表示1,A 表示-2,所以1021p =+-=-.若以C 为原点,则A 表示-3,B 表示一I ,所以3104p =--+=-.(2)若原点O 在图中数轴上点C 的右边,28CO =,则C 表示-28,B 表示-29,A 表示-31, 所以31292888p =---=-.解析:12.答案:解:因为2AB AD BD =-=cm,2CD AD AC =-=cm , 所以112EB AB ==cm ,112CF CD == cm 所以6222BC AD AB CD =--=--=(cm ),所以1214EF EB BC CF =++=++= (cm).解析:13.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=,因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==. (3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN的长度始终等于线段AB的一半,与C点的位置无关.解析:14.答案:【解】第一种情况:若为图(1)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以2cmMN MB NB=-=.第二种情况:若为图(2)情形,因为M为AB的中点,所以5cmMB MA==.因为N为BC的中点,所以3cmNB NC==.所以8cmMN MB BN=+=.解析:15.答案:【解】文化活动中心应建在,AC BD连线的交点处.理由如下:若把文化活动中心建在,AC BD连线的交点处,则中心到四个村庄的距离之和等于,AC BD两条线段的长度之和,而两点之间,线段最短,故这个位置符合要求.解析:16.答案:(1)因为8PA=,所以6BP AB PA=-=.因为点M是AP中点,所以142PM AP==.又因为点N是PB中点,所以132PN PB==.所以7MN PM PN=+=.(2)①当点P在,A B之间时,17222x yMN AB=+==;②当点P在BA的延长线上,11()72222y xMN PN PM y x AB =-=-=-==;③当点P在AB的延长线上时,11()72222x yMN PM PN x y AB =-=-=-==.规律:不管P在什么位置,MN的长度不变,都为7. (3)选择②.设PB x =.由题意,知7AC BC ==, ①1477PA PB AB PC x x -==++(在变化); ②21427PA PB x PC x ++==+(定值). 解析:(1)根据线段中点的定义及线段的和差,可求得结果.(2)根据线段中点的定义可求得,MP NP ,再根据线段的和差,可求得结果.(3)根据线段的和差可得,PA PB PA PC +-,进而可得所求的结论.17.答案:②③④解析:①错误,因为两条不同的直线不能重合,若两直线有两个或两个以上公共点,这两直线就是同一条直线;而两条不同的射线、两条不同的线段、一条直线和一条线段都可以有部分重合,因此它们都可以有无数个公共点,故②③④正确.18.答案:0或1或2或3解析:如图,若平面内有3条直线,则它们的交点个数有如下四种情况:19.答案:②④解析:只能说点在(或不在)直线上,而不能说直线在(或不在)点上,故①错;只能说直线经过(或不经过)点,而不能说点经过(或不经过)直线,故③错,②④正确.。
部编数学七年级上册专题直线、射线、线段专项提升训练(重难点培优)同步培优含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题4.2直线、射线、线段专项提升训练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共25题,选择10道、填空8道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•莘县校级月考)下列描述中,正确的是( )A.延长直线AB B.延长射线ABC.延长线段AB D.射线不能延长【分析】根据直线、射线和线段的本身的可延长性,对各选项分析判断后利用排除法求解.【解析】A、直线是向两方无限延伸的,不能延长,故此选项不符合题意;B、射线是向一方无限延伸的,不能延长,故此选项不符合题意;C、延长线段AB,原说法正确,故此选项符合题意;D、射线是向一方无限延伸的,可反向延长,故此选项不符合题意.故选:C.2.(2022秋•诸城市校级月考)下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中不可用“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④【分析】①③根据“两点确定一条直线”解释,②④根据两点之间,线段最短解释.【解析】①属于两点确定一条直线的性质,不可用“两点之间,线段最短”来解释,符合题意;②从A地到B地架设电线,总是尽可能沿着线段架设,是两点之间,线段最短,不符合题意;③属于两点确定一条直线的性质,不可用“两点之间,线段最短”来解释,符合题意;④两点之间,线段最短,减少了距离,不符合题意.故选:B.3.(2022秋•奎文区期中)下列几何图形与相应语言描述相符的是( )A.如图1所示,延长线段BA到点CB.如图2所示,射线CB不经过点AC.如图3所示,直线a和直线b相交于点AD.如图4所示,射线CD和线段AB没有交点【分析】由图形点和线段,射线的位置关系,直线与直线的位置关系,即可判断.【解析】A、点C在线段BA的延长线上,故A不符合题意;B、射线BC不经过点A,故B不符合题意;C、直线a和直线b相交于点A,正确,故C符合题意;D、射线CD和线段AB有交点,故D不符合题意,故选:C.4.(2022秋•天山区校级期中)如果线段AB=10cm,MA+MB=13cm,那么下面说法中正确的是( )A.M点在线段AB上B.M点在直线AB上C.M点可能在直线AB上也可能在AB外D.M点在直线AB外【分析】根据AB=10cm,若点M是线段AB上,则MA+MB=10cm,点M在直线AB外或点M在直线AB上都可能MA+MB=13cm.【解析】如图1:点M在直线AB外时,MA+MB=13cm,如图2,点M在直线AB上时,MA+MB=13cm,根据以上两个图形得出M可以在直线AB上,也可以在直线AB外,故选:C.5.(2022秋•莘县校级月考)直线上有A,B,C三点,已知AB=8cm,BC=2cm,则AC的长是( )A.10cm B.6cm C.10cm或6cm D.不能确定【分析】应用两点间的距离计算方法进行计算即可得出答案.【解析】根据题意可得,如图1,,AC=AB+BC=8+2=10(cm);如图2,,AC﹣AB﹣BC=8﹣2=6(cm).所以AC的长是10cm或6cm.故答案为:C.6.(2022秋•天山区校级期中)如图,点C是线段AB上的点,点D是线段BC的中点,AB =10,AC=6,则线段BD的长是( )A.6B.2C.8D.4【分析】因为点D是线段BC的中点,所以BD=BC,而BC=AB﹣AC=10﹣6=4,即可求得.【解析】∵AB=10,AC=6,∴BC=AB﹣AC=10﹣6=4,又∵点D是线段BC的中点,∴BD=BC=×4=2.故选:B.7.(2022秋•夏邑县月考)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是( )A.0.5cm B.0.7cm C.1.5cm D.2.3cm【分析】作出△ABC的边BC上的高AD,测量AD的长度即可.【解析】作BC上的高AD,测量AD的长度约为2.7cm,因此BC上的高最接近2.3cm,故选:D.8.(2022秋•聊城月考)济青高铁北线,共设有5个不同站点,要保证每两个站点之间都有高铁可乘,需要印制不同的火车票( )A.20种B.42种C.10种D.84种【分析】根据图示,由线段的定义解决此题.【解析】如图,图中有5个站点.经分析,往同一个方向(从1站点往5站点的方向),需要印制不同的火车票种类的数量有4+3+2+1=10(种).∴保证任意两个站点双向都有车票,需要印制车票种类的数量为2×10=20(种).故选:A.9.(2021秋•历城区期末)如图,点C是线段AB的中点,CD=AC,若AD=2cm,则AB =( )A.3cm B.2.5cm C.4cm D.6cm【分析】根据CD=AC,得AD与AC的关系,代入已知线段求得AC,最后根据中点定义求得AB.【解析】∵CD=AC,AD+CD=AC,∴AD+=AC,∴AD=AC,∵AD=2cm,∴AC=3cm,∵点C是线段AB的中点,∴AB=2AC=6cm,故选:D.10.(2021秋•闽侯县期末)如图,点C,D为线段AB上两点,AC+BD=10,AD+BC=AB,设CD=t,则方程3x﹣7(x﹣1)=2t﹣2(x+3)的解是( )A.x=1B.x=2C.x=3D.x=4【分析】根据线段和差的关系先表示出AB=10+CD,AD+BC=10+2CD,再根据AD+BC=AB,设CD=t,列出方程求出t,把t=2.5代入3x﹣7(x﹣1)=2t﹣2(x+3),求出x.【解析】∵AD+BC=AC+CD+CD+BD=AC+BD+2CD,AB=AC+CD+BD,AC+BD=10.∴AB=10+CD,AD+BC=10+2CD,∵AD+BC=AB,设CD=t,∴10+2t=(10+t),解得t=2.5,把t=2.5代入3x﹣7(x﹣1)=2t﹣2(x+3),3x﹣7x+7=2×2.5﹣2x﹣6,3x﹣7x+2x=5﹣6﹣7,﹣2x=﹣8,x=4,故选:D.二.填空题(共8小题)11.(2022春•道外区期末)要在墙上固定一根木条,至少要两根钉子,其几何原理是 两点确定一条直线 .【分析】根据直线的性质求解即可.【解析】根据直线的性质,要在墙上固定一根木条,至少需要两根钉子,理由是:两点确定一条直线.故答案为:两点确定一条直线.12.(2022•亭湖区校级开学)若平面内有4个点,过其中任意两点画射线,最多可以画 12 条.【分析】应用射线的定义进行判定即可得出答案.【解析】设平面内这4个点分别为A,B,C,D,过任意两点画射线则有,射线AB,射线BA,射线AC,射线CA,射线AD,射线DA,射线BC,射线CB,射线BD,射线DB,射线CD,射线DC,共12条.故答案为:12.13.(2022•桂林)如图,点C是线段AB的中点,若AC=2cm,则AB= 4 cm.【分析】根据中点的定义可得AB=2AC=4cm.【解析】根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.14.(2022春•牟平区期中)如图,点C、D在线段AB上,点C为AB中点,若AB=10cm,,则CD的长度是 3cm .【分析】先根据点C是线段AB的中点,AB=10cm,可求出AC和BC的长,再根据BD=AC,求出BD,根据CD=BC﹣BD即可得出结论.【解析】∵点C是AB的中点,AB=10cm,∴BC=AC=AB=×10=5(cm),∵BD=AC,∴BD=2cm,∴CD=BC﹣BD=5﹣2=3(cm).故答案为:3cm.15.(2021秋•银川期末)如图,已知线段AB长度为x,CD长度为y,则图中所有线段的长度和为 3x+y .【分析】依据线段AB长度为x,可得AB=AC+CD+DB=x,依据CD长度为y,可得AD+CB =x+y,进而得出所有线段的长度和.【解析】∵线段AB长度为x,∴AB=AC+CD+DB=x,又∵CD长度为y,∴AD+CB=x+y,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=x+x+x+y=3x+y,故答案为:3x+y.16.(2021秋•泰兴市期末)如图,AB=17cm,点C是线段AB延长线上一动点,在线段BC 上取一点N,使BN=2CN,点M为线段AC的中点,则MN﹣BN= 8.5 .【分析】首先设CN=xcm,根据BN=2CN=2x(cm),进而表示出AC=(17+3x)cm,根据点M为线段AC的中点,得MC=(8.5+0.5)cm,再根据线段的和差关系求出MN﹣BN的结果.【解析】设CN=xcm,∴BN=2CN=2xcm,∴AC=AB+BN+NC=(17+3x)cm,∵点M为线段AC的中点,∴MC=AC=(8.5+1.5x)cm,∴MN=MC﹣NC=(8.5+0.5x)cm,BN=0.5x(cm),∴MN﹣BN=8.5+0.5x﹣0.5x=8.5(cm),故答案为:8.5 cm.17.(2021秋•内江期末)如图,B、C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,则CM的长为 4 cm .【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出CM的长.【解析】设AB=2xcm,BC=5xcm,CD=3xcm,所以AD=AB+BC+CD=10xcm,因为M是AD的中点,所以AM=MD=AD=5xcm,所以BM=AM﹣AB=5x﹣2x=3xcm,因为BM=6 cm,所以x=2 cm,因为CM=BC﹣BM=5×2﹣6=4cm,故答案为:4cm.18.(2021秋•市南区期末)如图,将一条长为7cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为2:3:5,其中没有完全盖住的部分最长,则折痕对应的刻度可能是 2.45或2.8 cm.【分析】先利用三段长度之比求得三段的长,然后由中间段求得折痕对应的刻度.【解析】∵三段长度由短到长的比为2:3:5,卷尺总长为7cm,∴最长的一段长7×=3.5cm,中间长的一段长7×=2.1cm,最短一段长7×=1.4cm,如图,则BD=3.5cm,当BC为最短段时,BC=1.4cm,2AB=2.1cm,∴AC=AB+BC=1.05+1.4=2.45cm,∴折痕对应的刻度为2.45cm;当BC段为中间长的那段时,BC=2.1cm,2AB=1.4cm,∴AB=0.7cm,∴AC=AB+BC=0.7+2.1=2.8cm,∴折痕对应的刻度为2.8cm;综上所述,折痕对应的刻度为2.45cm或2.8cm,故答案为:2.45或2.8.三.解答题(共7小题)19.(2021秋•法库县期末)如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)在图①中,画线段AC、BD交于E点;(2)在图①中作射线BC;(3)在图②中取一点P,使点P既在直线AB上又在直线CD上.【分析】分别根据直线、射线、线段的定义作出图形即可.【解析】(1)如图所示:;(2)如图所示,(3)如图所示,.20.(2021秋•临江市期末)【观察思考】如图线段AB上有两个点C、D,分别以点A、B、C、D为端点的线段共有 6 条.【模型构建】若线段上有m个点(包括端点),则该线段上共有 m(m﹣1) 条线段.【拓展应用】若有8位同学参加班级的演讲比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),请你应用上述模型构建,求一共要进行多少场比赛?【分析】【观察思考】从左向右依次固定一个端点A,C,D找出线段,最后求和即可;【模型构建】根据数线段的特点列出式子化简即可;【拓展应用】将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解析】【观察思考】∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6(条).故答案为:6;【模型构建】设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=m+m+m+…+m=m(m﹣1),∴x=m(m﹣1).故答案为:m(m﹣1);【拓展应用】把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作一条线段,由题知,当m=8时,==28.答:一共要进行28场比赛.21.(2022春•钢城区期末)如图,点C是线段AB上的一点,点M是线段AC的中点,点N 是线段BC的中点.(1)如果AB=14cm,AM=5cm,求BC的长;(2)如果MN=8cm,求AB的长.【分析】(1)先根据点M是线段AC的中点得出AC=2AM,再由AB=14cm求出BC的长;(2)根据点M是线段AC的中点,点N是线段BC的中点可知NC=BC,CM=AC,由MN=NC+CM即可得出结论.【解析】(1)∵点M是线段AC的中点,AM=5cm,∴AC=2AM=10cm,∵AB=14cm,∴BC=AB﹣AC=14﹣10=4cm;(2)∵点M是线段AC的中点,点N是线段BC的中点,∴NC=BC,CM=AC,∴MN=NC+CM=(BC+AC)=AB,∵MN=8cm,∴AB=8,∴AB=16cm.22.(2022春•龙凤区期末)如图,已知点C在线段AB上,且AM=AC,BN=BC.(1)若AC=12,CB=6,求线段MN的长.(2)若C为线段AB上任意一点,且满足AC+BC=a,其他条件不变,求线段MN的长.【分析】(1)由AC=12及AM=AC可求解CM的长,由BN=BC及BC=6可求得CN的长,再利用MN=CM+CN可求解;(2)AM=AC,BN=BC,可得AM+BN=AC+BC=(AC+BC),所以MN=MC+NC=(AC+BC),根据AC+BC=a即可求出线段MN的长.【解析】(1)∵AM=AC,∴CM=AC,∵AC=12,∴CM=8,∵BN=BC,∴CN=BC,∵BC=6,∴CN=×6=4,∴MN=CM+CN=8+4=12;(2)∵AM=AC,BN=BC,∴AM+BN=AC+BC=(AC+BC),∴MN=MC+NC=(AC+BC),∵AC+BC=a,∴MN=a,即线段MN的长为a.23.(2022春•莱西市期末)如图,动点B在线段AD上,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B的运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= 4 cm;②求线段CD的长度.(2)用含t的代数式表示运动过程中线段AB的长度.【分析】(1)①根据速度乘以时间等路程,可得答案;②根据线段的和差,可得BD的长,根据线段中点的性质,可得答案;(2)根据速度乘以时间等于路程,及线段的和差,可得AB的长;【解析】(1)当t=2时,①AB=2×2=4(cm),故答案为:4;②BD=AD﹣AB=10﹣4=6(cm),由C是线段BD的中点,得CD=BD=×6=3cm;(2)点B沿点A→D运动时,AB=2tcm,点B沿点D→A运动时,AB=(20﹣2t)cm,综上,AB的长为2tcm或(20﹣2t)cm.24.(2021秋•普陀区期末)已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式,则= 或 .【分析】(1)根据已知条件得到BC=6,AC=12,①由线段中点的定义得到CE=3,求得CD=5,由线段的和差得到AD=AC﹣CD=12﹣5=7;②当点C线段DE的三等分点时,可求得CE=DE=,则CD=,由线段的和差即可得到结论;(2)当点E在线段BC之间时,设BC=x,则AC=2BC=2x,求得AB=3x,设CE=y,得到AE=2x+y,BE=x﹣y,求得y=x,当点E在点A的左侧,设BC=x,则DE=1.5x,设CE=y,求得DC=EC+DE=y+1.5x,得到y=4x,于是得到结论.【解析】(1)∵AC=2BC,AB=18,∴BC=6,AC=12,①∵E为BC中点,∴CE=3,∵DE=8,∴AD=AC﹣CD=12﹣5=7;②∵点C是线段DE的三等分点,DE=8,∴当点C靠近E点时,CE=DE=,∴CD=,∴AD=AC﹣CD=12﹣=;当点C靠近点D时,DC=DE=,∴AD=AC﹣CD=12﹣=;(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∴AB=3x,∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∵,∴,∴y=x,∴CD=1.5x﹣x=x,∴;当点E在点A的左侧,如图,设BC=x,则DE=1.5x,∴DC=EC+DE=y+1.5x,∴AD=DC﹣AC=y+1.5x﹣2x=y﹣0.5x,∵,BE=EC+BC=x+y,∴,∴y=4x,∴CD=y+1.5x=4x+1.5x=5.5x,BD=DC+BC=y+1.5x+x=6.5x,∴AB=BD﹣AD=6.5x﹣y+0.5x=6.5x﹣4x+0.5x=3x,∴,当点E在线段AC上及点E在点B右侧时,无解,综上所述的值为或.另一解法:可设AB=6,则AC=4,CB=2,DE=3,以A为原点,以AB的方向为正方向建立数轴,则A表示0,C表示4,B表示6,如图,设D表示的数为x,则E表示x+3,可得AD=|x|,EC=|x+3﹣4|=|x﹣1|,BE=|x+3﹣6|=|x﹣3|,CD=|x﹣4|,,①当x<0或x≥3时,上式可化为:,解得x=﹣7,则;②1≤x<3时,上式化为:,解得:x=,则;③0≤x<1时,上式化为:,解得:x=(舍去).综上所述的值为或.故答案为:或.。
42直线射线线段练习题及标准答案
A.点C在线段AB上 B.点B在线段AB的延长线上直线、射线、线段测试卷4.2 C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外一、选择题二、填空题1. 下列说法错误的是()1.若线段AB=a,CA. 平面内过一点有且只有一条直线与已知直线垂直是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______. C. B. 两点之间的所有连线中,线段最短经过两点有且只有一条直线2 D.过一点有且只有一条直线与已知直线平行.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,2.平面上的三条直线最多可将平面分成()部分 A .3 B.6 C . 7 可以作______条直线;D.9经过四点最多能确定条直线。
3.图中共有线段________条。
,BC=2CM,那么AC两点之间的 3.如果A BC三点在同一直线上,且线段AB=4CM4.如图,学生要去博物馆参观,从学校A处到博物馆B距离为()处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A处赶到6CM D 2 或.无法确定 B处,假设行走的速度不变,你认为A .2CM B. 6CM C .应该走第________条线路(只填番号)最快,理由是___________________4.下列说法正确的是()。
5.若; AB=BC=CD那么AD=AB AC=AD.延长射线 A.延长直线AB到C; BOA到C CC.平角是一条直线; D.延长线段AB到5.如果你想将一根细木条固定在墙上,至少需要几个钉子().无数个 C.一个 B.两个.三个 D A11。
④EF。
③EF=2PE在线段6.点PEF上,现有四个等式①PE=PF。
②PE=22)2PE=EF。
其中能表示点P是EF中点的有( 3 A.4个 B.个 C.2个 D.个1).地,最短的路线是(A地到达B 7. 如图所示,从条线段。
条线段;若n个点可以形成____________6.直线上8点可以形成B →→ A.AC→E→B B.AF→E→如果BC的中点. E 是线段AB上一点,点D、分别是线段AC、,7.如图点CBCA.→→E→G→EA C.→D→→B DAB=a,AD=b,中点,是上任意两点,是线段如右图所示,8..B、CADMAB的中点,N是CD b>2a。
中考数学专题复习《直线、射线、线段》测试卷(附带答案)
中考数学专题复习《直线射线线段》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________知识点1. 定义与性质:线段:线段是由两个端点及其之间的所有点组成的。
它有一个固定的长度并且可以在数轴上表示一个区间。
例如线段AB表示从点A到点B的所有点的集合。
射线:射线有一个起点(称为端点)并从该点沿一个方向无限延伸。
射线有一个端点和一个方向但没有固定的长度。
例如射线AB表示从点A出发沿AB方向无限延伸的线的集合。
直线:直线由无数个点组成没有端点并且向两端无限延伸。
直线没有固定的长度并且可以通过任意两个不重合的点来确定。
例如通过点A和点B可以确定一条直线。
2. 表示方法:线段:通常使用两个端点的字母来表示如线段AB。
在数轴上也可以使用一个区间来表示如[A, B]。
射线:使用起点和另一个点的字母来表示并指明方向如射线AB(从A出发经过B)。
直线:可以通过两点来表示如直线AB。
在数轴上直线可以用一个小写字母或两个不等的点来表示。
3. 几何特性:线段:是有限长的可以度量其长度。
线段是构成其他几何图形(如三角形四边形等)的基本元素。
射线:有一个端点和一个方向因此是无限长的不能度量其长度。
射线在几何学和物理学中有应用如光线和雷达波的传播。
直线:没有端点因此是无限长的也不能度量其长度。
直线是构成平面图形和立体图形的基本元素如平行四边形圆等。
4. 轴对称性:线段:线段是轴对称图形其对称轴是垂直于线段并通过其中点的直线。
射线:射线也是轴对称图形其对称轴是包含其端点的直线。
直线:直线是轴对称图形有无数条垂直于它的直线可以作为对称轴。
专项练一单选题1.下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行2.我们知道若线段上取一个点(不与两个端点重合以下同)则图中线段的条数为++=条若线段上取三个点123+=条若线段上取两个点则图中线段的条数为1236+++=条……请用你找到的规律解决下列实际问题:杭甬铁路则图中线段的条数为123410(即杭州—宁波)上有萧山绍兴上虞余姚4个中途站则车站需要印的不同种类的火车票为( )A .6种B .15种C .20种D .30种3.下列命题中 是假命题的是( )A .三个角对应相等的两个三角形全等B .﹣3a 3b 的系数是﹣3C .两点之间 线段最短D .若|a |=|b | 则a =±b4.在下列说法①联接两点的线中 线段最短 ①相等的角是对顶角 ①过直线外一点有且只有一条直线与已知直线平行 ①两点间的线段是这两点的距离 ①20.196精确到百分位得20.2中 正确的是( )A .①①B .①①C .①①D .①①5.已知线段AB 长2cm .现延长AB 到点C 使3BC AB =.取线段AB 的中点D 线段CD 的长为( )A .5cmB .3cmC .7cmD .1cm6.如图 以A B C D E 为端点 图中共有线段( )A .7条B .8条C .9条D .10条7.如图所示 下列说法正确的个数是( )①射线AB 和射线BA 是同一条射线 ①图中有两条射线 ①直线AB 和直线BA 是同一条直线 ①线段AB 和线段BA 是同一条线段.A .4B .3C .2D .18.如图 在菱形ABCD 中 60ABC ∠=︒ E 是边BC 的中点 P 是对角线BD 上的一个动点 连接AE AM 若12AP BP +的最小值恰好等于图中某条线段的长 则这条线段是( )A .AB B .AEC .BD D .BE9.如图 点C 是线段AB 的中点 点D 是线段CB 上任意一点 则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12ABD .AD =12(CD +AB ) 10.若将点A (-1 3)向右平移2个单位 再向下平移4个单位得到点B 则点B 在第( )象限A .一B .二C .三D .四二 填空题11.绷紧的琴弦 人行横道都可以近似地看做 它有 个端点 手电筒 探照灯所射出的光线可以近似地看做 它有 个端点 笔直的铁轨可以近似地看做 它有 端点.12.A B C 三点在同一条直线上 若BC=2AB 且AB=m 则AC= . 13.如图 已知线段12AB = 延长线段AB 至点C 使得12BC AB =点D 是线段AC 的中点 则线段BD 的长是 .14.如图 等边ABC 的边长为4 AD 是BC 边上的中线 F 是AD 边上的动点 E 是AC 边上一点 若2AE = 当EF CF +取得最小值时 则ECF ∠= .15.若O 的半径为33 圆心O 为坐标系的原点 点P 的坐标是()3,5 点P 在O .16.已知线段AB=18cm P Q 是线段AB 上的两个点 线段AQ=12cm 线段BP=14cm 则线段PQ= .17.如图 直线243y x =+与x 轴 y 轴分别交于点A 和点B 点C D 分别为线段AB OB 的中点 点P 为OA 上一动点 PC PD +最小值是 .18.菱形OBCD 在平面直角坐标系中的位置如图所示 顶点B (2 0) ①DOB =60° 点P是对角线OC 上一个动点 E (0 则EP +BP 的最小值为 .19.如图 C 为线段AD 上一点 点B 为CD 的中点 且8cm AD = 2cm BD =.若点E 在AD 上 且EA=3cm BE 的长为 .20.如图 AD 为等边ABC 的高 E F 分别为线段AD AC 上的动点 且AE CF = 当BF CE +取得最小值时 AFB ∠的度数为 .三 解答题21.线段和角是我们初中数学常见的平面几何图形 它们的表示方法 和差计算以及线段的中点 角的平分线的概念等有很多相似之处 所以研究线段或角的问题时可以运用类比的方法.(1)特例感知:如图1 已知10cm AB = 点D 是线段AC 的中点 点E 是线段BC 的中点.若6cm BC 则线段DE =________cm .(2)数学思考:如图1 已知10cm AB = 若C 是线段AB 上的一个动点 点D 是线段AC 的中点 点E 是线段BC 的中点 线段DE 的长会发生变化吗?说明理由.(3)知识迁移:如图2 OB 是AOC ∠内部的一条射线 把三角尺中60︒角的顶点放在点O 处 转动三角尺 当三角尺的边OD 平分AOB ∠时 在角尺的另一边OE 也正好平分BOC ∠ 求AOC ∠的度数.22.如图 C 为线段AB 的中点 点D 在线段CB 上.(1)图中共有_________条线段(2)图中AD AC CD =+ BC AB AC =- 类似地 请你再写出两个有关线段的和与差的关系式:①_________ ①_________(3)若8AB = 1.5DB = 求线段CD 的长.23.补全解题过程已知:如图 点C 是线段AB 的中点 2CD =cm 8BD =cm 求AD 的长.解:①2CD=cm 8BD=cm①CB CD=+______=______cm①点C是线段AB的中点①AC CB==______cm①AD AC=+_______=_______cm24.(1)已知线段8AB=点C在线段AB的延长线上M N分别是线段AC与线段BC 的中点求线段MN的长(2)已知线段8cmAB=点C在线段AB的反向延长线上M N分别是线段AC与线段BC的中点则线段MN的长为cm.25.如图线段1134BD AB CD==点M N分别是线段AB CD的中点且20cmMN=求AC的长.参考答案:1.D2.D3.A4.A5.C6.D7.C8.B9.D10.D11.线段两射线 1 直线0个. 12.m或3m13.314.30︒15.外16.8cm17.5183119.3或9cm20.105︒/105度21.(1)5(2)不会(3)120︒22.(1)6 (2)(2)①BC=CD+DB ①AD=AB−DB (答案不唯一)(3)CD=2.5.23.BD10 10 CD12.24.(1)4 (2)425.48cm。
直线、射线、线段练习题(含答案)
1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。
直线、射线、线段练习题及答案
直线、射线、线段练习题及答案(七年级上册数学)(附详细答案解析)(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直线、射线、线段测试题一、选择题1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C; B.延长射线OA到C;C.平角是一条直线; D.延长线段AB 到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个7. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B8..如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b B .2a b C .a b D .a b9..在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝ B.㎝ C.㎝ D.1㎝10.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外二、填空题1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。
北师大版七年级数学上册第四章培优专题训练一:直线射线线段(含答案)
七年级数学上册第四章基本平面图形培优专题训练一.知识梳理:1.经过有且只有一条直线.2.两点之间的所有连线中,最短.3. ,叫做两点之间的距离4.点O是线段AB的中点,则 = =21。
5.一条直线上有n个点时,共有射线条,线段条。
二.典型例题例题1:(1)已知AB=10,在线段AB上取一点C,使AC=6,那么线段AB的中点D 与线段AC的中点E的距离为;(2)已知AB=10,在线段AB上任意取一点C,那么线段AB的中点D与线段AC的中点E的距离为;(3)已知AB=m,在线段AB上任意取一点C,那么线段AB的中点D与线段AC的中点E的距离为;例题2:(1)已知AB=10,在AB的延长线上取一点C,使AC=16,那么线段AB的中点D与线段AC的中点E的距离为;(2) 已知AB=m,在AB的延长线上取一点C,使AC=n(n>m),那么线段AB 的中点D与线段AC的中点E的距离为;三.练习:1.已知两根木条分别长为60cm,100cm.将它们的一端重合,放在同一条直线上,此时两根木条的中点间距离是2.已知A,B,C为直线a上的三点,AB=40,AC=80,点D,E分别为AB,AC的中点,则DE=3.已知:如图,线段AD=8cm,线段BC=4cm,点E,F分别是AB,CD的中点,求EF的长。
4.已知点C在线段AB上,M,N分别为AC,BC的中点,求MN的长度。
5.已知线段AB=8cm,在直线AB上画线段BC=3cm,则线段AC=6.如图,共有条线段。
7.一列往返于北京和广州的列车,沿途经过石家庄,郑州,武汉,长沙四站,铁路部门要为这趟列车印制车票种。
8.经过任意三点A,B,C中的两点共可以画出的直线条数是9.如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=700, 则∠B ′OG 的度数为 。
10.下列说法中,正确的是( )A 、射线OA 与射线AO 是同一条射线B 、线段MN 与线段NM 是同一条线段C 、过一点只能画一条直线D 、三条直线两两相交,必有三个交点 11.把一条弯曲的的公路改为直道,可以缩短路程,其道理用数学解释为 12.如果线段AB=5cm ,BC=8cm ,那么A 、C 两点之间的距离为( ) A 、13 cm B 、3 cm C 、13cm 或3cm D 、无法确定 13.如图,点A 、O 、B 在同一直线上,OE,OF 分别是∠AOC 与∠BOC 的平分线。
七年级数学培优试卷 第13讲 直线、射线、线段(含答案)
B ECD A A D CE B 第13讲 直线、射线、线段一、选择题1.如图所示的立方体,如果把它展开,可以是下列图形中的( )A .B .C .D . 2.图中直线PQ 、射线AB 、线段MN 能相交的是( )QPABPQBAN MQPPQB AA .B .C .D . 3.下面说法中不正确的是( )A .两点之间线段最短B .两点确定一条直线C .直线、射线、线段都有中点D .两条不同的直线枏交有且只有一个交点4.如果在一条直线上得到10条不同的线段,那么在这条直线上至少要选用( )个不同的点. A .20 B .10 C .7 D .55.平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m +n 等于( ) A .12 B .16 C .20 D .以上都1不对6.下列说法正确的是( )A .若AP =21AB ,则P 是AB 的中点 B .若AB =2PB ,则P 是AB 的中点 C .若AP =PB ,则P 是AB 的中点 D .若AP =PB =21AB ,则P 是AB 的中点7.如图,已知A 、B 、C 、D 、E 五点在同一直线上,D 点是线段AB 的中点,点E 是线段BC 的中点,若线段AC =12,则线段DE 等于( ) A .10 B .8 C .6 D .48.A 、B 、C 中三个不同的点,则( )A .AB +BC =AC B .AB +BC >AC C .BC ≥AB -ACD .BC =AB -AC9.如图,B 在线段AC 上,且BC =2AB ,D 、E 分別是AB 、BC 的中点.则下列结论:①AB =31AC ;②B是AE 的中点;③EC =2BD ; ④DE =23AB .其中正确的有( )A .1个B .2个C .3个D .4个10.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点下列结论:①若AD =BM ,则AB =3BD ;②若AC =BD ,则AM =BN ;③AC -BD =2(MC -DN );④ 2MN =AB -CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④二、填空题11.如图是一个没有完全展开的正方体,若再剪开一条棱,则得到的平面展开图可能是下图中的_______________________.(填写字母)12.在边长都是1的正方形方格纸上画有如图所示的折线.它们的各段依次标着①,②,③,④…的序号.那么序号为24的线段长度是_________.序号为25的线段长度是_________.⑥⑤④③②①(第11题图) (第12题图)13.观察下列由小立方体摆成的图形,寻找规律;如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19 个看得见,8个看不见;则第⑥个图中,看不见的小立方体有___________个.… …(3)(2)(1)三、解答题14.已知线段AB .(1)M 是线段AB 上一点,且此时所有线段之和为20,求线段AB 的长;(2)直线上有一点C ,且BC =4,N 是AC 的中点,求AN 的长.15.已知3条线段a 、b 、c 在同一条直线上,它们有共同的起点,a 的终点是b 的中点,c 的中点是b 的终点,且a +b +c =70cm ,求a 、b 、c 三条线段的长(画图解答).16.如图,线段AB =20cm .(1)点P 沿线段AB 自A 点向B 点以2cm/秒运动,同时点Q 沿线段BA 自B 点向A 点以3cm/秒运动,几秒后,点P 、Q 两点相遇?BQPA(2)如图,AO =PO =2,∠POQ =60°,现点P 绕着点O 以30°/秒的速度顺时针旋转一周后停止,同时点Q 沿直线BA 自B 点向A 点运动,若P 、Q 两点也能相遇,求点Q 运动的速度.OAPQB17.如图,公路上依次有A 、B 、C 三站,上午8时,甲骑自行车从A 、B 之间离A 站18km 的P 点出发,向C 站匀速前进,15分钟到达距离A 站22km 的某处. (1)设x 小时后,甲离A 站y km ,用含x 的代数表示y ;(2)若A 、B 和B 、C 间的距离分别是30km 和20km ,则上午_____到_____的时间内,甲在B 、C 两站之间(不包括B 、C 两站).CBPA18.已知:如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为AE 的中点. (1)若线段AB =a ,CE =b ,0)5.4(152=-+-b a ,求a 、b ; (2)在(1)的条件下,求线段DE ; (3)若AB =15,AD =2BE ,求线段CE .BECD A19.如图1,直线AB 上,点P 在A ,B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点.若AB =m ,且m 为关于x 的方程3x +8=2(x +m )的解. (1)求线段AB 的长;BMPNA(2)试说明线段MN 的长与点P 在线段AB 上的位置无关.(3)如图2,若C 点为线段AB 的中点,点P 在线段AB 的延长线上,PCPBPA 的值是否变化?若不变,请求其值.PBCA。
线段、射线、直线(含答案)-
4.1 线段、射线、直线◆基础训练一、选择题1.下列各直线的表示法中,正确的是( ).A .直线AB .直线ABC .直线abD .直线Ab2.下列说法正确的是( ).A .射线比直线短B .两点确定一条直线C .经过三点只能作一条直线D .两点间的长度叫两点间的距离3.下列写法中正确的是( ).A .直线a ,b 相交于点nB .直线AB ,CD 相交于点MC .直线ab ,cd 相交于点MD .直线AB ,CD 相交于m二、填空题4.一个点和一条直线的位置关系有两种:______,________.5.要把木条固定在墙上至少要钉两颗钉子,这是因为_________.三、解答题6.如图,已知点D ,C 是线段AB 上的点,请回答:(1)图中共有几条线段?(2)用字母把这些线段表示出来.7.如图,已知点A ,B ,C 是直线m 上的三点,请回答:(1)射线AB 与射线AC 是同一条射线吗?(2)射线BA 与射线BC 是同一条射线吗?(3)射线AB 与射线BA 是同一条射线吗?(4)图中能用字母表示的共有几条直线?几条射线?几条线段?◆能力提高一、填空题8.过平面内一点能画____条直线,过平面内两点P,Q能画_____条直线.9.如下左图,图中有______条线段,•它们是________;•图中以A•为端点的射线有___条,它们是________;图中有______条直线,它们是________.二、解答题10.在平面上有四个点A,B,C,D(如上右图),请画出线段AB,射线AC和直线AD.11.已知平面内的四个点A,B,C,D,过其中两个点画直线可以画几条?答案:1.B 2.B 3.B 4.点在直线上,点在直线外5.两点确定一条直线6.6条,AB ,AC ,AD ,CB ,CD ,BD7.①是同一条;②不是同一条;③不是同一条;④1条直线,4条射线,3条线段8.无数条,一条9.5条,AD ,AB ,BD ,AC ,BC ,2条,AD ,AB ,1,AB (或AD ,BD )10.如图.11.(1)当A ,B ,C ,D 四个点在同一直线上时,只可以画出一条直线;(2)当A ,B ,C ,•D 四个点中有三个点在同一直线上,可以画出4条直线;(3)当A ,B ,C ,D•四个点中任意三个点都不在同一直线上时,可以画出6条直线.12.当有6个点时,共有线段15条;当有n 个点时,有线段(1)2n n 条; 当n=•100•时,•有线段4950条.。
七年级数学培优训练(线段射线直线角)
七年级数学培优训练(线段、射线、直线、角)专题一线段、射线、直线一、知识要点1.线段、射线及直线的定义及其表示方法三者的区别和联系将线段向两个方向无限延长就形成了直线。
直线没有端点2.直线的性质(1)经过一点可以画无数条直线(2)性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”体现“惟一性”3.点和直线的位置关系(1)点在直线上,或者说直线经过这个点(2)点在直线外,也可以说直线不经过这个点.B __________ , lA 二、例题和练习例1如图共有条线段,条射线,条直线. , _________ , lABC 课堂练习:1、如图,图中共有6个点,共有多少条线段?A1 A2 A3 A4 A5 A62、如图,图中共有n个点,共有多少条线段?A1A2 A3 A4 …… A n例2、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A .①②B ,①③C .②④D .③④课堂练习:1.往返于甲、乙两地的客车,中途停靠四个站,问( 1)有多少种不同的票价? ( 2)要准备多少种车票?2.已知平面内的四个点A、B、C D,过其中每两个点画直线可以画几条.专题二比较线段的长短一、知识要点1 .线段性质(公理):两点之间,线段最短2 .两点之间的距离:连结两点之间线段的长度3 .线段的大小的比较方法4 .线段的中点: 把一条线段分成两条相等的线段的点,叫做线段的中点.1A MB点M 是线段AB 中点 AC=BC= — AB2图 4-2-2二、例题和练习例1 如图所示,AB=16cm , C 是AB 上一点,且 AC=10 cm , D 是AC 中点,E 是BC 中点,求线段 DE 的 长.A D CEB例2 如图,AB:BC:CD =2:3:4 , AB 的中点 M 与CD 中点N 的距离是3cm,求BC 的长-I ----------------- 1 ------------------ 1C N D例3已知线段AB=30mm,直线AB 上画一条线段 BC=10mm,点D 是线段AC 的中点,求CD 的长度.课堂练习1 .如图,点C 是线段AC 上一点,点N 是线段BC 的中点,M 是AC 中点 (1)若 AB=10cm AM=3cm 求 NC 的长。
6.2直线、射线、线段培优练习人教版2024—2025七年级上册
6.2直线、射线、线段培优练习人教版2024—2025七年级上册一、夯实基础1.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直2.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条3.有三个不同的点A,B,C,过其中每两个点画直线,可以画出直线()A.1条B.2条C.1条或3条D.无法确定4.已知线段AB=4,在直线AB上作线段BC,使得BC=2,若D是线段AC的中点,则线段AD的长为()A.1B.3C.1或3D.2或35.互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是()A.点A在B、C两点之间B.点B在A、C两点之间C.点C在A、B两点之间D.无法确定6.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm7.下列四个生活、生产现象:①用四个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④8.某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人.三个区在一条直线上,位置如图所示.公司的接送打算在此间只设一个停靠点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在()A.A区B.B区C.C区D.不确定9.如图,点A、B、C在直线l上,则图中共有条线段.10.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.11.如图,C是线段AB上的一点,且AB=13,CB=5,M、N分别是AB、CB的中点,则线段MN的长是.12.如图,已知点C是线段AB上一点,且AC=2CB,点D是AB的中点,且AD=6.(1)线段AB的长是.(2)求DC的长;(3)若点F是线段AB上一点,且,求AF的长.13.如图,点B、C为线段AD上的点,点C是AD的中点,且AB=8cm,BD=2cm.(1)图中共有条线段;(2)求线段BC的长度;(3)若点E在直线AD上,且AE=3cm,求线段DE的长度.14.如图,点O是线段AB的中点,AB=24cm,点P将线段AB分为两部分,AP:PB=5:3.(1)图中共条线段?(2)求线段OP的长.(3)点M在线段AB上,若MP=4cm,求线段AM的长.15.如图,线段AB上从左到右顺次有M,C,D,N四点,且AM=AC,BN=BD.(1)若AB=16,CD=7,求MN的长;(2)若AB=a,CD=MN,求CD的长.(用含a的式子表示)二、能力提升1.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为.2.在同一平面内,3条直线两两相交,最多有3个交点,那么4条直线两两相交,最多有个交点,8条直线两两相交,最多有个交点.3.已知n(n≥2)个点P1,P2,P3,…,P n在同一平面内,且其中没有任何三点在同一直线上.设S n表示过这n个点中的任意2个点所作的所有直线的条数,显然,S2=1,S3=3,S4=6,S5=10,…,由此推断,S n=.4.综合与实践已知数轴上A、B两点所表示的数分别为﹣3和9.(1)观察发现:直接写出线段AB=.(2)情境探究:情境①:当点P为线段AB的中点时,且M为P A的中点,N为PB的中点,请你借助直尺在图1中画出相应的图形,并写出线段MN=;情境②:当点P为线段AB上的一个动点时,如图2,且M为P A的中点,N 为PB的中点,试通过计算判断MN的长度是否发生变化?(3)迁移类比:当点P为数轴上点A左侧的一个动点时,如图3,且M为P A的中点,N为PB的中点,直接写出线段MN的长.5.如图,C是线段AB的中点,D是线段AB的三等分点且在点C的左侧.(1)图中共有条线段.(2)若线段AB的长为30,求线段CD的长.(3)设线段AB的长为a,若F是直线AB上一点,且,求线段DF 的长.7.如图,点E是线段AB的中点,C是EB上一点,AC=12.(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,CE=2,求EF长.7.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)如图2,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB 向右运动,终点为B,点Q以1cm/s的速度沿BA向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?8.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.(1)若AB=18,DE=8,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,则=.9.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=b cm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.10.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当P A=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q 的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.11.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.12.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.13.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.14.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作AB=|a﹣b|或AB=|b﹣a|.我们把数轴上两点之间的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为﹣6,0,2.(1)直接写出结果:OA=,AB=;(2)设点P在数轴上对应的数为x.①若点P为线段AB上的一个动点,化简|x+6|+|x﹣2|;②若点P为线段AB的中点,求x的值.15.(1)如图,已知线段AB、CD,线段AB在线段CD上(点C、A在点B的左侧,点D在点C的右侧).①若线段AB=6,CD=14,M、N分别为AC、BD的中点,求MN的长.②若线段AB=m,CD=n,M、N分别为AC、BD的中点,则线段MN=(用含m,n的代数式表示).(2)若线段CD在线段AB的延长线上(点A在点B的左侧,点C在点D的左侧),M、N分别为AC、BD的中点,②中的结论是否成立?请画出图形,直接写出结论(用含m,n的代数式表示).16.在数轴上A,B,C点分别表示数a,b,c,且b最大的负整数,|a+4|+(c ﹣5)2=0.(1)a=,b=,c=;(2)若A、B、C为数轴上的动点,点A以每秒1个单位长度的速度向左运动,同时点B和点C以分别每秒2个单位长度和每秒4个单位长度的速度向右运动,运动时间为t秒,设点A与点B之间的距离表示为AB,点B与点C 之间的距离表示为BC,点A与点C之间的距离表示为AC.①若AB=BC,求t的值?②是否存在常数m,使得m•BC﹣AB的值是个定值?如果存在,请求出m的值;若不存在,请说明理由.17.如图,已知点B、C在线段AD上.(1)图中共有条线段;(2)若AB=CD比较线段的大小:AC BD(填:“>”,“=”,或“<”);(3)若AD=22,BC=12,M是AB的中点,N是CD的中点(如图).①求MN的长度;②嘉嘉同学分析探究后说,当线段BC在射线AD上运动时,线段MN的长度不变.你同意他的说法吗?并说明理由.18.如图1,已知直线l上从左往右依次有A,B,C,D四点,其中AB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0.(1)填空:m=,n=;(2)如图2,M,N分别为线段AB,CD的中点,线段AB以每秒4个单位长度向右运动.①若线段CD以每秒l个单位长度也向右运动,当运动6秒后,MN=4,求运动前线段BC的长;②若线段CD固定不动,且运动前BC=24.已知在线段AB向右运动的某一个时间段内,始终有MN+AD为定值,请求出这个定值,并直接写出MN+AD 为定值时所持续的时间长度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保密★启用前七年级上期培优训练3考试范围:《直线、射线、线段》;考试时间:100分钟;命题人:题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共12小题)1.下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线2.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④3.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或64.如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=25.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm6.A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4 B.20 C.10 D.97.已知A,B,C三点位于同一条直线上,线段AB=8,BC=5,则AC的长是()A.13 B.3 C.13或3 D.以上都不对8.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5cm B.1cm C.5或1cm D.无法确定9.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.两点之间线段的长度,叫做这两点之间的距离D.圆上任意两点间的部分叫做圆弧10.如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是()A.①②B.①②④C.②③④D.①②③④11.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间12.线段AB=5厘米,BC=4厘米,那么A,C两点的距离是()A.1厘米B.9厘米C.1厘米或9厘米D.无法确定第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共7小题)13.如图所示,AB+CD AC+BD.(填“<”,“>”或“=”)14.如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有种.15.一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,则表中n=.点的个数234567线段的条数1361015n16.如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为40cm,若AP=PB,则这条绳子的原长为cm.17.2005年6月扬州与南京的火车开通,已知火车途中要依停靠两个站点,如果任意两个站点间的票价都不同,那么请你想一想:在这些站点之中,要制作种不同的票?在这些票中,有种不同的票价?18.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.19.已知线段AD=AB,AE=AC,且BC=6,则DE=.评卷人得分三.解答题(共7小题)20.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.21.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=b cm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.22.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.23.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.24.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.25.按下列语句画出图形:(1)直线L经过A、B、C三点,点C在点A与点B之间;(2)经过点O的三条直线a、b、c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.26.(1)如图1,一条公路边有三个工厂A、B、C,现要在公路边建造一个货物中转站P,使得这三个工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方?(2)如图2,一条公路边有四个工厂A、B、C、D,现要在公路边建造﹣个货物中转P,使得这四个工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方?(3)如图3,一条公路边有n个工厂A1、A2、A3、…、A n,现要在公路边建造一个货物中转站P,使得这n工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方?参考答案与试题解析一.选择题(共12小题)1.(2016秋•衡阳期末)下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线【分析】此题较简单要熟知直线、线段、射线的概念及直线、线段、射线的表示方法.【解答】解:A、直线AB和直线BA是同一条直线;B、正确;C、线段AB和线段BA是一条线段;D、直线AB和直线a能是同一条直线.故选B.【点评】直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点.2.(2016秋•上城区期末)有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【分析】四个现象的依据是两点之间,线段最短和两点确定一条直线,据此作出判断.【解答】解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选C.【点评】本题主要考查了定理的应用,正确确定现象的本质是解决本题的关键.3.(2014•徐州)点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或6【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.【点评】在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.4.(2015•黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12 B.BC=4 C.AM=5 D.CN=2【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,继而即可得出答案.【解答】解:根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.故选A.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.5.(2016秋•灵武市期末)已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC 的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm【分析】本题应考虑到A、B、C三点之间的位置关系的多种可能,即当点C在线段AB上时和当点C在线段AB的延长线上时.【解答】解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5.综合上述情况,线段MN的长度是5cm.故选D.【点评】首先要根据题意,考虑所有可能情况,画出正确图形.再根据中点的概念,进行线段的计算.6.(2008秋•临清市期中)A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4 B.20 C.10 D.9【分析】根据A站到B站之间还有3个车站,首先弄清楚每两个站之间的数量,再根据往返两种车票进行求解.【解答】解:如图所示,其中每两个站之间有AC、AD、AE、AB、CD、CE、CB、DE、DB、EB.应安排10×2=20(种).故选B.【点评】此题考查了几何在实际生活中的应用,特别注意每两个站之间车票应当是往返两种.7.(2010秋•永康市期末)已知A,B,C三点位于同一条直线上,线段AB=8,BC=5,则AC的长是()A.13 B.3 C.13或3 D.以上都不对【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【解答】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=8,BC=5∴AC=8﹣5=3;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=8,BC=5,∴AC=8+5=13.故选C.【点评】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.(2016秋•崆峒区期末)如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5cm B.1cm C.5或1cm D.无法确定【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=4cm,M,N分别为AB,BC的中点,∴MB=AB=3,BN=BC=2,∴MN=MB+NB=5cm,如图2,当点C在线段AB上时,∵AB=6cm,BC=4cm,M,N分别为AB,BC的中点,∴MB=AB=3,BN=BC=2,∴MN=MB﹣NB=1cm,故选:C.【点评】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.9.(2015秋•新泰市期末)木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.两点之间线段的长度,叫做这两点之间的距离D.圆上任意两点间的部分叫做圆弧【分析】依据两点确定一条直线来解答即可.【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:B.【点评】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.10.(2015秋•江汉区期末)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是()A.①②B.①②④C.②③④D.①②③④【分析】根据线段中点的性质、结合图形计算即可判断.【解答】解:∵H为AC的中点,M为AB的中点,N为BC的中点,∴AH=CH=AC,AM=BM=AB,BN=CN=BC,∴MN=MB+BN=(AB+BC)=AC,∴MN=HC,①正确;(AH﹣HB)=(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;MN=AC,③错误;(HC+HB)=(BC+HB+HB)=BN+HB=HN,④正确,故选:B.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.11.(2013•雨花区校级自主招生)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【解答】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.【点评】此题为数学知识的应用,考查知识点为两点之间线段最短.12.(2014秋•大城县期末)线段AB=5厘米,BC=4厘米,那么A,C两点的距离是()A.1厘米B.9厘米C.1厘米或9厘米D.无法确定【分析】要确定A,C两点的距离,需要确定C点在哪里.【解答】解:点C在线段AB上时,AC=5﹣4=1cm,点C在线段AB的延长线上时,AC=5+4=9cm,点C不在直线AB上时,1<AC<9,所以,A、C两点间的距离为1≤AC≤9,故无法确定.故选D.【点评】由于没有说明AB与BC的位置,故不能确定A,C两点的距离.二.填空题(共7小题)13.(2015秋•海淀区期末)如图所示,AB+CD<AC+BD.(填“<”,“>”或“=”)【分析】AC与BD的交点为E,由两点之间线段最短可知AE+BE>AB,同理得到CE+DE>DC,从而得到AB+CD<AC+BD.【解答】解:如图所示:由两点之间线段最短可知AE+BE>AB.同理:CE+DE>DC.∴AE+BE+CE+DE>AB+DC.∴AC+BD>AB+DC,即AB+DC<AC+BD.故答案为:<.【点评】本题主要考查的是线段的性质,掌握线段的性质是解题的关键.14.(2009秋•南岸区期末)如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有6种.【分析】根据题意,结合图形求解即可.【解答】解:从A地上面一条路线到C地有2条路线,从A地中间一条路线到C地有2条路线,从A地下面一条路线到C地有2条路线.∴从A地到C地可供选择的方案有2×3=6种.故答案为6.【点评】此题在线段的基础上,着重培养学生的观察能力,应注重分类讨论的方法计数,做到不遗漏,不重复.15.(2005•毕节地区)一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,则表中n=21.点的个数234567线段的条数1361015n【分析】根据表中数据,寻找规律,列出公式解答.【解答】解:设线段有n个点,分成的线段有m条.有以下规律:n个m条2 13 1+24 1+2+3…n m=1+…+(n﹣1)=7个点把线段AB共分成=21条.【点评】本题体现了“具体﹣﹣﹣抽象﹣﹣﹣﹣具体”的思维探索过程,探索规律、运用规律,有利于培养学生健全的思维能力.16.(2010秋•西城区期末)如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为40cm,若AP=PB,则这条绳子的原长为60或120cm.【分析】设AP=xcm,则BP=2xcm,分为两种情况:①当含有线段AP的绳子最长时,得出方程x+x=40,②当含有线段BP的绳子最长时,得出方程2x+2x=40,求出每个方程的解,代入2(x+2x)求出即可.【解答】解:设AP=xcm,则BP=2xcm,①当含有线段AP的绳子最长时,x+x=40,解得:x=20,即绳子的原长是2(x+2x)=6x=120(cm);②当含有线段BP的绳子最长时,2x+2x=40,解得:x=10,即绳子的原长是2(x+2x)=6x=60(cm);故答案为:60或120.【点评】本题考查了两点间的距离的应用,解此题的关键是能根据题意求出符合条件的两个解.17.2005年6月扬州与南京的火车开通,已知火车途中要依停靠两个站点,如果任意两个站点间的票价都不同,那么请你想一想:在这些站点之中,要制作12种不同的票?在这些票中,有6种不同的票价?【分析】两站之间的往返车票各一种,即两种,n个车站每两站之间有两种,则n个车站的票的种类数=n(n﹣1)种,把n=4代入上式即可求得票的种数,但是票价只有票数.【解答】解:两站之间的往返车票各一种,即两种,则4个车站的票的种类数是4×3=12种,票价有12÷2=6种,即要准备12种不同的车票,有6中不同的票价,故答案为:12,6.【点评】本题主要考查排列组合问题,应注重分类讨论的方法计数,做到不遗漏,不重复18.(2013•安顺)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有16073个点.【分析】根据题意分析,找出规律解题即可.【解答】解:第一次:2010+(2010﹣1)=2×2010﹣1,第二次:2×2010﹣1+2×2010﹣1﹣1=4×2010﹣3,第三次:4×2010﹣3+4×2010﹣3﹣1=8×2010﹣7.∴经过3次这样的操作后,直线上共有8×2010﹣7=16073个点.故答案为:16073.【点评】此题为规律型题.解题的关键是找对规律.19.(2009•宝山区二模)已知线段AD=AB,AE=AC,且BC=6,则DE=4.【分析】在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.画图如下:【解答】解:如图:设AB=3a,AD=2a,那么AC=AB﹣BC=3a﹣6,AE=AC=2a﹣4,DE=AD﹣AE=2a﹣2a+4=4.故答案为4.【点评】灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题的关键,比较简单.三.解答题(共7小题)20.(2016秋•召陵区期末)如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.21.(2016秋•禹州市期末)如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=b cm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.【分析】(1)根据线段中点的定义得到MC=AC=4cm,NC=BC=3cm,然后利用MN=MC+NC进行计算;(2)根据线段中点的定义得到MC=AC,NC=BC,然后利用MN=MC+NC得到MN=acm;(3)先画图,再根据线段中点的定义得MC=AC,NC=BC,然后利用MN=MC﹣NC得到MN=bcm.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴MC=AC=×8cm=4cm,NC=BC=×6cm=3cm,∴MN=MC+NC=4cm+3cm=7cm;(2)MN=acm.理由如下:∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC+NC=AC+BC=AB=acm;(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=bcm.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.22.(2014秋•东海县校级期末)如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=4cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.23.(2013秋•金平区期末)如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.【解答】解:点P的位置如下图所示:作法是:连接AB交L于点P,则P点为汽车站位置,理由是:两点之间,线段最短.【点评】本题考查了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵活运用.24.(2016秋•高台县期末)如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有15条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有4950条.【分析】根据每一个点与另外的一个点有一条线段,n个点中每一个点可组成(n﹣1)条线段,n个点可组成,可得答案.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段上有n个点时,线段共有条;(3)当n=100时,线段共有=4950条;故答案为:15,,4950.【点评】本题考查了直线、射线、线段,任意两点有一条线段,根据规律是解题关键.25.按下列语句画出图形:(1)直线L经过A、B、C三点,点C在点A与点B之间;(2)经过点O的三条直线a、b、c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.【分析】(1)作出经过A、B、C三点,点C在点A与点B之间的直线L即可求解;(2)画出都经过点O的三条直线a、b、c即可求解;(3)画出相交于点P的两条直线AB与CD即可求解;(4)在直线a外画出一点P,再画出经过点P的一条直线b与直线a相交于点Q.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:【点评】本题考查射线,线段,直线的画法,正确画出图形是解题的关键.26.(1)如图1,一条公路边有三个工厂A、B、C,现要在公路边建造一个货物中转站P,使得这三个工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方?(2)如图2,一条公路边有四个工厂A、B、C、D,现要在公路边建造﹣个货物中转P,使得这四个工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方?(3)如图3,一条公路边有n个工厂A1、A2、A3、…、A n,现要在公路边建造一个货物中转站P,使得这n工厂到货物中转站的路程之和最短,这个货物中转站应该建在什么地方?【分析】(1)根据图1一共有3个工厂,所以这个货物中转站应该建在最中间的C工厂,这三个工厂到货物中转站的路程之和最短,是AB两个工厂之间的距离.(2)根据图2一共有4个工厂,所以这个货物中转站应该建在中间的C、D两个工厂之间的任何地方,这四个工厂到货物中转站的路程之和最短,是AB两个工厂之间的距离和CD两个工厂之间的距离的和.(3)根据图3一共有n个工厂,分两种情况:①当n是奇数时,选最中间的一个工厂作为货物中转站P.②当n是偶数时,选中间两个工厂之间的任何地方都可以建一个货物中转站P.【解答】解:(1)如图1,,这个货物中转站P应该建在最中间的C工厂,这三个工厂到货物中转站的路程之和是AB两个工厂之间的距离.(2)如图2,,这个货物中转站P应该建在中间的C、D两个工厂之间的任何地方,这四个工厂到货物中转站的路程之和最短,是AB两个工厂之间的距离和CD两个工厂之间的距离的和.(3)如图3,,①当n是奇数时,选最中间的一个工厂作为货物中转站P.②当n是偶数时,选中间两个工厂之间的任何地方都可以建一个货物中转站P.【点评】此题主要考查了直线、射线、线段,考查了分类讨论思想的应用,要熟练掌握.。