大学物理 电场和电场强度

合集下载

大学物理 第一章静止电荷的电场(必看)

大学物理 第一章静止电荷的电场(必看)
为d,用力将两板慢慢拉开,使板间的距离变为2d, 这外力在拉开平板的过程中F作的功为(
q2d (A) 2 S 0
Байду номын сангаас
)。
q2d (B) S 0 q2d (D) S 0
q2 F Eq 2S 0
q2d (C) 2 S 0
d
d
q E 2 0 2S 0
q 2d A Fd 2S 0
量等于该闭合面内所包围的电荷代数和除以真空的
介电常数,数学表达式为
1 E ds
s
0 ( s面内)
q
典型电荷的电场
(1)点电荷
E
q 4 0 r
2
er
(2)半径为R 、带电量为Q均匀带电球面
E0
E Q 4 0 r
2
rR
er
rR
(3)均匀带电无限长直线
E 2 0 r
2 ES 2 xS
底面
E
x
0
0
d x 时: 2 q DS
2 ES DS
0
D E 2 0
例 题 15 15、如图所示,一无限长的均匀带电圆柱体,
体电荷密度为 ,截面半径为 R 。
求:
(1)柱内( r R )电场强度分布?
(2)柱外(r R)的电场强度分布?
直线中垂线的P点到带电直线中心o的距离
OP L
时,P点的电场强度大小。 解(1)
dE
E
L 2 L 2
y
L r ax 2
o
x
1 1 ( ) L 4 0 ( a x) 2 4 0 a a L 2
dq 4 0 r 2 dx

大学物理知识点归纳

大学物理知识点归纳

大学物理第十一章:真空中的静电场一、电场强度:数值上等于单位正电荷在该点受到的电场力的大小,也等于单位面积电通量的大小(即电场线密度);方向与该点的受力方向(或者说电场线方向)一致。

二、电场强度的计算:a)点电荷的电场强度:b)电偶极子中垂线上任意一点的电场强度:(表示点到电偶极子连线的距离)c)均匀带电直棒:无限长(=0)无限ii.非均匀电场E穿过曲面S的电通量:四、高斯定理a)b)表述:真空中任何静电场中,穿过任一闭合曲面的电通量,在数值上等于该闭合曲面内包围的电荷的代数和除以;c)理解:1.高斯定理表达式左边的E是闭合面上处的电场强度,他是由闭合面内外全部电荷共同产生的,即闭合曲面外的电荷对空间各点的E有贡献,要影响闭合面上的各面元的同量。

2.通过闭合曲面的总电量只决定于闭合面内包围的电荷,闭合曲面外部的电荷对闭合面的总电通量无贡献。

d)应用:1.均匀带电球面外一点的场强相当于全部电荷集中于球心的点电荷在该点的电场强度。

2.均匀带电球面内部的电场强度处处为零。

五、电势a)静电场环路定理:在静电场中,电场强度沿任意闭合路径的线积分等于零。

b)电场中a点的电势:1.无穷远为电势零点:2.任意b点为电势零点:电场中任意一点的电场强度等于该点点势梯度的负值。

第十二章a)导体内部,电场强度处处为零;导体表明的电场强度方向垂直该处导体表面;电场线不进入导体内部,b)c)d)e)a)i.b)导体空腔内有带电体(电量为q)的情况i.空腔导体原来不带电,空腔外表面感应电荷为q,空腔内表面感应电荷为-q。

如果空腔导体原来带电量Q,则内外表面电荷量分别加上Q。

三、A、B为两个任意带电平面:,四、静电场中的电介质:a)电介质中的电场强度:i.ii.电介质极化后,介质内部任意一处,合电场强度,但不等于0,这是电场中的电介质与电场中的导体静电平衡后的重要区别。

五、电介质中的高斯定理:a)其中六、有电介质存在时静电场的分析计算:i.由介质中的高斯定理先计算空间的分布,再由求得空间电场的分布。

大学物理常用公式(电场磁场 热力学)

大学物理常用公式(电场磁场 热力学)

第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。

2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。

二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。

Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。

2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。

2)、导体表面的场强处处垂直于导体表面。

E v ⊥表面。

导体表面是等势面。

2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。

大学物理电磁学公式

大学物理电磁学公式

大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。

在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。

以下是一些常见的大学物理电磁学公式的详细介绍。

1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。

它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。

2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。

对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。

3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。

对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。

4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。

对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。

5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。

电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。

6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。

大学物理 静电场总结

大学物理 静电场总结

5. 电势定义:
a
Wpa q0
ur r E dl
a
静电场力作的功与电势差、电势能之间的关系:
b ur r
Aab qE dl q(a b ) (Wpb Wpa ) a
6. 电势分布的典型结论
1) 点电荷: q 4 0r
2) 均匀带电圆环轴线上:
4 0
q R2 x2
3) 均匀带电球面的电势分布:
1)平行板电容器 C 0S
d
2) 电容器的串并联:
串联 1 1 1 1
C C1 C2
Cn
并联 C C1 C2 Cn
4. 电场能量
电容器的静电能: W Q2
2C
电场能量密度:
w
1 2
0E2
各向同性的电介质:
电介质 电位移
D ε0E P
D ε0εr E εE
Gauss定理
2. 静电平衡时导体上的电荷分布 1) 实心导体: 电荷只分布在表面,导体内部没有净电荷.
2) 空腔导体: • 腔内无电荷 电荷分布在外表面,内表面无电荷. •:腔内有电荷: 腔体内表面所带的电量和腔内带电体所带 的电量等量异号。 • 接地空腔导体 外表面不带电, 静电屏蔽 :
3. 电容 C Q
q
4
q
0R
L L rR L L rR
40r
4) 无限长均匀带电直线: ln rB 20 r
(B 0)
7. 电势的计算 叠加法 定义法
第6章 静电场中的导体与电介质
1. 导体的静电平衡条件:
电场描述: ⑴ 导体内部任意一点的场强为零。 ⑵ 导体表面处的场强方向与该处表面垂直.
电势描述: 导体是一等势体,表面是一等势面.

大学物理电场电场强度

大学物理电场电场强度

Q1
d
r
Байду номын сангаас观察点
.P
库仑定律: • 1785年,法国库仑(C.A.Coulomb) 库仑
库仑定律
真空中两个静止的点电荷之间的作用力(静电力), 与它们所带电量的乘积成正比,与它们之间的距离的平方 成反比,作用力沿着这两个点电荷的连线。
F21 ——电荷q1作用于电荷q2的力。
q1q2 F21 F12 k 2 r0 r 1 k 4 0
F31 1 40 q1q3 r2
F3
q3 0.3m j q2

F31
0.6m
9.0 109 140 N
6.5 10 8.6 10 N
5 5
0.62
i
0.52m
q1
x
力 F31 沿x轴和y轴的分量分别为
Fx F31 cos 30 120N
引力
q1q2 1 q1q2 注意:只适用两 r0 r 2 3 个点电荷之间 4 0 r 4 0 r
静电力的叠加原理 作用于某电荷上的总静电力等于其他点电荷单独 存在时作用于该电荷的静电力的矢量和。 数学表达式
离散状态
N F Fi i 1
r10
ri 0
dF
A q0 B
q0
A
FB
(1)点电荷的电场
3.电场强度的计算
(2)场强叠加原理和点电荷系的电场 (3)连续分布电荷的电场
(1)点电荷的电场
1 q0 q F r 3 4 0 r
E
F 1 q E r 3 q0 40 r
E
q 源点
q0
E
场点

大学物理——电场强度与电势

大学物理——电场强度与电势

例题
均匀带电细棒,长 L ,电荷线密度 , 求:中垂面上的场强 。 r dQ
y
dQ dy
解 : dE 4 r 3 0
r1
L0
dE dE x i dE y j E dE i dE x j 0 dE y
L L L
E r
2
3、场强叠加原理
(1)点电荷系的场强 Q2
点电荷的场强
点 电 Q1 荷
试验电荷 F2 Q
0
E
F F
1
Q 4 0 r
2
r0
由定义
F F3 F1 F2 E E1 E2 E3 Q0 Q0 Q0 Q0
L
E E //
x xQ dQ x dQ cos dE 2 L 3 L r 4 r 40 r 0 (1) x 0 xQ i
dE
E

L
dE 0


E0
4 0 x R
2

2

3
2
Q (2)R <<x E 2 4 0 x
dE
P
x
r
R
O
dr
9
讨论 (1) 当R >> x ,圆板可视为无限大薄板
E 2 0
(2)
E1
E1 E2
E1 E2
EI E1 E2 0 EII E1 E2 0 EIII E1 E2 0
E2
(3) 补偿法
10
例 已知圆环带电量为q ,杆的线密度为 ,长为L
qq 0 1 1 A r 4 0 1 r2

大学物理一复习 第五章 静电场和习题小结

大学物理一复习  第五章  静电场和习题小结
r
q 4 π
0


dr r
2
r
q
1 q ( ) 4 r r 4 r q
0 0
r
E
V
q 4 π 0r
q 0, V 0 q 0, V 0
三、电势叠加原理
点电荷系
Va
q1
q2

a
E dl
V1 V 2 V n
第 五 章 静电场
Nothing in life is to be feared. It is only to be understood. ----(Marie Curie)
本章参考作业:P190
5-1,5-2、5-9①、5-14、5-21、 5-23、5-26、5-27、5-30。
学 习 要 点
的大小处处相等,且有
cos 1
cos 0
(目的是把“ E ”从积分号里拿出来)
计算高斯面内的电荷,由高斯定理求 E。
高斯定理运用举例: ---计算有对称性分布的场强
掌握所有 例题
1、球对称——球体、球面、球壳等。 2、轴对称——无限长直线、圆柱体、圆柱面。 3、面对称——无限大均匀带电平面。
E
0
R
r
三、面对称——无限大均匀带电平面。
例6、求无限大均匀带电平面的场 分布。已知面电荷密度为
o
p
dE
dE
解:对称性分析: 垂直平面 E
选取闭合的柱形高斯面
左底 侧
右底
侧 0

左底
E S
S'
E S

右底
2 ES

大学物理教程6.2电场强度

大学物理教程6.2电场强度

E E 平面 E圆盘
( ) x i (1 )i 2 2 2 0 2 0 x R
2 0
x x R
2 2
i
第11章 静电场 第6章 静电场
(Q )
dq dq r r 3 3 3 (( Q ) 4 r Q ) 4 r 4π 00 0
第11章 静电场 第6章 静电场
11-2 库仑定律 6-2 电场强度
电荷元选取:
dq 体电荷分布 dV dq 面电荷分布 ds
dq dV
dq ds
ds
dq 线电荷分布 dl
2
o x
dx
x
d dx 2 d sin
第11章 静电场 第6章 静电场
11-2 库仑定律 6-2 电场强度
Ex
2
1
cos d (sin 2 sin 1 ) 4π 0d 4π 0d
Ey
2
1
cos d (cos 1 sin 2 ) 4π 0d 4π 0d
1
d L
y
Ex 0
Ey 2π 0 d
2
x
演示
Ex (sin 2 sin 1 ) 4π 0 d
Ey (cos 1 cos 2 ) 4π 0 d
第11章 静电场 第6章 静电场
11-2 库仑定律 6-2 电场强度
π y 2. 半无限长 即1 a 2 π 2 d 1 Ex Ey 4π 0 d 4π 0 d π 或 1 0 2 2 Ex Ey 4π 0 d 4π 0 d
讨论
1. 若x << R, 则 E 2 0

大学物理 电场 电场强度

大学物理 电场 电场强度

13
b Ex ( p点) dEx a cosd 4π 0 q (sin b sin a ) 场强的x分量: E x 4π 0 aL b E y ( p点) dE y a sin d 4π 0 q 场强的y分量: E y (cos a cos b ) 4π 0 aL
E
E E x E x E cos E cos
02:11
Q点的场强 E 的y分量为零, x 分量 是 E+ 和 E- 在x方向分量的代数和:
cos l /{2 r 2 (l / 2) 2 }
r
l

q
q
11
代入上式
1 ql E Ex 4π 0 (r 2 l 2 / 4)3 / 2
例1:有两个带等量异号的点电荷,相距为l,求它们 中垂线上与点电荷连线中心相距r的任一点Q处的电 场强度。 (等量异号电荷+q、-q ,相距为l (l<<r) ,该带电体 系被称为电偶极子) E 解:建立如右图的坐标系 Q E 1 q E E 4π 0 r 2 (l / 2) 2
dE⊥
r
dq
L
R
18
例5:均匀带电圆盘轴线上一点的场强。 设圆盘带电量为 q ,半径为 R 。
解:带电圆盘可看成许多同心的圆环 组成,取一半径为r,宽度为dr 的细 圆环带电量: dq 2πr dr
E
dE
X
p

R
dE
dqx 4 π 0 (r x )
2 2 3 2
r
dq
02:11
F F1 F2 F3 Fn E 按场强定义: E1 E2 E3 En q0 q0 q0 q0 q0

大学物理电磁学

大学物理电磁学

大学物理电磁学
第一章:静止电荷的电场
讲授内容:电荷、库仑定律、电场和电场强度以及场强叠加原理、电场线和电通量、高斯定律、利用高斯定律求静电场的分布基本要求:掌握静电场场强的概念及其叠加原理、能求解连续带电体的场强分布;理解用高斯定理律计算电场的条件和方法本章重点:电场强度的矢量叠加性、高斯定律
本章难点:微积分的应用
1.库仑定律
注意:矢量符号的印刷体以黑体加粗表示,手写书写体时必须带上标箭头。

2. 叠加原理:两个以上的点电荷对一个点电荷的作用力等于各个点电荷。

单独存在时对该点电荷的作用的矢量和。

3.电场:是电荷周围空间里存在的一种特殊物质。

4.电场强度:是用来表示电场的强弱和方向的物理量,下面是定义式。

5.电场线:是为了直观形象地描述电场分布而在电场中引入的一些假想的曲线。

电场线的特性:
a.始于由正电荷,止于负电荷;
b.电场线不相交;
c.静电场线不闭合;
(曲线上每一点的切线方向为电场方向;电场线的疏密程度代表场强大小)
6.电通量:通过电场中某一个面的电场线数叫做通过这个面的电场强度通量。

注:一般规定由内向外的方向为各处面元法向的正方向。

7.高斯定律:
8.电偶极子:电偶极子由等量异号电荷构成,电偶极矩方向由负电荷指向正电荷。

大学物理 电场和电场强度

大学物理  电场和电场强度

(2) 选积分元,写出 d E; E E E (3) 写出 d E的投影分量式: d x,d y,d z ;
(4) 根据几何关系统一积分变量; (5) 分别积分:E ; d E , E d E , E d E x x y y z z (6) 写出合场强:E . E i E j E k x y z
q 1 1 E E E i 2 2 4 ( x l2 ) ( x l2 ) 0
q 2 xl E i 2 2 2 4 ( x l 4 ) 0
x l
2019/2/4
12 12 p ql e E i 3 3 4 4 0x 0x
d E
dE x
2
P
1
r
a
dq O 由图上的几何关系: x x a tan( θ ) a cot θ 2 2 2 2 2 2 2 r a x a csc d x a csc θ d θ
d E cos d x 4 a 0
2019/2/4
θ 2
1
2 1
讨论
(1) a >> L 杆可以看成点电荷 λ L E Ey x 0 40a2 (2) 无限长带电直线
y dE y P
d E
dE x
2
1
r
a
θ1 0 θ2
2019/2/4
E x 0
dq O
x
λ Ey 2ε 0a
例: 半径为R 的均匀带电细圆环,带电量为q . x
电场强度e电场中某点的电场强度的大小等于单位试验电荷在该点所受到的电场力的大小其方向与正的试验电荷受力方向相同

大学物理 电磁学

大学物理 电磁学

大学物理:电磁学电磁学是物理学的一个分支,主要研究电磁现象、电磁辐射、电磁场以及它们与物质之间的相互作用。

在本文中,我们将探讨电磁学的基本概念、历史背景、研究领域以及在现实生活中的应用。

一、基本概念1、电荷与电荷密度电荷是物质的一种属性,它可以产生电场。

电荷分为正电荷和负电荷。

电荷的分布可以用电荷密度来描述,它表示单位体积内所包含的电荷数量。

2、电场与电场强度电场是空间中由电荷产生的力线所形成的场。

电场强度是描述电场强弱的物理量,它与电荷密度有关。

3、磁场与磁感应强度磁场是由电流或磁体产生的场。

磁感应强度是描述磁场强弱的物理量,它与电流密度和磁场中的电荷有关。

4、电磁波电磁波是由电磁场产生的波动现象,它包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

二、历史背景电磁学的研究可以追溯到17世纪和18世纪,当时科学家们开始研究静电和静磁现象。

19世纪初,英国物理学家迈克尔·法拉第发现了电磁感应定律,即变化的磁场可以产生电流。

1864年,英国物理学家詹姆斯·克拉克·麦克斯韦将法拉第的发现与自己的研究结合起来,提出了著名的麦克斯韦方程组,预言了电磁波的存在。

三、研究领域1、静电学:研究静止电荷所产生的电场、电势、电容、电导等性质。

2、静磁学:研究静止磁场以及磁体和电流所产生的磁场和磁场分布。

3、电磁感应:研究变化的磁场和电场以及它们之间的相互作用和变化规律。

4、电磁波:研究电磁波的产生、传播、散射、反射和吸收等性质以及在各种介质中的行为。

四、应用电磁学在现实生活中有着广泛的应用,如:1、电力工业:利用电磁感应原理发电、输电和用电。

2、通信工程:利用电磁波传递信息,包括无线电通信、微波通信、光纤通信等。

3、电子技术:利用电磁学原理制造电子设备,如电视机、计算机、雷达等。

4、磁悬浮技术:利用磁力使物体悬浮,减少摩擦和能耗。

5、医学成像:利用电磁波和磁场进行医学诊断和治疗。

(完整版)大学物理电场和电场强度

(完整版)大学物理电场和电场强度

电荷与真空中的静电场
例: 半径为R 的均匀带电细圆环,带电量为q .
x
dE
求: 圆环轴线上任一点P 的电场强度.
dEx
P dE
解: dq dl
E dE
dE
1
4 0
dq r2
er
1 dq
40 r 2 er
rx
RO
dE dE sinθ
dEx dE cosθ
dq
圆环上电荷分布关于x 轴对称
θ
2
sin
θ
1)
Ey
dEy
θ2 sinθ dθ θ1 40a
40a
(cosθ 1
cosθ
2
)
讨论 (1) a >> L 杆可以看成点电荷
y
dE
dEy
Ex 0
Ey
λL
4 0 a 2
(2) 无限长带电直线
P
dEx
1 r a 2
θ1 0 θ2
Ex 0
Ey
λ 2ε
0a
dq O
x
2020/4/13
E0
(2) 当 x>>R 时,
E
1
40
q x2
可以把带电圆环视为一个点电荷.
RO dq
(3)x 2 R时, 2
E Emax
2020/4/13
电荷与真空中的静电场
例:求面密度为 的带电薄圆盘轴线上的电场强度.
解: dq 2rdr
x
dE
1
40
(r2
xdq x2 )3/ 2
2020/4/13
电荷与真空中的静电场
点电荷的电场是辐射状球对称分布电场.

大学物理电磁学部分02 电场强度

大学物理电磁学部分02 电场强度
E y
P
E y
l /2 cos r 1 ql / 2 E 2 x 4 0 r2 r 1 ql 场强的大小为: E 3 40 r 写成矢量式: E 1 p 3 4 0 r
E
r
p 3 4 0 r
q
pq l
o
x
l
q
9
y dy 2 解:线电荷密度λ dq 1 dy 1 dq er d E e 2 2 r 4 r 4 r dq 0 0 y r 1 dy
讨论: 1. 无限长均匀带电直线, θ1= 0, θ2=。
Ex , Ey 0 20a E Ex 2 0a
y 2
2. 设棒长为l ,a>>l 无穷远点场强, 相当于点电荷的电场。
o
1 a
L E 2 2 4 0 a 4 0 a
q
x
12
例3:均匀带电圆环半径为R,带电量为q,求:圆环轴 线上一点的场强。 dq 解:电荷元dq的场
2.确定电荷密度: 体 , 面 , 线 3.求电荷元电量;
1 dq E e 4.确定电荷元的场 d 2 r 4 0 r
5.求场强分量Ex、Ey、EZ。
E E x dE x,E y dEy , Z
2 2 2 求总场 E E E E x y Z
dE
Z
8
电场 电场强度
1
一、电场
电荷是通过电场来作用的。 电场的基本性质:对处在其中的其它电荷会产生作 用力,该力称为电场力。 电荷q1 电场E 电荷q2
电场是电荷周围存在的一种特殊物质。 场的物质性体现在: 电场与实物有 何不同? a.给电场中的带电体施以力的作用。

《大学物理》第三篇电磁学

《大学物理》第三篇电磁学

找比较对象 类象
重要作用: (1) 是提出科学假说的重要途径; (2) 是科学阐述或理论证明的辅助手段; (3) 在解决问题的过程中起启发思路、触类旁通的作用。
注意:类比推理所得结论是或然的,需证实或证伪。
3-15-2
磁场
静电场 电
感生 场 电场
一般 电场
高斯定理
SB dS 0
S D0 dS
物质存在的两种基本形式:实物和场
共性:能量、动量、质量
•场能对其中的物体做功 ——表明场有能量
•引力红移与偏折、光压等实验 ——表明场有质量和动量
可相互转化(如正负电子对湮没、同步辐射)
1、电磁场的能量密度与能量
电场能量密度
1 we 2 E D
磁场能量密度
wm
1 2
BH
电磁场能量密度
w
we
S D0 dS
ρdV
V
L E0 dl 0
SB dS 0
D
LH dl S ( j t ) dS
SB dS 0
LH dl S j dS
静电场 基本方程
静电场 基本方程
麦克斯韦方程组是对电磁场宏观规律的 全面总结和概括!
是经典物理三大支柱之一。
再看积分形式的麦克斯韦方程组
jE
2 t
由矢量运算公式: a (b c ) (a b) c b (a c )
(H E) ( H ) E H ( E)
1
(D E
BH)
(H
E)
jE
2 t
(E H ) j E
dW 1
dt
2 V t (D E B H )dV
jD πr 2
2) r >R

大学物理(下)试试题库

大学物理(下)试试题库

大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。

2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。

4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。

5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。

7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。

8、【 】两个点电荷21q q 和固定在一条直线上。

相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。

大学物理-第1章 电场强度 高斯定理

大学物理-第1章 电场强度 高斯定理

+的场强 视为点电荷 dq
r r
P
Q
分解
dq
Q
r dE
设带电体的电荷体密度为, dq在 P 点产生的场强为 叠加
则 d q dV
r dE
r 1 r dV 3 4π 0 r
r r E dE
P点的场强为
r 1 E 4π 0

V
r r dV 3 r
穿出为正,穿进为负
向外法 线
31
S

E
选取面积元 dS dS en
1.3.3 高斯定理
1. 点电荷q 的电场中任意闭合曲面的电场强度通量 (1)点电荷在闭合曲面内 以q为中心、半径任意的球面S 的电场强度通量 由库仑定律得P 点场强 面积元dS的电场强度通量
v E 1 q r e 2 r 4π 0 r
大小 F12 k
12
v v F21 F12
q1q2
q1q2
r122 方向 沿 q1、 q 2 的连线,同性相斥,异性相吸
k 9 109 N m2 C2
比例系数 真空中的电容率
9
1 4π 0 r12 2
v F21
v r12
q1
v F12
q2
0 8.851012 C2 (N m2 )
15
点电荷的电场分布
q>0
q<0 (b)负电荷
(a)正电荷
16
1.2.3. 一定数量点电荷产生的电场强度
q0 受到的合力为
q1
r r r r F = F+F 1 2+L F n
P 点场强
r E r Fi
n i 1
r r1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档