16.2二次根式的乘除2

合集下载

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

二次根式的乘除(2)(quld)

二次根式的乘除(2)(quld)
36
性质的探究
问题1 计算下列各式,观察计算结果,你能发现 什么规律?
a = (a≥0,b>0) b b a
a b
a b
a 0, b 0
两个二次根式相除,等于把被开方数相除, 商的算术平方根等于被除式的算术平方根 除以除式的算术平方根。 作为商的被开方数
性质的运用
问题2 计算: ( 1)
应用概念
问题6 辨别下列二次根式是否是最简二次根式.
1 2 2 2 2 x y ; x + y . (1) 12 ; ( 2) ; ( 3) ( 4) 3
应用概念
问题7 把下列二次根式化成最简二次根式.
4 ; (1) 32 ; (2) 40 (3) 1.5 ;(4) . 3
应用概念
问题8 设长方形的面积为S,相邻两边长分别为 a,b.已知S = 2 3 ,b = 10 ,求a .
1.在横线上填写适当的数或式子使等式成立
( 2 )= 4 ( 1 )8 •
(2) 2 5• ( 5 )= 10
(3) a-1 • ( a-1)= a-1 (4)3 2 = 6
2.把下列各式的分母有理化
-8 3 (1) 8

3

3 2 பைடு நூலகம்2) 27
(3)
5a 10 a
(4)
2y 2 4 xy
3.化简:
拓展思考
问题9 观察下列各式,把不是最简二次根式的化 成最简二次根式.
( 2 -1 ) = = = 2 -1 ; 2 +1 ( 2 +1 )( 2 -1 ) 2-1 ( 3- 2) = = = 3- 2 ; 3- 2 3 + 2 ( 3 + 2 )( 3 - 2) 1 1 ( 3 - 2) 1 1 ( 2 -1 )

人教版八年级下册16.2《二次根式的乘除》教案

人教版八年级下册16.2《二次根式的乘除》教案
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$($a \geq 0$,$b \geq 0$)
b.掌握二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)
五、教学反思
在今天的教学中,我们探讨了二次根式的乘除运算。通过这节课的学习,我发现学生们在理解乘除法则和应用这些法则解决实际问题时,普遍存在一些挑战。首先,学生们在从理论到实际应用的转换上存在一定的难度。他们能够理解乘法法则和除法法则的概念,但在将法则应用到具体题目中时,往往不知道如何下手。
例如,在计算$\sqrt{12} \times \sqrt{18}$时,部分学生未能首先将根式化简,而是直接相乘,导致计算错误。这让我意识到,在讲解乘除法则时,需要更加强调化简的步骤,让学生形成自动化的解题流程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
d.了解二次根式乘除运算在实际问题中的应用。
教学内容涵盖以下例题与练习:
1.计算下列二次根式的乘积:
$\sqrt{3} \times \sqrt{5}$,$2\sqrt{6} \times 3\sqrt{2}$,$5\sqrt{2} \times \sqrt{18}$

16.2 二次根式的乘除

16.2 二次根式的乘除

例 6 计算:(1)-2 15÷3 3×6 5;
(2)
3
·
2

÷

2
1

2
3
;(3)3 2 × -
1
8
15 ÷
1
2
2
.
5
分析(1)利用二次根式的乘除法则计算即可;(2)先根据二次根式
的除法法则计算括号里的,再计算即可;(3)先把乘除法混合运算转
化成乘法运算,再进行乘法运算即可.
22
教材新知精讲
(4)公式里的字母可以是具体的数,也可以是值为非负数的代数
式.
(5)当二次根式前面系数不为 1 时,可以类比单项式与单项式相
乘的法则,先把系数相乘,再把被开方数相乘,即
m ·
n =mn (a≥0,b≥0).
3
教材新知精讲
知识点一
知识点二
知识点三
例 1 计算:(1)
5
×
3
知识点四
知识点五
综合知识拓展
10、阅读一切好书如同和过去最杰出的人谈话。17:50:0617:50:0617:509/12/2021 5:50:06 PM
教材新知精讲
综合知识拓展
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1217:50:0617:50Sep-2112-Sep-21
平方根的性质结合起来使用.商的算术平方根实质是二次根式除法
法则的逆用.
(5)利用商的算术平方根的性质,可以把被开方数的分母是开得尽
方的数的二次根式进行化简.
15
教材新知精讲
知识点一
知识点二

16.2二次根式的乘除(2)

16.2二次根式的乘除(2)
3 2 a 如 2 2, 等,可以发现这些式 , 10 a
子有如下两个特点:
1.被开方数不含分母;
2.被开方数中不含能开得尽方的因数或因式。
对于最简二次根式的概念我们可作如下理解:
(1)被开方数中不含分母、小数,因此被开 方数是整数或整式;
(2)被开方数中不含能开得尽方的因数或因 式。
在二次根式的运算中,一般要把最后 结果化为最简二次根式,并且分母中不含 二次根式。
a (1) b
(3) ab
a b
a b b
a (2) b
b a a
其中正确的是( ) A. (1)(2) B. (2)(3) C.(3) D.(1)(2)(3)
探究2:最简二次根式 例3 计算。
3 (1) 5
3 2 (2) 27
8 (3) 2a
观察上面例1、2、3中各小题的最后结果,比
a b
a 0, b 0
二次根式的除法法则:
a b a b
(a≥0,b≥0)
语言叙述:
二次根式相除,把被开方数相除, 根指数不变。
推广:
m a n b (m n) ( a b )
其中,a≥0,b>0,n≠0.
注意:
1.a必须是非负数,b必须是正数,式子才 成立。 2.如果被开方数是带分数,应先将其化 成假分数。
16.2二次根式的乘除
复习提问
1.二次根式的乘法:
a b ab
a≥0,b≥0
ab a b (a 0, b 0)
2.化简二次根式:
把开方开得尽的因数或因式,开方后移到根号外.
计算下列各式,观察计算结果,你发现什么规律?
4 1. 9 16 2. 49

16_2_2二次根式的除法同步作业 解析版【2023春人教版八下数学优质备课】

16_2_2二次根式的除法同步作业 解析版【2023春人教版八下数学优质备课】

16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。

16.2二次根式的乘除法(教案)

16.2二次根式的乘除法(教案)
三、教学难点与重点
1.教学重点
本节课的教学重点主要包括以下内容:
a.掌握二次根式乘法的运算法则,特别是\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)的形式,以及如何将其他形式的二次根式乘法转化为这一形式;
b.理解并应用二次根式除法的运算法则,特别是\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)和\( \frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} \)的形式,以及如何处理分母中含有二次根式的情况;
(3)\( \sqrt{a^2} \times \sqrt{b^2} = |a||b| \)(a、b为任意实数)
2.掌握二次根式除法的运算法则,能够正确计算以下形式的除法:
(1)\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)(a≥0,b>0)
2.培养学生的逻辑思维能力,使其能够理解并运用二次根式乘除法的性质,解决实际问题;
3.培养学生的数学建模能力,通过解决实际情境中的问题,让学生体会数学知识在实际生活中的应用;
4.培养学生的数学抽象能力,让学生从具体的二次根式乘除运算中抽象出一般性规律,形成数学认知结构;
5.培养学生的合作交流意识,鼓励学生在小组讨论和交流中,共同探索二次根式乘除法的运算规律,提高解决问题的能力。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示二次根式乘除法的基本原理,如使用尺子和直角三角形模型来计算对角线长度。

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3

人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。

二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。

本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。

二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。

三. 教学目标1.让学生掌握二次根式的乘除法运算规则。

2.提高学生的数学运算能力。

3.培养学生的逻辑思维能力。

四. 教学重难点1.二次根式的乘除法运算规则。

2.二次根式的混合运算。

五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。

2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。

3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。

六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。

2.练习题:教师需要准备适量的练习题,用于让学生进行练习。

七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。

2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。

3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。

4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。

5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。

沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》

沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》

沪科版八年级数学下册教学设计《第16章二次函数16.2二次根式的运算(第2课时)》一. 教材分析《第16章二次函数16.2二次根式的运算(第2课时)》这一节的内容,主要是对二次根式的运算进行深入的讲解和练习。

在前一课时,学生已经了解了二次根式的定义和性质,本课时将在此基础上,进一步学习二次根式的加减乘除运算,以及混合运算的法则。

教材通过具体的例题和练习题,使学生掌握二次根式的运算方法,提高他们的数学运算能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有一定的了解。

但学生在进行二次根式运算时,容易出错,对混合运算的法则理解不够深入。

因此,在教学过程中,教师需要引导学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。

三. 说教学目标1.知识与技能:学生会运用二次根式的加减乘除法则进行计算,解决一些简单的实际问题。

2.过程与方法:学生通过观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。

3.情感态度与价值观:学生能够感受到数学与生活的联系,增强他们对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够掌握二次根式的加减乘除运算方法,解决一些简单的实际问题。

2.教学难点:学生对混合运算的法则的理解和运用。

五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、讨论法、练习法等教学方法。

通过引导学生观察、思考、交流,发现二次根式运算的规律,提高他们的数学思维能力。

同时,我将运用多媒体教学手段,展示二次根式的运算过程,使学生更加直观地理解二次根式的运算方法。

六. 说教学过程1.导入:通过复习上一课时所学的内容,引导学生回顾二次根式的定义和性质,为新课的学习做好铺垫。

2.教学新课:讲解二次根式的加减乘除运算方法,通过具体的例题,使学生掌握二次根式的运算规律。

3.巩固练习:学生进行一些相关的练习题,巩固新学的知识。

4.课堂小结:教师引导学生总结本节课所学的内容,使学生对二次根式的运算有一个清晰的认识。

【人教版八年级下册】《16.2 二次根式的乘除(第2课时)》教案教学设计

【人教版八年级下册】《16.2 二次根式的乘除(第2课时)》教案教学设计

16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。

人教版八年级数学下册16.2二次根式的乘除优秀教学案例

人教版八年级数学下册16.2二次根式的乘除优秀教学案例
(二)过程与方法
1.通过探究二次根式的乘除运算,培养学生的逻辑思维能力和运算能力。
2.运用小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
3.引导学生运用数形结合的方法,通过图形直观地理解二次根式的乘除运算。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,激发学生学习数学的内在动力。
针对以上问题,我制定了以下教学策略,以提高学生的学习效果和解决问题的能力。
二、教学目标
(一)知识与技能
1.理解二次根式的乘除法则,能够正确进行二次根式的乘除运算。
2.掌握二次根式的性质和化简方法,能够将二次根式进行化简。
3.能够运用二次根式的乘除运算解决实际问题,提高运用数学知识解决实际问题的能力。
2.二次根式的化简方法:引导学生总结二次根式的化简方法,掌握提取公因数、应用平方差公式等技巧,提高解题效率。
3.实际问题解决:引导学生总结如何运用二次根式的乘除运算解决实际问题,培养学生的应用能力和解决问题的能力。
(五)作业小结
1.布置作业:设计具有针对性和实践性的作业,让学生巩固和应用所学知识,提高学生的实际操作能力。
2.培养学生勇于探索、坚持不懈的学习精神,培养学生的自主学习能力。
3.通过对实际问题的解决,让学生体验到数学与生活的紧密联系,培养学生的应用意识和社会责任感。
作为一名特级教师,我深知教学目标的重要性,它不仅是教学活动的出发点和归宿,也是评价教学效果的重要依据。在教学过程中,我将紧紧围绕以上教学目标,采用多种教学方法和手段,引导学生积极参与,主动探究,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
人教版八年级数学下册16.2二次根式的乘除优秀教学案例
一、案例背景

16.2二次根式的乘除 (教学课件)- 初中数学人教版八年级下册

16.2二次根式的乘除  (教学课件)-   初中数学人教版八年级下册

解: ( 思考】乘法法则是如何得出的?二次根式的除法该怎样算呢2 除法有没有类似的法则?
学习 目标 3. 理解最简二次根式的概念,能熟练地将二 次根式化为最简二次根式。
2. 会运用除法法则及商的算术平方根进行简 单运算.
1. 掌 握二次根式的除法法则,会用法则进行计算.
探究新知 知识点1
二次根式的除法
探究新知
归纳总结 二次根式的乘法法则的推广: ①多个二次根式相乘时此法则也适用,即
√a·√b .....√n=√ab...n(a≥0,b≥0....n≥0)
②当二次根号外有因数(式)时,可以类比单项式乘单 项式的法则计算,即根号外的因数(式)的积作为根号 外的因数(式),被开方数的积作为被开方数,即
化简:
(1)√ 16×81;(2)√4a²b³(a≥0,b≥0).
解:(1)√ 16×81
(2)√4a²b³
(2 ) 中4 ²ab³ 含有 像 4 a²,b²,, 这
= √16×√81
=√4O√a²O√b³
样开的尽方的因 数或因式,把它
=4×9
=36;
=2OaO√b²Ob
们开方后移到根 号外.
巩固练习
计算:
(1)
(2)

解: (1) (2)
提示:像(2)中除式是分数或分(1)
(2)
(3)

解:(1)
探究新知
考点② 利用二次根式的除法法则计算根号外因数不是1的 二次根式
计算: (1) 解:(1)
假分数,再运用二次根式除法法则进行运算.
巩固练习 计算,看谁算的既对又快.

探究新知
方法点拨
化简二次根式的步骤:
1.把被开方数分解因式(或因数);

《16.2二次根式的乘除》作业设计方案-初中数学人教版12八年级下册

《16.2二次根式的乘除》作业设计方案-初中数学人教版12八年级下册

《二次根式的乘除》作业设计方案(第一课时)一、作业目标通过本作业的设计与完成,学生应掌握二次根式的乘除基本法则,能够熟练运用这些法则进行二次根式的化简与计算,并能够解决简单的实际问题。

同时,通过作业的完成,培养学生的数学思维能力和自主学习能力。

二、作业内容本作业内容主要围绕二次根式的乘除进行设计,具体包括以下内容:1. 基础练习:包括二次根式乘除的基本法则,如根号与根号相乘、根号与常数相乘等。

通过大量的练习,使学生熟练掌握这些基本法则。

2. 复杂计算:设计一些较为复杂的二次根式乘除计算题,如涉及多个根式、分数根式等。

通过这些题目的练习,使学生能够灵活运用所学知识,提高解题能力。

3. 应用题:设计一些实际问题的情境,要求学生运用所学知识进行二次根式的乘除计算,如测量物体长度、计算面积等。

通过解决实际问题,使学生感受到数学知识的实用性。

4. 探究题:设计一些具有探究性的题目,如让学生自行设计二次根式的乘除计算题、探索不同计算方法等。

通过探究题的练习,培养学生的创新意识和自主学习能力。

三、作业要求1. 基础练习部分要求学生对每个法则进行熟练掌握,并能够独立完成相关练习题。

2. 复杂计算部分要求学生能够灵活运用所学知识,解决较为复杂的计算问题。

在解题过程中,要注重思路的清晰和计算的准确性。

3. 应用题部分要求学生能够将所学知识应用到实际问题中,注重实际问题的分析和解决能力。

4. 探究题部分要求学生发挥自己的创新意识和自主学习能力,积极思考和探索不同的解题方法。

四、作业评价教师根据学生的作业完成情况进行评价,主要从以下几个方面进行:1. 对基础知识的掌握程度;2. 解题思路的清晰程度;3. 计算的准确性;4. 实际问题的分析和解决能力;5. 探究题的完成情况和创新性。

五、作业反馈教师根据学生的作业完成情况,给予相应的反馈和建议。

对于掌握不好的部分,教师要进行重点讲解和辅导;对于表现优秀的学生,要给予肯定和鼓励,并引导他们进一步拓展和深化所学知识。

人教版数学八年级下册16.2《二次根式的乘除》教案

人教版数学八年级下册16.2《二次根式的乘除》教案
人教版数学八年级下册16.2《二次根式的乘除》教案
一、教学内容
人教版数学八年级下册16.2《二次根式的乘除》教案:
1.章节内容:本节课主要学习二次根式的乘除运算。
2.教学内容:
a.理解二次根式的乘法法则,并能正确运用;
b.掌握二次根式的除法法则,并能熟练进行混合运算;
c.能够将二次根式乘除运算与其他数学知识相结合,解决实际问题;
3.重点难点解析:在讲授过程中,我会特别强调乘法法则和除法法则这两个重点。对于难点部分,如根号内同类项的合并和化简,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量并计算正方形对角线长度,演示二次根式乘除的基本原理。
(3)熟练进行二次根式的混合运算,解决实际问题;
举例:计算\( \frac{\sqrt{45} \times \sqrt{20}}{\sqrt{5} \times \sqrt{9}} \),并应用于实际情境。
2.教学难点
(1)理解并运用二次根式乘法法则时,根号内同类项的识别与合并;
难点举例:\( \sqrt{12} \times \sqrt{8} = \sqrt{12 \times 8} \)转化为\( 2\sqrt{3} \times 2\sqrt{2} = 4\sqrt{6} \)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或长度的问题?”(如计算正方形对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式乘除的奥秘。

162二次根式的乘除2精品PPT课件

162二次根式的乘除2精品PPT课件
计算 1 24
解:
3
2 3 1
2 18
1 24 24 8 4 2 2 2 33
2 3 1 3 1 3 18 3 9
2 18 2 18 2
3 3
试一试 (1)
计算:
32 2
3 4 1 7
5 10
(2) 50 10
(4)2 11 5 1 26
解:1 32 32 16 4
分别为a,b.已知S=2 3 ,b= 10 ,求a.
解:因为S =ab, 所以a= S 2 3 2 3 10 30 b 10 10 10 5
拓展
已知a 1 ,b 1 ,求代数式 a b 的值.
32 2 32 2
a 2 ab b
解:a=3 2 2 ,b 3+2 2
原式=
ab

(2)2 5 •( 5 )= 10
(3) a-1 •(
a-1)= a-1 (4)3
2=
3
6
2.把下列各式的分母有理化:
(1)-8 3 (2)3 2
8
27
(3) 5a 10a
(4) 2y 2 4xy
3.化简:
(1)- 19 ÷ 95
(2)9 1 ÷(- 3 2 1)
48
24
例7 设长方形的面积为S,相邻两边长
7 (1) 2
9
(2)
81 25x2
x
0
(3)
16b2c a2
a
0,
b
0
0.09 ×169 (4)
0.64 ×196
解:((43))((21001))..660ab492222××58c79x1=11=29669=29=51=6ab2200258c..2x16095492==××=41153b965a969xc==00..483ab××11c43

人教版数学八年级下册16.2二次根式的乘除(教案)

人教版数学八年级下册16.2二次根式的乘除(教案)
2.教学难点
(1)根号内乘除运算的简化:在二次根式乘除运算过程中,学生往往难以把握根号内乘除运算后的简化步骤。
-难点解释:如\(\sqrt{2} \times \sqrt{8} = \sqrt{2 \times 8}\),需简化根号内的结果为\(\sqrt{16}\),进而得到最终答案4。
(2)混合运算中乘除法则的运用:在二次根式乘除混合运算中,学生容易混淆乘除法则,导致计算错误。
-练习:计算\(\sqrt{18} \times \sqrt{2}\)、\(\sqrt{12} \times \sqrt{27}\)等。
2.二次根式的除法法则:理解二次根式除法的运算规律,能够熟练进行除法运算。
-例子:\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(其中\(b \neq 0\),\(a \geq 0\),\(b > 0\))
人教版数学八年级下册16.2二次根式的乘除(教案)
一、教学内容
本节课选自人教版数学八年级下册16.2节,主要内容包括:
1.二次根式的乘法法则:掌握二次根式乘法的运算规律,能够正确进行乘法运算。
-例子:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(其中\(a \geq 0\),\(b \geq 0\))
-练习:计算\(\frac{\sqrt{48}}{\sqrt{3}}\)、\(\frac{\sqrt{54}}{\sqrt{9}}\)等。
3.二次根式的乘除混合运算:学会运用乘除法则,解决二次根式的乘除混合运算问题。
-例子:\(\sqrt{18} \div \sqrt{2} \times \sqrt{12}\)
5.设计不同难度的练习题,帮助学生巩固所学知识,逐步突破难点。

16.2二次根式的乘除2

16.2二次根式的乘除2
a = a (a≥0,b>0) bb
两个二次根式相除,等于把被开方数 相除,再求商的算术平方根
例1:计算
1 24
3
2 3 1
2 18
解:
1 24
3
24 3
8
42 2 2
2 3 1 3 1 3 18 3 9
2 18 2 18 2
3 3
试一试
32 (1) 2
(2) 50 10
解:
1
32
二次根式的除法:
a =
a (a
≥ 0,b
>
0)
bb
商的算术平方根: a a(a≥0,b>0) bb
分母有理化:
这种化去分母中根号的变形(过 程)就是分母有理化
最简二次根式:
被开方数中不含分母;被开方 数中不含能开得尽方的因数或
因式。
必做题: 第10页习题16.2 第2、3、4题
(3)
7 121

36a (4) 25b2 (b>0).
例3:计算
1 3
5
2 3 2
27
3 8
2a
解:1 解法1..
3 5
3
5
35 55
15 25
15 25
15 5
解法2..
3
3
5
15
5 5 5 5
2 3 2 3 2 2 3 6
27 3 3 3 3 3
3 8 8 2a 4 a 2 a
什么规律?
(1)
4= 9
2 ____3___;
4=
2
9 ____3___;
(2)
16 = 4 25 ___5____;
16 =

16.2 二次根式的乘除(2)

16.2 二次根式的乘除(2)
八年级 下册
16.2 二次根式的乘除(2)
课件说明
• 本课是在学习了二次根式的概念和性质的基础上, 结合算术平方根的概念,通过观察,归纳出二次根 式的除法法则,并应用这个法则进行二次根式的计 算和化简.
课件说明
• 学习目标: 1.探索二次根式除法法则; 2.能根据二次根式除法法则进行二次根式的除法运 算.
性质的探究
问题1 计算下列各式,观察计算结果,你能发现 什么规律?
a= b
a b
(a≥0,b>0)
性质的运用
问题2 计算:
(1)
24 ;(2) 3
3 2
1. 18
逆向思考
问题3
能否将二次根式
3 化简? 64
解: 3 = 3 = 3 . 64 64 8
巩固新知
问题4 化简:
(1) 3 ;(2) 75 .
100
27
巩固新知
问题5 化简: (1) 28 7 ; (2)
125 ; 5
(3)
7 121

36a (4) 25b2 (b>0).
16.2 二次根式的乘除(2)
课堂小结
(1)如何进行二次根式除法运算? (2)如何逆用二次根式除法法则化简二次根式? (3)能推导出二次根式除法法则吗?
16.2 二次根式的乘除(2)
• 学习重点: 二次根式除法法则的探究和应用.
新课引入
我们知道,两个二次根式可以进行乘法运算,那 么,两个二次根式能否进行除法运算呢?
24 = _____ ;Βιβλιοθήκη 3 1 = _____ .3
2 18
性质的探究
问题1 计算下列各式,观察计算结果,你能发现 什么规律?
(1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级 数学 下册
16.2 二次根式的乘除(2)
课件说明
• 本课是在学习了二次根式的概念和性质的基础上, 结合算术平方根的概念,通过观察,归纳出二次根 式的除法法则,并应用这个法则进行二次根式的计 算和化简.
课件说明
• 学习目标: 1.探索二次根式除法法则; 2.能根据二次根式除法法则进行二次根式的除法运 算.
(3)能推导出二次根式除法法则吗?
课后作业
练习:教科书第10页练习第1题; 作业:习题16.2第2,4题.
问题2 计算:
(1) 24 ; 3
(2) 3 1 .
2
18
解:
(1) 24 3

24
3
8
42 2 2
(2) 3 1 3 1 3 18 2 18 2 18 2
93 3 3
逆向思考
问题3
能否将二次根式 3 化简?
ห้องสมุดไป่ตู้64
解: 3 = 3 = 3 . 64 64 8
• 学习重点: 二次根式除法法则的探究和应用.
新课引入
我们知道,两个二次根式可以进行乘法运 算,那么,两个二次根式能否进行除法运算呢?
24 = _____ ; 3 1 = _____ .
3
2 18
看看后文如何?
性质的探究
问题1 计算下列各式,观察计算结果,你能 发现什么规律?
(1)
4= 9
2 ____3___;
4= 2 9 ____3___;
(2)
16 = 4 25 ____5___;
16 = 4 25 ___5____;
(3)
36 = 6
36 = 6
49 ____7___; 49 ___7____.
性质的探究
问题1 计算下列各式,观察计算结果,你能 发现什么规律?
a= b
a b
(a≥0,b>0)
性质的运用
a a bb
法则公式的逆应用。
巩固新知 问题4 化简:
(1) 3 100
;(2)
75 27

巩固新知
问题5 化简:
(1) 28 7 ; (2) 125 ; 5
(3)
7 121

(4)
36a 25b 2
(b>0).
课堂小结
(1)如何进行二次根式除法运算? 化去分母中的根号--分母有理化
(2)如何逆用二次根式除法法则化简二次根式? 化去根号下的分母--化简
相关文档
最新文档