数据的分析中考题大全

合集下载

中考数学复习《数据的分析》专项练习题-附带有答案

中考数学复习《数据的分析》专项练习题-附带有答案

中考数学复习《数据的分析》专项练习题-附带有答案一、单选题1.为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位: °C ):-1,-3,-1,5.下列结论错误的是( ) A .平均数是0B .中位数是-1C .众数是-1D .方差是62.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为 S 甲2=0.56, S 乙2 =0.60, S 丙2 =0.50, S 丁2 =0.44,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.在一次古诗词诵读比赛中,五位评委给某选手打分,得到互不相等的五个分数,若去掉一个最高分,平均分为a ;若去掉一个最低分,平均分为c ;同时去掉一个最高分和一个最低分,平均分为m .则a ,c ,m 的大小关系正确的是( ) A .c >m >aB .a >m >cC .c >a >mD .m >c >a4.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次) 12 11 10 9 人数(名)1342关于这组数据的结论错误的是( ) A .中位数是10.5 B .平均数是10.3 C .众数是10D .方差是0.815.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )成绩 6 7 8 910 人数正 一正 正 一正 正正A .8,8B .8,8.5C .9,8D .9,8.56.为了推进“科学防疫,佩戴口罩”,某中学向学生发放口罩,如图为七年级五个班级上报的学生人数,统计条不小心被撕掉了一块,已知这组数据的平均数为30,则这组数据的中位数为( )A.28 B.29 C.30 D.317.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分96 95 97方差0.4 2 2丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁二、填空题9.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.10.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个²。

中考数学总复习《数据的分析》专项测试题-附参考答案

中考数学总复习《数据的分析》专项测试题-附参考答案

中考数学总复习《数据的分析》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数,中位数,众数和方差等数个统计量中,该鞋厂最关注的是( )A.平均数B.中位数C.众数D.方差2.测试五位学生的“一分钟跳绳”成绩,得到五个不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( )A.中位数B.平均数C.方差D.极差3.一组数据2,3,4,6,6,7的众数是( )A.3B.4C.5D.64.第七届世界军人运动会将于2019年10月18日至27日在武汉举行.光谷某中学开展了“助力军动会”志愿者招募活动,同学们踊跃报名参与竞选.经选拔,最终每个班级都有同学光荣晋升为本次军运会志愿者.下面的条形统计图描述了这些班级选拔出的志愿者人数的情况;下列说法错误的是( )A.参加竞选的共有28个班级B.本次竞选共选拔出166名志愿者C.各班选拔出的志愿者人数的众数为4D.各班选拔出的志愿者人数的中位数为65.已知数据A:1,2,3,x数据B:3,4,5,6.若数据A的方差比数据B的方差小,则x的值可能是()A.5 B.4 C.2 D.0 6.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数7.若一组数据a1,a2,a3⋯a n的方差是4,那么另一组数据3a1−1,3a2−1,⋯3a n−1的标准差是()A.7 B.2 C.4 D.6 8.学校组织“热爱祖国”演讲比赛,小娜演讲内容得90分,语言表达得88分,若按演讲内容占60%、语言表达占40%的比例计算总成绩,则小娜的总成绩是()A.90分B.88分C.89分D.89.2分二、填空题(共5题,共15分)9.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图①和图②,则扇形统计图②中表示“足球”项目扇形的圆心角的度数为.10.某校在举行疫情下主题为“致敬最美逆行者”线上演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同,其中一位同学想知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这8名学生成绩的.(填“平均数”“中位数”或“众数”)11.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.12.光明中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.13.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是.三、解答题(共3题,共45分)14.为了了解全年级学生英语作业的完成情况,帮助英语学习成绩差的学生尽快提高成绩,班主任和英语教师从全年级1000名学生中抽取100名进行调查.首先,老师检查了这些学生的作业本,记录下获得“优”“良”“中”“差”的人数比例情况;其次老师发给每人一张调查问卷,其中有一个调查问题是:“你的英语作业完成情况如何?”给出五个选项:A独立完成;B辅导完成;C有时抄袭完成;D经常抄袭完成;E经常不完成,供学生选择,英语教师发现选独立完成和辅导完成这两项的学生一共占65%,明显高于他,平时观察到的比例,请回答下列问题.(1) 英语教师所用的调查方式是.(2) 指出问题中的总体,个体,样本,样本容量.(3) 如果老师的英语作业检查只得“差”的同学有8名,那么估计全年级的英语作业中可能有多少同学得“差”.(4) 通过问卷调查,老师得到的数据与事实不符,你能解释这个统计数字失真的原因吗.15.为了了解南山区学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果绘制成如图所示的两幅不完整的统计图(如图1,2,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1) 本次共调查的学生人数为,并把条形统计图补充完整;(2) 扇形统计图中m=,n=;(3) 表示“足球”的扇形的圆心角是度;(4) 若南山区初中学生共有60000人,则喜欢乒乓球的有多少人?16.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面两幅不完整的统计图:(1) 在这次调查研究中,一共调查了名学生,“体育”在扇形图中所占的圆心角是度.(2) 求出如图中a,b的值,并补全条形图.(3) 若此次调查中喜欢体育节目的女同学有10人,请估算该校喜欢体育节目的女同学有多少人?参考答案1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】C5.【答案】C6.【答案】C7.【答案】D8.【答案】D9. 【答案】36°10. 【答案】中位数11. 【答案】3或−2;−2或3;312. 【答案】68013. 【答案】60014. 【答案】(1) 抽样调查(2) 总体是全校1000名学生英语作业的完成情况,个体是每一名同学英语作业的完成情况,样本是抽取的100名学生的英语作业完成情况,样本容量是100.(3) ∵100名学生中只得“差”的同学有8名=80(人).∴1000名学生有得“差”的为1000×8100(4) 抄袭和不完成作业是不好行为,勇于承认错误不是每个人都能做到的,所以,这样的问题设计的不好,容易失真.15. 【答案】(1) 40(2) 10;20(3) 72(4) 南山区初中学生喜欢乒乓球的有60000×40%=24000(人).16. 【答案】(1) 150;72(2) 根据题意得:30÷150×100%=20%即b=20;a%=1−(6%+8%+20%+30%)=36%即a=36.=200.(3) 根据题意得:3000×20%×1030则该校喜欢体育节目的女同学有200人.。

数据的分析-历届中考真题汇总专题(含解析答案)(原卷版)

数据的分析-历届中考真题汇总专题(含解析答案)(原卷版)

备战2015中考系列:数学2年中考1年模拟第六篇 统计与概率 专题31 数据的分析☞解读考点知 识 点名师点晴数据的集中趋势1. 平均数会求一组数据的平均数、中位数、众数,并会选择适当的统计量表示数据的集中趋势和集中程度。

2. 中位数3. 众数 数据的波动1、方差会求一组数据的方差、标准差、极差,并会选择适当的统计量表示数据的波动趋势。

2、标准差3、极差☞2年中考[2014年题组]1.(2014年福建福州中考)若7名学生的体重(单位:kg )分别是:40,42,43,45,47,47,58,则这组数据的平均数是【 】A .44B .45C .46D .47 2. (2014年福建南平中考)下列说法正确的是【 】A. 了解某班同学的身高情况适合用全面调查B. 数据2、3、4、2、3的众数是2C. 数据4、5、5、6、0的平均数是5D. 甲、乙两组数据的平均数相同,方差分别是22S 3.2S 2.9==乙甲,,则甲组数据更稳定3. (2014年甘肃兰州中考)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是【 】A. 众数和平均数B. 平均数和中位数C. 众数和方差D. 众数和中位数4. (2014年广东广州中考)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是【 】A. 中位数是8B. 众数是9C. 平均数是8D. 极差是75. (2014年广西北海中考)甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:甲乙丙丁方差0.293 0.375 0.362 0.398由上可知射击成绩最稳定的是【 】A .甲B .乙C .丙D .丁6. (2014年福建厦门中考)已知一组数据:6,6,6,6,6,6,则这组数据的方差为 ▲ . 【注:计算方差的公式是()()()222212n 1S x x x xx x n ⎡⎤=-+-+⋯+-⎢⎥⎣⎦】7. (2014年福建龙岩中考)若一组数据3,4,x ,5,8的平均数是4,则该组数据的中位数是 ▲ . 8. (2014年福建三明中考)甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S 2甲=0.9,S 2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是 ▲ (填“甲”或“乙”).9. (2014年天津市中考)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据有关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 ▲ ,图①中m 的值是 ▲ ;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?10.(2014年浙江义乌中考)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整.(2)已求得甲组成绩优秀人数的平均数x=7,请通过计算说明,哪一组成绩优秀的人数甲组,方差2S=1.5甲组较稳定?[2013年题组]1. (2013年福建龙岩4分)在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为【 】 A .44、45 B .45、45 C .44、46 D .45、462. (2013年福建莆田4分)对于一组统计数据:2,4,4,5,6,9.下列说法错误的是【 】 A .众数是4 B .中位数是5 C .极差是7 D .平均数是53. (2013年福建泉州3分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:选手 甲 乙 丙 丁 方差(环2)0.0350.0160.0220.025则这四个人种成绩发挥最稳定的是【 】A .甲B .乙C .丙D .丁4. (2013年福建莆田4分)统计学规定:某次测量得到n 个结果x 1,x 2,…,x n .当函数()()()22212n y x x x x x x =-+-+⋯+-取最小值时,对应x 的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为 ▲ .5. (2013年广东茂名3分)小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是 ▲ .6. (2013年四川眉山3分)为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的 ▲ 决定(在横线上填写:平均数或中位数或众数).7. (2013年湖南株洲3分)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 ▲ 分.8. ( 2013年广西贵港3分)若一组数据1,7,8,a ,4的平均数是5、中位数是m 、极差是n ,则m+n= ▲ .9.(2013年广西钦州12分)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是▲ ,众数是▲ ,极差是▲ :②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?10.(2013年广西梧州6分)某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:候选人百分制教学技能考核成绩专业知识考核成绩甲85 92乙91 85丙80 90(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人▲ 将被录取.(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.☞考点归纳归纳 1:平均数 基础知识归纳:1、平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数,x 读作“x 拔”。

九年级中考数学复习《数据的分析》专项练习题-附带答案

九年级中考数学复习《数据的分析》专项练习题-附带答案

九年级中考数学复习《数据的分析》专项练习题-附带答案一、单选题1.一组数据﹣3,3,﹣2,3,1的中位数是()A.﹣3 B.﹣2 C.1 D.32.下列说法正确的是()则做10次这样的游戏一定会中奖A.一个游戏的中奖概率是110B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差S2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定3.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则新各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.调配后平均数变小了B.调配后众数变小了C.调配后中位数变大了D.调配后方差变大了4.甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2= 28,S乙2= 18.6,S丙2= 1.7.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.三个团都一样5.2023年6月是第22个全国“安全生产月”,主题是“人人讲安全,个个会应急”,为加强安全宣传教育,某校在全体学生中进行了一次安全知识竞赛,随机抽取了10名学生的竞赛成绩如下(单位:分):得分80 84 92 96 100人数 1 2 2 3 2根据表格中的信息判断,下列关于这10名学生竞赛成绩的结论中错误..的是()A.平均数为92 B.众数为96 C.中位数为92 D.方差为44.86.郑州市统计部门公布最近五年消费指数增产率分别为8.5%,9.2%,10.2%,9.8%,业内人士评论说:“这五年消费指数增产率之间相当平稳”,从统计角度看,“增产率之间相当平稳”说明这组数据的()比较小A.方差B.平均数C.众数D.中位数7.某班40名学生一周阅读书籍的册数统计图如图所示,该班阅读书籍的册数的中位数是()A.1册B.2册C.3册D.4册8.为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:每周课外阅读时间x(小时)0≤x<2 2≤x<4 4≤x<6 6≤x<8 x≥8 合计频数8 17 b15 a频率0.08 0.17 c0.15 1表中4≤x<6组的频数b满足25≤b≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是()A.①②B.③④C.①②③D.②③④二、填空题9.已知一组数据10、3、a、5的平均数为5,那么a为.10.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:S甲2=36,S乙2=158,则小麦长势比较整齐的试验田是11.小刚开学后,第一次测试数学得了70分,语文得了84分,则英语至少得分,才能使三科平均分不低于80分.12.某班10位同学将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)依次为5,6,10,8,12,6,9,7,6,8,则这10名同学平均每人捐款元,捐款金额的中位数是元,众数是元.13.某住宅小区六月份1日至5日每天的用水量变化情况如图所示,则这5天该住宅小区平均每天的用水量是吨.三、解答题14.某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定.现从两家提供的样品中各抽查10件,测得它们的质量如下(单位:克)甲:500,499,500,500,503,498,497,502,500,501乙:499,500,498,501,500,501,500,499,500,502你认为该选择哪一家制造厂?15.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容∶演讲能力∶演讲效果=5:4:1的比例计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请计算说明哪位选手成绩更优秀.17.某跳水训练基地为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)本次调查的样本容量大小是,图1中a的值为;(2)请把条形统计图补充完整;(3)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18.香坊区某学校开展读书活动,为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天的阅读时间m(单位:分钟)将收集的数据分为A,B,C,D,E五个等级,绘制成如下的统计表及如图所示的统计图(不完整):平均每天阅读时间统计表等级人数(频数)A(10≤m<20) 5B(20≤m<30)10C(30≤m<40)xD(40≤m<50)80E(50≤m<60)y请根据图表中的信息,解答下列问题:(1)求x的值.(2)这组数据的中位数所在的等级是.(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”,并予以表扬若全校学生以1800人计算,估计受表扬的学生有多少人.参考答案 1.C 2.C 3.D 4.C 5.C 6.A 7.B 8.A 9.2 10.甲 11.8612.7.7;7.5;6 13.3214.解:甲的平均数:110(500+499+500+500+503+498+497+502+500+501)=500(克)乙的平均数:110(499+500+498+501+500+501+500+499+500+502)=500(克)s 2甲=110×28=2.8 s 2乙=110 ×12=1.2 ∵s 甲2>s 乙2 ∴选乙.15.解:小明数学总评成绩:96× 210 +94× 310 +90× 510 =92.4 小亮数学总评成绩:90× 210 +96× 310 +93× 510 =93.3 小红数学总评成绩:90× 210 +90× 310 +96× 510 =93. ∵93.3>93>92.4,∴小亮成绩最高. 答:这学期小亮的数学总评成绩最高. 16.解:根据题意得: 选手 A 的综合成绩为:85×5+95×4+95×15+4+1=90 分=91分选手B的综合成绩为:95×5+85×4+95×15+4+1∵91>90∴选手B的成绩更优秀.17.(1)40;20(2)解:17岁的人数为:40×25%=10(人),补全条形统计图如下图:(3)解:这组跳水运动员年龄数据的平均数是:(13×4+14×6+15×12+16×8+17×10)÷40=15.35(岁)15岁出现了12次,次数最多,所以众数为15岁;按大小顺序排列,中间两个数都为15岁,则中位数为15岁.18.(1)200×20%=40答:x的值为40.(2)D=585(人)(3)解:1800×200−5−10−40−80200答:估计受表扬的学生约有585人。

2022年中考数学专题《数据的整理与分析》复习试卷含答案解析

2022年中考数学专题《数据的整理与分析》复习试卷含答案解析

2022年中考数学专题《数据的整理与分析》复习试卷含答案解析一、选择题1.一组数据2,1,2,5,3,2的众数是()A.1B.2C.3D.5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。

3.若一组数据3、4、5、某、6、7的平均数是5,则某的值是()。

A.4B.5C.6D.7【答案】B【解析】:∵一组数据3、4、5、某、6、7的平均数是5,∴3+4+5+某+6+7=6某5,∴某=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D.“任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。

(必考题)初中八年级数学下册第二十章《数据的分析》知识点总结(答案解析)

(必考题)初中八年级数学下册第二十章《数据的分析》知识点总结(答案解析)

一、选择题1.反映一组数据变化范围的是( ) A .极差 B .方差 C .众数 D .平均数 2.数据2-,1-,0,1,2的方差是( )A .0B .2C .2D .43.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1004.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁 5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .06.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数7.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分. 人数 2 5 13 10 7 3 成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是( ) A .75,70B .70,70C .80,80D .75,808.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”9.已知数据x ,4,0,3,-1的平均数是1,那么它的众数是( ) A .4B .0C .3D .-110.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁11.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( ) A .3a b c++ B .3m n k++ C .3ma nb kc++D .ma nb kcm n k++++12.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( ) A .平均数是-2B .中位数是-2C .众数是-2D .方差是513.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .814.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,3815.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题16.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.17.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.18.数据-1,2,0,1,-2的方差是____.19.已知一组数据为1-、x 、0、1、2-的平均数为0,则x =__________这组数据的标准差为___________.20.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.21.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.22.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.23.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.24.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.25.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.26.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).三、解答题27.某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:服装统一 动作整齐 动作准确初二(1)班 80 84 87 初二(2)班 977880初二(3)班90 78 85(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班. (2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?28.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.29.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 30.山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg ),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m的值为;(2)统计的这组数据的众数是;中位数是;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg.。

八年级(下)中考题单元试卷:第20章_数据的分析(含详解2)

八年级(下)中考题单元试卷:第20章_数据的分析(含详解2)

八年级(下)中考题单元试卷:第20章数据的分析(2)一、选择题(共6小题)1. 在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元2. 如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()A.1.4元B.1.5元C.1.6元D.1.7元3. 某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:那么这15位销售人员该月销售量的平均数、众数、中位数分别是()A.320,210,230B.320,210,210C.206,210,210D.206,210,2304. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:)A.6.2小时B.6.4小时C.6.5小时D.7小时5. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁6. 学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2B.2.8C.3D.3.3二、填空题(共16小题)7. 学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为98分,95分,96分,则小明的平均成绩为________分.8. 某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:则这10名学生周末利用网络进行学习的平均时间是________小时.9. 某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是________岁.10. 某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是________吨.11. 某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是________.12. 某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是________分.13. 某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数为________.14. 某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是________分.15. 某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是________元.16. 某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是________小时.17. 已知一组数据4,13,24的权数分别是16,13,12,则这组数据的加权平均数是________.18. 某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为________分.19. 某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是________分.20. 某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.21. 如表是某校女子排球队队员的年龄分布:则该校女子排球队队员的平均年龄为________岁.22. 某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是________分.三、解答题(共8小题)23. 某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?24. 某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25. 某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.26. 某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人________将被录取.(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.27. 已知甲校有a人,其中男生占60%;乙校有b人,其中男生占50%.今将甲、乙两=55%,所以合并后的男生占总人数的55%.」校合并后,小清认为:「因为60%+50%2如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.28. 某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?29. 某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考核总成绩的计算说明:笔试总成绩=(笔试总成绩+加分)÷2考核总成绩=笔试总成绩+面试总成绩现有甲、乙两名应聘者,他们的成绩情况如下:(1)甲、乙两人面试的平均成绩为________;(2)甲应聘者的考核总成绩为________;(3)根据上表的数据,若只应聘1人,则应录取________.30. 某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)参考答案与试题解析一、选择题(共6小题)1.【答案】C【考点】加权平均数【解析】根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【解答】解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.5(元);故选C.2.【答案】C【考点】加权平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】(1×3+1.5×2+2×5)=1.6(元).该组数据的平均数=1103.【答案】B【考点】中位数加权平均数众数【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】平均数是:(1800+510+250×3+210×5+150×3+120×2)÷15=4800÷15=320(件);210出现了5次最多,所以众数是210;表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件).4.【答案】B【考点】加权平均数【解析】根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.【解答】解:根据题意得:(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.5.【答案】B【考点】加权平均数【解析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选:B.6.【答案】C【考点】加权平均数条形统计图【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.注意本题不是求3,5,11,11这四个数的平均数.【解答】解:(3×1+5×2+11×3+11×4)÷30=(3+10+33+44)÷30=90÷30=3.故30名学生参加活动的平均次数是3.故选C.二、填空题(共16小题)7.【答案】95.8【考点】加权平均数【解析】根据加权平均数的计算方法进行计算即可.【解答】解:根据题意得:(98×1+95×3+96×1)÷5=95.8(分),答:小明的平均成绩为95.8分.故答案为:95.8.8.【答案】2.5【考点】加权平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【解答】解:由题意,可得这10名学生周末利用网络进行学习的平均时间是:1(4×2+3×4+2×2+1×1+0×1)=2.5(小时).10故答案为:2.5.9.【答案】14【考点】加权平均数【解析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】根据题意得:(13×4+14×7+15×4)÷15=14(岁),10.【答案】5.8【考点】加权平均数【解析】根据加权平均数的计算方法先求出所有数据的和,然后除以数据的总个数即可.【解答】解:根据题意得:这20户家庭这个月的平均用水量是(4×3+5×8+6×4+8×5)÷20=5.8(吨);故答案为:5.8.11.【答案】3【考点】加权平均数【解析】先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.【解答】解:设成绩为9环的人数是x,根据题意得:(7×3+8×4+9⋅x)÷(3+4+x)=8,解得:x=3,则成绩为9环的人数是3;故答案为:3.12.【答案】86【考点】加权平均数【解析】利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【解答】解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为:86.13.【答案】3.1【考点】加权平均数【解析】利用加权平均数的计算方法列式计算即可得解.【解答】解:110×(5×3+4×1+3×2+2×2+1×2)=110×(15+4+6+4+2)=110×31=3.1.所以,这10人成绩的平均数为3.1.故答案为:3.1.14.【答案】88【考点】加权平均数按3:3:4的比例算出本学期数学学期综合成绩即可.【解答】解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88(分).故答案为:88.15.【答案】13【考点】扇形统计图加权平均数【解析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【解答】10×60%+16×25%+20×15%=6+4+3=13(元).16.【答案】5.3【考点】加权平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:该组数据的平均数=150(4×10+5×20+6×15+7×5)=265÷50=5.3(小时).故答案为:5.317.【答案】17【考点】加权平均数【解析】本题是求加权平均数,根据公式即可直接求解.【解答】解:平均数为:4×16+13×13+24×12=17,故答案为:17.18.【答案】9.4【考点】【解析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.19.【答案】92【考点】加权平均数【解析】根据加权平均数的计算公式和面试成绩占20%,笔试成绩占80%,列出算式,再进行计算即可.【解答】解:根据题意得:80×20%+95×80%=92(分),答:该候选人的最终得分是92分;故答案为:92.20.【答案】4.4【考点】加权平均数【解析】利用售出蔬菜的总价÷售出蔬菜的总数量=售出蔬菜的平均单价,列式解答即可.【解答】(5×20+4.5×40+4×40)÷(20+40+40)=(100+180+160)÷100=440÷100=4.4(元/千克)答:售出蔬菜的平均单价为4.4元/千克.故答案为:4.4.21.【答案】15【考点】加权平均数【解析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13+14×2+15×5+16×4)÷12=15(岁),答:该校女子排球队队员的平均年龄为15岁;故答案为:15.22.88【考点】加权平均数【解析】此题考查了加权平均数.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.三、解答题(共8小题)23.【答案】甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.【考点】加权平均数【解析】根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.【解答】甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.24.【答案】x¯=(83+79+90)÷3=84,甲x¯=(85+80+75)÷3=80,乙x¯=(80+90+73)÷3=81.丙从高到低确定三名应聘者的排名顺序为:甲,丙,乙;∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.【考点】加权平均数【解析】(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【解答】x ¯甲=(83+79+90)÷3=84,x ¯乙=(85+80+75)÷3=80,x ¯丙=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;∵ 该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分, ∴ 甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.25.【答案】84.5,84(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:{x +y =185x +90y =88, 解得:{x =0.4y =0.6, 笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.【考点】加权平均数中位数众数统计量的选择【解析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【解答】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5分,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:{x +y =185x +90y =88, 解得:{x =0.4y =0.6, 笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.26.【答案】甲.(2)根据题意得:甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),因为乙的平均分数最高,所以乙将被录取.【考点】加权平均数算术平均数【解析】(1)根据平均数的计算公式分别计算出甲、乙、丙的平均数,再进行比较,即可得出答案;(2)根据题意先算出按6和4的甲、乙、丙的平均数,再进行比较,即可得出答案.【解答】解:(1)甲的平均数是:(85+92)÷2=88.5(分),乙的平均数是:(91+85)÷2=88(分),丙的平均数是:(80+90)÷2=85(分),∵ 甲的平均成绩最高,∴ 候选人甲将被录取.(2)根据题意得:甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),因为乙的平均分数最高,所以乙将被录取.27.【答案】×100%.解:合并后男生在总人数中占的百分比是:0.6a+0.5ba+b当a=b时小清的答案才成立;×100%=55%.当a=b时,0.6a+0.5aa+a【考点】加权平均数【解析】根据加权平均数的计算公式可得合并后男生在总人数中占的百分比,再与小清的结果进行比较即可.【解答】×100%.解:合并后男生在总人数中占的百分比是:0.6a+0.5ba+b当a=b时小清的答案才成立;×100%=55%.当a=b时,0.6a+0.5aa+a28.【答案】甲民主评议的得分是:200×25%=50(分);乙民主评议的得分是:200×40%=80(分);丙民主评议的得分是:200×35%=70(分).甲的成绩是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分)乙的成绩是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分)丙的成绩是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分)∵77.4>77>72.9,∴丙的得分最高.【考点】算术平均数统计表加权平均数扇形统计图【解析】(1)根据百分数乘法的意义,分别用200乘以三人的得票率,求出三人民主评议的得分各是多少即可.(2)首先根据加权平均数的计算方法列式计算,分别求出三人的得分各是多少;然后比较大小,判断出三人中谁的得分最高即可.【解答】甲民主评议的得分是:200×25%=50(分);乙民主评议的得分是:200×40%=80(分);丙民主评议的得分是:200×35%=70(分).甲的成绩是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分)乙的成绩是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分)丙的成绩是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分)∵77.4>77>72.9,∴丙的得分最高.29.【答案】85.35,145.6甲【考点】算术平均数加权平均数【解析】(1)先求出甲、乙两人的面试总成绩,再求出其平均成绩即可;(2)根据笔试总成绩=(笔试总成绩+加分)÷2,考核总成绩=笔试总成绩+面试总成绩分别求出甲的考核总成绩即可;(3)求出乙的考核成绩与甲的考核成绩相比较即可得出结论.【解答】∵甲的面试成绩为85.6分,乙的面试成绩为85.1分,∴甲、乙两人面试的平均成绩=85.6+85.1=85.35(分).2故答案为:85.35;∵甲的笔试总成绩=(117+3)÷2=60分,面试成绩=85.6分,∴甲应聘者的考核总成绩=60+85.6=145.6(分).故答案为:145.6;∵乙的笔试总成绩=121÷2=60.5分,面试成绩=85.1分,∴乙应聘者的考核总成绩=60.5+85.1=145.6(分)=145.6分,85.6>85.1∴应录取甲.故答案为:甲.30.【答案】九年级300名同学完成家庭作业的平均时间约为1.8小时.【考点】加权平均数用样本估计总体频数(率)分布直方图扇形统计图【解析】(1)先求出喝红茶的百分比,再乘总数.(2)先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.【解答】解:(1)冰红茶的百分比为100%−25%−25%−10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;(2)补全频数分布直方图如右图所示.≈1.8(小时).(3)1×50+1.5×80+2×120+2.5×5050+80+120+50答:九年级300名同学完成家庭作业的平均时间约为1.8小时.。

初中数学:数据的分析专项练习含答案

初中数学:数据的分析专项练习含答案

一.选择题1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是(D)A.平均数和众数 B.众数和极差C.众数和方差 D.中位数和极差2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的(D)A.众数 B.方差 C.平均数 D.中位数3.下列特征量不能反映一组数据集中趋势的是(C)A.众数 B.中位数 C.方差 D.平均数4.表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?(A)A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数5.刻画一组数据波动大小的统计量是(B)A.平均数 B.方差 C.众数 D.中位数6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的(B)A.平均数 B.中位数 C.众数 D.方差7.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识(A)A.众数 B.中位数 C.平均数 D.方差8.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(B)A.平均数 B.中位数 C.众数 D.方差9.以下是期中考试后,班里两位同学的对话:小晖:我们小组成绩是85分的人最多;小聪:我们小组7位同学成绩排在最中间的恰好也是85分以上两位同学的对话反映出的统计量是(D)A.众数和方差 B.平均数和中位数C.众数和平均数 D.众数和中位数10.下列说法不正确的是(A)A.数据0、1、2、3、4、5的平均数是3B.选举中,人们通常最关心的数据是众数C.数据3、5、4、1、2的中位数是3D.甲、乙两组数据的平均数相同,方差分别是S=0.1,S乙²=0.11,则甲组数据比乙组数据更稳定甲²二.填空题11.用于衡量一组数据的波动程度的三个量为极差、方差、标准差.12.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是中位数(填众数或方差或中位数或平均数)13.某服装店销售一款新式女式T恤,试销期间对该款不同型号女式T恤的销售量统计如下表:该店经理如果想要了解哪种型号女式T恤销售量最大,那么他应关注的统计量是众数.14.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对它们的使用寿命进行跟踪调查,结果如下:(单位:年)甲:4,6,6,6,8,9,12,13.乙:3,3,4,7,9,10,11,12.丙:3,4,5,6,8,8,8,10.三个厂家在广告中都称该产品的使用寿命是8年.请根据结果判断,厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:平均数,乙:中位数,丙:众数.三.解答题15.某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下(单位:cm):甲班:168 167 170 165 168 166 171 168 167 170乙班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表:(2)根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.解:(1)甲班的方差=1/10×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;乙班的中位数为168;补全表格如下:(2)选择方差做标准,∵甲班方差<乙班方差,∴甲班可能被选取.16.某酒店共有6名员工,所有员工的工资如下表所示:(1)酒店所有员工的平均月工资是多少元?(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由;若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),(2)∵能达到这个工资水平的只有1人,∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.17.在洋浦一新开业的以经营男式皮鞋为主的鞋店当服务员的阿丽是个做事善于观察的小姑娘,上班一段时间后,她发现各种尺码的男式皮鞋销量并不均衡,于是她把这个发现记录下来交给了她的老板:你认为这个销售记录对老板管理鞋店生意有用吗?如果你认为有用,请说明你的理由,并请你帮这个老板策划一下如何利用这些信息?解:这个销售记录对老板有用,∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.∴建议老板进货时多进41号的男鞋.18.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;解:(1)甲的极差为:94﹣87=7分乙的极差为:95﹣85=10∴乙的变化范围大;∴乙的变化范围大.89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92(2)甲的平均数为:(89+93+88+91+94+90+88+87)÷8=90,乙的平均数为:(92+90+85+93+95+86+87+92)÷8=90,∴两人的成绩相当;(3)甲的众数为88,乙的众数为92,∴从众数的角度看乙的成绩稍好;。

中考数学复习《数据的分析》专项提升训练题-附答案

中考数学复习《数据的分析》专项提升训练题-附答案

中考数学复习《数据的分析》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数2.甲、乙、丙、丁四名运动员进行百米测试,每人5次测试成绩的平均数都是13.4秒,方差分别为S甲2=0.73,S乙2=0.75,S丙2=0.69,S丁2=0.68,则这四名运动员百米成绩最稳定的是()A.甲B.乙C.丙D.丁3.某中学举办了以“放歌新时代奋进新征程”为主题的知识竞答比赛(共10道题,每题1分).已知选取了10名学生的成绩,且10名学生成绩的中位数和众数相同,但在记录时遗漏了一名学生的成绩.如图是参赛9名学生的成绩,则这10名学生成绩的中位数是()A.7 B.7.5 C.8 D.94.2022年2月,第24届冬季奥林匹克运动会在北京举行.某校八年级(1)班在班会课开展了冬奥会知识小竞赛,10位同学在这个知识竞赛中的成绩统计结果如表所示,则这10位同学的平均成成绩7 8 9 10人数 1 4 3 2A.8 B.8.5 C.8.6 D.95.两组数据-2,m,2n,9,12与3m,7,的平均数都是5,若将这两组数据合并为一组新数据,则这组新数据的众数是()A.B.7 C.2 D.96.坚定不移听党话,跟党走,让红色基因、革命薪火代代传承.某校组织开展“从小学党史,永远跟党走”系列的知识竞赛,培育孩子们的爱党、爱国情怀.下表是该学校学习小组知识竞赛的成绩统计表:成绩86 90 98 100人数 1 3 x 1已知该学习小组本次知识竞赛的平均分是94.6分,那么表中的x的值是()A.4 B.5 C.6 D.77.骐骥中学规定,学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若嘉淇同学的三项成绩(百分制)依次是96分,92分,97分,则嘉淇这学期的体育成绩是()A.95分B.95.1分C.95.2分D.95.3分8.在凤凰山教育共同体数学学科节中,为展现数学的魅力,M老师组织了一个数学沉浸式互动游戏:随机请A,B,C,D,E五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A,B,C,D,E五位同学报出来的数恰好分别是1,2,3,4,5,则D同学心里想的那个数是()A.B.C.5 D.9二、填空题9.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为.10.某中学规定学生的学期体育总评成绩满分为100分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小彤的三项成绩依次为95,90,88,则小彤这学期的体育总评成绩为。

2022年中考数学专题:数据分析(二)

2022年中考数学专题:数据分析(二)

2022年中考数学专题:数据分析(二)1."杂交水稻之父"袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位: cm) 分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是 ( ) A . 24,25B . 23,23C . 23,24D . 24,242.某班15名男生引体向上成绩如表:则这组数据的众数和中位数分别是 ( ) A . 10,7B . 10,10C . 7,10D . 7,123.某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡时间,统计结果如表: 这些学生睡眠时间的众数、中位数是 ( )A . 众数是11,中位数是8.5B . 众数是9,中位数是8.5C . 众数是9,中位数是9D . 众数是10,中位数是94.甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩 x 是 ( ) A . 6环B . 7环C . 8环D . 9环5.下列说法正确的是 ( )A . 一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为 23B.一个抽奖活动的中奖概率为12,则抽奖2次就必有1次中奖C.统计甲,乙两名同学在若干次检测中的数学成绩发现:x甲=x乙,S甲2>S乙2,说明甲的数学成绩比乙的数学成绩稳定D.要了解一个班有多少同学知道"杂交水稻之父"袁隆平的事迹,宜采用普查的调查方式6.为了落实"作业、睡眠、手机、读物、体质"等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7ℎ,7ℎB.8ℎ,7.5ℎC.7ℎ,7.5ℎD.8ℎ,8ℎ7.下列说法正确的是()A.角平分线上的点到角两边的距离相等B.平行四边形既是轴对称图形,又是中心对称图形C.在代数式1a,2x,xπ,985,4a+2b,13+y中,1a,xπ,4a+2b是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4 8.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差9.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次)12 11 10 9人数(名 1 3 4 2)关于这组数据的结论不正确的是()A.中位数是10.5 B.平均数是10.3 C.众数是10 D.方差是0.81 10.有6位同学一次数学测验分数分别是:125,130,130,132,140,145,则这组数据的中位数是()A.130 B.132 C.131 D.14011.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是.12.从−1,1,2中任取两个不同的数作积,则所得积的中位数是.213.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(°C)36.3 36.4 36.5 36.6 36.7 36.82 3 3 4 1 1天数(天)这14天中,小芸体温的众数是°C.14.为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为分.15.如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳定?(填"甲"或"乙" )16.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是(填“甲”或“乙” ).17.如图是张家界市某周每天最高气温的折线统计图,则这7天的最高气温的中位数是°C.18.中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如表:中药黄芪焦山楂当归销售单价(单位:80 60 90元/千克)销售额(单位:元)120 120 360则在这个时间段,该中药房的这三种中药的平均销售量为千克.19.已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是.20.在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是班.人数平均数中位数方差甲班45 82 91 19.3乙班45 87 89 5.821.为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位:ℎ)进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.周学习时间频数频率0⩽t<1 5 0.051⩽t<220 0.202⩽t<3a0.353⩽t<425 m4⩽t⩽515 0.15(1)求统计表中a,m的值.(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于3ℎ的人数.22.某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成绩(成绩均为整数,单位:分)如下:甲:92,95,96,88,92,98,99,100乙:100,87,92,93,9■,95,97,98由于保存不当,学生乙有一次成绩的个位数字模糊不清,(1)求甲成绩的平均数和中位数;(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.23.2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分):6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.七八年级教师竞赛成绩统计表年级七年级八年级平均数8.5 8.5中位数a9众数8 b优秀率45%55%根据以上信息,解答下列问题:(1)填空:a=,b=;(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.24.垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是(填写“方案一”、“方案二”或“方案三” );(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)样本容量平均分及格率优秀率最高分最低分100 83.59 95%40%100 52分数段50⩽x<6060⩽x<7070⩽x<8080⩽x<9090⩽x⩽100频数 5 7 18 30 40结合上述信息解答下列问题:①样本数据的中位数所在分数段为;②全校1565名学生,估计竞赛分数达到“优秀”的学生有人.25.某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.26.国家规定“中小学生每天在校体育活动时间不低于1ℎ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5ℎB组:0.5ℎ⩽t<1ℎC组:1ℎ⩽t<1.5ℎD组:t⩾1.5ℎ请根据上述信息解答下列问题:(1)本次调查的人数是人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为°;(4)本次调查数据的中位数落在组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.27.2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.2016−2017年快递业务量增长速度统计表年龄2016 2017 2018 2019 2020增长速度51.4%28.0%26.6%25.3%31.2%×100%说明:增长速度计算办法为:增长速度=本年业务量−去年业务量去年业务量根据图中信息,解答下列问题:(1)2016−2020年快递业务量最多年份的业务量是亿件.(2)2016−2020年快递业务量增长速度的中位数是.(3)下列推断合理的是(填序号).①因为2016−2019年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;②因为2016−2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上.28.某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.(1)求考生小红和小强自选项目相同的概率;(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:考生自选项目长跑掷实心球小红95 90 95小强90 95 95①补全条形统计图.②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.29.为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不完整的统计表:月平均用水量(吨)3 4 5 6 7频数(户4 a9 10 7数)频率0.08 0.40 b c0.14请根据统计表中提供的信息解答下列问题:(1)填空:a=,b=,c=.(2)这些家庭中月平均用水量数据的平均数是,众数是,中位数是.(3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.30.为了庆祝中国共产党建党100周年,某校开展了学党史知识竞赛.参加知识竞赛的学生分为甲乙两组,每组学生均为20名,赛后根据竞赛成绩得到尚不完整的统计图表(如图),已知竞赛成绩满分为100分,统计表中a,b满足b=2a.请根据所给信息,解答下列问题:甲组20名学生竞赛成绩统计表成绩(分70 80 90 100)人数 3 a b 5(1)求统计表中a,b的值;(2)小明按以下方法计算甲组20名学生竞赛成绩的平均分是:(70+80+ 90+100)÷4=85(分).根据所学统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;(3)如果依据平均成绩确定竞赛结果,那么竞赛成绩较好的是哪个组?请说明理由.参考答案1.C[※解析※]将这组数据从小到大重新排列,求出中位数,再找出出现次数最多的数就是众数.解:将这组数据从小到大重新排列为22,23,23,23,24,24,25,25,26,∴这组数据的众数为23cm,中位数为24cm,2.C[※解析※]分别根据中位数与众数的定义确定众数和中位数即可解决问题.解:7出现的次数最多,出现了5次,所以众数为7;第8个数是10,所以中位数为10.3.B[※解析※]根据众数和中位数的定义即可求解.解:抽查学生的人数为:6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+9=8.5,因此中位数是8.5,24.B5.D[※解析※]根据概率的求法、调查方式的选择、方差的意义及概率的意义逐项判断后即可确定正确的选项.解:A、一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为25,故原命题错误,不符合题意;B、一个抽奖活动的中奖概率为12,则抽奖2次可能有1次中奖,也可能不中奖或全中奖,故原命题错误,不符合题意;C、统计甲,乙两名同学在若干次检测中的数学成绩发现:x甲=x乙,S甲2>S乙2,说明甲的数学成绩不如乙的数学成绩稳定,故原命题错误,不符合题意;D、要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式,正确,符合题意,6.C[※解析※]根据众数以及中位数的概念分别分析求出即可.解:∵7ℎ出现了19次,出现的次数最多,∴所调查学生睡眠时间的众数是7ℎ;∵共有50名学生,中位数是第25、26个数的平均数,∴所调查学生睡眠时间的中位数是7+82=7.5(ℎ).7.A[※解析※]根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.解:A、根据角平分线性质可得:角平分线上的点到角两边的距离相等,故正确,符合题意.B、平行四边形不是轴对称图形,但是中心对称图形,故错误,不符合题意.C、代数式1a ,2x,xπ,985,4a+2b,13+y中,1a,4a+2b是分式,故错误,不符合题意.D、一组数据2、3、x、1、5的平均数是3,则x=4,这组数据的中位数是3,故错误,不符合题意.8.D[※解析※]去掉一个数据4后根据众数、中位数、平均数及方差可直接进行排除选项.×(2+4+4+4+6)=4,中位数为4,众原数据2,4,4,4,6的平均数为15数为4,×[(2−4)2+(4−4)2×3+(6−4)2]=1.6;方差为15×(2+4+6+4)=4,中位数为4,众数为新数据的2,4,4,6的平均数为144,×[(2−4)2+(4−4)2×2+(6−4)2]=2;方差为149.A[※解析※]先根据中位数,平均数,众数,方差的性质分别计算出结果,再判断即可.解:根据题目给出的数据,可得:=10(分),中位数是10+102=10.3,平均数为:12×1+11×3+10×4+9×21+3+4+2∵10出现了4次,出现的次数最多,∴众数是10;[(12−10.3)2+3×(11−10.3)2+4×(10−10.3)2+2×(9−10.3)2]=方差是:1100.81.这组数据的结论不正确的是A.10.C[※解析※]这组数据从小到大排列处在中间位置的两个数为30,132,它们的的平均数为130+1322=131,11.83[※解析※]根据加权平均数的计算公式列出算式,再进行计算即可. 解:小彤这学期的体育成绩是 90×30%+80×70%=83,12. −12[※解析※]分别把 −1, 12,2中任取两个不同的数相乘,求出积,然后将所得的积从小到大排列,根据中位数的意义求解即可.解:从 −1, 12,2中任取两个不同的数作积,有以下几种情况:−1×12=−12, −1×2=−2, 12×2=1, 将所得的积将从小到大排列为 −2, −12,1, 处在中间位置的数是 −12,因此中位数是 −12,13.36.6[※解析※]根据众数的定义找出出现次数最多的数据. 36.6出现的次数最多有4次,所以众数是36.6.14.90[※解析※]将这组数据重新排列,再根据中位数的定义求解即可. 解:将这5个班的得分重新排列为85、88、90、92、95,∴5个班得分的中位数为90分,15.甲[※解析※]方差小的较稳定,分别求出甲、乙方差,即可得到答案. 解:甲的平均成绩为 x 甲=7+6+9+6+75=7,乙的平均成绩为 x 乙=5+9+6+7+85=7,∴甲的方差为 s 甲2=1.2,乙的方差为 s 乙2=2,∵s 甲2<s 乙2,∴甲的成绩较稳定.16.乙[※解析※]根据方差的意义:方差越小,数据越稳定,即可得出答案.∵S 甲2=1.4, S 乙2=0.6, ∴S 甲2>S 乙2,∴两人射击成绩比较稳定的是乙.17.26[※解析※]根据中位数的定义先把数据排序,再确定中位数.解:根据7天的最高气温折线统计图,将这7天的最高气温按大小排列为:20,22,24,26,28,28,30,故中位数为 26°C ,18.2.5[※解析※]根据销售量 =销售额 ÷销售单价,分别求出黄芪、焦山楂、当归三种中药的销售量,再求出三种中药销量的算术平均数即可得出结论.解:黄芪的销售量为120÷80=1.5(千克),焦山楂的销售量为120÷60=2(千克),当归的销售量为360÷90=4(千克).=2.5(千克).该中药房的这三种中药的平均销售量为 1.5+2+43+219.y=x5[※解析※]根据平均数的公式直接列式即可得到函数解析式.解:根据题意得:y=(0+1+x+3+6)÷5+2.=x520.甲[※解析※]根据中位数的意义分别求出两个班中优秀人数的多少解决问题.解:∵甲班的中位数为91分,乙班的中位数为89分,∴甲班的中位数大于乙班的中位数,∴甲、乙两班中优秀人数更多的是甲班,21.(1)a=35,m=0.25;(2)甲同学的周学习时间在2⩽t<3范围内;(3)800人.[※解析※](1)根据周学习时间在0⩽t<1的频数及频率求出样本容量,再由频率=频数÷样本容量求解即可求出答案;(2)根据中位数的定义即可解决问题;(3)用总人数乘以样本中3⩽t<4、4⩽t⩽5的频率和,结果就是该校学生每周参加“青年大学习”的时间不少于3ℎ的人数.解:(1)∵样本容量为5÷0.05=100,∴a =100×0.35=35, m =25÷100=0.25;(2) ∵一共有100个数据,其中位数是第50、51个数据的平均数,而这2个数据均落在 2⩽t <3范围内,∴甲同学的周学习时间在 2⩽t <3范围内;(3)估计该校学生每周参加“青年大学习”的时间不少于 3ℎ的人数为2000×(0.25+0.15)=800(人 ).22.(1)平均数为95分,中位数为95.5分;(2) 45; (3)甲;[※解析※](1)甲成绩的平均数为: (88+92+92+95+96+98+99+100)÷8=95, 将甲成绩从小到大排列处在中间位置的两个数的平均数为 95+962=95.5,因此中位数是95.5,答:甲成绩的平均数为95,中位数是95.5;(2)设模糊不清的数的各位数字为 a ,则 a 为0至9的整数,也就是模糊不清的数共10种可能的结果,当甲成绩的平均数大于乙成绩的平均数时,有 95>87+92+93+95+97+98+100+90+a8,即 95>752+a 8,解得 a <8,共有8种不同的结果,所以“甲成绩的平均数大于乙成绩的平均数”的概率为 810=45; (3)当甲成绩的平均数与乙成绩的平均数相等时, 即752+a 8=95,解得 a =8, 所以甲的方差为:S 甲2=18[(88−95)2+(92−95)2×2+(96−95)2+(98−95)2+(99−95)2+(100−95)2]=14.75,乙的方差为:S 乙2=18[(87−95)2+(92−95)2+(93−95)2+(97−95)2+(98−95)2×2+(100−95)2]=15.5,∵S 甲2<S 乙2,∴甲的成绩更稳定,所以应选择甲同学参加数学竞赛.23.(1)8;9;(2)102人; (3)见解析[※解析※](1)根据中位数定义、众数的定义即可找到 a 、 b 的值. (2)计算出成绩达到8分及以上的人数的频率即可求解. (3)根据优秀率进行评价即可.解:(1) ∵七年级教师的竞赛成绩:6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.∴中位数 a =8.根据扇形统计图可知 D 类是最多的,故 b =9. 故答案为:8;9.(2)该校七年级120名教师中竞赛成绩达到8分及以上的人数估计为 =1720×100%×120=102(人 ).(3)根据表中可得,七八年级的优秀率分别是: 45%、 55%.故八年级的教师学习党史的竞赛成绩更优异.24.(1)方案三;(2)① 80⩽x <90;②626.[※解析※](1)根据抽样的代表性、普遍性和可操作性可知,方案三符合题意; (2)①根据样本的中位数,估计总体中位数所在的范围;②根据样本中“优秀”人数占调查人数的百分比即可估计总体1565人的相同百分比40%是“优秀”,列式计算即可.解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本进行调查分析,是最符合题意的.(2)①样本总数为:5+7+18+30+40=100(人),成绩从小到大排列后,处在中间位置的两个数都在80⩽x<90,因此中位数在80⩽x<90组中;=626(人),②由题意得,1565×4010025.(1)众数:90,中位数:90,平均数:90.5;(2)450人[※解析※](1)由列表中90分对应的人数最多,因此这组数据的众数应该是90,由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是90分,因此这组数据的中位数应该是90,=90.5;平均数是:80×2+85×3+90×8+95×5+100×22+3+8+5+2(2)根据题意得:600×8+5+2=450(人),20答:估计该年级获优秀等级的学生人数是450人.26.(1)400;(2)见解析;(3)36;(4)C;(5)56000.[※解析※](1)用A组的人数除以百分比即可求出总人数;(2)用总人数减去已知组的人数即可求出C组人数;(3)先求出D组所占的百分比,再乘360°即可;(4)看第200个和第201个数据所在的组即可求出中位数所在的组;(5)用该市辖区初中学生总人数乘优秀人数的百分比即可估算出全市优秀的人数.解:(1)∵A组有40人,占10%,=400(人),∴总人数为4010%(2)C组的人数为400−40−80−40=240(人),统计图如下:×100%=10%,(3)D组所占的百分比为40400∴D组所对的圆心角为360°×10%=36°,(4)中位数为第200个数据和第201个数据的平均数,都在C组,∴中位数在C组,×100%=70%,(5)优秀人数所占的百分比为280400∴全市优秀人数大约为80000×70%=56000(人).27.(1)833.6;(2)28.0%;(3)②.[※解析※](1)根据2016−2020年快递业务量统计图可得答案;(2)根据中位数的意义,将2016−2020年快递业务量增长速度从小到大排列找出中间位置的一个数即可;(3)利用业务量的增长速度率估计2021年的业务量即可.解:(1)由2016−2020年快递业务量统计图可知,2020年的快递业务量最多是833.6亿件,(2)将2016−2020年快递业务量增长速度从小到大排列处在中间位置的一个数是28.0%,因此中位数是28.0%,(3)① 2016−2019年快递业务量的增长速度下降,并不能说明快递业务量下降,而业务量也在增长,只是增长的速度没有那么快,因此①不正确;②因为2016−2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上,因此②正确;28.(1)13;(2)①见解析;②小红的体育中考成绩为93.5分,小强的体育中考成绩为92.5分.[※解析※](1)将乒乓球、篮球和羽毛球分别记作A、B、C,列表得出所有等可能结果,再从中找到符合条件的结果数,继而根据概率公式计算可得答案;(2)①根据表格中的数据即可补全条形图;②根据加权平均数的定义列式计算即可.解:(1)将乒乓球、篮球和羽毛球分别记作A、B、C,列表如下:由表可知共有9种等可能结果,其中小红和小强自选项目相同的有3种结果,所以小红和小强自选项目相同的概率为39=13;(2)①补全条形统计图如下:②小红的体育中考成绩为95×50%+90×30%+95×20%=93.5(分),小强的体育中考成绩为90×50%+95×30%+95×20%=92.5(分).29.(1)20,0.18,0.20;(2)4.92,4,5;(3)132户;(4)见解析[※解析※](1)求出抽查的户数,即可解决问题;(2)由平均数、众数、中位数的定义求解即可;(3)由总户数乘以月平均用水量不超过5吨的户数所占的比例即可;(4)画出树状图,看共有几种等可能的结果,列举出来,恰好选到甲、丙两户的结果有几种,再由概率公式求解即可.解:(1)抽查的户数为:4÷0.08=50(户),∴a=50×0.40=20,b=9÷50=0.18,c=10÷50=0.20,故答案为:20,0.18,0.20;=4.92(吨(2)这些家庭中月平均用水量数据的平均数=3×4+4×20+5×9+6×10+7×750),=5(吨),众数是4吨,中位数为5+52故答案为:4.92,4,5;(3)∵4+20+9=33(户),∴估计该市直属机关200户家庭中月平均用水量不超过5吨的约有:200×3350= 132(户);(4)画树状图如图:共有12种等可能的结果,恰好选到甲、丙两户的结果有2种,∴恰好选到甲、丙两户的概率为212=16,所有等可能的结果分别为(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙)、(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙)、(丁,丙).30.(1)a=4,b=8;(2)小明的计算不正确,正确的计算为:70×3+80×4+90×8+100×520=87.5(分);(3)竞赛成绩较好的是甲组.[※解析※](1)根据每组学生均为20名求出a,b的和,由b=2a即可求解;(2)先判断小明的计算是不是正确,再根据加权平均数的计算方法可以解答本题;(3)计算乙组20名学生竞赛成绩的平均分,比较即可得出答案.解:(1)∵每组学生均为20名,∴a+b=20−3−5=12(名),∵b=2a,∴a=4,b=8;(2)小明的计算不正确,正确的计算为:70×3+80×4+90×8+100×520=87.5(分);(3)竞赛成绩较好的是甲组,理由:乙组20名学生竞赛成绩的平均分:100×360−90−90−144360+90×90360+80×90360+70×144360=10+22.5+20+28=80.5(分),80.5<87.5,∴竞赛成绩较好的是甲组.。

数据的分析中考题大全

数据的分析中考题大全

数据的分析要点一:平均数、中位数、众数一、选择题1.(2010·XX中考)某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C【解析】选D.把这5个数据按大小顺序排列起来后,最中间的是21,所以这组数据的中位数是21.这组数据的中20出现2次是出现次数最多的,所以这组数据的众数是20. 2.(2009·XX中考)在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是()A.9.2 B.9.3 C.9.4 D.9.5【解析】选D 根据要求去掉9.0、9.9两个数据,因此数据的平均数为数据:9.3、9.4、9.5、9.6、9.7的平均数即:9.5;3.(2009·内江中考)今年我国发现的首例甲型H1N1流感确诊病例在XX某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数B.方差C.平均数D.频数【解析】选B 反映数据的波动大小的量为数据的方差,因此选B;4.(2009·XX市中考)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5C.5.5,7 D.6.5,7【解析】选D 数据组中出现次数最多的数为7,中位数为6、7的平均数即6.5;5.(2010·潼南中考)数据14 ,10 ,12,13,11 的中位数是()A.14 B.12C.13 D.11【解析】选B,先把所有的数从小到大排列起来,10,11,12,13,14,中间的一个为12 6.(2009·XX中考)(2009威海)某公司员工的月工资如下表:则这组数据的平均数、众数、中位数分别为()A.2200元1800元1600元B.2000元1600元1800元C.2200元1600元1800元D.1600元1800元1900元【解析】选C 由图表信息知:1600元出现的次数最多,因此1600元是数据的众数;将数据按大小排列后可以得到数据的中位数为1800元;平均数为2200元;7、(2009·仙桃中考)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、25.6 26B、26 25.5C、26 26D、25.5 25.5【解析】选D 因为25有2个,25.5有4个,26有2个,26.5有1个,27有1个所以25.5为此数据组的众数;将数据按大小排列为:25、25、25.5、25.5、25.5、25.5、26、26、26.5、27;所以数据的中间两个数为25.5、25.5,所以数据的中位数为25.5;8、(2009·XX中考)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【解析】选A 根据平均数的计算方法可知全年级学生的平均成绩一定在六个平均成绩的最小值和最大值之间;9、(2009·XX中考)“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,XX市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、30【解析】选C 由统计图可知30的个数最多,因此数据的众数为30,此数组数据的个数为50,将数据按大小排列后中间的两个数为30、30,所以中位数为30;10、(2009·XX中考)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在().(A)第二组(B)第三组(C)第四组(D)第五组【解析】选C.有统计图和表知:样本数=12÷12%=100,第三小组人数=100×18%=18,第五十和第五十一个数位于第四小组.11、(2008·XX中考)小丽家下个月的开支预算如图所示.如果用于教育的支出是150元,则她家下个月的总支出为()A.625元B.652元C.750元D.800元答案:选C二、填空题12、(2010·眉山中考)某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数据的中位数是__________(元).【解析】:把这一组数据从小到大排列后,最中间的一个数为30,所以中位数为30(元) 答案:3013、改革开放后,我市农村居民人均消费水平大幅度提升.下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元).则这几年我市农村居民人均食品消费支出的中位数是元,极差是元.【解析】中位数=225602048 =2304,极差=2786-1674=1112.答案:2304,111214、(2009·XX 中考)已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.【解析】因为三个不相等的正整数的中位数是3,所以三个数中有一个小于3,而另一个大于3,又因为平均数为3,所以数组为1,3,5或2,3,4; 答案:1,3,5或2,3,4; 三、解答题15、(2009·XX 中考)振兴中华某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,并绘制成统计图(如图),图中从左到右各矩形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。

中考数学复习《数据分析》专题训练含答案

中考数学复习《数据分析》专题训练含答案

中考复习专题训练数据分析一、选择题1.对于数据:80,88,85,85,83,83,84.下列说法中错误的有()(1).这组数据的平均数是84 (2).这组数据的众数是85(3).这组数据的中位数是84 (4).这组数据的方差是36A. 1个B. 2个C. 3个D. 4个2.下列统计图中,可以直观地反映出数据变化的趋势的统计图是()A. 折线图B. 扇形图C. 统形图D. 频数分布直方图3.数据-1,-3,0,2,7,15,-12的极差是()A. 3B. 18C. -27D. 274.已知一组数据:20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A. 平均数>中位数>众数B. 平均数<中位数<众数C. 中位数<众数<平均数D. 平均数=中位数=众数5.一组数据5,1,x,6,4的众数是4,这组数据的方差是()A. B. 2.8 C. 2 D.6.我校准备在初二年级的四名同学中选拔一名参加我市“风采小主持人”大赛,选拔赛中每名学生的平均成绩及方差如表所示,若要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁平均成绩8 9 9 8方差 1 1 1.2 1.3A. 甲B. 乙C. 丙D. 丁7.想表示某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用( ):A. 条形统计图B. 扇形统计图C. 折线统计图D. 以上都可以8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()A. B.C. D.9.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A. 3次B. 3.5次C. 4次D. 4.5次10.某水果经销商对四月份甲、乙、丙、丁四个市场每天出售的草莓价格进行调查,通过计算发现这个月四个市场草莓的平均售价相同,方差分别为S甲2=8.5,S乙2=5.5,S丙2=9.5,S丁2=6.4,则四月份草莓价格最稳定的市场是()A. 甲B. 乙C. 丙D. 丁二、填空题11. 某天的最低气温是﹣2℃,最高气温是10℃,则这天气温的极差为________℃.12.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势应选用________统计图来描述数据.13.某市某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是________.14.市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是________.甲乙丙丁平均数8.2 8.0 8.0 8.2方差 2.1 1.8 1.6 1.415.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工 5 7000木工 4 6000瓦工 5 5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差________(填“变小”、“不变”或“变大”).16.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是________.17.某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加若干次测试成绩中随机抽取8次,计算得两人的平均成绩都是85分,方差分别是S甲2=35.5,S乙2=41,从操作技能稳定的角度考虑,选派________参加比赛.18.数学老师布置了10道选择题,小颖将全班同学的解答情况绘成了下面的条形统计图,根据图表回答:平均每个学生做对了________道题,做对题目的众数是________,中位数是________.三、解答题19.去年,汶川地区发生特大地震,造成当地重大经济损失,在“情系灾区”捐款活动中,某同学对甲、乙两班情况进行统计,得到三条信息:①甲班共捐款300元,乙班共捐232元;②甲班比乙班多2人;③乙班平均每人捐款数是甲班平均每人捐款数的;请你根据以上信息,求出甲班平均每人捐款多少元?20.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.班级平均数(分)中位数众数九(1)85 85九(2)80(1)根据图示填写上表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.21.市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数.22.铜陵职业技术学院甲、乙两名学生参加操作技能培训.从他们在培训期间参加的多次测试成绩中随机抽取8次,记录如下:学生8次测试成绩(分)平均数中位数方差甲95 82 88 81 93 79 84 78 85 35.5乙83 92 80 95 90 80 85 75 84(1)请你在表中填上甲、乙两名学生这8次测试成绩的平均数、中位数和方差。

人教版数学八下专题复习之《数据的分析》中考题精选

人教版数学八下专题复习之《数据的分析》中考题精选

人教版数学八下专题复习之《数据的分析》中考题精选一.选择题(共10小题)1.某校男子足球队的年龄分布如下表:年龄131415161718人数268321则这些队员年龄的众数和中位数分别是()A.8,15B.8,14C.15,14D.15,152.本学期学校开展了“品读古典名著,传承中华文化”比赛活动,小华统计了班级50名同学3月份阅读古典名著的数量,具体数据如表所示:那么这50名同学四月份阅读古典名著数量的众数和中位数分别是()诗词数量(首)4567891011人数566810942 A.9,7.5B.9,7C.8,8D.8,7.53.某商场对上周女装的销售情况进行了统计,如表,经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()颜色黄色绿色白色紫色红色数量(件)10018022080520 A.平均数B.中位数C.众数D.方差4.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)1314151617人数36441则这些队员年龄的众数和中位数分别是()A.14,14B.14,14.5C.14,15D.15,145.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)183183182182方差 5.7 3.5 6.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A.甲B.乙C.丙D.丁6.已知一组数据:﹣1,5,﹣2,4,2,x.若该组数据的平均数是1,则其众数与中位数分别是()A.﹣2;0.5B.﹣2;2C.﹣1;2D.1:57.一组数据2,3,4,2,5的众数和中位数分别是()A.2,2B.2,3C.2,4D.5,48.甲,乙两个班参加了学校组织的“故事力大赛”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲409392 5.2乙409394 4.7 A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多9.一家鞋店在一段时间内销售了某款运动鞋30双,该款的各种尺码鞋销售量如图所示.鞋店决定在下一次进货时增加一些尺码为23.5cm的该款运动鞋,影响鞋店这一决策的统计量是()A.平均数B.中位数C.众数D.方差10.学校组织朗诵比赛,有11位同学晋级决赛,每位选手得分各不相同.如果小杰想要确定自己是否进入前6名,那么除了自己的得分以外,他还要了解这11名同学得分的()A.平均数B.中位数C.众数D.方差二.填空题(共10小题)11.已知五个数a,b,c,d,e,它们的平均数是90,a,b,c的平均数是80,c,d,e的平均数是95,那么你可以求出(a,b,c,d,e选填一个),它等于.12.在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示.成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数144521则这些运动员成绩的中位数为.13.目前,做核酸检测是排查新冠肺炎确诊病例的有效手段,对于部分人来说,做核酸检测是有必要的,下表是某市一院与二院在2月3日至2月9日做核酸的人数表:71088977一院(单位:百人)二院(单89776910位:百人)设一院做核酸人数的方差为s12,二院做核酸人数的方差为s22,则s12s22(填“>”或“=”或“<”).14.北大附中实验学校科技节的作品得分包括三部分,专家评委给出的专业得分,宣传展示得分以及通过同学们投票得到的支持得分.已知某个作品各项得分如表所示(各项得分均按百分制计):按专业得分占50%、展示得分占40%、支持得分占10%,计算该作品的综合成绩(百分制),则该作品的最后得分是.项目专业得分展示得分支持得分成绩(分)96989615.某班统一为学生采购校服60件,收集尺码如下表:尺码/cm165170175180185190数量/件37201875则这组数据的中位数是.16.已知一组不全等的数据:x1,x2,x3…x n,平均数是2016,方差是2017.则新数据:2016,x1,x2,x3…x n的平均数是,方差2017(填“=、>或<”).17.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.18.有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为.19.一组数据的标准差计算公式是s=,则这组数据的平均数是.20.数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成统计图(如图所示),根据统计图,全班每位同学答对的题数所组成的一组数据的中位数为,众数为.三.解答题(共10小题)21.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值;组别平均分中位数方差合格率优秀率甲组 6.8a 3.7690%30%乙组b7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.22.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)2初中部a85b s初中高中部85c100160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.23.为了从甲乙两名选手中选拔一名参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下两个统计图表:平均数中位数方差命中10环的次数甲70乙 5.41(1)请补全上述图表;(2)如果规定成绩较稳定者胜出,你认为谁应胜出?请说明你的理由.24.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲9582888193798478乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.25.在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题(数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=)(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?与哪个数据(平均数,中位数方差和极差)有关?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.26.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前5名选手的得分如下:序号12345项目笔试成绩/分8592849084面试成绩/分9088869080根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分)(1)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(2)求出其余四名选手的综合成绩,并以综合成绩排序确定前两名人选.27.一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.28.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表3首4首5首6首7首8首一周诗词诵背数量人数101015402520请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.29.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78867481757687707590 75798170748086698377九年级93738881728194837783 80817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100成绩人数x部门八年级001111九年级1007(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.377.57533.6九年级7880.552.1请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为;(2)可以推断出年级学生的体质健康情况更好一些,理由为.(至少从两个不同的角度说明推断的合理性).30.近年来,越来越多的人们加入到全民健身的热潮中来.“健步走”作为一项行走速度和运动量介于散步和竞走之间的步行运动,因其不易发生运动伤害,不受年龄、时间和场地限制的优点而受到人们的喜爱.随着信息技术的发展,很多手机App可以记录人们每天健步走的步数,为大家的健身做好记录.小明的爸爸妈妈都是健步走爱好者,一般情况下,他们每天都会坚持健步走.小明为了给爸爸妈妈颁发4月份“运动达人”奖章,进行了抽样调查,过程如下,请补充完整.爸爸12 10 11 15 14 13 14 11 14 12妈妈11 14 15 2 11 11 14 15 14 14平均数中位数众数爸爸12.612.5b妈妈a1414(1)写出表格中a,b的值;(2)你认为小明会把4月份的“运动达人”奖章颁发给谁,并说明理由.。

专题20:数据的分析(中考真题专练)(解析版)

专题20:数据的分析(中考真题专练)(解析版)

专题20:数据的分析(中考真题专练)一、单选题1.(2015·北京中考真题)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22【答案】C【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.2.(2018·山东济宁市·中考真题)在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【解答】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点评】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.(2018·四川资阳市·中考真题)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.88【答案】C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【解答】小王的最后得分为:90×3352+++88×5352+++83×2352++=27+44+16.6=87.6(分),故选C.【点评】本题考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.4.(2018·宁夏中考真题)小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20 B.30和25 C.30和22.5 D.30和17.5【答案】C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【解答】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20252+=22.5,故选C.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(2018·浙江温州市·中考真题)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分【答案】C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(2018·黑龙江大庆市·中考真题)已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.102【答案】C【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.【解答】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为15×(92+94+98+91+95)=94,其方差为15×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6,所以a+b=94+6=100,故选C.【点评】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键. 7.(2018·湖南张家界市·中考真题)若一组数据1a,2a,3a的平均数为4,方差为3,那么数据12a+,22a+,32a+的平均数和方差分别是()A.4, 3 B.6, 3 C.3, 4 D.6 5 【答案】B【解析】分析:根据数据a1,a2,a3的平均数为4可知13(a1+a2+a3)=4,据此可得出13(a1+2+a2+2+a3+2)的值;再由方差为3可得出数据a1+2,a2+2,a3+2的方差.详解:∵数据a1,a2,a3的平均数为4,∴13(a1+a2+a3)=4,∴13(a1+2+a2+2+a3+2)=13(a1+a2+a3)+2=4+2=6,∴数据a1+2,a2+2,a3+2的平均数是6;∵数据a1,a2,a3的方差为3,∴13[(a1-4)2+(a2-4)2+(a3-4)2]=3,∴a1+2,a2+2,a3+2的方差为:13[(a1+2-6)2+(a2+2-6)2+(a3+2-6)2]=13[(a1-4)2+(a2-4)2+(a3-4)2]=3.故选B.点睛:此题主要考查了方差和平均数,熟记方差的定义是解答此题的关键.8.(2019·湖北荆州市·中考真题)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【解答】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点评】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键. 9.(2019·湖南常德市·中考真题)某公司全体职工的月工资如下:2(副总经3 4 10 20 22 12 6人数1(总经理)理)该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是()A.中位数和众数B.平均数和众数C.平均数和中位数D.平均数和极差【答案】A【分析】根据中位数、众数、平均数及极差的意义分别判断后即可得到正确的选项.【解答】∵数据的极差为16800,较大,∴平均数不能反映数据的集中趋势,∴普通员工最关注的数据是中位数及众数,故选A.【点评】本题考查了统计量的选择的知识,解题的关键是了解有关统计量的意义,难度不大.10.(2015·山东泰安市·中考真题)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分【答案】D【解答】解:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选D .【点评】本题考查1.中位数;2.扇形统计图;3.条形统计图;4.算术平均数,掌握概念正确计算是关键.二、填空题11.(2019·四川巴中市·中考真题)如果一组数据为4、a 、5、3、8,其平均数为a ,那么这组数据的方差为_______. 【答案】145. 【解析】【分析】先根据平均数的定义确定出a 的值,再根据方差公式进行计算即可求出答案. 【解答】解:根据题意,得:45385a a ++++=, 解得:5a =,则这组数据为4、5、5、3、8,其平均数是5, 所以这组数据的方差为22222114(45)(55)(55)(35)(85)55⎡⎤⨯-+-+-+-+-=⎣⎦, 故答案为:145. 【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.12.(2011·湖北咸宁市·中考真题)七位女生的体重(单位:kg)分别为36、42、38、42、35、45、40,则这七位女生的体重的中位数为_______kg .【答案】40【解析】题目中数据共有7个,中位数是按从小到大排列后第4个数作为中位数,故这组数据的中位数是40.13.(2016·山东菏泽市·中考真题)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.【答案】15.【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【解答】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数.∵14岁的有1人,15岁的有21人,∴这个班同学年龄的中位数是15岁.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.14.(2012·广西柳州市·中考真题)某校篮球队在一次定点投篮训练中进球情况如图,那么这个对的队员平均进球个数是___.【答案】6【解析】解:根据题意得:⨯+⨯+⨯+⨯=+++1445184761414.15.(2018·浙江丽水市·中考真题)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是_____.【答案】6.9%【分析】根据众数的概念判断即可.【解答】这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.16.(2018·四川巴中市·中考真题)甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而S甲2=3.7,S乙2=6.25,则两人中成绩较稳定的是.【答案】甲.【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,比较出甲和乙的方差大小即可. 【解答】解:∵S甲2=3.7,S乙2=6.25,∴S甲2<S乙2,∴两人中成绩较稳定的是甲,故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(2018·广西南宁市·中考真题)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.【答案】4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352=4,故答案为4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.(2018·贵州黔东南苗族侗族自治州·中考真题)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.【答案】丙【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【解答】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.19.(2018·四川宜宾市·中考真题)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分_____.【答案】78.8分.【解析】分析:根据题意先算出甲、乙、丙三人的综合成绩,再进行比较,即可得出答案.详解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分,故答案为78.8分.点睛:本题考查了加权平均数的计算公式,注意,计算平均数时按60%和40%进行计算.20.(2018·重庆中考真题)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.【答案】23.4【解析】【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.【详解】从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.【点睛】本题考查了中位数的定义,熟知“中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)”是解题的关键.三、解答题21.(2019·江苏常州市·中考真题)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.【答案】(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.+++=,由众数的定义即可得出结果;【分析】(1)由题意得出本次调查的样本容量是6118530(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.+++=,这组数据的众数为10元;【解答】(1)本次调查的样本容量是6118530故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点评】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.22.(2015·广东汕尾市·中考真题)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.【答案】(1)30元;(2)50元;(3)250.【分析】(1)根据众数的定义即可判判断;(2)根据中位数的定义即可判断;(3)先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;【解答】(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人.23.(2015·浙江金华市·中考真题)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?【答案】(1)这次被抽检的电动汽车共有100辆,补图见解析;(2)估计这种电动汽车一次充电后行驶的平均里程数为217千米.【分析】(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D所占的百分比,即可得到A 所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.【解答】解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%-40%-20%-30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:1×(10×200+30×210+220×40+20×230)=217(千米),100∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.【点评】本题考查条形统计图;扇形统计图;加权平均数.24.(2010·河北中考真题)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数11 0 8(1)在图①中,“7分”所在扇形的圆心角等于______ ;(2)请你将②的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【答案】(1)144°;(2)乙校得8分的学生的人数为3人,据此可将图②的统计图补充完整如图③见解析;(3)从平均分和中位数的角度分析乙校成绩较好;(4)应选甲校.【分析】(1)观察图①、图②,根据10分的人数以及10分的圆心角的度数可以求出乙校参赛的人数,然后再用360度乘以“7分”学生所占的比例即可得;(2)求出8分的学生数,据此即可补全统计图;(3)先求出甲校9分的人数,然后利用加权平均数公式求出甲校的平均分,根据中位数概念求出甲校的中位数,结合乙校的平均分与中位数进行分析作出判断即可;(4)根据两校的高分人数进行分析即可得.【解答】(1)由图①知“10分”的所在扇形的圆心角是90度,由图②知10分的有5人,所以乙校参加英语竞赛的人数为:5÷90360=20(人),所以“7分”所在扇形的圆心角=360°×820=144°,故答案为144;(2)乙校得8分的学生的人数为208453---=(人),补全统计图如图所示:(3)由(1)知甲校参加英语口语竞赛的学生人数也是20人,故甲校得9分的学生有201181--=(人),所以甲校的平均分为:71191088.320⨯++⨯=(分),中位数为7分,而乙校的平均数为8.3分,中位数为8分,因为两校的平均数相同,但甲校的中位数要低于乙校,所以从平均分和中位数的角度分析乙校成绩较好;(4)选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校. 【点评】本题考查了条形统计图和扇形统计图的综合运用,中位数等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(2013·四川遂宁市·中考真题)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【答案】(1)平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可.26.(2011·福建泉州市·中考真题)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:(1)50个样本数据的平均数是______册、众数是______册,中位数是______册; (2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数. 【答案】(1)2, 3, 2;(2)本次活动中读书多于2册的约有108名. 【分析】(1)根据平均数,众数,中位数的定义解答即可; (2)根据样本的频数估计总体的频数.【解答】解:(1) 观察表格.可知这组样本救据的平均数是0311321631741250x ⨯+⨯+⨯+⨯+⨯==∴这组样本数据的平均数为2.∵在这组样本数据中.3出现了17次,出现的次数最多, ∴这组数据的众数为3.∵将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是2, ∴这组数据的中位数为2.(2) 在50名学生中,读书多于2本的学生有I 8名.有1830010850⨯=. ∴根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的约有108名. 【点评】本题考查了平均数,众数,中位数的知识,掌握各知识点的概念是解题的关键.27.(2014·四川凉山彝族自治州·中考真题)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a= ,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?【答案】(1)10,36°.补全条形图见解析;(2)5天,6天;(3)800.【分析】(1)根据各部分所占的百分比等于1列式计算即可求出a,用360°乘以所占的百分比求出所对的圆心角的度数,求出8天的人数,补全条形统计图即可.(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【解答】(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.240÷40=600,8天的人数,600×10%=60,故答案为10,36°.补全条形图如下:(2)∵参加社会实践活动5天的最多,∴众数是5天.∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天, ∴中位数是6天.(3)∵2000×(25%+10%+5%)=2000×40%=800. ∴估计“活动时间不少于7天”的学生人数大约有800人.28.(2012·天津中考真题)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动. 【答案】(1)平均数是3.3,中位数是3,众数是4;(2)3960次 【解析】解:(Ⅰ)观察条形统计图,可知这组样本数据的平均数是:132731741855?x 3.350⨯+⨯+⨯+⨯+⨯==.∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3, ∴这组数据的中位数是3.(Ⅱ)∵这组样本数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3, ∴3.3×1200=3960. ∴估计该校学生共参加活动约为3960次(Ⅰ)根据加权平均数的公式可以计算出平均数;根据众数的定义:一组数据中出现次数最多的数据叫做众数,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,即可求出众数与中位数.(Ⅱ)利用样本估计总体的方法,用样本中的平均数×1200即可 29.(2007·江苏连云港市·中考真题)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:0.5h t <; B组:0.5h 1h t ≤< C组:1h 1.5h t ≤<D组: 1.5h t ≥ 请根据上述信息解答下列问题: (1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少? 【答案】(1)120(2)C(3)14400人【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C 组的人数; (2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数. 【解答】解:(1)根据题意有,C 组的人数为300-20-100-60=120;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C 组,故调查数据的中位数落在C 组;(3)达国家规定体育活动时间的人数约占12060100%60%300+⨯= 所以,达国家规定体育活动时间的人约有24000×60%=14400(人);30.(2011·四川南充市·中考真题)以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.。

中考数学复习考点题型专题练习37---数据的分析

中考数学复习考点题型专题练习37---数据的分析

中考数学复习考点题型专题练习专题37 数据的分析(满分:100分时间:90分钟)班级_________ 姓名_________学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2021·湖南永州市·中考真题)已知一组数据1,2,8,6,8对这组数据描述正确的是()A.众数是8B.平均数是6C.中位数是8D.方差是92.(2021·山东滨州市·中考真题)已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1B.2C.3D.43.(2021·宁夏中考真题)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.54.(2021·内蒙古赤峰市·中考真题)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.平均数B.中位数C.众数D.方差5.(2021·浙江杭州市·中考真题)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x6.(2021·广西贵港市·中考真题)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和87.(2021·浙江温州市·中考真题)山茶花是温州市的市花,品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表.这批“金心大红”花径的众数为()A.6.5cmB.6.6cmC.6.7cmD.6.8cm8.(2021·安徽中考真题)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是187D.中位数是139.(2021·广东深圳市·中考真题)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数...和中位数...分别是()A.253,253B.255,253C.253,247D.255,24710.(2021·四川成都市·中考真题)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A.5人,7人B.5人,11人C.5人,12人D.7人,11人二、填空题(共5小题,每小题4分,共计20分)11.(2021·浙江宁波市·中考真题)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.12.(2021·江苏镇江市·中考真题)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为_____.13.(2021·山东青岛市·中考真题)某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试.测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么__________将被录用(填甲或乙)14.(2021·山东东营市·中考真题)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.15.(2021·江西中考真题)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:那么,圆周率的小数点后100位数字的众数为__________.三、解答题(共5小题,每小题10分,共计50分)16.(2021·重庆中考真题)为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?【答案】(1)7a =,7.5b =,50%c =;(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)17.(2021·四川眉山市·中考真题)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.18.(2021·新疆中考真题)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x )分为四个等级:优秀85100x ≤≤;良好7585x ≤<;及格6075x ≤<;不及格060x ≤<,并绘制成以下两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是______;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.19.(2021·广东广州市·中考真题)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.20.(2021·甘肃兰州市·中考真题)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.。

中考数学专题复习《数据分析》测试卷-附带答案

中考数学专题复习《数据分析》测试卷-附带答案

中考数学专题复习《数据分析》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.为筹备毕业聚餐,班长对全班同学爱吃东北菜、川菜、湘菜、粤菜中的哪一种菜系的人数比较多做了民意调查.班长做决定最关注的统计量是()A.平均数B.中位数C.众数D.方差2.在一次演讲比赛中,小明对7位评委老师打出的分数进行了分析,如果去掉一个最高分和一个最低分后再次进行分析,那么这两组数据的下列统计量一定相等的是()A.中位数B.众数C.平均数D.方差3.一组数据23 27 20 18 x12 它们的中位数是21 则x的值为()A.21B.22C.23D.244.在某校举办的“中学生钢笔字书写”比赛中有15名同学参加比赛初赛成绩各不相同要取成绩前7名的同学参加决赛小亮已经知道了自己的成绩他想知道自己能否进入决赛只需要再知道这15名同学成绩的()A.平均数B.中位数C.众数D.以上都不对5.某校举办了主题为“赏中华诗词寻文化基因品文学之美”的古诗词知识竞赛进入决赛的10名学生成绩统计如下表这10名学生决赛成绩的中位数应是()决赛成绩/分9896959190人数/名12241A.91分B.92分C.93分D.95分6.某校举行以“我和我的祖国”为主题的演讲比赛7位评委给某同学打分(满分10分)该同学的得分情况是8 6 8 7 8 5 7.对于该组数据下列说法错误的是()A.平均数为7B.众数为8C.中位数为7D.方差为27.近日2024年郑州中考体育考试项目抽号结果出炉“1分钟跳绳”作为统考项目被抽中.八年级的小亮决定提前训练该项目小亮训练的前3次成绩如图所示若第四次的成绩为m个且这4个成绩的中位数和众数相同则m的值为()A.172B.173C.174D.1758.某轮滑队所有队员的年龄只有1213141516(岁)五种情况其中部分数据如图所示若队员年龄的唯一的众数与中位数相等则这个轮滑队队员人数最少是()A.10B.11C.12D.139.某服装店老板从批发市场购进了40件尺码不同的衬衫其中各种尺码的衬衫月销售量如表所示老板最关心的是衬衫尺码数据的()尺码S M L XL XXL XXXL月销售量/件2372062A.平均数B.加权平均数C.中位数D.众数10.某外贸公司要出口一批食品罐头标准质量为每听454克现抽取10听样品进行检测它们的质量与标准质量的差值(单位:克)如下:−10,+5,0,+5,0,0,−5,0,+5,+10.则可估计这批罐头质量的平均数为()A.454克B.455克C.456克D.453克11.某兴趣小组有5名成员身高(厘米)分别为:161,165,169,163,167.增加一名身高为165厘米的成员后现兴趣小组成员的身高与原来相比下列说法正确的是()A.平均数不变方差不变B.平均数不变方差变小C.平均数不变方差变大D.平均数变小方差不变.12.已知一组数据x1x2……x n记其平均数为x方差为s2则另一组数据2x1+b2x2+b……2x n+b的方差和平均数分别为()A.s2x+b B.4s22x+b C.s2x+b D.4s22x+b 13.如图是甲乙两人10次射击成绩(环)的条形统计图则()A.甲的平均成绩比乙好B.乙的平均成绩比甲好C.甲乙两人的平均成绩一样D.无法确定谁的平均成绩好14.甲乙丙丁四名射击运动员进行射击测试每人10次射击成绩的平均数x̅(单位:环)及方差S2(单位:环2)如表所示根据表中数据要从中选择一名成绩好且发挥稳定的运动员参加比赛应选择()甲乙丙丁x̅9998S2 6.5 2.4 1.60.3A.甲B.乙C.丙D.丁15.每年的12月4日是全国法治宣传日某校举行了演讲比赛演讲得分按“演讲内容”占40%“语言表达”占40%“形象风度”占10%“整体效果”占10%进行计算张欣这四项的得分依次为85,88,90,94则她的最终得分是()A.89.6分B.87.6分C.89分D.89.25分16.某超市招聘收银员一名对四名申请人进行了三项素质测试.四名候选人的素质测试成绩如下表.公司根据实际需要对计算机语言商品知识三项测试成绩分别赋予权4 3 2后录用最高分这四人中将被录用的是()素质测试测试成绩小赵小钱小孙小李计算机70906580语言50755560商品知识80358050A.小赵B.小钱C.小孙D.小李17.一枚质地均匀的正方体骰子(六个面分别标有数字1 2 3 4 5 6)投掷5次分别记录每次骰子向上的一面出现的数字.根据下面的统计结果能判断记录的这5个数字中一定没有出现数字1的是()A.中位数是4 众数是4B.平均数是3 中位数是3C.平均数是4 方差是2D.平均数是3 众数是2[(10−8)2+(9−8)2+(8−8)2+ 18.老师在黑板上写出一个计算方差的算式:S2=1n2×(6−8)2],根据上式还原得到的数据下列结论不正确的是()A.n=5B.平均数为8C.添加一个数8后方差不变D.这组数据的众数是6[(x1−2)2+(x2−2)2+⋅⋅⋅+(x5−2)2]则这组数据的总和19.已知一组数据的方差s2=15是()A.1B.2C.2.5D.1020.农科院的研究员种植了甲乙两块玉米试验田为了解试验田中玉米的长势情况研究员分别从两块试验田中随机抽取了7株玉米测量其高度(单位:cm)具体数据统计如下:试验田第一株第二株第三株第四株第五株第六株第七株平均数甲192187190188190192191190乙187192190186189193193190根据测量数据长势比较整体的是()A.甲试验田B.乙试验田C.两块试验田一样D.无法判断参考答案:1.解:由于众数是数据中出现次数最多的数故班长最值得关注的应该是统计调查数据的众数.故选:C.2.解:一列数去掉最大的和最小的众数可能会改变方差平均数都可能会改变只有中位数一定不会变.故选A.3.解:根据题意x的位置按从小到大排列只能是:12 18 20 x23 27.根据中位数是21 得出(20+x)÷2=21解得x =22. 故选:B .4.解:根据中位数是数据的中间数据回中间两个数据的平均数 故选B .5.解:先对这10位学生的成绩进行排序 ∴90 91 91 91 91 95 95 96 96 98 ∴处于中间位置的两位数是平均数为:91+952=93∴中位数为93. 故选:C .6.解:把这组数据从小到大排列为5 6 7 7 8 8 8 处在最中间的数是7 ∴这组数据的中位数为7 故C 不符合题意 ∴这组数据中8出现了3次 出现的次数最多 ∴这组数据的众数为8 故B 不符合题意 这组数据的平均数为5+6+7+7+8+8+87=7 故A 不符合题意这组数据的方差为 (5−7)2+(6−7)2+2×(7−7)2+3×(8−7)27=87≠2 故D 符合题意故选:D .7.解:∴中位数是中间两个数的平均数 众数是四个数中出现次数最多的数 又∴这4个成绩的中位数和众数相同 ∴第四次的成绩为m =173个 故选:B .8.解:由题图中数据可知:小于14的人有4人 大于14的人也有4人 ∴这组数据的中位数为:14∵队员年龄的唯一的众数与中位数相等 ∴众数是14 即年龄为14的人最多 ∴ 14岁的队员最少有4人 故选:C .9.解:∵众数体现数据的最集中的一点 这样可以确定进货的数量 ∴衬衫老板最喜欢的是众数.故选:D .10.解:根据10听罐头的质量与标准质量的差值 可得这10听罐头的质量依次为: 444 459 454 459 454 454 449 454 459 464. 所以 这批食品罐头平均每听的质量为:110×(444+459+454+459+454+454+449+454+459+464) =110×4550 =455(克)所以可估计这批食品罐头平均每听的质量为455克. 故选:B .11.解:x 原−=(161+165+169+163+167)÷5=165S 原2=15×[(161−165)2+(165−165)2+(169−165)2+(163−165)2+(167−165)2]=8x 新−=(161+165+169+163+167+165)÷6=165S 新2=16×[(161−165)2+(165−165)2+(169−165)2+(163−165)2+(167−165)2+(165−165)2]=203∴平均数不变 方差变小 故选:B .12.解:设一组数据x 1 x 2…的平均数为x 方差是s 2 ∴x =x 1+x 2+x 3……+x nn则另一组数据2x 1+b 2x 2+b ……2x n +b 的平均数为x 1 方差是s 12 ∴x 1=2x 1+b+2x 2+b+2x 3+b……+2x n +bn=2x +b∵s 12=1n[(x 1−x)2+(x 2−x)2+⋯+(x n −x)2] ∴s 12=1n[(2x 1+b −2x −b)2+(2x 2−1−2x −b)2+⋯+(2x n −1−2x −b)2] =1n[4(x 1−x)2+4(x 2−x)2+⋯+4(x n −x)2] =4s 2. 故选:B13.解:依题得:甲的平均成绩为8×4+9×2+10×44+2+4=9乙的平均成绩为8×3+9×4+10×33+4+3=9∵9=9∴甲乙两人的平均成绩一样故选:C.14.解:由表知甲乙丙的射击成绩的平均数相等且大于丁的平均数∴从甲乙丙中选择一人参加竞赛∴丙的方差较小∴丙的发挥稳定∴选择丙参加比赛.故选:C.15.解:由题意知最终得分为85×40%+88×40%+90×10%+94×10%=87.6(分)故选:B.16.解:由题意可得小赵:70×4+50×3+80×24+3+2=5909小钱:90×4+75×3+35×24+3+2=6559小孙:65×4+55×3+80×24+3+2=5859小李:80×4+60×3+50×24+3+2=6009∴5859<5909<6009<6559∴小钱被录用故选:B.17.解:当中位数是4 众数是4时记录的5个数字有可能为:1 2 4 4 5 故A选项不合题意当平均数是3 中位数是3时5个数之和为15 记录的5个数字可能为1 1 3 4 6 故B选项不合题意当平均数是4 方差是2时5个数之和为20 假设1出现了1次方差最小的情况下另外4个数为:4 4 5 6 此时方差s2=15×[(1−4)2+(4−4)2+(4−4)2+(5−4)2+(6−4)2]=2.8>2因此假设不成立即一定没有出现数字1 故C选项符合题意当平均数是3 众数是2时5个数之和为15 2至少出现两次记录的5个数字可能为1 2 2 4 6 故D选项不合题意故选:C.18.解:根据题意得:该组数据为10 9 8 6 6 共5个数平均数为8 故A B选项正确不符合题意添加一个数8后方差为1 6[(10−8)2+(9−8)2+(8−8)2+2×(6−8)2+(8−8)2]=16[(10−8)2+(9−8)2+(8−8)2+2×(6−8)2+0]≠S2即添加一个数8后方差改变故C选项错误符合题意这组数据6出现的次数最多即这组数据的众数是6 故D选项正确不符合题意故选:C19.解:∴数据的方差s2=15[(x1−2)2+(x2−2)2+⋅⋅⋅+(x5−2)2]∴这组数据共有5个其平均数为2∴这组数据的总和为5×2=10故选:D.20.解:∴甲试验田和乙试验田7株玉米高度的平均数都为:190∴甲试验田玉米高度的方差为:s 甲2=17[(192−190)2+(187−190)2+(190−190)2+(188−190)2+(190−190)2 +(192−190)2+(191−190)2]=227乙试验田玉米高度的方差为:s 甲2=17[(187−190)2+(192−190)2+(190−190)2+(186−190)2+(189−190)2 +(193−190)2+(193−190)2]=487∴22 7<487∴长势比较整体的是甲试验田.故选:A.。

九年级数学中考一轮复习:数据分析

九年级数学中考一轮复习:数据分析

九年级数学中考一轮复习:数据分析学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1. 为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是( )A. 9.6B. 9.7C. 9.8D. 9.92. 为了解甲、乙两人的射击水平,随机让甲、乙两人各射击5次,命中的环数如下:甲:79879乙:78988计算得甲、乙两人5次射击命中环数的平均数都是8环,甲命中环数的方差为0.8,由此可知( )A. 甲比乙的成绩稳定B. 乙比甲的成绩稳定C. 甲、乙两人成绩一样稳定D. 无法确定谁的成绩更稳定3. 某男装专卖店专营某品牌夹克.为了制定下一阶段的进货方案,店主统计了一周中不同尺码夹克的销售情况如表:尺码3940414243平均每天销售量/件1012201212如果每件夹克利润相同,你认为该店主最关注的统计量是( )A. 平均数B. 方差C. 众数D. 中位数4. 下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6A. 甲B. 乙C. 丙D. 丁5. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.56. 在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是( )A. 中位数B. 众数C. 平均数D. 方差7. 超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x−,s2,该顾客选购的鸡蛋的质量平均数和方差分别为x1−,s12,则下列结论一定成立的是( )A. x−<x1−B. x−>x1−C. s2>s12D. s2<s128. 如图是成都某市一周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A. 极差是8℃B. 众数是28℃C. 中位数是24℃D. 平均数是26℃9. 某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A. 众数是8B. 中位数是8C. 平均数是8.2D. 方差是1.210. 某工厂生产质量为1克,5克,10克,25克四种规格的球,现从中取x个球装到一个空箱子里,这时箱子里球的平均质量为20克,若再放入一个25克的球,则箱子里球的平均质量变为21克,则x的值为( )A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共24分)11. 某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是______ .12. 开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的众数是______ ℃。

专题数据的分析(中考真题专练)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练

专题数据的分析(中考真题专练)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练

专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)1. 一组数据2,4,5,6,5.对该组数据描述正确的是( )A. 平均数是4.4B. 中位数是4.5C. 众数是4D. 方差是9.2(2022·黑龙江齐齐哈尔·统考中考真题)2. 数据1,2,3,4,5,x 存在唯一众数,且该组数据的平均数等于众数,则x 的值为( )A. 2B. 3C. 4D. 5(2022·内蒙古赤峰·统考中考真题)3. 下列说法正确的是( )A. 调查某班学生的视力情况适合采用随机抽样调查的方法B. 声音在真空中传播的概率是100%C. 甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,2 1.4s =乙,则甲的射击成绩比乙的射击成绩稳定D. 8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5(2022·江苏镇江·统考中考真题)4. 第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A. ①②B. ①③C. ①④D. ③④(2022·辽宁抚顺·统考中考真题)5. 甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是()A. 甲的射击成绩比乙的射击成绩更稳定B. 甲射击成绩的众数大于乙射击成绩的众数C. 甲射击成绩的平均数大于乙射击成绩的平均数D. 甲射击成绩的中位数大于乙射击成绩的中位数(2019·湖北恩施·统考中考真题)6. 某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A. 88.5B. 86.5C. 90D. 90.5(2022·辽宁锦州·中考真题)7. 某校开展安全知识竞赛,进入决赛的学生有20名,他们的决赛成绩如下表所示:决赛成绩/分100999897人数3764则这20名学生决赛成绩的中位数和众数分别是()A. 98,98B. 98,99C. 98.5,98D. 98.5,99(2022·山东济宁·统考中考真题)8. 某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是()A. 从2月到6月,阅读课外书的本数逐月下降B. 从1月到7月,每月阅读课外书本数的最大值比最小值多45C. 每月阅读课外书本数的众数是45D. 每月阅读课外书本数的中位数是58(2020·四川·统考中考真题)9. 某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A. 19.5元B. 21.5元C. 22.5元D. 27.5元(2021·内蒙古呼和浩特·统考中考真题)10. 以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一定位似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(2019·山东青岛·统考中考真题)11. 射击比赛中,某队员10 次射击成绩如图所示,则该队员的平均成绩是__________环.(2020·四川·统考中考真题)12. 小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图,这6次成绩的中位数是_____.(2019·四川巴中·统考中考真题)13. 如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为_______.(2019·四川·统考中考真题)14. 在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是_____.(2018·浙江丽水·中考真题)15. 如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是_____.(2021·贵州铜仁·统考中考真题)16. 若甲、乙两人射击比赛的成绩(单位:环)如下:甲:6,7,8,9,10;乙:7,8,8,8,9.则甲、乙两人射击成绩比较稳定的是______________(填甲或乙);(2019·广西柳州·统考中考真题)17. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是_____.(2017·重庆·中考真题)18. 某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.三、解答题(2022·江苏南通·统考中考真题)19. 为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县3.8533区B县3.854 2.5区(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.(2022·江苏盐城·统考中考真题)20. 合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.(2022·山东聊城·统考中考真题)21. 为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:众数中位数方差八年级竞赛成绩78 1.88九年级竞赛成绩a8b(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;(2)请根据图表中的信息,回答下列问题.①表中的=a______,b=______;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?(2021·广西桂林·统考中考真题)22. 某班为了从甲、乙两名同学中选出一名同学代表班级参加学校的投篮比赛,对甲、乙两人进行了5次投篮试投比赛,试投每人每次投球10个.两人5次试投的成绩统计图如图所示.(1)甲同学5次试投进球个数的众数是多少?(2)求乙同学5次试投进球个数的平均数;(3)不需计算,请根据折线统计图判断甲、乙两名同学谁的投篮成绩更加稳定?(4)学校投篮比赛的规则是每人投球10个,记录投进球的个数.由往届投篮比赛的结果推测,投进8个球即可获奖,但要取得冠军需要投进10个球.请你根据以上信息,从甲、乙两名同学中推荐一名同学参加学校的投篮比赛,并说明推荐的理由.(2013·江西·中考真题)23. 生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A:全部喝完;B:喝剩约13;C:喝剩约一半;D:开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学计算器)(2022·湖北襄阳·统考中考真题)24. 在“双减”背景下,某区教育部门想了解该区A ,B 两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A 学校50名九年级学生中,课后书面作业时长在70.5≤x <80.5组的具体数据如下:74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80【整理数据】不完整的两所学校的频数分布表如下,不完整的A 学校频数分布直方图如图所示:组别50.5≤x <60.560.5≤x <70.570.5≤x <80.580.5≤x <90.590.5≤x <100.5A 学515x84校B学71012174校【分析数据】两组数据的平均数、众数、中位数、方差如下表:特征数平均数众数中位数方差A学校7475y127.36B学校748573144.12根据以上信息,回答下列问题:(1)本次调查是 调查(选填“抽样”或“全面”);(2)统计表中,x= ,y= ;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是 学校(选填“A”或“B”);(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有 人.专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)【1题答案】【答案】A 【解析】【分析】将数据按照从小到大重新排列,再根据众数、中位数、算术平均数的定义计算,最后利用方差的概念计算可得.【详解】解: A 、平均数为245565++++=4.4,故选项正确,符合题意;B 、中位数为5,故选项错误,不符合题意;C 、将这组数据重新排列为2,4,5,5,6,所以这组数据的众数为5,故选项错误,不符合题意;D 、方差为15⨯[(2﹣4.4)2+(4﹣4.4)2+2×(5﹣4.4)2+(6﹣4.4)2]=1.84,故选项错误,不符合题意.故选:A .【点睛】本题主要考查方差,众数,中位数,算术平均数,解题的关键是掌握众数、中位数、算术平均数及方差的定义.(2022·黑龙江齐齐哈尔·统考中考真题)【2题答案】【答案】B 【解析】【分析】由题意知,该组数据的平均数为123451566x x++++++=,且3x +是6的倍数,然后根据题意求解即可.【详解】解:由题意知,该组数据的平均数为123451532666x x x+++++++==+,∴3x +是6的倍数,且x 是1-5中的一个数,解得3x =,则平均数是3.故选B .【点睛】本题考查了平均数与众数.解题的关键在于熟练掌握众数与平均数的定义与求解.(2022·内蒙古赤峰·统考中考真题)【3题答案】【答案】D 【解析】【分析】根据普查、抽查、概率、方差、中位数和众数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、调查某班学生的视力情况适合采用普查的方法,故A 不符合题意;B 、声音在真空中传播的概率是0,故B 不符合题意;C 、甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,21.4s =乙,则乙的射击成绩比甲的射击成绩稳定;故C 不符合题意;D 、8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5;故D 符合题意;故选:D【点睛】本题考查了全面调查与抽样调查,中位数、众数、方差和概率的意义,理解各个概念的内涵是正确判断的前提.(2022·江苏镇江·统考中考真题)【4题答案】【答案】B 【解析】【分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.【详解】解:①第1组数据的平均数为:0001110.56+++++=,当m =n 时,第2组数据的平均数为:010.52m n mm n m ⨯+⨯==+,故①正确;②第1组数据的平均数为:0001110.56+++++=,当m n >时,m +n >2n ,则第2组数据的平均数为:01=0.52m n n nm n m n n⨯+⨯<=++,∴第1组数据的平均数大于第2组数据的平均数;故②错误;③第1组数据的中位数是010.52+=,当m n <时,若m +n 是奇数,则第2组数据的中位数是1;当m n <时,若m +n 是奇数,则第2组数据的中位数是1112+=;即当m n <时,第2组数据的中位数是1,∴当m n <时,第1组数据的中位数小于第2组数据的中位数;故③正确;④第1组数据的方差为()()2200.5310.530.256-⨯+-⨯=,当m n =时,第2组数据的方差为()()2200.510.5m nm n-⨯+-⨯+,0.250.252m mm+=0.25=,∴当m n =时,第2组数据的方差等于第1组数据的方差.故④错误,综上所述,其中正确的是①③;故选:B【点睛】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键.(2022·辽宁抚顺·统考中考真题)【5题答案】【答案】A 【解析】【分析】根据统计图上数据的变化趋势,逐项分析即可得出结论.【详解】解:A 、甲的成绩在6环上下浮动,变化较小,乙的成绩变化大,所以,甲的射击成绩比乙的射击成绩更稳定,此选项正确,符合题意;B、甲射击成绩的众数是6(环),乙射击成绩的众数是9(环),所以,甲射击成绩的众数小于乙射击成绩的众数,此选项错误,不符合题意;C、甲射击成绩的平均数是52+66+72=610⨯⨯⨯(环),乙射击成绩的平均数是3+4+5+6+7+8+93+10=710⨯(环),所以,甲射击成绩的平均数小于乙射击成绩的平均数,此选项错误,不符合题意;D、甲射击成绩的中位数是6(环),乙射击成绩的中位数是7+8=7.52(环),所以,甲射击成绩的中位数小于乙射击成绩的中位数,此选项错误,不符合题意;故选:A【点睛】本题主要考查了数据的稳定性,众数,平均数和中位数,熟练掌握相关知识是解答本题的关键.(2019·湖北恩施·统考中考真题)【6题答案】【答案】A【解析】【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可.【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.(2022·辽宁锦州·中考真题)【7题答案】【答案】D【解析】【分析】根据众数,中位数的定义计算选择即可.【详解】∵99出现的次数最多,7次,∴众数为99;∵中位数是第10个,11个数据的平均数即999898.52+=,故选D.【点睛】本题考查了中位数将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数),众数在一组数据中出现次数最多的数据,熟练掌握定义是解题的关键.(2022·山东济宁·统考中考真题)【8题答案】【答案】D【解析】【分析】根据折线统计图的变化趋势即可判断A,根据折线统计图中的数据以及众数的定义,中位数的定义即可判断B,C,D选项.【详解】A.从2月到6月,阅读课外书的本数有增有降,故该选项不正确,不符合题意;B.从1月到7月,每月阅读课外书本数的最大值为78比最小值28多50,故该选项不正确,不符合题意;C. 每月阅读课外书本数的众数是58,故该选项不正确,不符合题意;D.这组数据为:28,33,45,58,58,72,78,则每月阅读课外书本数的中位数是58,故该选项正确,符合题意;故选D【点睛】本题考查了折线统计图,求极差,求中位数,从统计图获取信息是解题的关键.(2020·四川·统考中考真题)【9题答案】【答案】C【解析】【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C .【点睛】本题考查了加权平均数的求法,是统计和概率部分的简单题型,根据各单价分别乘以所占百分比即可获得平均单价.(2021·内蒙古呼和浩特·统考中考真题)【10题答案】【答案】B 【解析】【分析】①根据三角形中位线、中线的性质,结合平行四边形的判定与性质解题;②由单循环赛对A 队,E 队进行推理即可;③根据正六边形的性质、位似的定义解题;④由平均数定义解题.【详解】解:①如图,AD 是ABC 的中线,EF 是ABC 的中位线,连接ED FD 、,由中位线定义可知,//,//ED AF FD AE∴四边形AEDF 是平行四边形∴对角线AD EF 、互相平分,故①正确;②由单循环比赛可知,每支队伍最多赛5场,A 队已经赛5场,即每支队伍都与A 队比赛过,而E 队只比赛1场,据此可知,E 队没有与B 对比赛过,故②错误;③两个正六边形不一定位似,没有确定位似中心,只能是相似的,故③错误;④小王的捐款数比他所在学习小组中13人捐款的平均数多2元,小王的捐款数不会是最少的,捐款数可能最多,也可正确在第12位,故原命题正确,是真命题,符合题意B 故④正确,其中真命题的个数有①④,2个,故选:B.【点睛】本题考查中位线、中线的性质,简单推理、位似、正六边形的性质、平均数的应用等知识,是基础考点,难度较易,掌握相关知识是解题关键.二、填空题(2019·山东青岛·统考中考真题)【11题答案】【答案】8.5【解析】【分析】由加权平均数公式即可得出结果.【详解】该队员的平均成绩为110(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为8.5.【点睛】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.(2020·四川·统考中考真题)【12题答案】【答案】9.75【解析】【分析】将这组数有小到大排列,因为共有6个数,所以中位数为第3、4个数的平均数.【详解】由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.79.82=9.75.故答案为:9.75.【点睛】本题考查了中位数的定义,根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2019·四川巴中·统考中考真题)【13题答案】【答案】145.【解析】【分析】先根据平均数的定义确定出a 的值,再根据方差公式进行计算即可求出答案.【详解】解:根据题意,得:45385a a ++++=,解得:5a =,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为22222114(45)(55)(55)(35)(85)55⎡⎤⨯-+-+-+-+-=⎣⎦,故答案为145.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.(2019·四川·统考中考真题)【14题答案】【答案】90分.【解析】【分析】根据众数的定义求解可得.【详解】众数是指一组 数据中出现次数最多的数据,90分的有4人,次数最多;故答案为90分.【点睛】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2018·浙江丽水·中考真题)【15题答案】【答案】6.9%【解析】【分析】根据众数的概念判断即可.【详解】这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为6.9%.【点睛】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.(2021·贵州铜仁·统考中考真题)【16题答案】【答案】乙【解析】【分析】分别计算甲乙二人成绩的方差,比较方差,较小的比较稳定即可求解.【详解】解:甲乙二人的平均成绩分别为:678910==85x ++++甲,78889==85x ++++乙,∴二人的方差分别为:()()()()()22222268788898108==25S -+-+-+-+-甲()()()()()22222278888888982==55S -+-+-+-+-乙,∵22S S 乙甲>,乙的成绩比较稳定.故答案为:乙【点睛】本题考查了方差的计算和根据方差判断数据的稳定性,正确求出方差是解题关键.(2019·广西柳州·统考中考真题)【17题答案】【答案】7【解析】【分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【详解】解:∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,---=,∵4088915由方差是0.4得:前面的2个数的为7和8,∴最小的数是7;故答案为7..【点睛】本题考查了方差、平均数、中位数、众数;熟练掌握方差、平均数、中位数、众数的定义是解题的关键.(2017·重庆·中考真题)【18题答案】【答案】183.【解析】【详解】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为183.【点睛】本题考查折线统计图;中位数.三、解答题(2022·江苏南通·统考中考真题)【19题答案】【答案】(1)3750(2)见详解【解析】【分析】(1)根据A县区统计图得不小于三天的比例,根据总数乘以比例即可得到答案;(2)根据平均数、中位数和众数的定义进行比较即可.【小问1详解】解:根据A县区统计图得,该县区八年级学生参加社会实践活动不少于3天的比例为:30%25%15%5%75%+++=,∴该县区八年级学生参加社会实践活动不少于3天的学生约为:⨯=名,500075%3750故答案为:3750;【小问2详解】∵A县区和B县区的平均活动天数均为3.85天,∴A县区和B县区的平均活动天数相同;∵A县区的中位数是3,B县区的中位数是2.5,∴B县区参加社会实践活动小于3天的人数比A县区多,从中位数看,A县区要好;∵A县区的众数是3,B县区的众数是4,∴A县区参加社会实践人数最多的是3天,B县区参加社会实践人数最多的是4天,从众数看,B县区要好.【点睛】本题考查数据统计、平均数、中位数和众数,解题的关键是熟练掌握扇形统计图、平均数、中位数和众数的相关知识.(2022·江苏盐城·统考中考真题)【20题答案】【答案】(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825% (3)答案见解析【解析】【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.【小问1详解】解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样【小问2详解】样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++,样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.【小问3详解】该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.(2022·山东聊城·统考中考真题)【21题答案】【答案】(1)无法判断,计算见解析(2)①8,1.56;②给九年级颁奖(3)九年级获奖率高【解析】【分析】(1)分别求出两个年级的平均数即可;(2)①分别根据众数和方差的定义解答即可;②根据两个年级众数和方差解答即可;(3)根据题意列式计算即可.【小问1详解】解:无法判断,计算如下:由题意得:八年级成绩的平均数是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级成绩的平均数是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判定哪个年级的成绩比较好;【小问2详解】解:①九年级竞赛成绩中8分出现的次数最多,故众数a =8分;九年级竞赛成绩的方差为:()()()()()2222221868978148813986108 1.5650s ⎡⎤=⨯⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,故答案为:8;1.56;②如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.56,又因为两个年级的平均数相同,九年级的成绩的波动小,所以应该给九年级颁奖,故如果分别从众数和方差两个角度来分析,应该给九年级颁奖;【小问3详解】解:八年级的获奖率为:(10+7+11)÷50=56%,九年级的获奖率为:(14+13+6)÷50=66%,∵66%>56%,∴九年级的获奖率高.【点睛】本题主要考查了中位数、众数、方差以及加权平均数,掌握各个概念和计算方法是解题的关键.(2021·广西桂林·统考中考真题)【22题答案】【答案】(1)众数是8个,(2)8x =个;(3)甲投篮成绩更加稳定;(4)推荐乙参加投篮比赛,理由见解析.。

中考数学专题-数据的分析-(解析版)

中考数学专题-数据的分析-(解析版)

数据的分析姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·四川成都市·中考真题)菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【答案】B【分析】根据中位数的意义求解即可.【详解】解:将数据30,40,34,36按照从小到大排列是:30,34,36,40,故这组数据的中位数是3436352+=,故选:B.【点睛】本题考查了中位数,解答本题的关键是明确中位数的含义,求出相应的中位数.2.(2021·浙江宁波市·中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x(单位:环)及方差2S(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:选择一名成绩好的运动员,从平均数最大的运动员中选取,由表可知,甲,丙,丁的平均值最大,都是9,∴从甲,丙,丁中选取,∴甲的方差是1.6,丙的方差是3,丁的方差是0.8,∴S 2丁<S 2甲<S 2乙,∴发挥最稳定的运动员是丁,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择丁.故选:D.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.(2021·山东泰安市·中考真题)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h;7 h B.8 h;7.5 h C.7 h ;7.5 h D.8 h;8 h【答案】C【分析】根据众数的定义及所给频数分布直方图可知,睡眠时间为7小时的人数最多,根据中位数的定义,把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,从而可得结果.【详解】由频数分布直方图知,睡眠时间为7小时的人数最多,从而众数为7h;把睡眠时间按从小到大排列,第25和26位学生的睡眠时间的平均数是中位数,而第25位学生的睡眠时间为7h,第26位学生的睡眠时间为8h,其平均数为7.5h,故选:C.【点睛】本题考查了频数分布直方图,众数和中位数,读懂频数分布直方图,掌握众数和中位数的定义是解决本题的关键.4.(2021·四川南充市·中考真题)据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7,下列说法错误的是()A.该组数据的中位数是6B.该组数据的众数是6C.该组数据的平均数是6D.该组数据的方差是6【答案】D【分析】根据众数、平均数、中位数、方差的定义和公式分别进行计算即可.【详解】解:A、把这些数从小到大排列为:5,5,6,6,6,7,7,则中位数是6,故本选项说法正确,不符合题意;B、∴6出现了3次,出现的次数最多,∴众数是6,故本选项说法正确,不符合题意;C、平均数是(5+5+6+6+6+7+7)÷7=6,故本选项说法正确,不符合题意;D、方差=17×[2×(5−6)2+3×(6−6)2+2×(7−6)2]=47,故本选项说法错误,符合题意;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.5.(2021·四川资阳市·中考真题)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点睛】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.6.(2021·四川凉山彝族自治州·中考真题)某校七年级1班50名同学在“森林草原防灭火”知识竞赛中的成绩如表所示:则这个班学生成绩的众数、中位数分别是()A.90,80B.16,85C.16,24.5D.90,85【答案】D【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:90分的有16人,人数最多,故众数为90分;处于中间位置的数为第25、26两个数,为80和90,∴中位数为80902=85分.故选:D.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(2021·四川自贡市·中考真题)学校为了解“阳光体育”活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:这些学生一周参加体育锻炼时间的众数、中位数分别是()A.16,15B.11,15C.8,8.5D.8,9【答案】C【分析】根据众数和中位数的意义与表格直接求解即可.【详解】解:这50名学生这一周在校的体育锻炼时间是8小时的人数最多,故众数为8;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间分别是8,9,故中位数是(8+9)÷2=8.5.故选:C.【点睛】本题考查了众数和中位数的意义,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.(2021·四川遂宁市·中考真题)下列说法正确的是()A.角平分线上的点到角两边的距离相等B.平行四边形既是轴对称图形,又是中心对称图形C.在代数式1a,2x,xπ,985,42ba+,13y+中,1a,xπ,42ba+是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a,2x,xπ,985,42ba+,13y+中,1a,42ba+是分式,故选项错误;D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是3,故选项错误;【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.9.(2021·山东枣庄市·中考真题)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( )A .平均数是144B .众数是141C .中位数是144.5D .方差是5.4【答案】B【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可. 【详解】 解:根据题目给出的数据,可得: 平均数为:14151442145114621435212x ,故A 选项错误; 众数是:141,故B 选项正确;中位数是:141144142.52,故C 选项错误; 方差是:222221141143514414321451431146143210S 4.4,故D 选项错误;故选:B .【点睛】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.10.(2021·湖北十堰市·中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是( )A .8,15B .8,14C .15,14D .15,15【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故选:D.【点睛】本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.(2021·四川达州市·中考真题)以下命题是假命题的是()A的算术平方根是2B.有两边相等的三角形是等腰三角形C.一组数据:3,1-,1,1,2,4的中位数是1.5D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据所学知识对命题进行判断,得出真假即可.【详解】解:A,命题为假命题,符合题意;B,有两边相等的三角形是等腰三角形,命题为真命题,不符合题意;C,一组数据:3,1-,1,1,2,4的中位数是121.52+=,命题为真命题,不符合题意;D,过直线外一点有且只有一条直线与已知直线平行,命题为真命题,不符合题意,故选:A.【点睛】本题考查了命题的真假,解题的关键是:要结合所学知识对选项逐一判断,需要对基本知识点掌握牢固. 12.(2021·湖南长沙市·中考真题)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm )分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A .24,25B .23,23C .23,24D .24,24 【答案】C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C .【点睛】本题考查了众数和中位数,熟记定义是解题关键.13.(2021·湖南岳阳市·中考真题)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是( )A .9.0,8.9B .8.9,8.9C .9.0,9.0D .8.9,9.0 【答案】C【分析】 根据众数的概念和运用求平均数的公式12n x x x x n +++=即可得出答案.【详解】解:该班最后得分为(9.0+9.2+9.0+8.8+9.0)÷5=9.0(分).故最后平均得分为9.0分.在五个有效评分中,9.0出现的次数最多,因此众数为:9.0故选:C .【点睛】考查了众数和均数的求法.本题所描述的计分方法,是经常用到的方法,是数学在现实生活中的一个应用,熟记平均数的公式是解决本题的关键.14.(2021·四川眉山市·中考真题)全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是()A.80,90B.90,90C.86,90D.90,94【答案】B【分析】先将该组数据按照从小到大排列,位于最中间的数和出现次数最多的数即分别为中位数和众数.【详解】解:将这组数据按照从小到大排列:80,86,90,90,94;位于最中间的数是90,所以中位数是90;这组数据中,90出现了两次,出现次数最多,因此,众数是90;故选:B.【点睛】本题考查了学生对中位数和众数的理解,解决本题的关键是牢记中位数和众数的概念,明白确定中位数之前要将该组数据按照从小到大或从大到小排列,若该组数据个数为奇数,则位于最中间的数即为中位数,若该组数据为偶数个,则位于最中间的两个数的平均数即为该组数据的中位数.15.(2021·湖南衡阳市·中考真题)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A.众数是82B.中位数是84C.方差是84D.平均数是85【答案】C【分析】根据该组数据结合众数、中位数的定义和平均数、方差的计算公式,求出众数、中位数、平均数和方差即可选择.【详解】根据该组数据可知82出现了2次最多,故众数为82,选项A正确,不符合题意;根据中位数的定义可知该组数据的中位数为8385842+=,选项B正确,不符合题意;根据平均数的计算公式可求出858286828392856x +++++==,选项D 正确,不符合题意; 根据方差的计算公式可求出2222222(8585)(8285)(8685)(8285)(8385)(9285)126s -+-+-+-+-+-==,选项C 错误,符合题意.故选C .【点睛】本题考查求众数、中位数、平均数和方差.掌握众数、中位数的定义,平均数、方差的计算公式是解答本题的关键.16.(2021·江苏苏州市·中考真题)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( )A .5kgB .4.8kgC .4.6kgD .4.5kg 【答案】C【分析】根据平均数的定义求解即可.【详解】每个班级回收废纸的平均重量=4.5+4.4+5.1+3.3+5.7 4.65kg =. 故选:C .【点睛】本题考查了平均数,理解平均数的定义是解题的关键.17.(2021·浙江台州市·中考真题)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g )平均数和方差分别为x ,s 2,该顾客选购的鸡蛋的质量平均数和方差x 1,21 s ,则下列结论一定成立的是( )A . x x <1B . x x >1C .s 2>21 sD .s 221<s【答案】C【分析】根据平均数和方差的意义,即可得到答案.【详解】解:∴顾客从一批大小不一的鸡蛋中选购了部分大小均匀的鸡蛋,∴21s <s 2,x 和x 1的大小关系不明确,故选C【点睛】本题主要考查平均数和方差的意义,掌握一组数据越稳定,方差越小,是解题的关键.18.(2021·浙江嘉兴市·中考真题)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A .中位数是33C ︒B .众数是33C ︒C .平均数是197C 7︒D .4日至5日最高气温下降幅度较大【答案】A【分析】根据中位数,众数,平均数的概念及折线统计图所体现的信息分析求解.【详解】解:由题意可得,共7个数据,分别为26;30;33;33;23;27;25从小到大排列后为23;25;26;27;30;33;33位于中间位置的数据是27,∴中位数为27,故选项A符合题意;出现次数最多的数据是33,∴众数是33,故选项B不符合题意;平均数为(26+30+33+33+23+27+25)÷7=197C7,故选项C不符合题意;从统计图可看出4日气温为33∴,5日气温为23∴,∴4日至5日最高气温下降幅度较大,故选项D不符合题意;故选:A.【点睛】本题考查求一组数据的中位数,众数和平均数,准确识图,理解相关概念是解题关键.19.(2021·福建中考真题)某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A.甲B.乙C.丙D.丁【答案】B【分析】利用加权平均数计算总成绩,比较判断即可【详解】根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;故选B【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.20.(2021·广西柳州市·中考真题)某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分为S如右表所示,那么这三名同学数学成绩最稳定的是()及方差2A.甲B.乙C.丙D.无法确定【答案】A【分析】先比较平均成绩,当平均成绩一致时,比较方差,方差小的波动小,成绩更稳定.【详解】甲、乙、丙的成绩的平均分x都是91,故比较它们的方差,甲、乙、丙三名同学的方差分别为6,24,54;故甲的方差是最小的,则甲的成绩是最稳定的.故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.21.(2021·广西玉林市·中考真题)甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环【答案】B【分析】根据中位数的求法可得98822x ++=,然后求解即可. 【详解】 解:由题意得:甲乙两人的中位数都为第三次和第四次成绩的平均数, ∴98822x ++=, 解得:7x =;故选B .【点睛】本题主要考查中位数及一元一次方程的应用,熟练掌握中位数的求法及一元一次方程的应用是解题的关键.22.(2021·四川广元市·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( )A .平均数B .中位数C .众数D .方差 【答案】B【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=, 添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意.故选:B .【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.23.(2021·江苏宿迁市·中考真题)已知一组数据:4,3,4,5,6,则这组数据的中位数是( ) A .3 B .3.5 C .4 D .4.5【分析】将原数据排序,根据中位数意义即可求解.【详解】解:将原数据排序得3,4,4,5,6,∴这组数据的中位数是4.故选:C【点睛】本题考查了求一组数据的中位数,熟练掌握中位数的意义是解题关键,注意求中位数时注意先排序.24.(2021·山西中考真题)每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()A.27点,21点B.21点,27点C.21点,21点D.24点,21点【答案】C【分析】根据中位数与众数定义即可求解.【详解】解:将下列数据从小到大排序为15,21,21,21,27,27,30,根据中位数定义,7个点数位于7+1=42位置上的点数是21点,∴这组数据的中位数是21点,根据众数的定义,这组数据中重复次数最多的点数是21 点,所以这组数据的众数是21点,故选择C.本题考查中位数与众数,掌握中位数与众数定义是解题关键.25.(2021·湖北随州市·中考真题)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8D.这组数据的中位数是36.6【答案】D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1∴,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.26.(2021·山东菏泽市·中考真题)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是( )A .中位数是10.5B .平均数是10.3C .众数是10D .方差是0.81 【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9,9,10,10,10,10,11,11,11,12;位于最中间的两个数是10,10,它们的平均数是10,所以该组数据中位数是10,故A 选项不正确;该组数据平均数为:()11211131049210.310⨯+⨯+⨯+⨯=,故B 选项正确; 该组数据10出现次数最多,因此众数是10,故C 选项正确;该组数据方差为:()()()()222211210.331110.341010.32910.30.8110⎡⎤-+⨯-+⨯-+⨯-=⎣⎦,故D 选项正确;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.二、填空题27.(2021·湖南株洲市·中考真题)中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如下表:则在这个时间段,该中药房的这三种中药的平均销售量为___________千克.【答案】2.5【分析】由销售额和销售单价可以求出每种中药的销售量,再根据平均数的求法,即可求解平均销售量.【详解】解:由题意得黄芪销售量:12080 1.5÷=(千克);焦山楂的销售量:120602÷=(千克);当归的销售量:360904÷=(千克); 所以平均销售量为:1.5242.53++=(千克). 故答案是:2.5.【点睛】本题考察平均数的定义,属于基础题型,难度不大.解题的关键是掌握平均数的定义.平均数:用一组数据的综合除以数据个数得到的数.28.(2021·浙江杭州市·中考真题)现有甲、乙两种糖果的单价与千克数如下表所示.将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为______元/千克.【答案】24【分析】根据题意及加权平均数的求法可直接进行求解.【详解】解:由题意得:3022032423⨯+⨯=+(元/千克); 故答案为24.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的求法是解题的关键.29.(2021·山东临沂市·中考真题)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是___.【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:3852905951010032510⨯+⨯+⨯+⨯+++=95.5, 故答案为:95.5.【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.30.(2021·四川乐山市·中考真题)如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)【答案】甲【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:x甲=(7+6+9+6+7)÷5=7(环),x=(5+9+6+7+8)÷5=7(环),乙2s=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,甲2s=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∴1.2<2,∴甲的成绩较为稳定,故答案为:甲.【点睛】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.A B C D E F六省60岁及以上人口31.(2021·浙江丽水市·中考真题)根据第七次全国人口普查,华东,,,,,占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.【答案】18.75%【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:16.0,16.9,18.7,18.8,20.9,21.8,由中位数的定义得:人口占比的中位数为18.718.818.752+=,故答案为:18.75%.【点睛】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.32.(2021·江苏扬州市·中考真题)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是__________.【答案】5【分析】根据平均数的定义先算出a的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∴这组数据的平均数为5,则456755a++++=,解得:a=3,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据的分析要点一:平均数、中位数、众数一、选择题1.(2010·上海中考)某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C 【解析】选D.把这5个数据按大小顺序排列起来后,最中间的是21,所以这组数据的中位数是21.这组数据的中20出现2次是出现次数最多的,所以这组数据的众数是20. 2.(2009·泸州中考)在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:,,,,,,,去掉一个最高分和一个最低分后,所剩数据的平均数是()A. B.9.3 C. D.【解析】选D 根据要求去掉、两个数据,因此数据的平均数为数据:、、、、的平均数即:;3.(2009·内江中考)今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数 B.方差 C.平均数 D.频数【解析】选B 反映数据的波动大小的量为数据的方差,因此选B;4.(2009·齐齐哈尔市中考)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.,7 D.,7【解析】选D 数据组中出现次数最多的数为7,中位数为6、7的平均数即;5.(2010·潼南中考)数据 14 ,10 ,12, 13, 11 的中位数是()A.14 B.12 C.13 D.11【解析】选B,先把所有的数从小到大排列起来,10,11,12,13,14,中间的一个为12 6.(2009·南宁中考)(2009威海)某公司员工的月工资如下表:则这组数据的平均数、众数、中位数分别为()A.2200元 1800元 1600元B.2000元 1600元 1800元C.2200元 1600元 1800元D.1600元 1800元 1900元【解析】选C 由图表信息知:1600元出现的次数最多,因此1600元是数据的众数;将数据按大小排列后可以得到数据的中位数为1800元;平均数为2200元;7、(2009·仙桃中考)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、 26B、26 25.5C、26 26D、【解析】选D 因为25有2个,有4个,26有2个,有1个,27有1个所以为此数据组的众数;将数据按大小排列为:25、25、、、、、26、26、、27;所以数据的中间两个数为、,所以数据的中位数为;8、(2009·烟台中考)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【解析】选A 根据平均数的计算方法可知全年级学生的平均成绩一定在六个平均成绩的最小值和最大值之间;9、(2009·遂宁中考)“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、30【解析】选C 由统计图可知30的个数最多,因此数据的众数为30,此数组数据的个数为50,将数据按大小排列后中间的两个数为30、30,所以中位数为30;10、(2009·泰安中考)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在().(A)第二组(B)第三组(C)第四组(D)第五组【解析】选C.有统计图和表知:样本数=12÷12%=100,第三小组人数=100×18%=18,第五十和第五十一个数位于第四小组.11、(2008·南平中考)小丽家下个月的开支预算如图所示.如果用于教育的支出是150元,则她家下个月的总支出为()A.625元B.652元C.750元D.800元答案:选C二、填空题12、(2010·眉山中考)某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数据的中位数是__________(元).【解析】:把这一组数据从小到大排列后,最中间的一个数为30,所以中位数为30(元)答案:3013、改革开放后,我市农村居民人均消费水平大幅度提升.下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元).则这几年我市农村居民人均食品消费支出的中位数是元,极差是元.【解析】中位数=225602048=2304,极差=2786-1674=1112.答案:2304,111214、(2009·牡丹江中考)已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.【解析】因为三个不相等的正整数的中位数是3,所以三个数中有一个小于3,而另一个大于3,又因为平均数为3,所以数组为1,3,5或2,3,4;答案:1,3,5或2,3,4;三、解答题15、(2009·黄石中考)振兴中华某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,并绘制成统计图(如图),图中从左到右各矩形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。

(1)他们一共调查了多少人(2)这组数据的众数、中位数各是多少 (3)若该校共有1560名学生,估计全校学生共捐款多少元【解析】:(1)由题意可设,各组人数分别为3x ,4x ,5x ,8x ,6x 则8x+6x=42 ∴x=3 ∴3x +4x+5x+8x+6x=26x=78人 即调查了78人。

(2)众数是25,中位数是25。

(3)(3×3×10+4×3×15+5×3×20+8×3×25+6×3×30)781560=34200元 16、(2008·佳木斯中考)三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一人),请计算每人的得票数. (3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选. 【解析】(1)90;补充后的图如下(2)A : B : C :(3)A :(分)B :(分)C :(分)B 当选17、(2010·威海中考)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题: )共抽取了 名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均数是 ,众数是 ;女生体0246810121416男生人数女生人数23人数 0 2 4 6 12 8 10 14 22x252627282930分数育成绩的中位数是 .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少 【解析】﹙1﹚80; ﹙2﹚, 27, 27; ﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚17、(2008 日照中考) 振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人. (1)他们一共调查了多少人(2)这组数据的众数、中位数各是多少(3)若该校共有1560名学生,估计全校学生捐款多少元【解析】(1)设捐款30元的有6x 人,则8x +6x =42. ∴ x =3.∴ 捐款人数共有:3x +4x +5x +8x +6x =78(人).(2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元).(3)34200781560)30362538203515341033(=⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯(元). 18、(2008·沈阳中考)在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:/元请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析: ①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 【解析】(1)21(2)一班众数为90,二班中位数为80(3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好;②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ③从B 级以上(包括B级)的人数的角度看,一班人数是18人,二班人数是 要点二:频数、频率的意义及应用一、选择题1.(2009·宜宾中考)已知数据:23231-,,,,π.其中无理数出现的频率为( ) A. 20% B. 40% C. 60% D. 80%【解析】选C 因为数据23231-,,,,ππ三个,所以数据中的无理数出现的频率为60%;2.(2009·包头中考)某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,一班竞赛成绩统计图 二班竞赛成绩统计图测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( ) A .B .0.17C .D .【解析】选A 本题属于统计内容,考查分析频数分布直方图和频率的求法。

相关文档
最新文档