第6章钢结构偏心受力构件
轴心受力构件
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
第三版钢结构课后题答案第六章
6.1 有一两端铰接长度为4m 的偏心受压柱,用Q235的HN400×200×8×13做成,压力设计值为490kN ,两端偏心距相同,皆为20cm 。
试验算其承载力。
解(1)截面的几何特征:查附表7.2 (2)强度验算:(3)验算弯矩作用平面内的稳定: b /h =200/400=0.5<0.8,查表4.3得: 对x 轴为a 类,y 轴为b 类。
查附表4.1得:x 0.9736ϕ=构件为两端支撑,有端弯矩且端弯矩相等而无横向荷载,故mx 1.0β=(4)验算弯矩作用平面外的稳定: 查附表4.2得:y 0.6368ϕ=对y 轴,支撑与荷载条件等与对x 轴相同故:由以上计算知,此压弯构件是由弯矩作用平面外的稳定控制设计的。
轧制型钢可不验算局部稳定。
6.2 图6.25所示悬臂柱,承受偏心距为25cm 的设计压力1600kN 。
在弯矩作用平面外有支撑体系对柱上端形成支点[图6.25(b)],要求选定热轧H 型钢或焊接工字型截面,材料为Q235(注:当选用焊接工字型截面时,可试用翼缘2—400×20,焰切边,腹板—460×12)。
解:设采用焊接工字型截面,翼缘204002⨯-焰切边,腹板—460×12,(1)截面的几何特征, (2)验算强度:因为:20069.720b t -==<,故可以考虑截面塑性发展。
(3)验算弯矩作用平面内的稳定: 查表4.3得:对x 、y 轴均为b 类。
查附表4.2得:784.0x =ϕ()222EX 22x 206000215.2101.1 1.164.39611kNEA N ππλ⨯⨯⨯'==⨯=对x 轴为悬臂构件,故0.1mx =β;(4)弯矩作用平面外的稳定验算: 查附表4.2,749.0y =ϕ()958.0440003.7007.1235.4400007.12y2yb =-=-=f λϕ构件对y 轴为两端支撑,有端弯矩且端弯矩相等而无横向荷载,故取0.1,0.1tx ==ηβtx xy b 1x362322160010 1.0 1.0400100.749215.2100.958407810N 201.5N mm 205mmN M A W f βηϕϕ+⨯⨯⨯⨯=+⨯⨯⨯⨯=<=∴此压弯构件是由弯矩作用平面内的稳定控制设计的。
钢结构轴心受力构件计算
钢结构轴心受力构件计算3.1 轴心受力构件概述在钢结构中,轴心受力构件的应用十分广泛,如桁架、塔架和网架、网壳等杆件体系。
这类结构的节点通常假设为铰接,当无节间荷载作用时,杆件只受轴向力(轴向拉力或轴向压力)的作用,称为轴心受力构件(轴心受拉构件或轴心受压构件)。
图3-1所示为轴心受力构件在工程上应用的一些实例。
图3-1 轴心受力构件在工程中的应用(a)桁架;(b)塔架;(c)网架轴心受力构件常用的截面形式可分为实腹式和格构式两大类。
(1)实腹式构件制作简单,与其他构件的连接也比较方便,常用的截面形式很多,可直接选用轧制型钢截面,如圆钢、钢管、角钢、工字钢、H 型钢、T 型钢等[图3-2(a)];也可选用由型钢或钢板组成的组合截面[图3-2(b)];在轻型结构中则可采用冷弯薄壁型钢截面[图3-2(c)]。
以上这些截面中,截面紧凑(如圆钢)或对两主轴刚度相差悬殊者(如单槽钢、工字钢),一般适用于轴心受拉构件,而受压构件通常采用较为开展、组成板件宽而薄的截面。
(2)格构式构件[图3-2(d)]容易使压杆实现两主轴方向的稳定性。
这种构件的刚度大、抗扭性好,用料较省。
格构式截面一般由两个或多个型钢肢件组成,肢件之间采用缀条或缀板连成整体,缀条和缀板统称为缀材。
图3-2 轴心受力杆件的截面形式(a)轧制型钢截面;(b)焊接实腹式组合截面;(c)冷弯薄壁型钢截面;(d)格构式截面3.2 轴心受力构件的强度及刚度轴心受拉构件的设计除根据结构用途、构件受力大小和材料供应情况选用合理的截面形式外,还要对所选截面进行强度和刚度验算。
强度要求就是使构件截面上的最大正应力不超过钢材的强度设计值,刚度要求就是使构件的长细比不超过容许长细比。
轴心受压构件在设计时,除使所选截面满足强度和刚度要求外,还应使其满足构件整体稳定性和局部稳定性的要求。
整体稳定性要求是使构件在设计荷载作用下不致发生屈曲而丧失承载能力;局部稳定性要求一般是使组成构件的板件宽厚比不超过规定限值,以保证板件不会屈曲,或者使格构式构件的分肢不发生屈曲。
新070 新规范--偏心受压构件正截面承载力
水平裂缝,但未形成明显的主裂缝,而受压区临
近破坏时受压边出现纵向裂缝。 破坏较突然,无明显预兆,压碎区段较长。 破坏时,受压钢筋应力一般能达到屈服强度,但 受拉钢筋并不屈服,截面受压边缘混凝土的压应
受压破坏图1)
变比拉压破坏时小。
6.1 偏心受压构件正截面的破坏形态
第五章 偏心受力构件正截面承载力
6.1 偏心受压构件正截面的破坏形态
第6章 偏心受压构件正截面承载力
1 破坏形态
受拉破坏(大偏心受压破坏) 发生条件:相对偏心距 e0 / h0 较大, 受拉纵筋 As 不过多时。
受拉边出现水平裂缝 继而形成一条或几条主要水平裂缝 主要水平裂缝扩展较快,裂缝宽度增大 使受压区高度减小
受拉钢筋的应力首先达到屈服强度
1 ——偏心受压构件的截面曲率修正系数,当 1
N ——构件截面上作用的偏心压力设计值;
>1.0时,取 1
0
=1.0;
2 ——构件长细比对截面曲率的影响系数,当 l
h
15
时,取 2 =1.0。
《规范》规定:当矩形截面 l0 5 或任意截面 l0 其中为 i 截面回转半径。
h
两个主轴都有偏心距
偏心受压构件:作用在构件截面上的轴向力 为压力的偏心受力构件 偏心受拉构件:作用在构件截面上的轴向力 为拉力的偏心受力构件
6.1 偏心受压构件正截面的破坏形态
第6章 偏心受压构件正截面承载力
实际工程中的偏心受力构件: 单层厂房的柱子 框架结构中的框架柱 剪力墙结构中的剪力墙
桥梁结构中的桥墩
第6章 偏心受压构件正截面承载力
矩形截面对称配筋偏心受压构件正截面受压承载力计算
1 基本计算公式及适用条件 (1)大偏心受压构件: 1)应力图形 2)基本公式
偏心受力构件承载力
承载力分析的方法
解析法
基于力学原理和数学公式,通过计算得出构件的承载力。 解析法适用于简单结构和规则截面。
有限元法
利用数值计算方法,将构件离散化为有限个单元,通过求 解单元的应力分布来得到构件的承载力。有限元法适用于 复杂结构和不规则截面。
试验法
通过试验手段对实际构件进行加载测试,直接测得其承载 力。试验法具有较高的精度和可靠性,但成本较高。
ABCD
数值分析
利用数值计算方法,如有限元分析、有限差分法 等,对构件进行受力分析和性能评估。
人工智能
利用人工智能算法,如遗传算法、模拟退火算法 等,对设计方案进行智能优化。
优化设计的实施步骤
需求分析
明确设计需求和目标,分析构件的工作环境 和受力特点。
建立模型
根据需求分析结果,建立描述构件性能的数学 模型。
偏心受力构件
指在承受外力时,外力作用点与构件 重心不重合的构件。
承载力的计算方法
01
02
03
解析法
通过数学公式和物理原理, 计算出结构或构件的承载 力。
试验法
通过实际试验,测量出结 构或构件的承载力。
经验法
根据工程经验,估算结构 或构件的承载力。
承载力的影响因素
材料性能
材料的弹性模量、泊松比、抗拉压强度等性能参数对承载力有直接影 响。
根据计算结果,评估构件的承 载能力和稳定性,对不满足要
求的构件进行优化设计。
04 偏心受力构件的优化设计
优化设计的目标
提高构件承载能力
通过优化设计,使构件在承受偏心荷 载时具有更高的承载能力,减少因荷 载过大而导致的破坏。
降低成本
在满足承载力要求的前提下,通过优 化设计降低材料消耗和制造成本,提 高经济效益。
钢结构设计原理L6-3偏心受力构件PPT课件
工程实例三:某工业厂房的偏心受力分析
总结词
工业厂房、偏心受力、结构优化设计
详细描述
某工业厂房在设计中需要承受较大的设备和生产载荷,通过对厂房进行偏心受力分析和结构优化设计 ,确保厂房在使用过程中能够保持稳定和安全。
THANKS
感谢观看
02
在钢结构中,偏心受力构件通常 是指承受轴向力且截面形心与轴 线不重合的柱子,如钢框架中的 钢柱。
偏心受力构件的类型
按偏心方向分类
分为单向偏心和双向偏心受力构件。单向偏心受力构件是指仅在一个方向上存 在偏心的构件,而双向偏心受力构件则是在两个方向上都存在偏心的构件。
按偏心量大小分类
可分为小偏心和大偏心受力构件。小偏心受力构件是指偏心距较小,截面承载 力未充分利用的构件,而大偏心受力构件则是偏心距较大,截面承载力已接近 或达到极限状态的构件。
总结词
大型桥梁、偏心受力、稳定性分析
详细描述
某大型桥梁在设计中需要考虑偏心受力,通过对桥梁的稳定性进行详细分析,确保桥梁在承受偏心载荷时能够保 持安全和稳定。
工程实例二:某高层建筑的偏心受力分析
总结词
高层建筑、偏心受力、抗震性能分析
详细描述
在高层建筑设计过程中,需要考虑地 震等自然灾害的影响,通过对高层建 筑进行偏心受力分析和抗震性能评估, 提高建筑的稳定性和安全性。
钢结构设计原理L6-3偏心 受力构件PPT课件
• 偏心受力构件简介 • 偏心受力构件的受力分析 • 偏心受力构件的稳定性分析 • 偏心受力构件的抗震设计 • 偏心受力构件的优化设计 • 偏心受力构件的实例分析
01
偏心受力构件简介
偏心受力构件的定义
01
偏心受力构件是指在其轴向荷载 作用下,其截面形心与轴线不重 合的柱形构件。
第6章 偏心受力构件
• 如前所述一般也只按 验算。注意当弯矩绕虚轴作用时,应 按换算长细比验算。大小,均应设置横隔,横隔 的设置方法与轴心受压格构柱相同。格构柱分肢的 局部稳定也同实腹式柱。
b1 15 235
t
fy
§6-5 偏心受力构件的设计
6.5.1 框架柱的计算长度
6.5.3 格构式压弯构件的截面设计
1.截面的初步选择
图6.16是格构式压弯构件的常用截面形式,当弯矩不 大时,可以用双对称的截面形式(图6.16a、b、d);如 果弯矩较大时,可以用单轴对称的截而(图6.24c),并 将较大的肢件放在压力较大的一侧。如前所述,由于格 构式压弯构件中存在着较大的剪力,故多采用缀条式构 件。缀条一般采用单角钢。
(b)、(c)],对此种构件应进行下列计算:
①弯矩作用平面内的整体稳定性计算
弯矩绕虚轴作用的格构式压弯构件,由于截面中部空心,不
能考虑塑性的深入发展,故弯矩作用平面内的整体稳定计算
适宜采用边缘屈服准则
N
mxM x
f
x A
W1x 1 x N
N
' Ex
• ②分肢的稳定计算
• 弯矩绕虚轴作用的压弯构件,在弯矩作用平面外的整体稳定性一 般由分肢的稳定计算得到保证,故不必再计算整个构件在平面外 的整体稳定性。
分肢2
分
肢
的
内
力
分肢1
计
算
图6.17
• •
③ 缀材的计算
计算压弯构件的缀材时,应取构件实际剪力和按式 V
Af
fy
85 235
计算所得剪力两者中的较大值。其计算方法与格构式轴心受压构件相同。 • 2)弯矩绕实轴作用的格构式压弯构件 • 当弯矩作用在与缀材面相垂直的主平面内时〔图6.24 (d)〕,构件绕实轴产生
钢结构设计原理-第6章-拉弯和压弯构件概要
(6.2.2)
第6.3节 压弯构件的稳定
本目录
1. 弯矩作用平面内的稳定性 2. 弯矩作用平面外的稳定 3. 双向弯曲实腹式压弯构件的整体稳定 4. 压弯构件的局部稳定
基本要求
1. 理解实腹式压弯构件的整体稳定性的概念 2. 2. 了解在弯矩作用平面内与弯矩作用平面外失
稳破坏的情况与验算方法
6.3.1 弯矩作用平面内的稳定性
本章目录
6.1 概述 6.2 拉弯和压弯构件的强度 6.3 压弯构件的稳定 6.4 压弯构件(框架柱)的设计 6.5 框架柱的柱脚
基本要求
1.了解拉弯和压弯构件的构造特点和构造要求。 2.掌握拉弯和压弯构件的破坏形式和计算方法。
第6.1节 概述
本节目录
1. 拉弯构件 2. 压弯构件
基本要求
1 . 建立拉弯构件与压弯构件的概念 2 . 了解设计计算的内容
加挠度将使各截面的弯矩增大,如果假定构件的挠曲
线与正弦曲线的半个波段相一致,则中央截面的最大
弯矩为:
Mmax1NM/NE
(6.3.3)
在式中
NE,为2E 欧拉/Il2 临界力。
称为1弯矩放大系数。 1 N / NE
2.允许截面发展一定的塑性
如前所述,以点A'(图6.3.2)作为承载力极限状态 时,该点对应的极限弯矩为:
压弯构件整体破坏的形式有以下三种:(1)因端部弯矩很 大或有较大削弱而发生强度破坏,(2)在弯矩作用平面内发 生弯曲屈曲,(3)在弯矩作用平面外发生弯扭屈曲。
组成截面的板件在压应力作用下也可能发生局部屈曲。
第6.2节 拉弯和压弯构件的强度
本节目录
1.拉弯和压弯构件的强度和刚度计算
基本要求
钢结构第6章课后问答-
钢结构第6章课后问答1、钢结构第6章课后问答6.1轴心受力构件的强度的计算公式怎么确定的?答:P191是按净截面的平均应力o不超过材料的屈服强度fy来确定的。
6.2轴心受压构件整体失稳有几种形式?双轴对称界面的屈曲形式是怎么样的?答:P193有弯曲屈曲、扭转屈曲、弯扭屈曲三种形式。
一般的双轴对称截面的轴心压杆,屈曲形式为弯曲屈曲、薄壁十字形截妞在确定的状况下发生扭转屈曲、单对称轴截面如角钢、槽钢和T形钢或双板T形,由于其截面只有一个对称轴,截面形心和剪心不重合,会产生弯扭屈曲。
6.3轴心受力构件整体稳定承载力与哪些因素有关?哪些因素被称为初始缺陷。
答:P196剩余应力初弯曲初偏心〔为初始缺陷〕、长细比X;p264小结〔4〕。
6.4提高轴心压杆钢材的抗压强度能否提高其稳定承载力?答:pl95?196不能2、,在弹性阶段稳定承载力和抗压强度无关〔欧拉公式〕;在弹塑性阶段,ocr不仅是X的函数,还是Et的函数,而Et与材料的抗压强度有关。
6.5轴心屈曲为什么要分为弹性屈曲和弹塑性屈曲?划分依据?答:同6.4;划分依裾:P195,对于瘦长杆,钢材长细比大于截面应力为比例极限时构件的长细比,即满足欧拉公式的适用条件;对于中长干,截面应力在屈曲前已经超过比例极限进入弹塑性阶段。
6.6怎样区分压杆稳定的第一类稳定问题和其次类稳定问题?答:抱负轴心受力构件/偏心受力构件6.7剩余应力、初弯曲、初偏心对轴心压杆承载力的主要影响有哪些?为什么剩余应力在截面的两个主轴方向对承载力的影响不同?答:6.8轴心受力构件的稳定系数I为什么要按截面分成4类?答:p203由于轴心受压构件稳定承载力和多种因素有关3、,依据常用的截妞形式,不同加工所产生的剩余应力,经过数理统计和牢靠度分析,依据截面形式、板厚、屈曲方向、和加工条件归纳为4种。
6.9局部稳定承载力计算屮,为什么要取较大的长细比?答:p208考虑板的局部失稳不先于杆件的整体失稳的原则oocr,杆件整体失稳计算中ocr=iDf,巾对应的是较大的长细比。
钢筋混凝土结构原理6 受压构件
第6章 钢筋混凝土轴心受力构件正截面承载力计算
当混凝土压应力达到峰值应 外荷载不再增加, 变 , 外荷载不再增加 , 压缩 变形继续增加, 变形继续增加 , 出现的纵向 裂缝继续发展, 裂缝继续发展 , 箍筋间的纵 筋发生压屈向外凸出, 筋发生压屈向外凸出 , 混凝 土被压碎而整个构件破坏。 土被压碎而整个构件破坏。 应力峰值时的压应变一般在0.0025~0.0035之间。 《 规范》 偏于 ~ 之间。 规范》 应力峰值时的压应变一般在 之间 安 全 地 取 最 大 压 应 变 为 0.002 。 受 压 纵 筋 屈 服 强 度 约
(a)轴心受压
(b)单向偏心受压
(c)双向偏心受压
第6章 钢筋混凝土偏心受力构件承载力计算
偏心受压构件的构造要求
1. 混凝土强度等级、计算长度及截面尺寸 混凝土强度等级、 截面形状和尺寸: ⑴截面形状和尺寸:P124 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 ◆ 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 圆形截面主要用于桥墩、桩和公共建筑中的柱。 ◆ 圆形截面主要用于桥墩、桩和公共建筑中的柱。 柱的截面尺寸不宜过小,一般应控制在l ◆ 柱的截面尺寸不宜过小,一般应控制在 0/b≤30及l0/h≤25。 及 。 ◆当柱截面的边长在800mm以下时,一般以50mm为模数,边长 当柱截面的边长在 以下时,一般以 为模数, 以下时 为模数 以上时, 为模数。 在800mm以上时,以100mm为模数。 以上时 为模数 ( 2)混凝土强度等级 : 受压构件的承载力主要取决于混凝土强 ) 混凝土强度等级: 一般应采用强度等级较高的混凝土。 度,一般应采用强度等级较高的混凝土。目前我国一般结构中柱 的混凝土强度等级常用C30~C40,在高层建筑中,C50~C60级混 的混凝土强度等级常用 ,在高层建筑中, 级混 凝土也经常使用。 凝土也经常使用。
钢结构轴心受力构件
2. 残余应力影响下短柱的- 曲线
以热扎H型钢短柱为例:
0.3fy
(A)
fy σ=0.7fy
0.3fy 0.3fy
(B)
fy 0.7fy<σ<fy
σ=N/A
fy C
B
fp
A
σr
fy-σr
σr=0.3fy
(C)
fy σ=fy
0.3fy
0
ε
当N/A<0.7fy时,截面上的应力处于弹性阶段。
当N/A=0.7fy时,翼缘端部应力达到屈服点,该点称为有效比例极限fp=fy-r
y
当>fp=fy-r时,截面出现塑性区,应力分布如图。 临界应力为:
t
h
cr
Ncr A
2EI
l2A
Ie I
2E 2
Ie I
(6.3.8)
x
x
t
柱屈曲可能的弯曲形式有两种:沿强轴(x轴)和
沿弱轴(y轴)因此:
b
对x x轴屈曲时:
b
Etx
EIex Ix
2t(b)h2 4
E 2tbh2 4
E
对y y轴屈曲时:
轴心压力N较小
干扰力除去后,恢复到 原直线平衡状态
N增大
干扰力除去后,不能恢复到原直 线平衡状态,保持微弯状态
N继续增大
干扰力除去后,弯曲变形仍然迅 速增大,迅速丧失承载力
第6章轴心受力构件 理想的轴心受压构件(杆件挺直、荷载无偏心、无初始 应力、无初弯曲、无初偏心、截面均匀等)的失稳形式分为:
弯曲失稳 扭转失稳 弯扭失稳
y
N
力学模型 N
v
v1 y z
y
第6章轴心受力构件
第6章-3偏心受力构件
( I1 / l1 I 2 / l2 ) H K1 I
第六章 拉弯和压弯构件
第八节 压弯构件计算长度
二、单层框架平面内计算长度
2、有侧移单层框架柱计算长度系数m
(1)固接柱、刚性梁m=1.0
(2)铰接柱、刚性梁m=2.0
(3)固接柱、铰接梁m=2.0
(4)铰接柱、刚接梁m>2.0,按梁柱线刚度比k查表 (5)固接柱、刚接梁2.0 >m>1.0,按梁柱线刚度比k查表
31
第六章 拉弯和压弯构件
第八节 压弯构件计算长度
二、单层框架平面内计算长度
3、无侧移单层框架柱m
(1)固接柱、刚性梁m=0.5
(2)铰接柱、刚性梁m=0.7
(3)固接柱、铰接梁m=0.7
(4)铰接柱、刚接梁1.0>m>0.7,按梁柱线刚度比k查表 (5)固接柱、刚接梁0.7>m>0.5 ,按梁柱线刚度比k查表
二、单层框架平面内计算长度
1、决定计算长度(稳定性)的主要因素 (1)有无侧移。 (2)梁柱线刚度比k (3)柱脚约束。
28
第六章 拉弯和压弯构件
第八节 压弯构件计算长度
二、单层框架平面内计算长度
2、有侧移单层框架柱计算长度系数m
• 可以认为各柱是同时失 稳的,假定失稳时横梁 两端的转角θ相等 • 但方向相反,其计算长 度系数μ亦可查表求得 • 梁、柱的线刚度比采用 与柱相邻的两根横梁的 线刚度之和K1
式中:
x 由 0 x 确定的轴压构件稳定系 数;
M x 计算区段的最大弯矩;
mx M x N f x A W (1 N ) 1x x x NE
W1 x I x y 0 , I x 对x轴的毛截面惯性矩; y 0 为由x轴到压力较大分肢的轴 线距离或到压力较 大分肢腹板外边缘的距 离,二者取大值。 其余符号同前。
同济大学课件-钢结构设计原理
钢结构基本原理及设计
6.3.3 力学缺陷对弯曲屈曲的影响
1.残余应力的产生与分布规律
(1)残余应力产生 热轧H型钢 (2)
火焰切割边钢板焊
接H型钢 (3)量测残余应力 分割法、钻孔法
钢结构基本原理及设计
热轧的宽翼缘工字钢(H型 钢),翼缘宽度较大,热轧后冷 却过程中,翼缘两端由于其暴露 于空气中的面积较翼缘与腹板交 接部分为多而冷却较快, 腹板中间部位则因厚度较薄 而冷却较快,翼缘与腹板交接部 位冷却收缩变形受到先冷却部分 的约束而出现残余拉应力,先冷 却部分则出现残余压应力。
钢结构基本原理及设计
欧拉公式
N cr E I cr 2 A l A 2 2 2 E E E 2 2 2 i 2 l l i2
其中,
2 EI 2 EI 2 EA N cr 2 2 2 (l ) l0 2
考虑剪切影响?
i
分岔屈曲后,结构只能在比临界荷载低的荷载下才能维 持平衡位形。承受轴向荷载的圆柱壳,承受均匀外压的球壳都 呈不定分岔屈曲形式。长细比不大的圆管压杆与圆柱壳很相似, 薄壁方管压杆亦有指表现为不稳定分岔屈曲。 P
v
钢结构基本原理及设计
(3)跃越屈曲
结构以大幅度的变形从一个平衡位形跳到另一个平衡 位形。 铰接坦拱和油罐的扁球壳顶盖都属于这种失稳情形。 在发生跃越后,荷载一般还可以显著增加,但是其变形大 大超出了正常使用极限状态,显然不宜以此为承载能力的 极限状态。
钢结构基本原理及设计
第6章 轴心受力构件
§6-1 §6-2 §6-3 §6-4 §6-5 §6-6 §6-7 §6-8 构件的应用和截面形式 构件的强度和刚度 轴心受压构件的整体稳定 实际轴心受压构件整体稳定的计算 轴心受压构件的局部稳定 实腹式轴心受压构件的截面设计 格构式轴心受压构件 柱头、柱脚
第6章-2偏心受力构件
第六章 拉弯和压弯构件
第三节 压弯柱的整体稳定
(3)实用计算公式
3、规范规定的设计表达式 考虑部分塑性发展,用gxW1x代替W1x (gx为塑性发展系 数) 将第二项中的jx值调整为0.8以修正误差 该公式当:长细比lx>60时, jx<0.8 ,偏安全 长细比lx<60时, jx>0.8,但 NEx大, 0.8N/NEx影响小 b mx M x 设计公式: N f
第六章 拉弯和压弯构件
第三节 压弯柱的整体稳定
(1) 边缘纤维屈服准则的计算方法 Mx=0时,退化成轴心受压柱,临界状态时轴力为 Ncr =jxfyA 临界方程变为
或
解方程得
等效附加偏心
第六章 拉弯和压弯构件
第三节 压弯柱的整体稳定
(1) 边缘纤维屈服准则的计算方法
将eo代入边缘屈服相关方程,得
第六章 拉弯和压弯构件
第三节 压弯柱的整体稳定
二、平面内失稳
3、面内整体稳定的计算
(1)按边缘纤维屈服准则方法计算;
(2)按极限承载能力准则的方法; (3)实用计算公式(单项公式或相关公式的表达形式) 重点掌握边缘纤维屈服准则方法及相关公式表达 的实用计算方法。
第六章 拉弯和压弯构件
第三节 压弯柱的整体稳定
第六章 拉弯和压弯构件
第三节 压弯柱的整体稳定
二、平面内失稳
2、工作性能 (3) 压弯构件达到临界状态时所能承受的荷载Ncr,与 构件所受弯矩大小有关。弯矩影响用相对偏心率来衡 量,相对偏心率愈大临界荷载愈低。
M N e e / 相对偏心率: W A W/A W 称为截面核心距 A
第六章 拉弯和压弯构件
第三节 压弯柱的整体稳定
钢结构基础第六章 轴心受力构件
杆长中点总挠度为:
v0 m 0 1 N NE
根据上式,可得理想无 限弹性体的压力挠度曲 线如右图所示。实际压 杆并非无限弹性体,当
具有初弯曲压杆的压力挠度曲线
N达到某值时,在N和N∙v的共同作用下,截面边缘开始屈
服,进入弹塑性阶段,其压力—挠度曲线如虚线所示。
第六章 轴心受力构件
便于和相邻的构件连接
截面开展而壁厚较薄
第六章 轴心受力构件
6.2 轴心受拉构件的受力性能和计算
承载极限: 截面平均应力达到fu ,但缺少安全储备
毛截面平均应力达fy ,结构变形过大
计算准则:
毛截面平均应力不超过fy
钢材的应力应变关系
第六章 轴心受力构件
应力集中现象
孔洞处截面应力分布
应用:主要承重结构、平台、支柱、支撑等 截面形式 热轧型钢截面
热轧型钢截面
第六章 轴心受力构件
冷弯薄壁型钢截面
冷弯薄壁型钢截面
第六章 轴心受力构件
型钢和钢板的组合截面
实腹式组合截面
格构式组合截面
第六章 轴心受力构件
对截面形式的要求 能提供强度所需要的截面积 制作比较简便
1数值积分法2有限单元法6324稳定极限承载能力第六章轴心受力构件稳定问题的相关性6325稳定问题的多样性整体性和相关性第六章轴心受力构件64理想轴心受压构件的整体稳定性不考虑构件初弯曲初偏心对轴心受压构件整体稳定性的影响不考虑焊接残余应力对轴心受压构件整体稳定性的影响第六章轴心受力构件641理想轴心受压构件的整体稳定弯曲屈曲轴心受压柱的实际承载力实际轴心受压柱不可避免地存在几何缺陷和残余应力同时柱的材料还可能不均匀
μ—计算长度系数。
《钢结构设计原理》复习思考题副本
《钢结构设计原理》复习思考题第1章绪论1.钢结构与其它材料的结构相比,具有哪些特点?1)钢材强度高,结构重量轻2)材质均匀,且塑性韧性好3)良好的加工性能和焊接性能4)密封性好5)钢材的可重复使用性6)钢材耐热但不耐火7)耐腐蚀性差8)钢结构的低温冷脆倾向2.结合钢结构特点,钢结构有哪些合适的应用范围?1)大跨结构2)工业厂房3)受动力荷载影响的结构4)多层和高层建筑5)高耸结构6)可拆卸的结构7)容器和其他构筑物8)轻型钢结构9)钢和混凝土的组合结构3.我国《钢结构设计规范》规定钢结构采用什么设计方法?具体的准则是什么?设计方法主要以概率极限状态设计法为主,对于钢结构的疲劳验算,以及储液罐和压力容器等结构,则依然沿用以经验为主的容许应力设计法4.两种极限状态指的是什么?其内容有哪些?指的是承载能力极限状态和正常使用极限状态,其中承载能力极限状态包括构件和连接的强度破坏、疲劳破坏和因过度变形而不适于继续承载、结构和构件丧失稳定、结构转变为机动体系和结构倾覆,正常使用极限状态包括影响结构、构件和非结构构件正常使用或外观的变形、影响正常使用的振动、影响正常使用或耐久性能的局部破坏(包括组合结构中混凝土裂缝)5.分项系数设计准则的公式中,各符号的意义是什么?两种极限状态设计时对各物理量的代表值有什么要求?详见课本p10-p11,承载能力极限状态是采用设计值,而正常使用极限状态是采用标准值第2章钢结构的材料1.钢材的生产和加工工艺有哪些?对钢材质量和组织结构各有什么影响?钢材的生产大致可分为炼铁、炼钢和轧制,加工工艺可分为热加工、冷加工和热处理三种。
2.钢结构的破坏形式有哪两种?其特点如何?它们的区别在哪里?破坏形式有塑性破坏和脆性破坏,塑性破坏的特点是当应力超过屈服强度后材料有明显塑性变形,当应力继续增大,断面出现颈缩,有持续的变形时间。
脆性破坏的特点是破坏前无征兆(变形很小),断口平直,破坏突然发生。
钢结构偏心受力构件
ey
A1 y
①
y
y y0 ex
y
y
A1 y2 y1 x Ne
1
b)
x
d)
x
ex
N2
N
N1
y y0 x
y y0 M N
+
_
y
fy
x
x
l1
一.压弯格构柱弯矩绕虚轴作用时的整体稳定计算
(一)弯矩作用平面内稳定(N、Mx作用下:)
因截面中空,不考虑塑性发展系数,故其稳定 计算公式为:
式中:
N x A
f
( 9)
N 计算段轴心压力设计值 ; N N Ex 1.1,N Ex 2 EA 2 Ex x 1.1 抗力分项系数 R的均值; 0.8 修正系数;
x 弯矩作用平面内轴压构 件的稳定系数;
M x 计算区段的最大弯矩;
W1 x 在弯矩作用平面内对较 大受压纤维的毛截面模 量;
式(a)
Mx M px
1.0
ηh
h-2η h
ηh
fy
简化计算规范采用直线,其方程为:
Mx N 1 N p M px
式中: N p Af y ;
( 2)
M px W px f y
N Np
由于全截面达到塑性状态 后,变形过大,因此规范 对不同截面限制其塑性发 展区域为(1/8-1/4)h
2 y
fy
fy W1 x b 1.07 2 b 0.1Ah 14000 235 I1 b ,I 1、I 2分别为受压翼缘和受拉 翼缘对y轴 I1 I 2 的惯性矩;
(2)T形截面(M绕非对称轴x作用)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
min 63.9 116.0 52.1N/mm2
max min 179 .9 52 .1 0 max 179 .9
平面外稳定公式
tx M x N f y A bW1x
y—弯矩作用平面外轴心受压构件稳定系数 —截面影响系数:箱形截面0.7, 其他截面1.0 b—均匀弯曲的受弯构件整体稳定系数(附录3) tx—弯矩作用平面外的等效弯矩系数
1)弯矩作用平面外有支承,由支点弯矩定 无横向荷载作用时 0.65 0.35 M 2
178.5N/mm2
f 215N/mm2
满足强度条件
2017/10/20 21
《钢结构》— 原理与设计
3. 弯矩作用平面内的稳定验算 x 55.3 b类截面 x 0.831
无端弯矩,有横向荷载:mx=1.0 2 EA 2 2.06105 14080 5 N Ex 85 . 1 10 N 2 2 1.1x 1.1 55.3 N mx M x x A xW1x 1 0.8 N / N Ex
《钢结构》— 原理与设计
第6章 拉弯和压弯构件
6.1 6.2 6.3 6.4 拉弯和压弯构件概述 拉(压)弯构件的强度和刚度 压弯构件的稳定 框架柱的设计要点
2017/10/20
1
《钢结构》— 原理与设计
6.1 拉弯和压弯构件概述
基本概念
外力因素
• 轴向拉力或轴向压力 • 弯矩:轴向力偏心、端弯矩、横向荷载
6
《钢结构》— 原理与设计
单偏心
N Mx f An xWnx
双偏心
My N Mx f An xWnx yWny
不考虑塑性发展的情况
• 当压弯构件受压翼缘外伸宽度b与厚度t之比
235 b 235 13 15 时 取x=1.0 fy t fy
• 需要计算疲劳的拉(压)弯构件,宜x =y =1.0 • 弯矩绕虚轴作用的格构式拉(压)弯构件,=1.0
214.4N/mm2
2017/10/20
f 215N/mm2
面外稳定满足要求
23
《钢结构》— 原理与设计
5. 局部稳定验算
6 N M x h0 900103 375 10 max 320 9 A Ix 2 14080 1.034710 63 .9 116 .0 179.9N/mm2
解 截面性质
A 320 12 2 640 10
14080 mm2
1 9 4 3 3 1 . 0347 10 mm I x (320 664 310 640 ) 12 1 1 3 I y 12 320 2 640103 6.5589107 mm4 12 2017/10/20 19 12
2017/10/20 7
《钢结构》— 原理与设计
拉弯和压弯构件的刚度
刚度计算公式
• 控制长细比来保证构件的刚度 • 计算公式 l0 [ ]
i l0 x [ ] 或 x ix
y
l0 y iy
[ ]
容许长细比
• 拉弯构件按轴心受拉构件取值 • 压弯构件按轴心受压构件取值
N mx M x f A xW2 x 1 1.25N / N Ex
1
对无翼缘端的毛截面模量
2
弯矩平面外整体稳定
公式来源
• 轴心受压构件整体稳定 公式协调 引进修正系数 • 受弯构件的整体稳定 2017/10/20
N f A
Mx f bWx
13
《钢结构》— 原理与设计
f 310 N/mm2
满足强度条件
刚度验算
l0 x 6000 x 66 .7 [ ] 350 ix 89.9 l0 y 6000 y 259 .7 [ ] 350 23.1 iy
满足刚度条件
10
2017/10/20
《钢结构》— 原理与设计
6.3 压弯构件的稳定
弯矩平面内长细比<30取30,>100取100
箱形截面
2017/10/20
• 两块腹板受力可能不一致 • 高厚比限值取工字形的0.8倍
17
《钢结构》— 原理与设计
T形截面腹板
• 弯矩使腹板自由边受拉
235 热轧剖分 h0 (15 0.2 ) T型钢 tw fy
焊接T形 h0 235 (13 0.17 ) 截面 tw fy
《钢结构》— 原理与设计
4. 弯矩作用平面外的稳定验算
y 73.2 b类截面 y 0.731
计算段BC有端弯矩,有横向荷载,产生同向 曲率:tx=1.0;另外=1.0 2 73.22 y
44000
1.07
0.948
b 1.07
44000
3 6 tx M x N 900 10 1 . 0 375 10 1.0 y A bW1x 0.73114080 0.948 3.1166106
拉弯 构件
2017/10/20
压弯 构件
2
《钢结构》— 原理与设计
荷载偏心形式
• 弯矩作用在一个主平面内,单向偏心(单向 拉弯构件、单向压弯构件) • 弯矩作用在两个主平面内,双向偏心(双向 拉弯构件、双向压弯构件)
拉弯压弯构件的应用
单层工业厂房
• 厂房排架柱:压弯构件 • 屋架上下弦杆 有节间荷载作用时
2017/10/20
表5.1 表5.2
8
《钢结构》— 原理与设计
例题6.1
某拉弯构件,Q345钢,热轧普通工字钢I22a, 截面无削弱。承受轴向拉力设计值800 kN,横 向均布荷载设计值7 kN/m(不含构件自重)。 试验算其强度和刚度。 解答: 附表1.1 附表8.4
fx 309 cm3
重力 0.33 kN/m
22a号 工字钢
2017/10/20
ix 8.99 cm, iy 2.31 cm
9
《钢结构》— 原理与设计
强度验算
N 800 kN 1 M (7 1.2 0.33) 6 2 33.28 kN.m 8 3 6 N M 800 10 33 . 28 10 292 .5 N/mm2 2 3 An xWnx 42.12810 1.05 30910
《钢结构》— 原理与设计
6.3.2 压弯构件的局部稳定
翼缘宽厚比
工字形和T形截面
翼缘外伸部分宽厚比
b 235 13 t fy b 235 15 t fy
当构件按弹性设计时(x=1.0)
箱形截面
b 235 13 t fy b0 235 40 t fy 2017/10/20
16
• 弯矩使腹板自由边受压 1.0 : h0 15 235 0
tw fy
圆管截面
径厚比
2017/10/20
D 235 100 t fy
h0 235 18 0 1.0 : tw fy
18
《钢结构》— 原理与设计
例题6.2
• 图示为Q235钢焰切边工字形截面柱,两端铰 支,中间1/3长度处有侧向支承,截面无削弱, 外力设计值如图所示。试验算此压弯构件的 承载力。
2017/10/20
《钢结构》— 原理与设计
6.2 拉(压)弯构件的 强度和刚度
拉(压)弯构件的强度
强度公式
• 理论上:以截面出现塑性铰的应力作为强 度极限,强度相关曲线为凸曲线 • 实用上:相关曲线简化为直线 • 公式形式:叠加轴力公式和弯曲公式
2017/10/20
N f An
Mx f xWnx
6.3.1 压弯构件的整体稳定
弯矩平面内整体稳定
计算方法
面 内 • 边缘屈服准则—理论公式 弯 • 极限承载能力准则—数值计算 曲 失 采用公式 稳 面 外 弯 扭 失 稳
2017/10/20
• 边缘屈服准则理论公式的形式 • 数值计算结果进行修正(引进修正系数)
11
《钢结构》— 原理与设计
M1 维用 值大于分子 的平 有端弯矩和横向荷载同时作用时,产生反向曲 毛面 率取0.85,产生同向曲率时取1.0 截内 面对 无端弯矩但有横向荷载取1.0 模较 量 大 2)悬臂构件、分析内力未考虑二阶效应的无支
撑纯框架和弱支撑框架柱,取1.0
2017/10/20
12
《钢结构》— 原理与设计
对于T形及槽形截面压弯构件,当弯矩作用在对称 平面内且使翼缘端1受压时,无翼缘端2可能由于拉 应力较大而首先屈服。为了使其塑性不致深入过大, 对此种情况,尚应对无翼缘侧进行计算。
上弦压弯构件
2017/10/20
下弦拉弯构件
3
《钢结构》— 原理与设计
钢结构柱
• 框架柱:压弯或拉弯 • 工作平台柱 • 刚架立柱 门式刚架 三铰刚架
2017/10/20
4
设计计算内容
拉弯构件
• 强度计算 • 刚度计算
《钢结构》— 原理与设计
压弯构件
• 强度计算 • 刚度计算 • 整体稳定(面内、面外) • 局部稳定(验算板件宽厚比) 钢柱拉 弯断裂 5
《钢结构》— 原理与设计
腹板高厚比
0 0 1.6 :
腹板计算高度边缘的最大压应力
工字形及H形截面 0 max min
max
h0 235 (16 0 0.5 25) tw fy
腹板计 算高度 边缘的 最小压 应力
h0 235 (48 0 0.5 26 .2) 1.6 0 2.0 : tw fy
面内整体稳定的公式 欧拉临界力除以 抗力分项系数1.1 N mx M x f x A xW1x 1 0.8N / N Ex 2 EA N Ex mx—等效弯矩系数 1.12 x 1)框架柱和两端支承的构件 端弯矩,同向曲率 受弯 无横向荷载作用时 取同号,反向曲率 压矩 M2 mx 0.65 0.35 纤作 取异号。分母绝对