一元二次方程之判别式法与韦达定理
初高衔接知识第二讲 :一元二次方程与韦达定理(含练习+参考答案)
第二讲:一元二次方程与韦达定理班级:______姓名:__________问题一、一元二次方程的基本知识定义: 判别式: 求根公式:两根差的绝对值:例1 若x 1和x 2分别是一元二次方程2x 2+5x -1=0的两根,求| x 1-x 2|的值.问题二、韦达定理如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=c a.这一关系也被称为韦达定理.例1 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.例2 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.例3 已知两个数的和为4,积为-12,求这两个数.例4 若x 1和x 2分别是一元二次方程x 2+x -1=0的两根.(1)求| x 1-x 2|的值; (2)求221211x x 的值; (3)x 13+x 23.问题三、韦达定理与根的分布问题例1 若关于x 的一元二次方程x 2-x +a -4=0的(1)一根大于零、另一根小于零,求实数a 的取值范围;(2)两个根都大于零,求实数a 的取值范围.例2.若关于x 的方程x 2+x +a =0的(1)一个大于1、零一根小于1,求实数a 的取值范围;(2)两根都小于1,求实数a 的取值范围.例3 若一元二次方程x 2-(m +1)x+4=0的两个根都落在[0,3]内,求实数m 的取值范围.参考答案定义:一般的,把形如20ax bx c ++=()0a ≠的方程叫做一元二次方程判别式:240b ac =-≥求根公式:2b x a -±=两根差的绝对值:12||x x a -=问题一例1.122x x -===问题二例1. 解:由题意得121212355675k x x x x x x -⎧+=⎧⎪=-⎪⎪⇒⎨⎨⎪⎪=-=-⎩⎪⎩例2. 解:由题意得()()22212120401171021m b ac m m m x x x x ≤⎧⎧-≥⎪⎪⇒⇒=-⎨⎨-+=+-=⎪⎪⎩⎩例3 解:由题意得24120x x --=解得126,2x x ==-例4 解:(1)12x x -===(2)()()()2212122222212122121131x x x x x x x x +--++===- (3)()()()()()233221212112212121234x x x x x x x x x x x x x x +=+-+=++-=-问题三例1解:(1)1240x x a =-<,4a <(2)由题意得1220174440x x a b ac <⎧⇒<≤⎨-≥⎩例2解:(1)由题意得()()12110x x --<()121210x x x x -++<2a ∴<(2)由题意得122b a -=- ∴()()12211012440x x a b ac ⎧-->⎪⇒-<≤⎨-≥⎪⎩例3解:由题意得 ()()()()21212121240010033330330b ac x x x x m x x x x ⎧-≥⎪+≥⎪⎪≥⇒≤≤⎨⎪-+-≤⎪⎪--≥⎩高一数学衔接知识讲义二练习班级:________姓名:_________1. 若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠0 2.已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是 ( )(A )-3 (B )3 (C )-2 (D )23.若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为 ( )(A )1,或-1 (B )1 (C )-1 (D )04.已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c =0的根的情况是 ( ) (A )没有实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )有两个异号实数根5.已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则斜边长等于 ( )(A(B )3 (C )6 (D )96.若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x = ; 7.以-3和1为根的一元二次方程是 ;8.若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m =_____________;9.写一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数_________________________.10.若一元二次方程x 2+2(m -1)x+2m +6=0有两个实数根,且都比1大,求实数m 的取值范围.11.若方程(m +3)x 2-4mx+2m +1=0的两个实数根异号,且负根的绝对值较大,求实数m 的取值范围.12.若一元二次方程x 2-2ax+a+2=0的两根都在区间(1,3)内,求实数a 的取值范围.参考答案1-5 D C C B B6-9 3-;(3)(1)0x x +-=;12;2710x x +-= 10 解: ,则51540m m m m ≥≤-⎧⎪⎪>-⎨⎪<⎪⎩∴514m -<≤-11 解:121200300x x x x m ⋅<⎧⎪+<⎪⎨+≠⎪⎪∆>⎩ ,则2(21)(3)04(m 3)03828-12>0m m m m m m ++<⎧⎪+<⎪⎨≠-⎪⎪∆=-⎩∴132m -<<- 12 解:法一:24480(1,3)2(1)30(3)1150a ab a a f a f a ⎧∆=--≥⎪⎪-=∈⎪⎨⎪=->⎪=->⎪⎩ ∴1125a ≤< 法二:利用韦达定理12121212(1)(1)0(1)(1)0(3)(3)0(3)(3)00x x x x x x x x -->⎧⎪-+->⎪⎪-+-<⎨⎪-->⎪⎪∆≥⎩ ∴1125a ≤< 2416200(1)4502(m 1)122m m f m b a ⎧⎪∆=--≥⎪=+>⎨⎪-⎪-=->⎩。
一元二次方程的解法及韦达定理
一元二次方程的解法及韦达定理一元二次方程的解法及韦达定理编号:撰写人:审核:一、一元二次方程的解法:例题1:用配方法、因式分解、公式法解方程:x2-5x+6=0【一元二次方程的解法总结】1、直接法:对于形如—x2=a的方程,我们可以用直接法。
方程的解为x=推论:对于形如(x+a)2=b的方程也是用直接开方的方法。
注意点:①二次项的系数为1,且a≥0②如果a为根式,注意化简。
例1:解方程:5x2=1例2:解方程:x2=4例3:解方程:4x 2+12x+9=122、配方法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们可以采用配方法的方法来解。
步骤:①把二次项的系数化为1.两边同时除以a ,可以得到:X 2+ b a x+ c a=0 ②配方:(x+ 2ba )2+c- 2()2b a =0③移项:(x+ 2ba )2=2()2b a -c ④用直接法求出方程的解。
X=-2b a注意点:解除方程的解后,要检查根号内是否要进一步化简。
例:解方程:x 2+x=13、公式法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们也可以采用公式法的方法来解。
根据配方法,我们可以得到方程的解为:X=-2b a进一步变形,就可以知道:形如:ax 2+bx+c=0(其中a ≠0)的方程的解为:x1x2注意点:①解除方程的解后,要检查根号内是否要进一步化简。
②解题步骤要规范。
例:解方程:x2+5x+2=0除了以上几种教材里的方法,一元二次方程还有其他的解法。
4、换元法对于一个方程,如果在结构上有某种特殊的相似性,可以考虑用换元法;或者,当这个题目有比较复杂的根式,换元法也是可以考虑的解法。
例1:解方程:(x2+5x+2)2+(x2+5x+2)-2=0例2:=15、有理化方法:对于一个方程,如果含有两个根式,并且这两个根式内的整式的和或者差是特定的数值,那就可以考虑用有理化的方法。
例:=46、主元法:对于一个方程,如果有两个未知数,那么,我们可以确定其中的一个为“主元“,将另一个未知数设定为常数,用公式法可以解出结果。
第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)
2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。
一元二次方程根的判别式及韦达定理常见题型及注意事项
一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。
题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )<2 B,a >2 <2且a ≠1 <-2·变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值.变式3:已知关于x 的一元二次方程(12)10k x --=有两个实数根,求k 的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值已知2-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。
题型2:求与一元二次方程根有关的代数式的值;1. 已知12,x x 是方程22430x x --=的两根,计算: (1)2212x x +; ⑵1211x x +;⑶212()x x -变式:已知,a b 是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10x k x k +-+-=的两个实根的平方和等于9,求k 的值变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2变式2:(2010·中山)已知一元二次方程022=+-m x x .(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为1x ,2x ,且1x +32x =3,求m 的值。
关于判别式法与韦达定理的论述
关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
关键词:判别式法 韦达定理在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。
别式法与韦达定理说明了一元二次方程中根和系数之间的关系。
它们都有着广泛的应用在整个中学阶段。
一、韦达定理的由来法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
判别式法与韦达定理在方程论中有着广泛的应用。
二、对判别式法的介绍及概括一般的关于一元二次方程ax^2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b^2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
关于x 的一元二次方程x^2+mx+n=0有两个相等的实数根,求符合条件的一组的实数值。
这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a 、b 、c 的值;使用判别式的前提是方程为一元二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。
判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数(或参数)的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax^2+bx+c(a≠0)能否在实数范围内分解因式(1) 当△≥0 时,二次三项式在实数范围内能分解因式;(2)当△≤0 时,二次三项式在实数范围内不能分解因式。
一元二次方程-韦达定理的应用及答案
一元二次方程韦达定理的应用知识点:一元二次方程根的判别式 :当△>0 时________方程_____________,当△=0 时_________方程有_______________ ,当△〈0 时_________方程___________ .韦达定理的应用:1。
已知方程的一个根,求另一个根和未知系数2。
求与已知方程的两个根有关的代数式的值3.已知方程两根满足某种关系, 确定方程中字母系数的值4.已知两数的和与积, 求这两个数例 1.关于 x 的一元二次方程 2223840x mx m m --+-=.求证: 当 m 〉2 时,原方程永远有两个实数根.例 2.已知关于 x 的方程22(1)10kx x x k -++-=有两个不相等的实数根.(1)求 k 的取值范围;(2)是否存在实数 k , 使此方程的两个实数根的倒数和等于 0?若存在, 求出 k 的值;若不存在, 说明理由。
例 3.已知关于 x 的方程222(3)410x k x k k --+--=(1)若这个方程有实数根, 求 k 的取值范围;(2)若这个方程有一个根为 1, 求 k 的值;例 4。
已知关于 x 的一元二次方程21(2)302x m x m +-+-= (1)求证: 无论m 取什么实数值, 这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根12,x x 满足1221x x m +=+, 求 m 的值。
例 5。
当 m 为何值时, 方程28(1)70x m x m --+-=的两根:(1) 均为正数; (2)均为负数; (3)一个正数, 一个负数; (4)一根为零; (5)互为倒数; (6)都大于2。
求证: 这个三角形是直角三角形。
例 7.若 n>0 ,关于 x 的方程21(2)04x m n x mn ---=有两个相等的正的实数根, 求m n 的值。
课堂练习:1。
下列一元二次方程中, 没有实数根的是( )A. 2210x x +-= B 。
一元二次方程根的判别式与韦达定理
于是,上述方程两个根的和、积与系数的关系分别有如下关系:
x1+x2=-p,x1x2=q
例1
(1)已知关于x的一元二次方程x2Байду номын сангаас2x+m=0有解,求m的范围.
(2)己知关于x的一元二次方程x2- x-m=0有两个不相等实数根,求m的取值范围.
(3)求证:关于x的一元二次方程ax2-(3a+l)x+2(a+l)=0(a≠0)总有实数根
(4)已知关于x的方程ax2-(3a+l)x+2(a+l)=0有两个不相等的实数根,求a的取值范围
(2)己知:a、b、c分别是△ABC的三边长,
求证:关于x的方程b2x2+(b2+c2一a2)x+c2=0没有实数根.
练习
己知△ABC三边a,b,c,关于x的方程(a+c)x2+2bx-a+c=0,x2+2ax+b2=0均有两个相等的实数根,试判断△ABC的形状.
模块二一元二次方程根与系数关系
知识导航:
练习
(1)方程x2—2x-1=0的两个实数根分别为x1、x2,(x1-l)(x2-1)=______________
cz,设x1、x2是方程2x2—6x+l=o的两个实数根,则(x1- )(x2- )的值为__________
【总结】
1、用韦达定理,常见的恒等变形有:
+ = ,x12+x22=(x1+x2)2-2x1x2,(x1-x2)2=(x1+x2)2-4x1x2
(2)一元二次方程x2—4x-c=0的一个根是3,则另一个根是____,c=___________
一元二次方程的判别式、韦达定理应用举例
一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。
判别式的表达式为:D=b²-4ac。
其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。
2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。
举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。
3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。
抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。
一元二次方程根的判别式与韦达定理的应用
第三讲 一元二次方程根的判别式与韦达定理的应用一、 内容提要1.一元二次方程的根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系:(1)如果一元二次方程ax 2+bx+c=0(a≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21 (2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=qx 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.x 2-(x 1+x 2)x+x 1x 2=0.二、 热身练习1.已知a 、b 、c 为△ABC 的三边,且关于x 的一元二次方程(c -b )x 2+2(b -a )x +(a -b )=0有两个相等的实根,则这个三角形是( )A. 等边三角形B. 直角三角形 C 等腰三角形 D. 不等边三角形2.关于x 的一元二次方程2(21)(1)10a x a x -+++=的两个根相等,那么a 等于( )A.1-或5- B.1-或5 C.1或5- D.1或5 3.已知方程032=+-m x x 的一个根是1,则它的另一个根是 ,m 的值是 。
4.方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1-1)(x 2-1)=_________。
5.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)= .6.已知一元二次方程)2110x x -=的两根为1x 、2x ,则1211x x +=________. 7.已知一个直角三角形的三边为a 、b 、c ,∠B =90°,判断关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况。
一元二次方程根的判别式及韦达定理
二次函数的解析式.
4
总结:此题和例题的第(2) 问第(II)题考查的内容一样。 只是要求学生通过C点坐标求 出一个系数,然后通过面积 求出线段AB的长度,就变成 了例题的题型。
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合精心打造
2015年中考数学复习专题设计与实施(第7版)
巩固训练, 变式迁移
在直角三角形的背景下考查“韦 达定理”。但需要学生利用“勾 股定理”将方程的两根(即 AC,BC)联系,再利用”完全平方 公式和韦达定理”将方程的两根 转化成系数m的方程,从而求解。
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合精心打造
2015年中考数学复习专题设计与实施(第7版)
a 1 4
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合精心打造
2015年中考数学复习专题设计与实施(第7版)
例题:已知抛物线y= x2-(m + 2)x +(2m-1).
(1)求证:抛物线与x轴一定有两个交点; (2)设抛物线与x轴的交点分别为A、B两点,且点A在点B左侧. (I)若点A坐标为(1,0),求AB的长; (II)若AB长为 5 ,求m的值.
总结1:韦达定理:x1
+x
2
=-
b a
,x1x
2
=
c a
a1 5, a2 1 a1 2
a 5
总结2:“根与系数”的大前提是 “根的判别式”。
集区域教研成果&汇名师教学经验
中考命题研究专家和一线教学名师联合版)
一 课前热身
1、x1、x2 是关于x的一元二次方程x2 2ax a2 4a 2 0
判别式与韦达定理
判别式与韦达定理1、 一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,ac x x =21 (2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q(3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0.3.二次三项式的因式分解(公式法)在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。
在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。
考查题型1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )(A )15 (B )12 (C )6 (D )33.下列方程中,有两个相等的实数根的是( )(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=05.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )(A )2 (B )-2 (C )1 (D )-16.如果一元二次方程x 2+4x +k 2=0有两个相等的实数根,那么k =7.如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有两个不相等的实数根,那么k 的取值范围是8.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=9.若关于x 的方程(m 2-2)x 2-(m -2)x +1=0的两个根互为倒数,则m =二、考点训练:1、 不解方程,判别下列方程根的情况:(1)x 2-x=5 (2)9x 2-6 2 +2=0 (3)x 2-x+2=02、 当m= 时,方程x 2+mx+4=0有两个相等的实数根;当m= 时,方程mx 2+4x+1=0有两个不相等的实数根;3、 已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m= ,这时方程的另一个根是 ;若两根之和为-35,则m= ,这时方程的两个根为 . 4、 已知3- 2 是方程x 2+mx+7=0的一个根,求另一个根及m 的值。
一元二次方程的判别式及跟与系数的关系
一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。
初中数学知识点总结:判别式法与韦达定理
初中数学知识点总结:判别式法与韦达定理导读:数学,尤其是初中数学,就是一个梦魇,仿佛只是底下头捡了一只笔就错了一个世纪,再也听不懂数学课了。
为了解决尔等数学渣的苦恼,下面本店铺末宝介绍的9个方法贯穿了整个初中乃至高中数学,同学们务必要掌握哦!1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
根的判别式与韦达定理
一元二次方程根与系数的关系应用例析及训练对于一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,其求根公式为:aacb b x 24221-±-=、;当0≥∆时,设一元二次方程的两根为21x x 、,有:a b x x -=+21,acx x =⋅21;根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当a b x x -=+21,ac x x =⋅21时,那么21x x 、则是方程)0(02≠=++a c bx ax 的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,除了要求熟记一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程)0(02≠=++a c bx ax 的两个根21x x 、,进而分解因式,即))((212x x x x a c bx ax --=++。
下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a 的取值范围中筛选符合条件的a 的整数值。
解: ?说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定a 的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出a ,这是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例2:不解方程,判别方程07322=-+x x 两根的符号 。
判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中021<⋅x x ,所以可判定方程的根为一正一负;倘若021>⋅x x ,仍需考虑21x x +的正负,倘若021>+x x ,则方程有两个正数根;倘若021<+x x ,则方程有两个负数根。
一元二次方程3判别式、韦达定理及十字相乘法
一元二次方程(3)【基础知识】(一)一元二次方程的根的判别式)4(2ac b -=∆.000方程没有实数根根;方程有两个相等的实数数根;方程有两个不相等的实⇔<∆⇔=∆⇔>∆(二) 一元二次方程的根与系数的关系(韦达定理) 若21,x x 是方程)0(02≠=++a c bx ax 的两个根,则ac x x a b x x =⋅-=+2121,如果方程02=++q px x 的两个根是21,x x ,那么_______,2121=⋅=+x x x x 。
例题一 1、不解方程,判别下列方程根的情况: (1)x 2-x=5 (2)9x 2-6 2 x+2=0 (3)x 2-x+2=02、如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k = . 3、关于x 的一元二次方程02)12(22=-+++k x k x 有实数根,则k 的取值范围是 。
4、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,求k 的取值范围。
6、已知关于的一元二次方程有1、不解方程,判断下列一元二次方程的根的情况:1)x 2+3x+3=0; (2)x 2-4x-3=0; (3)4x 2-4x+1=0 2、如果一元二次方程x 2+4x +k 2=0有两个相等的k =3、如果关于x 的方程2x 2-(4k+1)x +2 k 2-1=0有k 的取值范围是4、关于019)13(22=-+--m x m mx x 的方程有m 的取值范围。
1、已知1-=x 是方程0232=++k x x 的一个根,______, k =______. 2、关于的一元二次方程的一个1,则方程的另一根为 . 3、若关于的方程的一个根是0,则另一个根是 .补:十字相乘法解一元二次方程基础公式:()()()ab x b a x b x a x +++=++2,()()()b x a x ab x b a x ++=+++2例1 解方程:(1)x 2+3x+2=0; (2)x 2-7x+6 =0.练习1、解方程(1)652++x x =0 (2)652+-x x =0(3)652-+x x =0 (4)652--x x =0(5)122-+x x =0 (6)18112++x x =0(7)x 2-7x+12=0 (8)a 2+11a+28=0(9)x 2-16x+28=0. (10)x 2-4x-21=0(11)m 2+7m-30=0 (12)a 2-a-56=0(13)m 2-9m+20=0 (14)x 2-9x-36=0(15)8)3(2)3(222-+-+x x x x =0(16)()()2414222++-+x x xx =0例2解方程练习2.解方程 (1)042772=-+x x(4)x x x 86223--=00232)1(2=-+y y 08103)2(2=-+x x 045314)2(2=--x x 024223)3(2=-+-x x。
15、一元二次方程根的判别式
一元二次方程知识点7、一元二次方程根的判别式1、一元二次方程有无解的判定:对于一元二次方程)0(02≠=++a c bx ax a c x a b x c x a b x a c bx ax -=+⇒-=+⇒-=+⇒222)(2222244)2()2(a ac b a b a c a b x a b x -=+-=++⇒22244)2(a ac b a b x -=+⇒0402≥⇒≠a a (1)当042≥-ac b 时:2244a ac b -≥0,有意义根据平方根的定义,有x +a b 2=±2244a ac b -即x =a ac b b 242-±-;(2)当042<-ac b 时:负数没有平方根在实数范围内x 的值不存在,所以方程没有实数根。
2、判别式的定义:把ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 根的判别式,通常用符号“∆”来表示,即ac b 42-=∆。
3、判别式的作用:判定一元二次方程根有无情况和根的个数一般地,一元二次方程)0(02≠=++a c bx ax :①0>∆,方程有两个不相等的实数根;②0=∆,方程有两个相等的实数根;③0<∆,方程没有实数根。
例13、不解方程,直接判断方程根的情况例14、应用根的判别式确定系数中所含字母的取值范围例15、证明方程根的存在性问题例16、根的判别式在实际问题中的应用例17、一元二次方程判别式的综合探究题知识点8、一元二次方程根与系数关系1、韦达定理:若方程)0(02≠=++a c bx ax 的两根为21,x x ,则ac x x a b x x =⋅-=+2121;。
推论1.若方程02=++q px x 的两根为21,x x ,则q x x p x x =⋅-=+2121;;推论2.以两个数21,x x 为根的一元二次方程是0)(21212=++-x x x x x x 。
于初中数学学习方法判别式法
于初中数学学习方法判别式法有关于初中数学学习方法判别式法判别式法作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
那么接下来的初中数学学习方法请同学们认真记忆了。
判别式法判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
看过初中数学学习方法汇编之判别式法,相信大家都可以灵活运用了吧。
接下来还有更多更全的初中数学学习方法等着大家来掌握哦。
初中数学解题方法之常用的公式下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。
你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
学会画图画图是一个翻译的过程。
读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。
这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
从韦达定理反推一元二次方程判别式
从韦达定理反推一元二次方程判别式
学夫子
一元二次方程的重要性显而易见,我也不多废话。
初中生都知道,一元二次方程ax2+bx+c=0的解的个数由其判别式
△=b2-4ac决议。
这个详细内容我也不废话,应该都知道。
明天我们来小小地发散思想,应用韦达定理反推判别式。
如今设方程ax2+bx+c=0的两个解为m和n,那么依据韦达定理有:
m+n=-b/a,mn=c/a
依据我们所学的不等式的内容,我们有下面的不等式成立:(m+n)≥4mn
如今将韦达定理的内容带入该式有:
b2/a2≥4c/a
两边同时乘以a2:
b2≥4ac
所以,假设原方程有两个实数根,必需要满足b2≥4ac,也就是我们的△≥0,当且仅当m=n时,b2=4ac。
原来,二次方程的判别式的来源,竟是一个我们熟知的不等式!虽然推理进程很复杂,不过,这外面融合了韦达定理,二次方程判别式,不等式,岂不快斋?
这个中央要说明的是,虽然在中学课本里,我们推导韦达定
理是运用求根公式,但是实践上我们有不用其求根公式的证明方法,所以,这样的反推没有循环论证。
况且,就算是有循环论证,作为一个课外的融合,作为一种串联各个知识点的方法,也未尝不可。
〔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程之判别式法与韦达定理(一)知识点梳理一元二次方程ax2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
1、一元二次方程根的判别式:ac b 42-=∆ (1)当Δ>0时⇔方程有两个不相等的实数根; (2)当Δ=0时⇔方程有两个相等的实数根; (3)当Δ< 0时⇔方程没有实数根,无解; (4)当Δ≥0时⇔方程有两个实数根(5)根的判别式△=b 2-4ac 的意义,在于不解方程可以判别根的情况,还可以根据根的情况确定未知系数的取值范围。
2、一元二次方程根与系数的关系(韦达定理): (1)若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:abx x -=+21,ac x x =⋅21 (2)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 3、一元二次方程的两根和与两根积和系数的关系在以下几个方面有着广泛的应用: (1)已知方程的一根,求另一个根和待定系数的值。
(2)不解方程,求某些代数式的值。
(3)已知两个数,求作以这两个数为根的一元二次方程。
(4)已知两数和与积,求这两个数。
(5)二次三项式的因式分解。
注意:在应用根与系数的关系时,不要忽略隐含条件。
∆≥≠⎧⎨⎩00a例题讲解例1、当k 为何值时,关于x 的方程()222123x k x k k --=-++:⑴ 两个不相等的实数根; ⑵有两个相等的实数根; ⑶没有实数根。
例2、m x mx mx m 为何值时,关于的方程有两个相等的实数根?并2350-++=求出这时方程的根。
例3、已知方程的两实数根为、,不解方程求下列各式的值。
x x 2310+-=αβ()()();();();();();()12341156343223322αβαβαββααβαβαβαββ+++---++例4、()已知关于的方程x x k x k 2220-++= (1)求证:无论k 取任何实数值,方程总有实数根。
(2)若等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求三角形的周长。
走进中考专题训练一、填空题:1.关于x 的一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2= ,x 1x 2= ;若方程x 2+px+q=0的两根为,,βα则αβ= ,=+βα 。
2.若方程2x(x+3)=1的两根分别为x 1,x 2,则x 1+x 2= ,x 1x 2= ,x 12x 2+ x 1x 22= ,x 12+ x 22= ,2144x x += 。
3.关于x 的一元二次方程013222=+--a x x 的一个根为2,则a 的值为 。
4.已知一元二次方程022=--a ax x 的两根之和为4a -3,则两根之积为 。
5.当m 时,一元二次方程042=--m x x 有实根;当m 时,两根同为正;当m 时,两根异号。
6.以31,21--为根的一元二次方程为 。
7.已知x 1,x 2是方程0362=++x x 的两个实数根,则2112x x x x +的值为 。
8.如果一元二次方程062=+-mx x 的两个根分别比一元二次方程062=++my y 的两个根均大5,则m 的值为 。
二、解答题:9.不解方程,求下列各方程的两根之和与两根之积:(1) 0322=+-x (2) 0372=--x x (3) 5)2(3=-x x10.k 取何值时,方程kx 2-(2k+1)x+k=0,(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根.11.已知关于x 的方程012)2(2=-+++m x m x .(1)求证:方程有两个不相等的实数根;(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解。
12.已知关于x 的方程04)12(22=-++-m x m x ,如果方程的两个不相等的实数根的平方和等于15,求m 的值。
13.已知关于x 的一元二次方程022=--a x x .(1)如果此方程有两个不相等的实数根,求a 的取值范围; (2)如果此方程有两个实数根为x 1,x 2,且满足321121-=+x x ,求a 的值。
14.设x 1,x 2是关于x 的一元二次方程024222=-+++a a ax x 的两个实数根,当a 为何值时,2221x x +有最小值?最小值是多少?自我检测1.方程(m+2)x |m |+3mx+1=0是关于x 的一元二次方程,则( )A .m≠±2B .m=2C .m=-2D .m=±2 2.已知关于x 的方程41x 2-(m -3)x+m 2=0有两个不相等的实数根,则m 的最大整数值是( )A .2B .1C .0D .-1 3.k 为实数,则关于x 的方程x 2+2(k+1)x+k -1=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定4.已知关于x 的方程(2m -1)x 2-8x+4=0有两个实数根,则非负整数m 的值为( )A .1B .2C .1或2D .0、1、2 5.对任意实数m ,关于x 的方程(m 2+1)x 2-2mx+m 2+4=0一定( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定6.若关于x 的一元二次方程kx 2-2x+1=0有实数根,则k 的取值范围是( )A .k <1B .k≤1C .k <1且k≠0D .k≤1且k≠0 7.若方程0232=+-b ax x 的两根和为4,积为-2,则a ,b 分别为( )A .-12与-3B .4与-3C .12与-3D .-4与-38.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A .0B .1C .-1D .29.试证明:关于x 的方程(a2-8a+20)x2+2ax+1=0,不论a 取何值,该方程都是一元二次方程.一元二次方程之判别式法与韦达定理(二)走进中考专题训练一、填空题1.若方程(m -1)x |m |+1-2x=3是关于x 的一元二次方程,则m=__________. 2.对于方程(m -1)x 2+(m+1)x+3m+2=0,当m__________时,为一元一次方程;当m____时为一元二次方程.3.一元二次方程ax 2+bx+c=0至少有一个根为零的条件是____________. 5.如果m 为任意实数,则一元二次方程x 2-mx+21m 2+m+32=0的解的情况是____________. 6.k <1时,关于x 的方程2(k+1)x 2+4kx+2k -1=0的根的情况是__________.7.若x=a (a≠2)是关于x 的一元二次方程(k -1)x 2+2kx+k+3=0的一个实数根,则k 的取值范围是_________________________.8.若关于x 的方程(m -1)x 2+2mx+m+3=0有两个不相等的实数根,则Δ=_____________________,则m 的取值范围是____________________________________.二、选择题9.方程(m+2)x |m |+3mx+1=0是关于x 的一元二次方程,则( ) A .m≠±2 B .m=2 C .m=-2 D .m=±2 10.已知关于x 的方程41x 2-(m -3)x+m 2=0有两个不相等的实数根,则m 的最大整数值是( ) A .2 B .1 C .0 D .-1 11.k 为实数,则关于x 的方程x 2+2(k+1)x+k -1=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .不能确定12.已知关于x 的方程(2m -1)x 2-8x+4=0有两个实数根,则非负整数m 的值为( ) A .1 B .2 C .1或2 D .0、1、2 13.对任意实数m ,关于x 的方程(m 2+1)x 2-2mx+m 2+4=0一定( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .不能确定 14.已知关于x 的方程(b+c )x 2+2(a -c )x -43(a -c )=0有两个相等的实数根,则以a 、b 、c 为三边长的三角形是( ) A .直角三角形 B .等腰三角形C .等边三角形D .不能确定 15.若关于x 的方程x 2-(42+k )x+k=0有两个不相等的实数根,则化简k+2+442+-k k 的值为( )A .4B .2kC .-4D .-2k16.若关于x 的一元二次方程kx 2-2x+1=0有实数根,则k 的取值范围是( )A .k <1B .k≤1C .k <1且k≠0D .k≤1且k≠0 三、解答题17.解关于x 的方程2x 2+(3m -n )x -2m 2+3mn -n 2=0.18.若两个关于x 的方程x 2+x+a=0与x 2+ax+1=0有一个公共根,求a 的值.19.试证明:关于x 的方程(a 2-8a+20)x 2+2ax+1=0,不论a 取何值,该方程都是一元二次方程.21.方程x 2-(k+1)x+41k=0能否有相等的实数根.若有请求出来.22.已知一元二次方程(ab -2b )x 2+2(b -a )x+2a -ab=0有两个相等的实数根,求ba 11 的值.自我检测1. 下列方程中,两实数根之和等于2的方程是( ) A. x x 2230+-= B. x x 2230-+= C. 22302x x --= D. 36102x x -+=2. 如果一元二次方程x x 2320+-=的两个根为x x 12、,那么x x 12+与x x 12的值分别为( ) A. 3,2B. --32,C. 32,-D. -32,3. 如果方程26302x x -+=的两个实数根分别为x x 12、,那么x x 12的值是( ) A. 3B. -3C. -32D.324. 如果x x 12、是方程x x 2310-+=的两个根,那么1112x x +的值等于( ) A. -3B. 3C.13D. -135. 已知关于x 的方程x k x k 2260-++-=()有两个相等的正实数根,则k 的值是( ) A. 2B. -10C. 2或-10D. 256. 若方程x x m 280-+=两实数根的平方差为16,则m 的值等于( ) A. 3B. 5C. 15D. -157. 如果x x 12、是两个不相等的实数,且满足x x 12121-=,x x 22221-=,那么x x 12等于( ) A. 2B. -2C. 1D. -18. 对于任意实数m ,关于x 的方程()()m x mx m 2221240+-++=一定( ) A. 有两个正的实数根 B. 有两个负的实数根C. 有一个正实数根、一个负实数根D. 没有实数根。