集合、不等式、函数练习题

合集下载

山东省职教高考集合、不等式与函数测试卷三

山东省职教高考集合、不等式与函数测试卷三

一、选择题(本大题共20小题,每小题3分,共60分.)1.下列选项能组成集合的是 ( )A.著名的运动健儿B.英文的26个字母C.非常接近0的数D.勇敢的人2. 已知集合{}{}8,4,2,5,4,3,2,1==N M ,则M N =( )A .{}2 B.{}5,2 C .{}4,2 D. {}8,4,23. “x>1”是“x>3”的( )A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4. 方程x 2 +3x-4=0的解集用列举法表示为 ( )A .(){}1,4- B. (){}1,4- C. {}1,4- D. {}1,-45.下列图像中,能表示函数y=f(x)图像的是( )A B C D6. 下列两个函数中,表示同一函数的是( )A .x x f =)(与x x x g ,)(=∈(0,+∞)B .x x f =)(与xx x g 2)(= C . x x f =)(与2)()(x x g = D .x x f =)(与33)(x x g =7.已知x x x f 2)1(2+-=-,则)2(f 的值是( )A .2 B.-2 C.3 D.-38. 利用36 m 的篱笆围成一个矩形养鸡场,则围成养鸡场的最大面积是( )m 2A.80B.100C.81D.829.已知函数f(x)=x 2+ax-5在区间(-∞,-1]上是减函数,在区间[-1,+∞)上是增函数,则实数a=( )A.1B.2C.3D.410. 集合{}c b a ,,的真子集的个数为 ( )A .7B .8C .9D .1011. 已知函数则( ) A .5 B.-5 C.1 D.2223(0)() 1 (0)x x f x x x -≥⎧=⎨+<⎩()1f f =⎡⎤⎣⎦12. 函数2231)(x x x f -+=的定义域是 A. {}31<<-x x B. {}31≤≤-x x C. {}13-<>x x x 或 D. {}31≥-≤x x x 或13. 如果函数f(x)=x 2+bx+c 对任意实数均有f(1-x)=f(1+x),那么( )A.f(-2)<f(1)<f(3)B. f(-2)<f(3)<f(1)C. f(1)<f(3)<f(-2)D. f(1)<f(-2)<f(3)14.下列函数中既是奇函数又是增函数的是A. x y 3=B.x y 1= C. 22x y = D.x y 31-=15. ()- 不等式的解集是∣32x ∣<1A .(-2,-1)B .(-∞,-2)∪(-1,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)()()()2,01,0f x x f x x x f x >=-<16.已知奇函数当时,则当时,的解析式为( )A.f (x )=x 2−1B.f (x )=x 2+1C.f (x )=−x 2+1D.f (x )=−x 2−117.一元二次函数y=x 2-2x+4 ,x ∈[2,3]的最小值( )A.2B.3C.4D.518.设函数f(x)在R 是增函数,且f(2-m)<f(2m-4),则m 的取值范围是( )A.m>0B.m<0C.m>2 Dm<219.若函数)(x f 是(-∞,+∞)上的奇函数,且53-4)2-(==)(,f f ,则)2(f 与)3(f 的大小关系是() A .)2(f >)3(f B.)2(f <)3(f C.)2(f =)3(f D.无法判断20.不等式b a x ≤-的解集是[-3,9],则b a ,的值分别为( )A .-3,-6 B.-6,-3 C. 6,3 D. 3,6二、填空题(本大题共5小题,每小题4分,共20分)21.不等式组1020x x -≥⎧⎨->⎩的解集用区间表示为: ;22. 已知方程x 2+y 2-6x+8y+25=0,则x+y=_______;23.若关于x 的方程02=+-m mx x 无实数根,则m 的取值集合为_______;2()()()532,56,5f x ax bx cx f f =++--==4.已知函数若则25.二次函数的顶点是(-2,-1),并且它的图像过点(0,7),则它的解析式为 ;三、解答题(本大题共5小题,共40分)26.已知全集{}{}6,0,1,2,0,3,4U x x x N B ={<∈},A ==|求 C u A, C u B, A ∪C u B, C u (A ∩B){}{}2,10110..A B x A B ==++>27.已知集合求x||x-3|>2x|-x28.()()30+f x x=-∞证明函数在区间,上是增函数.29.将进货价为8元的商品按每件10元售出,每天可销售200件,若每件商品售价涨价1元,其销售量就减少10件,问应将售价定为多少时, 才能使每天所赚的利润最大,并求出这个最大利润.30.已知y=x2+bx+c,经过(-1,0)、(3,0)两点.(1)求函数解析式,并写出顶点坐标和对称轴;(2)作出函数图像并写出函数的单调区间;(3)根据图像直接写出y>0时x的取值范围;(4)当x∈[-2,2]时,求函数的最大值和最小值.。

高中数学练习题基础

高中数学练习题基础

高中数学练习题基础一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x² 3x + 2 = 0}(1) 若A∩B = ∅,则A∪B = A(2) 对于任意实数集R,有R⊆R(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(1) f(x) = x³ 3x(2) g(x) = |x| 2二、三角函数(1) sin 45°(2) cos 60°(3) tan 30°2. 已知sin α = 1/2,α为第二象限角,求cos α的值。

(1) y = sin(2x + π/3)(2) y = cos(3x π/4)三、数列(1) an = n² + 1(2) bn = 2^n 1(1) 2, 4, 8, 16, 32, …(2) 1, 3, 6, 10, 15, …(1) 1, 4, 9, 16, 25, …四、平面向量1. 已知向量a = (2, 3),求向量a的模。

2. 计算向量a = (4, 5)与向量b = (3, 2)的数量积。

(1) a = (2, 1),b = (4, 2)(2) a = (1, 3),b = (2, 1)五、平面解析几何(1) 经过点(2, 3)且斜率为2的直线(2) 经过点(1, 3)且垂直于x轴的直线(1) 圆心在原点,半径为3的圆(2) 圆心在点(2, 1),半径为√5的圆(1) 点(1, 2)到直线y = 3x 1的距离(2) 点(2, 3)到直线2x + 4y + 6 = 0的距离六、立体几何(1) 正方体边长为2(2) 长方体长、宽、高分别为3、4、52. 已知正四面体棱长为a,求其体积。

(1) 正方体A边长为2,正方体B边长为4(2) 长方体A长、宽、高分别为3、4、5,长方体B长、宽、高分别为6、8、10七、概率与统计1. 抛掷一枚硬币10次,求恰好出现5次正面的概率。

高考数学题汇编(集合函数不等式充分必要条件)

高考数学题汇编(集合函数不等式充分必要条件)

高考题汇编一.集合1、已知集合A={x|x <1},B={x|3x <1},则( )A 、A∩B={x|x <0}B 、A ∪B=RC 、A ∪B={x|x >1}D 、A∩B=∅2、设集合A={1,2,4},B={x|x 2﹣4x+m=0}.若A∩B={1},则B=( ) A 、{1,﹣3}B 、{1,0}C 、{1,3}D 、{1,5}3、已知集合A={(x ,y )|x 2+y 2=1},B={(x ,y )|y=x},则A∩B 中元素的个数为( ) A 、3 B 、2 C 、1 D 、04.设集合A={1,2,6},B={2,4},C={x ∈R|﹣1≤x≤5},则(A ∪B )∩C=( ) A 、{2} B 、{1,2,4} C 、{1,2,4,5} D 、{x ∈R|﹣1≤x≤5}5.已知集合P={x|﹣1<x <1},Q={x|0<x <2},那么P ∪Q=( ) A 、(﹣1,2)B 、(0,1)C 、(﹣1,0)D 、(1,2) 二.充分必要条件1.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 2.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件B .必要非充分条件C .充要条件 D .既非充分又非必要条件 4.设,,则“”是“”的A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 5.已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.设,都是不等于的正数,则“”是“”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件三.求函数值,计算7.设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2 B .4C .6D .88.已知函数的定义域为.当时,;当时,;当时,.则( )A .B .C .D .9.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .1210.设函数3,1(){2,1x x b x f x x -<=≥,若5(())46f f =,则b =( )A .1B .78C .34D .1211..12.若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+f (2)= .13.设()f x 是定义在R 上且周期为2的函数,在区间[1,1-)上,,10,(){2,01,5x a x f x x x +-≤<=-≤<其中.a R ∈若,则(5)f a 的值是 .14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.15.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A 21M R M B 212M R M C 2313M R M D 2313MR M 16.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48) A .1033 B .1053 C .1073 D .109317.已知常数0a >,函数()22xx f x ax=+的图象经过点65P p ,⎛⎫ ⎪⎝⎭,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______. 18.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是 A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+19.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x-则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+四.函数的图像20.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .21.函数2sin 1xy x x =++的部分图像大致为( ) A . B .C .D .22.如图,长方形的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记BOP x ∠=,将动点P 到A,B 两点距离之和表示为x 的函数()f x ,则函数的图像大致为( )A .B .C .D .23.函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <五.函数的性质24.已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数25.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称26.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑ A .0B .mC .2mD .4m27.已知函数满足,若函数与图像的交点为则( )A .0 B .C .D .28.设、、是定义域为的三个函数,对于命题:①若、、均为增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是( ) A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题29.已知符号函数1,0,sgn {0,0,1,0.x x x x >==-< ()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-30.已知112112322α⎧⎫∈---⎨⎬⎩⎭,,,,,,,若幂函数()a f x x =为奇函数,且在()0+∞,上递减,则a =____. 31.已知函数()()2ln11f x x x =++,()4f a =,则()f a -=________.32.若函数2()ln()f x x x a x =+为偶函数,则a = . 33.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______.34.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.35.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 六.均值不等式36.若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A .2B .2C .22D .437.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是A .q r p =<B .q r p =>C .p r q =< D .p r q =>38.设0,0,25x y x y >>+=,则(1)(21)x y xy++的最小值为______.39.已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________. 40.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.41.已知0,0,8,a b ab >>=则当a 的值为 时()22log log 2a b ⋅取得最大值. 七.不等式问题42.(2019·青冈县第一中学校高二期末(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞, 43.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( ) A .{}|10x x -<≤ B .{}|11x x -≤≤ C .{}|11x x -<≤ D .{}|12x x -<≤44.若函数是奇函数,则使成立的的取值范围为( ) A .() B .(-1,0) C .D .45.已知是定义在上的偶函数,且在区间上单调递增,若实数满足,则的取值范围是( )A . B . C . D .46.设函数()()21ln 11f x x x=+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭47.已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( )A .47[,2]16-B .4739[,]1616-C .[23,2]-D .39[23,]16- 48.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦49.某公司为激励创新,计划逐年加大研发奖金投入,若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是( )(参考数据:lg1.120.05=,lg1.30.11=,lg 20.30=) A .2018年B .2019年C .2020年D .2021年50.已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (2-),则a 的取值范围是______.51.能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________. 52.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 53.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________. 八.比较大小55.已知2log 7a =,3log 8b =,0.20.3c =,则,,a b c 的大小关系为 A .c b a <<B .a b c <<C .b c a <<D .c a b <<56.已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b <<B .a b c <<C .b c a << D .c a b <<57.若a >b ,则( )A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 60.已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>61.已知,则 A .B .C .D .62.已知,x y R ∈,且0x y >>,则A .110x y ->B .sin sin 0x y ->C .11()()022x y-< D .ln ln 0x y +>63.已知函数()f x 满足:()f x x ≥且()2,xf x x ≥∈R .A .若()f a b ≤,则a b ≤B .若()2bf a ≤,则a b ≤ C .若()f a b≥,则a b ≥ D .若()2b f a ≥,则a b ≥64.已知定义在R 上的函数()21()x mf x m -=-为实数为偶函数,记0.5(log 3),af 2b (log 5),c(2)f f m ,则,,a b c ,的大小关系为( ).a b c << B .c a b << C .a c b <<D .c b a <<65.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<66.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭67.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 68.若a>b>0,且ab=1,则下列不等式成立的是( )A .21log ()2a ba ab b +<<+ B .21log ()2ab a b a b<+<+ C . 21log ()2a ba ab b +<+<D . 21log ()2a ba b a b +<+<69.已知奇函数()f x ,且()()g x xf x =在[0,)+∞上是增函数.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) A .a b c << B .c b a << C .b a c << D .b c a <<70.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z71.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c b C .a c <b cD .c a >c b72.若,,则( ) A .B .C .D .73.已知a ,b >0,且a≠1,b≠1.若log >1a b ,则A .(1)(1)0a b --<B .(1)()0a a b -->C .D .(1)()0b b a -->。

数学课件第一章必刷小题1集合常用逻辑用语不等式

数学课件第一章必刷小题1集合常用逻辑用语不等式
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.(2022·百师联盟联考)命题“∀x>0,cos x>-12x2+1”的否定是
A.∀x>0,cos x≤-12x2+1
B.∀x≤0,cos x>-12x2+1
√C.∃x>0,cos x≤-12x2+1
D.∃x≤0,cos x≤-12x2+1
D,构造函数
f(x)=lnx
x,其中
0<x<e,则
f′(x)=1-xl2n
x .
当0<x<e时,f′(x)>0,则函数f(x)在(0,e)上单调递增,因为0<a<b<1,
则 f(a)<f(b),即lnaa<lnbb,可得 ab<ba,所以,a+ab<b+ba,D 正确.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.以下命题中是真命题的是 A.∃x∈R,使ex<x+1成立 B.∀θ∈R,函数f(x)=sin(2x+θ)都不是偶函数
√C.“a,b∈R,a>b”是“a|a|>b|b|”的充要条件 √D.“x∈A”是“x∈A∩B”的必要不充分条件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.关于x的一元二次不等式ax2+bx+1>0的解集为 x-1<x<31
,则ab的值为

因为关于 x 的一元二次不等式 ax2+bx+1>0 的解集为x-1<x<13

22版高中数学A版必修第一册练习--第一章 集合与常用逻辑用语 第二章 一元二次函数、方程和不等式

22版高中数学A版必修第一册练习--第一章 集合与常用逻辑用语 第二章  一元二次函数、方程和不等式

第一章集合与常用逻辑用语第二章一元二次函数、方程和不等式(全卷满分150分,考试用时120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021北京东城高一上期末)已知集合A={-1,0,1},集合B={x∈N|x2=1},那么A∩B=()A.{1}B.{0,1}C.{-1,1}D.{-1,0,1}2.(2021湖北武汉部分高中高一上期末联考)已知p:a≥0;q:∀x∈R,x2-ax+a>0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021北京顺义高一上期末)已知实数a,b在数轴上对应的点如图所示,则下列式子中正确的是()A.1b >1aB.a2>b2C.b-a>0D.|b|a<|a|b4.(2021陕西宝鸡高三上期末)已知集合A={x|x2+2x-8>0},B={x|x-a>0},若B⊆A,则实数a的取值范围为 ()A.a≥2B.a>2C.a≥4D.a>45.(2021山西大学附属中学高一上期中)已知命题“∃x∈R,使2x2+(a-1)x+12≤0”是假命题,则实数a的取值范围是()A.-3≤a≤1B.-3<a<1C.a≤-1或a≥3D.-1<a<36.(2021浙江嘉兴高一上期末)已知a>0,b>0,且2a+1b =1,则2a+b的最小值为()A.2√2B.3C.8D.97.(2021全国八省(市)高三上联考)关于x的方程x2+ax+b=0,有下列四个命题:①x=1是该方程的根;②x=3是该方程的根;③该方程两根之和为2;④该方程两根异号.如果只有一个是假命题,则该命题是()A.①B.②C.③D.④8.(2021浙江丽水五校高一上检测)已知关于x的不等式a(x+1)(x-3)+1>0(a≠0)的解集是{x|x1<x<x2}(x1<x2),则下列结论中一定错误的是 ()A.x1+x2=2B.x1x2<-3C.x2-x1>4D.-1<x1<x2<3二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.(2021福建福州四十中、十中高一上期末联考) 下列结论正确的有()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0B.不等式x2-4x+5>0的解集为RC.“x>1”是“(x-1)(x+2)>0”的充分不必要条件D.∀x∈R,√x2=x10.(2021重庆育才中学高一上期中)下列不等式中一定成立的是()A.a3+b3≥a2b+ab2(a,b∈R)B.x2+3>2x(x∈R)C.y=x2+2x2-1≥2√2+1D.a2+b2≥2(a-b-1)11.(2021福建龙溪高一上期中)设全集U={x|x>0},集合M={x|y=√x-1},N={y|y=x2+2},则下列结论正确的是()A.M∩N={x|x>2}B.M∪N={x|x>1}C.(∁U M)∪(∁U N)={x|0<x<2}D.(∁U M)∩(∁U N)={x|0<x<1}12.(2021湖南益阳高二上期末)若a>0,b>0,且a+b=4,则下列不等式成立的是()A.√ab≤2B.a2+b2≥8C.1a +1b≥1 D.0<1ab≤14三、填空题(本题共4小题,每小题5分,共20分)13.(2021上海洋泾中学高一上期中)已知关于x的不等式组{x2-2x-8>0,2x2+(2k+7)x+7k<0仅有一个整数解,则实数k的取值范围为.14.(2021山东烟台高一上期中)若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方的子集,则称两个集合构成“蚕食”.已知集合A={-1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则a的取值集合为.15.(2021四川成都树德中学高二阶段性测试)若关于x的不等式ax2>-ax-1对任意实数x都成立,则实数a的取值范围是.16.(2021湖北荆州沙市中学高一上期中)已知正数x,y满足2x+y=xy+a,当a=0时,x+y的最小值为;当a=-2时,x+y的最小值为.(第一空2分,第二空3分)四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2021广东深圳高一上期中)已知集合A={x|a<x<a+1},B={x||x+1|≤1}.(1)若a=1,求A∪B;(2)在①A∪B=B,②(∁R B)∩A=⌀,③B∪(∁R A)=R这三个条件中任选一个作为已知条件,求实数a的取值范围.(注:如果选择多个条件分别解答,则按第一个解答计分)18.(12分)(2021重庆彭水第一中学高一上期中)已知命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题.(1)求实数m的取值集合A;(2)若q:-4<m-a<4是¬p的充分不必要条件,求实数a的取值范围.19.(12分)(2020内蒙古包头高一下期末)已知x>y>0,z>0,求证:(1)zx <zy ;(2)(x+y)(x+z)(y+z)>8xyz.20.(12分)(2020山东青岛高一上期中)(1)若关于x的不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},求a,b的值;(2)解关于x的不等式ax2-3x+2>5-ax(a∈R).21.(12分)(2021北京丰台高三上期中)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地x2+40x+3 200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.表示为y=12(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种:①每日进行定额财政补贴,金额为2 300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么?22.(12分)(2021山东潍坊安丘实验中学、青云学府高一上联考)已知关于x的不等式(k2-2k-3)x2+(k+1)x+1>0(k∈R)的解集为M.(1)若M=R,求k的取值范围;(2)若存在两个不相等的负实数a、b,使得M={x|x<a或x>b},求实数k的取值范围;(3)是否存在实数k,满足“对于任意n∈N*,都有n∈M,对于任意的负整数m,都有m∉M”?若存在,求出k的值;若不存在,说明理由.答案全解全析1.A 由题意,集合A ={-1,0,1},B ={x ∈N|x 2=1}={1},所以A ∩B ={1}. 故选A .2.B ∵q :∀x ∈R,x 2-ax +a >0, ∴Δ=(-a )2-4a <0,解得0<a <4. 设A ={a |a ≥0},B ={a |0<a <4}, ∵B ⫋A ,∴p 是q 的必要不充分条件. 故选B .3.A 对于选项A,由题中数轴可得b <a <0,不等号两边同乘1ab ,可得1b >1a ,A 正确; 对于选项B,∵b <a <0,∴a 2<b 2,B 错误; 对于选项C,∵b <a ,∴b -a <0,C 错误;对于选项D,∵b <0,a <0,∴|b |a =-ab ,|a |b =-ab ,即|b |a =|a |b ,D 错误. 故选A .4.A 易得A ={x |x >2或x <-4},因为B ={x |x >a },所以若B ⊆A ,则a ≥2. 故选A .5.D ∵命题“∃x ∈R,使2x 2+(a -1)x +12≤0”是假命题,∴2x 2+(a -1)x +12>0对x ∈R 恒成立,即方程2x 2+(a -1)x +12=0无实根, ∴Δ=(a -1)2-4×2×12<0,解得-1<a <3,故实数a 的取值范围是-1<a <3. 故选D .6.D 2a +b =(2a +b)(2a +1b )=5+2ab +2ab ≥5+2√2ab ·2ab =9,当且仅当{ab =1,2a +1b =1,即{a =13,b =3时取等号, ∴2a+b 的最小值为9.故选D .7.A 若①是假命题,则②③④是真命题,则关于x 的方程x 2+ax +b =0的一根为3,由于两根之和为2,则该方程的另一根为-1,两根异号,符合题意;若②是假命题,则①③④是真命题,则x =1是方程x 2+ax +b =0的一个根,由于两根之和为2,则另一个根也为1,两根同号,不符合题意;若③是假命题,则①②④是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根同号,不符合题意;若④是假命题,则①②③是真命题,则关于x 的方程x 2+ax +b =0的两根为1和3,两根之和为4,不符合题意.综上所述,命题①为假命题. 故选A .8.D 由不等式a (x +1)(x -3)+1>0(a ≠0)的解集是{x |x 1<x <x 2}(x 1<x 2), 可知a <0,且a (x +1)(x -3)+1=0(a ≠0)的两根为x 1、x 2,不妨设y =a (x +1)(x -3)(a ≠0),则y =a (x +1)(x -3)(a ≠0)的图象与直线y =-1的交点的横坐标为x 1、x 2,由图易得x 1<-1,x 2>3,因此D 中结论一定错误. 故选D .9.ABC 易知选项A 正确;对于选项B,x 2-4x +5=(x -2)2+1>0的解集为R,故正确; 对于选项C,解不等式(x -1)(x +2)>0,得x <-2或x >1, 设A ={x |x >1},B ={x |x <-2或x >1},则A ⫋B ,∴“x >1”是“(x -1)(x +2)>0”的充分不必要条件,故正确; 对于选项D,√x 2=|x |,若x <0,则√x 2≠x ,故错误. 故选ABC .10.BD ∵a 3+b 3-a 2b -ab 2=a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ),(a -b )2≥0,a +b 的符号不定,∴a 3+b 3与a 2b +ab 2的大小关系不确定,A 错误; ∵x 2-2x +3=(x -1)2+2≥2>0, ∴x 2+3>2x ,B 正确;y =x 2+2x 2-1=x 2-1+2x 2-1+1,当x 2-1<0时,y <0,C 错误;a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0,故a 2+b 2≥2(a -b -1),D 正确. 故选BD .11.CD ∵M ={x |y =√x -1}={x |x ≥1},N ={y |y =x 2+2}={y |y ≥2}, ∴M ∩N ={x |x ≥2},M ∪N ={x |x ≥1},故A,B 均不正确; 易得∁U M ={x |0<x <1},∁U N ={y |0<y <2},∴(∁U M )∪(∁U N )={x |0<x <2},(∁U M )∩(∁U N )={x |0<x <1},故C,D 均正确. 故选CD .12.ABC 对于选项A,由基本不等式可得√ab ≤a+b 2=2,当且仅当a =b =2时,等号成立,A 正确;对于选项B,2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=16,∴a 2+b 2≥8,当且仅当a =b =2时,等号成立,B 正确; 对于选项C,1a +1b=a+b 4(1a+1b)=14(b a+a b+2)≥14(2√b a·ab+2)=1,当且仅当a =b =2时,等号成立,C正确;对于选项D,由A 可知√ab ≤2,即0<ab ≤4,∴1ab ≥14,D 错误. 故选ABC .13.答案 -5≤k <3或4<k ≤5解析 由不等式x 2-2x -8>0,解得x <-2或x >4, 解方程2x 2+(2k +7)x +7k =0,得x 1=-72,x 2=-k ,当-k <-72,即k >72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-k <x <-72},若不等式组只有一个整数解,则-5≤-k <-4,解得4<k ≤5;当-k >-72,即k <72时,不等式2x 2+(2k +7)x +7k <0的解集为{x|-72<x <-k}, 若不等式组只有一个整数解,则-3<-k ≤5,解得-5≤k <3. 综上可得,实数k 的取值范围是-5≤k <3或4<k ≤5. 14.答案 {0,12,2}解析 当a =0时,B =⌀,此时B ⫋A ,满足题意;当a >0时,B ={-√2a ,√2a },则集合A ,B 只能构成“蚕食”, 所以-√2a =-1或√2a =2, 解得a =2或a =12.故a 的取值集合为{0,12,2}.15.答案 0≤a <4解析 当a =0时,不等式ax 2>-ax -1即0>-1,对任意实数x 都成立,符合题意; 当a ≠0时,关于x 的不等式ax 2>-ax -1,即ax 2+ax +1>0对任意实数x 都成立, 等价于{a >0,Δ=a 2-4a <0,解得0<a <4.综上所述,a 的取值范围为0≤a <4. 16.答案 3+2√2;7解析 当a =0时,2x +y =xy ,则2y +1x =1, ∴x +y =(x +y )·(2y+1x)=3+2x y+yx≥3+2√2x y·yx=3+2√2,当且仅当x =1+√2,y =2+√2时等号成立,故此时x +y 的最小值为3+2√2.当a =-2时,2x +y =xy -2,若x =1,则等式不成立,故x ≠1,则y =2(x+1)x -1>0,∴x >1,x +y =x +2(x+1)x -1=x +2+4x -1=x -1+4x -1+3≥2√4x -1·(x -1)+3=4+3=7,当且仅当x =3时取等号,此时x +y 的最小值为7.17.解析 (1)由题意得A ={x |1<x <2},B ={x ||x +1|≤1}={x |-2≤x ≤0}, (3分) ∴A ∪B ={x |-2≤x ≤0或1<x <2}. (5分)(2)选①.∵A ∪B =B ,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选②.∵(∁R B )∩A =⌀,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0, (8分)解得-2≤a ≤-1.(9分)∴实数a 的取值范围为{a |-2≤a ≤-1}. (10分) 选③.∵B ∪(∁R A )=R,∴A ⊆B , (6分)由(1)知B ={x |-2≤x ≤0},∴{a ≥-2,a +1≤0,(8分)解得-2≤a≤-1.(9分)∴实数a的取值范围为{a|-2≤a≤-1}. (10分)18.解析(1)∵命题p:“∃x∈R,使不等式x2-2x-m≤0成立”是假命题, ∴¬p:“∀x∈R,不等式x2-2x-m>0恒成立”是真命题, (1分)∴方程x2-2x-m=0无实根, (3分)∴Δ=4+4m<0,解得m<-1, (5分)即实数m的取值集合A={m|m<-1}.(6分)(2)∵-4<m-a<4,即a-4<m<a+4,∴q:a-4<m<a+4, (8分)由(1)可知¬p:m<-1,若q:a-4<m<a+4是¬p的充分不必要条件,则4+a≤-1,解得a≤-5.(11分)故实数a的取值范围是{a|a≤-5}.(12分)19.证明(1)因为x>y>0,所以xy>0,1xy>0, (2分)于是x·1xy >y·1xy,即1y>1x, (4分)由z>0,得zx <zy.(6分)(2)因为x>0,y>0,z>0,所以x+y≥2√xy,x+z≥2√xz,y+z≥2√yz, (9分) 所以(x+y)(x+z)(y+z)≥2√xy×2√xz×2√yz=8xyz, (10分)当且仅当x=y=z时,等号同时成立, (11分)又x>y,所以(x+y)(x+z)(y+z)>8xyz.(12分)20.解析(1)∵不等式ax2-3x+2>0(a∈R)的解集为{x|x<1或x>b},∴a>0,且1,b是一元二次方程ax2-3x+2=0的两个实数根, (2分)∴{1+b=3a,1×b=2a,a>0,解得{a=1,b=2.(5分)(2)不等式ax2-3x+2>5-ax等价于ax2+(a-3)x-3>0,即(ax-3)(x+1)>0.(6分)当a=0时,原不等式的解集为{x|x<-1}; (7分)当a≠0时,方程(ax-3)(x+1)=0的两根为x1=-1,x2=3a,当a>0时,原不等式的解集为{x|x<-1或x>3a}, (8分)当a<0时,①若3a >-1,即a<-3,则原不等式的解集为{x|-1<x<3a}, (9分)②若3a <-1,即-3<a<0,则原不等式的解集为{x|3a<x<-1}, (10分)③若3a=-1,即a=-3,则原不等式的解集为⌀.(11分)综上所述,当a>0时,原不等式的解集为{x|x<-1或x>3a};当a=0时,原不等式的解集为{x|x<-1};当-3<a<0时,原不等式的解集为{x|3a<x<-1};当a=-3时,原不等式的解集为⌀;当a<-3时,原不等式的解集为{x|-1<x<3a}. (12分)21.解析(1)由题意可知,日加工处理每吨厨余垃圾的平均成本为yx =x2+3200x+40,x∈[70,100].(2分)又x2+3200x+40≥2√x2·3200x+40=2×40+40=120,当且仅当x2=3200x,即x=80时,等号成立, (3分)所以该企业日加工处理量为80吨时,日加工处理每吨厨余垃圾的平均成本最低.(4分) 因为100<120,所以此时该企业处理1吨厨余垃圾处于亏损状态.(5分)(2)若该企业采用第一种补贴方案,设该企业每日获利为y1元,由题可得y 1=100x-(12x2+40x+3200)+2 300=-12x2+60x-900=-12(x-60)2+900.(7分)因为x∈[70,100],所以当x=70时,企业获利最大,最大利润为850元.(8分) 若该企业采用第二种补贴方案,设该企业每日获利为y2元,由题可得y 2=130x-(12x2+40x+3200)=-12x2+90x-3 200=-12(x-90)2+850. (10分)因为x∈[70,100],所以当x=90时, 企业获利最大,最大利润为850元.(11分)答案示例1:因为两种方案所获最大利润相同,所以选择两种方案均可.(12分)答案示例2:因为两种方案所获最大利润相同,但第一种补贴方案只需要企业日加工处理量为70吨即可获得最大利润,所以选择第一种补贴方案.(12分)答案示例3:因为两种方案所获最大利润相同,但第二种补贴方案能够为社会做出更大的贡献,所以选择第二种补贴方案.(12分)22.解析(1)当k2-2k-3=0时,k=-1或k=3,若k=-1,则原不等式化为1>0,恒成立,满足题意,若k=3,则原不等式化为4x+1>0,解得x>-14,不满足题意,舍去.(2分)当k2-2k-3≠0时,则{k 2-2k -3>0,(k +1)2-4(k 2-2k -3)<0, 解得k >133或k <-1.综上可知,k 的取值范围为k ≤-1或k >133. (4分)(2)根据不等式解集的形式可知k 2-2k -3>0,解得k >3或k <-1. ∵不等式解集的两个端点就是对应方程的实数根,∴(k 2-2k -3)x 2+(k +1)x +1=0(k ∈R)有两个不相等的负实数根, (6分) ∴{ (k +1)2-4(k 2-2k -3)>0,-k+1k 2-2k -3<0,1k 2-2k -3>0,解得3<k <133, ∴k 的取值范围为3<k <133. (8分)(3)存在.根据题意可得M ={x |x >t },-1≤t <1, 当k 2-2k -3=0时,解得k =3或k =-1,若k =-1,则原不等式为1>0,恒成立,不满足条件,若k =3,则原不等式的解集是{x|x >-14},满足条件; (10分)当k 2-2k -3>0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件; 当k 2-2k -3<0时,此一元二次不等式的解集形式不是{x |x >t }的形式,不满足条件. 综上,满足条件的k 的值为3. (12分)。

集合不等式函数练习题

集合不等式函数练习题

集合不等式函数练习题1. 已知集合A={x|x^2-4x+3<0},求集合A的解集。

2. 函数f(x)=x^3-3x^2+2x,求函数f(x)的单调区间。

3. 集合B={x|x^2-2x-3≤0},集合C={x|x^2+x-6<0},求集合B∩C。

4. 函数g(x)=2x^2-4x+3,判断函数g(x)在区间(-∞, 2)上的单调性。

5. 集合D={x|x^2-6x+8<0},集合E={x|x^2-x-6>0},求集合D∪E。

6. 函数h(x)=x^3-6x^2+11x-6,求函数h(x)的极值点。

7. 集合F={x|x^2-4x+7>0},集合G={x|x^2+2x-8≤0},求集合F∩G。

8. 函数k(x)=x^4-4x^3+6x^2-4x+1,求函数k(x)的零点。

9. 集合H={x|x^3-x^2-2x+2>0},集合I={x|x^3+x^2-4x-4<0},求集合H∪I。

10. 函数l(x)=x^5-5x^4+10x^3-10x^2+5x-1,求函数l(x)的拐点。

11. 集合J={x|x^2-5x+6<0},求集合J的补集。

12. 函数m(x)=x^3-3x^2+4x-2,求函数m(x)的单调增区间。

13. 集合K={x|x^2+3x-10=0},集合L={x|x^2-x-6=0},求集合K∩L。

14. 函数n(x)=2x^3-6x^2+5x+1,求函数n(x)的极值点。

15. 集合M={x|x^3-2x^2-5x+6>0},集合N={x|x^3+2x^2-x-6<0},求集合M∪N。

16. 函数o(x)=x^4-6x^3+11x^2-6x+2,求函数o(x)的零点。

17. 集合P={x|x^2-7x+10<0},求集合P的解集。

18. 函数q(x)=x^3-2x^2-5x+6,求函数q(x)的单调减区间。

19. 集合R={x|x^2-2x-8>0},集合S={x|x^2+4x+3≤0},求集合R∩S。

专题一集合不等式与函数测试卷(一)

专题一集合不等式与函数测试卷(一)

第一部分 知识版块强化训练专题一 集合、不等式与函数测试卷(一)(满分150分,时间120分钟)一、单项选择题(本大题共20小题,1~12每小题2分,13~20每小题3分,共48分) 1.下面四个式子中,正确的是( )A .3a >2a B.3a >2a C .3+a >3-a D .3+a >2+aD 【解析】 ∵3>2,∴3+a >2+a 成立. 2.如图所示,阴影部分可表示为( )第2题图A .∁UB ∩A B .∁U A ∩BC .∁U A ∩∁U BD .∁U A ∪∁U BB 【解析】 因为阴影部分在A 的外面,所以在∁U A 中,又因为阴影部分在B 中,所以应为∁U A ∩B . 3.已知ab >1,b <0,则有( )A .a >1bB .a <1bC .a >-1bD .b >1aB 【分析】 由于b <0,∴1b <0,ab >1两边同乘以1b 得a <1b .4.下列函数中与函数y =x 表示同一个函数的是( ) A .y =x 2B .y =(x )2C .y =x 2-x x -1D .y =x 3+x x 2+1D 【解析】 y =x 2≥0与函数y =x 的值域不同;y =(x )2≥0(x ≥0)与函数y =x 的值域和定义域均不同;y =x 2-x x -1(x ≠1)与函数y =x 的定义域不同;y =x 3+xx 2+1=x ,x ∈R ,故选D.5.已知a ,b ∈R ,则“ab >0”是“a +b >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分且必要条件 D .即不充分也不必要条件 D 【解析】 ∵ab >0a +b >0,∴a +b >0ab >0. 6.不等式x 2+x +14<0的解集是( )A .RB .∅C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-12,x ∈R B 【解析】 ∵x 2+x +14<0⇔(x +12)2<0⇔x ∈∅.7.已知集合A ={1,4,5},且A ∪B ={1,3,4,5,7},则满足条件的集合B 的个数是( ) A .1个 B .2个 C .4个 D .8个D 【解析】 由题意可知,集合B 中必有元素3,7,可能含有元素1,4,5,所以B 可能为{3,7},{3,7,1},{3,7,4},{3,7,5},{3,7,1,4},{3,7,1,5},{3,7,4,5},{3,7,1,4,5}.8.若a >0,b >0,且a +b =1,则下列四个不等式中不成立的是( ) A .ab ≤14 B.1a +1b ≥4C .a 2+b 2≥12D .a ≥bD 【解析】 ∵a +b =1,∴1=a +b ≥2ab ,ab ≤14,a 2+b 2≥2ab ,即a 2+b 2≥12,所以A ,C 成立,1a +1b =a +b a +a +b b =2+b a +a b ≥4,所以B 成立,D 不成立.9.函数y =f (x )的图像如图所示,则f (x )的表达式是( ) A .f (x )=-||x B .f (x )=1-||x C .f (x )=||x +1 D .f (x )=-x 2+1第9题图B 【解析】 根据图像可得函数分为两个部分x <0或x ≥0.当x <0时,f (x )=1+x ;当x ≥0时,f (x )=1-x ;综上可得f (x )的表达式是f (x )=1-||x .10.下列函数在指定区间上为单调递增函数的是( )A .y =log 15x +1,x ∈(0,+∞) B .y =2x +3,x ∈(-∞,+∞)C .y =-x -2,x ∈(-∞,+∞)D .y =1x,x ∈(-∞,0)B 【解析】 因0<15<1,故y =log 15x +1,在(0,+∞)上为减函数;因一次函数y =2x +3在(-∞,+∞)中,2>0,故y =2x +3在(-∞,+∞)上为增函数;因为-1<0,故y =-x -2,在(-∞,+∞)上为减函数;y =1x 在(-∞,0)上为减函数.11.若函数f (x )=x 2-6x ,则( )A .f (6)+f (8)=f (10)B .f (6)+f (8)=2f (7)C .f (6)+f (8)=f (14)D .f (6)+f (8)=f (-2)D 【解析】 ∵f (6)=0,f (8)=16,f (-2)=16,∴f (6)+f (8)=f (-2). 12.函数f (x )=ax 2+bx +c (a ≠0),满足f (-1)=f (4),则下列命题正确的是( ) A .f (1)=f (2) B .f (1)<f (2)C .f (1)>f (2)D .f (1)与f (2)的大小关系与a 有关A 【解析】 由于f (-1)=f (4),所以函数的对称轴为直线x =32,由于1,2对应的点到直线x =32距离相等,所以f (1)=f (2),故选A.13.若实数x 满足x 2-6x +8≤0,则函数y =log 2x 的值域是( ) A . B .(1,2) C .(-∞,1] D .( )A.⎝⎛⎭⎫-12,+∞B.⎝⎛⎭⎫12,+∞C.()-∞,+∞D.⎣⎡⎭⎫-12,+∞ A 【解析】 x 2-6x +8≤0,∴2≤x ≤4,∴1≤log 2x ≤2.14.若x 的不等式||x -2≥3-a 的解集为R ,则实数a 的取值范围是( ) A.()3,+∞ B.[)3,+∞ C.()-∞,3 D.(]-∞,3 B 【分析】 由题意3-a ≤0,a ≥3.15.已知y =log a (2-ax )在[]0,1上是x 的减函数,则a 的取值范围是( ) A.()0,1 B.()1,2 C.()0,2 D.[)2,+∞B 【解析】 ∵函数y =log a (2-ax )的定义域是⎝⎛⎭⎫-∞,2a ,且a >0,a ≠1,而函数在区间[]0,1上有意义,故[]0,1必在函数定义域内,故有2a >1,即0<a <2,可排除D ,又当0<a <1时,y =log a u 单调递减,u=2-ax 单调递减,即复合函数y =log a (2-ax )为增函数,此时与已知不符,排除A 和C ,故选B.16.已知实数x ,y ,z 满足||x -3+y +1+()z -22=0,则代数式log z (x -y )=( ) A .2 B .-2 C .1 D .-1A 【解析】 由题意得⎩⎪⎨⎪⎧x -3=0y +1=0z -2=0,即⎩⎪⎨⎪⎧x =3y =-1z =2,则log z (x -y )=log 24=2.17.如果log 0.6x <log 0.6y <0,那么( )A .x <y <0B .0<x <yC .x >y >1D .x <y <1C 【解析】 ∵函数y =log 0.6x 在(0,+∞)上为减函数,而且log 0.6x <log 0.6y <0=log 0.61,∴x >y >1. 18.某公司计划每年产品销售量增加a %,若5年后的销售量为m ,则现在的销售量是( )A.m()1+a %5B.m()a %5C .m ()1+a %5D .m ()1-a %5A 【解析】 设现销售量为x ,则x ·(1+a %)5=m ,所以x =m1+a %5.19.函数f (x )=a x (a >0且a ≠1)对于任意的实数x ,y 都有( ) A .f (xy )=f (x )f (y ) B .f (xy )=f (x )+f (y ) C .f (x +y )=f (x )f (y ) D .f (x +y )=f (x )+f (y ) C 【解析】 f (x )f (y )=a x a y =a x +y =f (x +y ),故选C.20.设a =20.1,b =ln 52,c =log 3910,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .b >c >aA 【解析】 ∵a =20.1∈(1,2);b =ln 52∈(0,1);c =log 3910∈(-∞,0),∴a >b >c .故选A.二、 填空题(本大题共7小题,每小题4分,共28分)21.设集合A ={}0,2,4,B ={}x |||x ≤2,则A ∪B =________,A ∩B =________. 【解析】 ∵B ={x ||x |≤2}={x |-2≤x ≤2},∴A ∪B ={0,2,4}∪{x |-2≤x ≤2}= {x |-2≤x ≤2或x =4}.A ∩B ={0,2,4}∩ {x |-2≤x ≤2}={0,2}.22.已知f (x )=⎩⎪⎨⎪⎧lg x -4,x >02x +1,x ≤0,则f [f (100)]=__________.【解析】 ∵100>0,∴f (100)=lg100-4=-2,又∵-2<0,∴f [f (100)]=f (-2)=2-2+1=54.23.若方程x 2+bx +c =0有两个实数根1和2,则不等式x 2+bx +c <0的解集是__________. 【解析】 因为二次项的系数为1>0,此时不等式x 2+bx +c <0的解集介于两根之间,故解集为(1,2).24.设集合M ={}(x ,y )|4x +y =6,N ={}(x ,y )|x =2,则M ∩N =__________.【解析】 由⎩⎪⎨⎪⎧4x +y =6x =2⇒⎩⎪⎨⎪⎧x =2y =-2,∴M ∩N ={}(2,-2).25.函数f (x )=x 2-2x -15+1x -5的定义域为__________.【解析】 要使f (x )有意义:∵⎩⎪⎨⎪⎧x 2-2x -15≥0x -5≠0,∴⎩⎪⎨⎪⎧x ≥5或x ≤-3x ≠5,∴x >5或x ≤-3. 26.已知a >0,则a +1+14a的最小值是__________.【解析】 ∵a >0,∴a +14a2≥a ·14a =12,∴a +14a ≥1,∴a +14a +1≥2,当且仅当a =14a ,即a =12时,原式有最小值2.27.设函数f (x )=log a x (a >0,a ≠1)的图像过点(8,3),则f (12)=________.【解析】 ∵log a 8=3,∴a =2,∴f (12)=log 212=-1.三、解答题(本大题共9小题,共74分) 28.(6分)解不等式:||x -5+||x +3≥10.【解】 当x ≤-3时,原不等式可化为5-x -x -3≥10,即x ≤-4;当-3<x <5时,不等式可化为5-x +x +3≥10,即8≥10,故x ∈∅;当x ≥5时,不等式可化为x -5+x +3≥10,即x ≥6.综上原不等式的解集为(]-∞,-4∪[)6,+∞.29.(7分)已知关于x 的不等式组⎩⎪⎨⎪⎧x 2-x -2<02x +k >1,其整数解的集合为{1},求实数k 的取值范围.【解】 由⎩⎪⎨⎪⎧x 2-x -2<02x +k >1⇒⎩⎪⎨⎪⎧-1<x <2x >1-k2的整数解集为{1},0≤1-k2<1,∴0≤1-k <2,∴-1≤-k <1,∴-1≤k <1.第29题图30.(8分)计算:log 24+log 927-2log 23-8-13-(lg 2+ln 2)0.【解】 原式=2+lg27lg9-3-2-1-1=2+3lg32lg3-3-2-1-1=2+32-3-12-1=-1.31.(8分)如图,一次函数f (x )的图像与反比例函数g (x )的图像相交于点A (2,3)和点B ,与x 轴相交于点C (8,0).求:(1)f (x )与g (x )的函数解析式; (2)当x 取何值时f (x )>g (x ).第31题图【解】 (1)由题可知设f ()x =kx +b ,过A ,C ,故得f ()x =-12x +4,g ()x =k 1x ,过A ,则g ()x =6x.(2)f ()x =g ()x ,得B ()6,1,由图可知当x <0或2<x <6时,f (x )>g (x ).32.(9分)已知函数f (x )=log 0.2(x 2+2x -3). (1)求f (x )的定义域;(2)若f (x )≥log 0.2(x 2-4),求x 的取值范围.【解】 (1)由对数函数性质有:x 2+2x -3>0,得x <-3或x >1, 所以函数f (x )=log 0.2(x 2+2x -3)的定义域为{x |x <-3或x >1}; (2)由log 0.2(x 2+2x -3)≥log 0.2(x 2-4),又因为0<0.2<1,有⎩⎪⎨⎪⎧x 2+2x -3>0x 2-4>0x 2+2x -3≤x 2-4,解得x <-3,即x 的取值范围是(-∞,-3).33.(9分)设二次函数y =(lg a -1)x 2-10x +c 的顶点在直线x =5上. (1)求实数a 的值;(2)若y 恒大于0,求实数c 的取值范围. 【解】 (1)由题意可得,--102(lg a -1)=5,∴a =100;(2)由(1)知y =x 2-10x +c ,∵y 恒大于0,∴Δ=(-10)2-4c <0,得c >25,即c 的取值范围是(25,+∞).34.(9分)已知函数f (x )=8x 2-(m +1)x +(m -7)的图像与x 轴的正半轴有两个交点,求m 的取值范围. 【解】 ∵f (x )=8x 2-(m +1)x +(m -7)=[]8x -m -7·(x -1),∴x 1=1,x 2=m -78,∴m -78>0,∴m >15.35.(9分)设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )满足下列条件: ①当x ∈R 时,f (x )的最小值为0,且f (x -1)=f (-x -1)成立; ②当x ∈[-2,2]时,f (x )有最大值6.(1)求f (x )的解析式; (2)解不等式f (x )>2(x +1).【解】 (1)∵f (x -1)=f (-x -1),∴二次函数对称轴为x =-1又∵f (x )有最小值0,∴a >0且顶点为(-1,0),由图像得x ∈[]-2,2时,f max =f (2)=6,∴可设f (x )=a (x +1)2,代入(2,6)得a =23,∴f (x )=23(x +1)2=23x 2+43x +23;第35题图(2)f (x )>2(x +1),∴23(x +1)2>2(x +1),∴23(x +1)[](x +1)-3>0,∴(x +1)(x -2)>0,∴x >2或x<-1,∴解集为{x |x >2或x <-1}.36.(9分)如图,甲船沿着箭头方向从A 地开出,同时,乙船沿箭头方向由B 地开到A 地.已知AB =10海里,甲乙两船的速度分别为2海里/分钟和1海里/分钟.(1)写出甲乙两船距离S (海里)与时间t (分钟)的函数关系式; (2)求多少时间后,两船距离最近,最近距离是多少?第36题图【解】 (1)t 分钟后,甲船行驶了2t 海里,乙船离A 地(10-t )海里,根据勾股定理:S =(10-t )2+(2t )2=5t 2-20t +100(0≤t ≤10);(2)∵S =5t 2-20t +100=5t 2-4t +20=5(t -2)2+16,当t =2时,S min =45,∴2分钟后,两船距离最近,最近距离为45海里.。

集合与不等式(教师版)

集合与不等式(教师版)

集合与不等式一、集合部分知识梳理: 二、典型例题:1、(集合的概念)若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________.解析 ∵集合A 的子集只有两个,∴A 中只有一个元素.当a =0时,x =23符合要求.当a ≠0时,Δ=(-3)2-4a ×2=0,∴a =98.故a =0或98.2、(集合间的基本关系)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.思维启迪 对于含有有限个元素的集合的子集,可按含元素的个数依次写出;B ⊆A 不要忽略B =∅的情形.解析 (2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn 图来直观解决这类问题.练习:(易错)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,则由a 的可取值组成的集合为__________.易错分析 从集合的关系看,S ⊆P ,则S =∅或S ≠∅,易遗忘S =∅的情况. 解析 P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解集为x =-1a ,为满足S ⊆P 可使-1a =-3或-1a =2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.答案⎩⎨⎧⎭⎬⎫0,13,-12温馨提醒 (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)在解答本题时,存在两个典型错误.一是忽略对空集的讨论,如a =0时,S =∅;二是易忽略对字母的讨论.如-1a 可以为-3或2.因此,在解答此类问题时,一定要注意分类讨论,避免漏解.三、不等式部分知识梳理 四、典型例题:1、设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c )>log a (b -c ).其中所有正确结论的序号是( )A.①B.①②C.②③D.①②③(1)∵a >b >1,∴1a <1b.又c <0,∴c a >c b,故结论①正确;函数y =x c (c <0)为减函数,又a >b ,∴a c <b c ,故结论②正确;根据对数函数的单调性,log b (a -c )>log b (b -c )>log a (b -c ),故③正确. ∴正确结论的序号是①②③.2、(不等式与函数的综合应用) (2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x <-1或x >12,则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}3、(2014攀枝花模拟)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( ) A .{x |x >2或x <-2} B .{x |-2<x <2} C .{x |x <0或x >4}D .{x |0<x <4}3、(两类恒成立问题)设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 思维启迪 (1)分m =0和m ≠0讨论,m ≠0可结合图象看Δ的条件; (2)可分离参数m ,利用函数最值求m 的范围. 解 (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0; 若m ≠0,则⎩⎨⎧m <0,Δ=m 2+4m <0⇒-4<m <0.所以-4<m ≤0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}.方法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以,m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |m <67.思维升华 (1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.练习:已知函数f (x )=x 2+2x +ax ,若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解 因为x ∈[1,+∞)时,f (x )=x 2+2x +ax >0恒成立,即x 2+2x +a >0恒成立.即当x ≥1时,a >-(x 2+2x )=g (x )恒成立.而g (x )=-(x 2+2x )=-(x +1)2+1在[1,+∞)上单调递减, 所以g (x )max =g (1)=-3,故a >-3. 所以,实数a 的取值范围是{a |a >-3}.4、(线性规划含参问题)若不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34思维启迪 画出平面区域,显然点⎝ ⎛⎭⎪⎫0,43在已知的平面区域内,直线系过定点⎝⎛⎭⎪⎫0,43,结合图形寻找直线平分平面区域面积的条件即可.解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.思维升华 二元一次不等式(组)表示平面区域的判断方法:线定界,点定域. 注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.练习:(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎨⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14B.12C.1D.2作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值, 由⎩⎨⎧x =1,y =a x -3 ,得⎩⎨⎧x =1,y =-2a ,∴z min =2-2a =1, 解得a =12,故选B.5、(易错:含绝对值的约束条件)已知x ,y 满足约束条件|x |+2|y |≤2,且z =y -mx (m >12)的最小值等于-2,则实数m 的值等于________.易错分析 本题容易出现的错误主要有两个方面:没有将绝对值不等式转化为不等式组,画不出正确的可行域; 解析 原不等式等价于以下四个不等式组:⎩⎨⎧ x ≥0,y ≥0,x +2y ≤2,⎩⎨⎧ x ≥0,y ≤0,x -2y ≤2,⎩⎨⎧x ≤0,y ≥0,-x +2y ≤2,⎩⎨⎧x ≤0,y ≤0,-x -2y ≤2,因此可画出可行域(如图): 由z =y -mx 得y =mx +z .当m >12时,由图形可知,目标函数在点A (2,0)处取得最小值,因此-2=0-2m ,解得m =1.温馨提醒 (1)含绝对值不等式表示区域的画法含有绝对值的不等式所表示的平面区域,应该根据变量的取值情况,将不等式中的绝对值符号去掉,化为几个不等式组,把每一个不等式表示的平面区域画出后合并起来就是相应的含绝对值不等式所表示的平面区域. 6、(利用基本不等式求最值---对1的代换)(1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________. 思维启迪 利用基本不等式求最值可以先对式子进行必要的变换.如第(1)问把1x +1y中的“1”代换为“2x +y ”,展开后利用基本不等式;第(2)问把函数式中分子分母同除“x ”,再利用基本不等式. 答案 (1)3+2 2 (2)1解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y=3+y x +2x y ≥3+2 2.当且仅当y x =2xy时,取等号. (2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1, 当且仅当x =1x,即x =1时取等号.思维升华 (1)利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.(2)在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.7、(不等式与函数的综合问题)若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的最小值是 ( )A.0B.-2C.-52D.-3解析 方法一 设f (x )=x 2+ax +1, 则对称轴为x =-a2.当-a 2≥12,即a ≤-1时,f (x )在(0,12)上是减函数,应有f (12)≥0⇒a ≥-52, ∴-52≤a ≤-1.当-a2≤0,即a ≥0时,f (x )在(0,12)上是增函数,应有f (0)=1>0恒成立,故a ≥0.当0<-a 2<12,即-1<a <0时,应有f (-a 2)=a 24-a 22+1=1-a 24≥0恒成立,故-1<a <0.综上,a ≥-52,故选C.方法二 当x ∈(0,12)时,不等式x 2+ax +1≥0恒成立转化为a ≥-(x +1x )恒成立.又φ(x )=x +1x 在(0,12)上是减函数,∴φ(x )min =φ(12)=52,∴[-(x +1x )]max =-52,∴a ≥-52.。

高一数学集合不等式练习

高一数学集合不等式练习

高一数学集合不等式练习 1、 判断下列四个集合是否为相等集合。

}1{},1|),{(},1|{},1|{2222+==+==+==+==x y D x y y x C x y y B x y x A2、满足条件M ∪{1}={1,2,3}的集合M 的个数是_________3、已知集合A={x||x|≤2,x ∈R},B={x|x ≥a},且A B ,则实数a 的取值X 围是_____.4、若全集I=R ,f (x )、g (x )均为x 的二次函数,P={x|f (x )<0,Q={x|g(x )≥0},则不等式组⎩⎨⎧<<0)(0)(x g x f 的解集可用P 、Q 表示为_____. 5、设I 是全集,非空集合P 、Q 满足P Q I.若含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是(只要写出一个表达式).6、设集合M={x|x=412+k ,k ∈Z},N={x|x=214+k ,k ∈Z},则( ) A.M=N B.M N C.M N D.M ∩N=∅7、若a, b 是非零实数,m =||||||ab ab b b a a +-,则m 的值的集合是. 8、设P 、Q 为两个非空实数集合,定义集合},,|{Q b P a b a Q P ∈∈+=+若}5,2,0{=P ,}6,2,1{=Q ,则P+Q 中元素的个数是___________.9、 设A 、B 是两个非空集合,我们规定:A x x B A ∈=-|{且}B x ∉,根据上述规定,M-(M-N)等于( D )(A)M (B)N (C)M⋃N (D)M⋂N10、若集合M 满足{0,1}⊆M {―2,―1,0,1,2},则M 的个数是( )(A )2个 (B )4个 (C )6个 (D )7个 11设实数集R为全集,集合}0)(|{)(},0)(|{},0)(|{======x h x x H x g x Q x f x P ,则方程0)()()(22=+x h x g x f 的解集是( ) (A )P ⋂Q ⋂H (B )P ⋂Q (C )P ⋂Q ⋂ (D )P ⋂Q ⋃H12、已知集合{}R x x x M ∈≤-=,2|1||,⎭⎬⎫⎩⎨⎧∈≥+=Z x x x P ,115|,则P M 等于( ) A .{}Z x x x ∈≤<,30| B .{}Z x x x ∈≤≤,30|C .{}Z x x x ∈≤≤-,01|D .{}Z x x x ∈<≤-,01|13、若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的( )(A)充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既非充分又非必要条件14、设集合A={x||x|<4},B={x|x 2-4x+3>0}, 则集合{x|x ∈A 且}B A x ∉=15、非空集合M 满足下列条件:(1)M ⊆{1,2,3,4,5};(2)若元素∈a M ,则∈-a 6M 。

新教材2023年高考数学总复习考案3阶段测试一集合常用逻辑不等式及函数的概念与性质课件

新教材2023年高考数学总复习考案3阶段测试一集合常用逻辑不等式及函数的概念与性质课件

11.给出下列结论,其中正确的结论是( BC )
A.函数 y=12-x2+1的最大值为12 B.若定义在R上的奇函数f(x)在(-∞,0)内有100个零点,则函数 f(x)有201个零点 C.在同一平面直角坐标系中,函数y=2x与y=log2x的图象关于直线 y=x对称 D.已知函数y=loga(2-ax)(a>0且a≠1)在(0,1)上是减函数,则实 数a的取值范围是(1,2)
二、多选题(本题共4个小题,每个小题5分,共20分.在每个小题给 出的四个选项中有多项是正确的,全部选对得5分,部分选对得2分,错 选得0分)
9.(2022·湖北华中师大一附中检测)给出以下说法,其中正确的是
( ACD ) A.“x>1”是“x>2”的必要不充分条件 B.“a>b”是“a2>b2”的充分不必要条件 C.命题“存在n∈N*,n2<2n”的否定为假命题 D.满足命题“∃x∈[0,1],x+a≤0”是假命题的a的取值范围为
[解析] 对 A,y=12-x2+1=2x2-1,故当 x=0 时,x2-1 取得最小值 -1,y=12-x2+1=2x2-1 取得最小值12,故 A 错误;对 B,若定义在 R 上的 奇函数 f(x)在(-∞,0)内有 100 个零点,则函数 f(x)在(0,+∞)内有 100 个零点,又 f(0)=0,故 f(x)有 201 个零点,故 B 正确;对 C,因为函数 y =2x 与 y=log2x 互为反函数,故图象关于直线 y=x 对称,故 C 正确;对 D,函数 y=loga(2-ax)(a>0 且 a≠1)在(0,1)上是减函数,则因为 y=2 -ax 为减函数,故 a>1.又由定义域,y=2-ax 在(0,1)上恒为正,故 2 -a≥0,解得 a≤2,故数 a 的取值范围是(1,2],故 D 错误.故选 BC.

集合、不等式、函数测试题及答案

集合、不等式、函数测试题及答案

集合、不等式、函数测试题及答案时间:120分钟;满分:150分一、选择题1. 设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]2. 设x ∈R ,则“x >12”是“0122>-+x x ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3. 已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0, 则p ⌝是 ( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 4. 函数||log 2x y =的图象大致是 ( )5. 下列函数中定义域不是R 的是 ( ) A .b ax y += B. )(2为常数k x k y +=C. 12-+=x x yD. 112++=x x y 6. 若不等式022<-+bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-412x x ,则=ab ( )A .28- B. 26- C. 28 D. 267. 已知幂函数αx k x f ⋅=)(的图象过点)22,21(,则α+k 等于( ) A .21 B.1 C.23 D.28. 定义在R 上的奇函数)(x f 对任意R x ∈都有)4()(+=x f x f ,当()0,2-∈x 时,x x f 2)(=,则)2015()2016(f f -的值为 ( ) A .21- B. 21 C.2 D. 2-9.已知函数⎩⎨⎧≥+-<=)0(,4)3()0(,)(x a x a x a x f x .满足对任意的21x x ≠都有0)()(2121<--x x x f x f 成立,则a 的取值范围是 ( )A. ]41,0(B. )1,0(C. )1,41[ D. )3,0(10. 设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 211. 已知函数x x x h x x g x x x f x ln )(2)(1)(+=+=--=,,的零点分别为321,,x x x ,则 ( )A .321x x x << B. 312x x x << C. 213x x x << D. 132x x x <<12. 定义在()∞+,1上的函数)(x f 满足下列两个条件:①对任意的),1(+∞∈x 恒有)(2)2(x f x f =成立;②当(]2,1∈x 时,x x f -=2)(.记函数)1()()(--=x k x f x g ,若函数)(x g 恰有两个零点,则实数k 的取值范围是 ( )A .[)2,1 B. ⎥⎦⎤⎢⎣⎡2,34C. ⎪⎭⎫ ⎝⎛2,34D. ⎪⎭⎫⎢⎣⎡2,34二、填空题13.下列说法:①“32>∈∃x R x ,使”的否定是“32≤∈∀x R x ,使”;②函数)32sin()(π+=x x f 的最小正周期是π;③“在△ABC 中,若B A B A >>,则sin sin ”的逆命题是真命题; ④“1-=m ”是“直线垂直和直线02301)12(=++=+-+my x y m mx ”的充要条件.其中正确的说法是 .(只填序号) 14. 已知偶函数)(x f 在[)+∞,0单调递减,0)2(=f .若0)1(>-x f ,则x 的取值范围是 .15. 若1052==ba,则ba 11+的值为 .16. 函数)1,0(1≠>=-a a a y x 的图象恒过定点A ,若点A 在直线)0(01>=-+mn ny mx 上,则nm11+的最小值为 .三、解答题17.已知c >0,设命题p :函数xc y =为减函数.命题q :当x ∈[12,2]时,函数cx x x f 11)(>+=恒成立.如果p 或q 为真命题,p 且q 为假命题,求c 的取值范围.18.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当0>x 时,0)(<x f .又2)1(-=f . (1)判断函数)(x f 的奇偶性;(2)求函数)(x f 在区间[]33-,上的最大值;19.已知不等式0222<-+-m x mx .(1)若对于所有的实数x 不等式恒成立,求m 的取值范围; (2)设不等式对于满足2≤m 的一切m 的值都成立,求x 的取值范围.20.根据函数12-=x y 的图象判断:当实数m 为何值时,方程mx=-12无解?有一解?有两解?21.已知函数x xf x f 2log )1(1)(⋅+=. (1)求函数)(x f 的解析式;(2)求)2(f 的值; (3)解方程)2()(f x f =.22.设()(44)(22)2(x x x xf x a a a --=+-+++为常数)(1)当2a =- 时,求()f x 的最小值; (2)求所有使()f x 的值域为[1,)-+∞的a 的值.一、D. A. C.C.B C.C.A.A.B D.D二、13. ①②③ 14. (-1,3) 15. 1 16. 4 三、解答题17. 解:由命题p 知:0<c <1.由命题q 知:2≤x +1x ≤52,要使此式恒成立,则2>1c ,即c >12. 又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假, 当p 为真,q 为假时,c 的取值范围为0<c ≤12. 当p 为假,q 为真时,c ≥1.综上,c 的取值范围为{c |0<c ≤12或c ≥1}.18.解: (1)令0==y x ,则)0(2)0(f f =,0)0(=f .令x y -=,则0)()()0(=-+=x f x f f ,)()(x f x f -=-∴,)(x f ∴为奇函数.(2)R x x ∈<∀21,则012>-x x ,)()(,0)()()(121212x f x f x f x f x x f <∴<-=-, ∴函数)(x f 为减函数,6)1(3)1(3)1()2()3(max =-=-=-+-=-=f f f f f f .19.解:(1)当0=m 时,022<--x ,显然对任意x 不能恒成立;当0≠m 时,⎩⎨⎧<--=∆<,0)2(440m m m 解得21-<m ,综上可知m 的范围为)21,(--∞.(2)设22)1()(2--+=x m x m g ,由012>+x 知)(m g 在[]2,2-上为增函数, 由题意知0)2(<g ,即10,0222<<<-x x x 得,即x 的取值范围为)1,0(. 20. 解: 函数12-=x y 的图象可由指数函数x y 2=的图象先向下平移一个单位,然后再作x 轴下方的部分关于x 轴对称图形,如下图所示,函数m y =的图象是与x 轴平行的直线, 观察两图象的关系可知:当0<m 时,两函数图象没有公共点,所以方程m x =-|12|无解;当0=m 或1≥m 时,两函数图象只有一个公共点,所以方程m x =-|12|有一解; 当10<<m 时,两函数图象有两个公共点,所以方程m x =-|12|有两解.21. 解:(1)由于x xf x f 2log )1(1)(•+=,上式中,以x 1代x 可得:x x f x f 1log )(1)1(2•+=,则有x x f x f 2log )(1)1(•-=, 把x x f x f 2log )(1)1(•-=代入x xf x f 2log )1(1)(•+=可得:x x x f x f 22log ]log )(1[1)(••-+=,解得xx x f 222log 1log 1)(++=;(2)由(1)得x x x f 222log 1log 1)(++=,则12log 12log 1)2(222=++=f ;(3)由(1)得xx x f 222log 1log 1)(++=,则(2)得1)2(=f ,则有1)2(log 1log 1)(222==++=f xx x f ,即x x 222log 1log 1+=+,解得0log 2=x 或1log 2=x ,所以原方程的解为:1=x 或2=x 。

集合不等式函数练习题

集合不等式函数练习题

集合不等式函数练习题一、选择题1. 集合A={x|x>1},B={x|x<3},则A∩B表示的集合是:A. {x|x≤1}B. {x|1<x<3}C. {x|x≥3}D. {x|x<1或x>3}2. 若函数f(x)=x^2-4x+3,求f(x)<0的解集:A. {x|1<x<3}B. {x|x<1或x>3}C. {x|0<x<4}D. {x|-1<x<1}3. 对于不等式x^2-5x+6≤0,其解集为:A. {x|2≤x≤3}B. {x|1<x<6}C. {x|3≤x≤6}D. {x|-1≤x≤1}4. 集合C={x|-1<x<2},D={x|x>-2},则C∪D表示的集合是:A. {x|x>-2}B. {x|-1<x<2}C. {x|x<-2或x>-1}D. {x|x≤-2或x≥-1}5. 若函数g(x)=2-x^2,求g(x)>0的解集:A. {x|-√2<x<√2}B. {x|x<-2或x>2}C. {x|-2<x<2}D. {x|x>-√2或x<√2}二、填空题6. 若A={x|-3<x<5},B={x|x>a},且A⊆B,则a的取值范围是______。

7. 函数h(x)=-x^2+4x+1的图像与x轴的交点坐标是______。

8. 给定不等式3x-2>5x+7,解得x的取值范围为______。

9. 集合E={x|x^2-4x+3>0},E的补集是______。

10. 若不等式|x-2|<1的解集表示为区间形式,则该区间是______。

三、解答题11. 已知集合F={x|-2≤x≤1},G={x|-1<x<4},求F∩G和F∪G。

12. 求函数y=x^3-3x^2+2x+1在区间[-1,2]上的最大值和最小值。

中职高一(集合、不等式、函数、三角函数)月考

中职高一(集合、不等式、函数、三角函数)月考

27.(9 分)若角 的终边经过点 P(5a, 12a),a 0 ,求 sin,cos, tan 的值.
试卷第 3 页,共 3 页
参考答案
一、单选题(每小题 3 分,共 45 分)
题号 1
2
3
4
5
6
7
8
9 10
答案 C
C
D
D
B
D
B
A
B
A
题号 11 12 13 14 15
答案 D
C
D
A
D
二、填空题
试卷第 2 页,共 3 页
24.(6 分)已知 cos 3 ,且 为第二象限角.
5
(1)求 tan 的值;
(2)求
sin sin
cos cos
的值.
25.(6 分)已知角 的终边落在射线 y 3x(x 0) 上,求 2sin 3cos 的值.
26.(9 分)某市为鼓励居民节约用电,采用阶梯电价的收费方式,当月用电量 不超过 100 度的部分,按 0.4 元/度收费;超过 100 度的部分,按 0.8 元/度收费. (1)若某户居民用电量为 120 度,则该月电费为多少元? (2)设某户居民用电量为 x 度,该月电费为 y 元? (3)若某户居民某月电费为 60 元,则其用电量为多少度?
7.下列与 7π 的终边相同的角的表达式中,正确的是( )
4
A. 2kπ 315 k Z
B. k 360 45 k Z
C. k 360 7π k Z
4
D. 2kπ 5π k Z
4
8.已知函数 f (x) x2 2x 2, x [2, 2],函数 f (x) 的值域为( )
A. [3, 6]

高考数学函数与不等式好题单选100训练含详解

高考数学函数与不等式好题单选100训练含详解

高考数学函数与不等式好题单选100训练1.已知函数()f x =A ,集合15{|}B x x =<<-,则集合A B 中整数的个数是( ) A .1B .2C .3D .42.设集合{A x y ==,124xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()RAB =( )A .∅B .12x x ⎧⎫≤-⎨⎬⎩⎭C .{}1x x >-D .112x x ⎧⎫-≤≤-⎨⎬⎩⎭3.1≥x 是12x x+≥的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.“13m <<”是“方程2211m 3x y m 表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.函数2()22x xx f x -=+的图象大致是( )A .B .C .D .6.设函数()2,0,0⎧≥=⎨-<⎩x x f x x x ,则()2f f -⎡⎤⎣⎦的值是( ).A .2 B .3 C .4D .57.函数()()01f x x =- ) A .()1,+∞B .()2,-+∞C .()()2,11,-⋃+∞D .R8.已知集合102x M xx -⎧⎫=<⎨⎬+⎩⎭,{}21,N y y x x M ==-∈,则M N =( )A .∅B .()2,3-C .[)1,1-D .()0,19.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,210.已知函数2(1)21f x x x +=++,那么(1)f x -=( ) A .2x B .21x + C .221x x -+D .221x x --11.已知函数()212x f x x +=+,则()3f =( )A .17B .12C .8D .312.已知0a >且1a ≠,函数()()233,1log ,1a a x a x f x x x ⎧--+<=⎨≥⎩,满足12x x ≠时,恒有()()12120f x f x x x ->-成立,那么实数a 的取值范围( )A .()1,2B .51,3⎛⎤ ⎥⎝⎦C .()1,+∞D .5,24⎡⎫⎪⎢⎣⎭13.下列函数中,既是偶函数,又在()0,∞+上单调递增的是( ) A .cos y x = B .211y x =+ C .22x x y -=-D .ln y x =14.若()2f x x x =+,则满足()()1f a f a -≤的a 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,12⎡⎤⎢⎥⎣⎦15.已知()f x 为奇函数,当0x ≥时,()24xf x x m =-+,则当0x <时,()f x =( )A .241x x --+B .241x x ----C .241x x --+-D .241x x --++16.下列函数既是奇函数又是增函数的是( ) A .sin y x =B .2x y =C .2log y x =D .3y x =17.设定义在R 上的奇函数()f x 满足,对任意12,(0,)x x ∈+∞,且12x x ≠都有()()21210f x f x x x -<-,且(3)0f =,则不等式2()3()0f x f x x+-≥的解集为( )A .(,3][3,)-∞-+∞B .[3,0)[3,)-+∞C .(,3](0,3]-∞-D .[3,0)(0,3]-18.已知函数()32x f x x =+,则不等式2332f m m ⎛⎫-< ⎪⎝⎭的解集为( ).A .12,2⎛⎫- ⎪⎝⎭ B .()1,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1,22⎛⎫- ⎪⎝⎭D .()1,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭19.已知定义域为R 的函数()f x 满足()()0f x f x +-=,且(2)()f x f x +=-,若3245f ⎛⎫= ⎪⎝⎭,则20214f ⎛⎫= ⎪⎝⎭( )A .25B .25-C .35D .53-20.已知()f x 是R 上的奇函数,且(2)()f x f x +=,当(0,1)x ∈时,()41=-x f x ,则72f ⎛⎫=⎪⎝⎭( ) A .-1B .0C .1D .221.已知函数())3f x x =-,若()1f a =-,则()f a -=( ) A .-7B .-6C .-5D .-422.已知函数()21x x x f k =-+在[]2,5上具有单调性,则k 的取值范围是( )A .[]2,5B .[]4,10C .(][),410,-∞⋃+∞D .(][),22,-∞-+∞23.已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<24.已知x ,(0,)∈+∞y ,3124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为( )A .2B .98C .32D .9425.下列各式正确的是( )A 2=-B .C 34()x y =+ D .2122n n m m ⎛⎫= ⎪⎝⎭26.已知0m > )A .54mB .52mC .mD .127.已知函数()e 1e 1x x f x -=+,则( )A .函数()f x 是奇函数,在区间()0,∞+上单调递增B .函数()f x 是奇函数,在区间(),0∞-上单调递减C .函数()f x 是偶函数,在区间()0,∞+上单调递减D .函数()f x 非奇非偶,在区间(),0∞-上单调递增 28.log 5(log 3(log 2x ))=0,则12x -等于( )A BC D .2329.函数()22x xy x -=-的图象关于( )对称A .x 轴B .y 轴C .原点D .直线y x =30.设()f x 是定义在R 上的奇函数,且当0x >时,3(2)x f x =-,则(1)f -=( ) A .1B .1-C .14D .114-31.若()f x 为偶函数,()g x 为奇函数,且()()3xf xg x +=,则()f x 的图象大致为( )A .B .C .D .32.设函数()f x =2x f ⎛⎫⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,133.已知函数(2)x y f =的定义城为[]1,1-.则函数2(lo )g y f x =的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .4]34.已知函数()21xf +的定义域为()3,5,则函数()21f x +的定义域为( )A .()1,2B .()9,33C .()4,16D .()3,535.设2log 5a =,0.52b =,4log 10c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .c b a <<C .b a c <<D .c a b <<36.若实数x ,y 满足2021202120222022x y x y ---<-,则( ) A .1x y> B .1x y< C .0x y -<D .0x y ->37.已知()1,2x ∀∈,不等式()2log 21220xx m +++>恒成立,则实数m 的取值范围为( )A .()10,-+∞B .[)10,-+∞C .()3,-+∞D .[)3,∞-+38.当102x <<时,4log xa x <,则a 的取值范围是( )A .(0B .1)C .,1)D .39.心理学家有时使用函数()()1e ktL t A -=-来测定在时间t (单位:min )内能够记的量L ,其中A 表示需要记忆的量,k 表示记忆率.假设一个学生有100个单词要记忆,记忆率0.02k =,则该学生要求记忆50个单词大约需要( )(ln 20.7≈)A .28minB .35minC .42minD .49min40.已知1ea =,ln 77b =,ln 55c =,则a ,b ,c 的大小关系为( )A .b c a <<B .a c b <<C .b a c <<D .c b a <<41.已知实数b 满足23b =,则函数()2xf x x b =+-的零点所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,342.43lg8-+( )A .1B .1-C .12D .12-43.已知实数a ,b ,c 满足1.5 3.1a =,50.1b =,422log 16log e c =,则( ) A .c a b >>B .a c b >>C .b a c >>D .c b a >>44.设()f x 为偶函数,且当0x >时,()1ln f x x =+,则当0x <时,()f x =( ) A .()1ln x ---B .()1ln x -+-C .()l ln x +-D .()1ln x --45.设()f x =12x f ⎛+⎫⎪⎝⎭的定义域为( )A .3,14⎛⎤ ⎥⎝⎦B .[)1,+∞C .1,02⎛⎤- ⎥⎝⎦D .[)0,∞+46.函数()()()21log 21a f x x -=+在区间1,02⎛⎫- ⎪⎝⎭内恒有()0f x >,则a 的取值范围是( )A .1a <<B .1a<1a <<-C .a>2<D.a <<47.函数()lg 1f x ⎛= ⎝的值域为( )A .(),-∞+∞B .()(),00,-∞⋃+∞C .(),0-∞D .()0,∞+48.已知函数()1lg 3xf x x ⎛⎫=- ⎪⎝⎭有两个零点1x 、2x ,则下列关系式正确的是( )A .1201x x <<B .121=x xC .1212x x <<D .122x x ≥49.函数()()213log f x x x =-的单调递减区间为( )A .12⎛⎫-∞ ⎪⎝⎭,B .12⎛⎫+∞ ⎪⎝⎭, C .102⎛⎫ ⎪⎝⎭,D .102⎛⎫- ⎪⎝⎭, 50.若函数()()log 0,1a f x x a a =>≠的反函数的图象过点()1,3,则()2log 8f =( ) A .1-B .1C .2D .351.已知函数f (x )=(3m -2)xm +2(m ∈R )是幂函数,则函数g (x )=log a (x -m )+1(a >0,且a ≠1)的图象所过定点P 的坐标是( ) A .(2,1) B .(0,2) C .(1,2)D .(-1,2)52.定义在R 上的偶函数()f x 满足()()2f x f x =-,当[]0,1x ∈时,()21xf x =-,则函数()()()sin 2πx f g x x =-在区间15,22⎡⎤-⎢⎥⎣⎦上的所有零点的和是( )A .10B .8C .6D .453.已知函数()22,0lg ,0x x x f x x x ⎧+≤⎪=⎨>⎪⎩,则函数()()11g x f x =--的零点个数为( ).A .1B .2C .3D .454.设函数()y f x =在R 上可导,则()()11lim 3x f x f x∆→+∆-=∆( )A .()1f 'B .()113f ' C .()31f 'D .以上都不对55.已知函数()e (1)x f x x f -'=,则曲线()y f x =在点(1,(1))f 处的切线方程为( ) A .2e y x =B .2e 2e y x =-C .2e e y x =+D .2e 3e y x =-56.对于函数()ln f x x x =,以下判断正确的是( ) A .无极大值无极小值 B .在()1,+∞是增函数C .()f x 有两个不同的零点D .其图象在点()1,0处的切线的斜率为057.已知()f x 为偶函数,且当x >0时,()1x f x e x -=+,则曲线()y f x =在()()1,1f --处的切线斜率是( ) A .-2B .-1C .-eD .e58.若曲线1e x y -=与曲线y ==a ( )A B C .2eD .1e59.函数()3321e xf x x =++,其导函数记为()f x ',则()()()()2022202220222022f f f f ''++---的值是( ) A .3B .2C .1D .060.已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( )A .209-B .119-C .79D .16961.已知函数()312f x x x =-,则( )A .函数()f x 在(),0∞-上单调递增B .函数()f x 在(),∞∞-上有两个零点C .函数()f x 有极大值16D .函数()f x 有最小值16-62.已知定义在R 上的函数()f x 满足:()()0xf x f x '+>,且()12f =,则()2e e x xf >的解集为( ) A .()0,+∞B .()ln2,+∞C .()1,+∞D .0,163.已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)64.已知函数()2e 1x f x x a =+-()a R ∈有两个极值点,则实数a 的取值范围为( )A .1,0e ⎛⎫- ⎪⎝⎭B .2,0e ⎛⎫- ⎪⎝⎭C .1,e ⎛⎫-+∞ ⎪⎝⎭D .2,e ⎛⎫-+∞ ⎪⎝⎭65.函数 ()y f x =的导函数()y f x ='的图象如图所示,给出下列命题:∈3-是函数()y f x =的极值点; ∈1-是函数()y f x =的最小值点; ∈()y f x =在区间()3,1-上单调递增; ∈()y f x =在0x =处切线的斜率小于零. 以上正确命题的序号是( ) A .∈∈B .∈∈C .∈∈D .∈∈66.已知函数ln ()xf x x x=-,则( ) A .()f x 的单调递减区间为(0,1) B .()f x 的极小值点为1 C .()f x 的极大值为1-D .()f x 的最小值为1-67.已知函数32()1f x x ax x =-+--在(,)-∞+∞上是单调递减函数,则实数a 的取值范围是( )A .(), -∞⋃+∞B .⎡⎣C .(,)-∞⋃+∞D .(68.函数()cos 2x f x x =-在,2ππ⎡⎤-⎢⎥⎣⎦上的最小值为( )A .2π-B .12π+ C .-1 D .12π-69.已知函数()32132x ax f x ax =+++既有极大值,又有极小值,则实数a 的取值范围是( ) A .()0,4B .[]0,4C .()(),04,-∞⋃+∞D .(][),04,-∞+∞70.已知函数()8sin 26f x x π⎛⎫=- ⎪⎝⎭,(]0,4x π∈,则()f x 所有极值点的和为( )A .223πB .13πC .17πD .503π71.如图是函数()32f x x bx cx d =+++的大致图象,则2212x x +=( )A .23B .43C .83D .12372.已知2x =是2()2ln 3f x x ax x =+-的极值点,则()f x 在1,33⎡⎤⎢⎥⎣⎦上的最大值是( )A .92ln 32-B .52-C .172ln 318--D .2ln 24-73.设a R ∈,若不等式ln ax x >在()1,x ∞∈+上恒成立,则实数a 的取值范围是( ) A .()0,∞+B .1,e ⎛⎫+∞ ⎪⎝⎭C .()1,∞+D .()e,+∞74.某制药公司生产某种胶囊,其中胶囊中间部分为圆柱,且圆柱高为l ,左右两端均为半球形,其半径为r ,若其表面积为S ,则胶囊的体积V 取最大值时r =( )ABCD75.若函数21()2f x x a x =--,当13x ≥时,()0f x ≤恒成立,则a 的取值范围( )A .(],3-∞B .[)3,+∞C .25,3⎛⎤-∞ ⎥⎝⎦D .25,3⎡⎫+∞⎪⎢⎣⎭76.已知函数2()ln 2a f x x x =+,若对任意两个不等的正数1x ,2x ,都有1212()()4f x f x x x -≥-恒成立,则a 的取值范围为( )A .[)4∞+,B .()4.∞+C .(]4∞-,D .()4∞-,77.若函数()1ln f x x a x=+-在区间()1,e 上只有一个零点,则常数a 的取值范围为( ) A .1a ≤B .a e >C .111a e <<+D .11a e<<78.数列{}n a 为等差数列,且2020202204a a x π+=⎰,则()2021201920212023a a a a ++=( ) A .1B .3C .6D .1279.在()()*1nx n N +∈二项展开式中2x 的系数为15,则10n x dx ⎰( )A .17B .7C .15D .10380.已知函数()3f x x =,()g x = )A .23B .3C .32D .51281.下列不等式成立的是( ) A .若a b >,则22ac bc > B .若a b >,则11a b< C .若0a b <<,则22a ab b << D .若a b >,则33a b >82.已知25a b ≤+≤,21a b -≤-≤,则3a b -的取值范围是( ) A .[]1,4- B .[]2,7- C .[]7,2-D .[]2,783.若παβπ-<<<,则αβ-的取值范围是( ) A .22παβπ-<-< B .02αβπ<-<C .20παβ-<-<D .{}084.某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为P =160-2x ,生产x 件所需成本为C (元),其中C =500+30x ,若要求每天获利不少于1300元,则日销量x 的取值范围是( ) A .20≤x ≤30,x ∈N * B .20≤x ≤45,x ∈N * C .15≤x ≤30,x ∈N *D .15≤x ≤45,x ∈N *85.当02x ≤≤时,若220x x a --≥恒成立,则实数a 的取值范围是( )A .(],1-∞-B .(],0-∞C .(),1-∞-D .(),0-∞86.若关于x 的不等式2830x x a --+≤在15x ≤≤内有解,则实数a 的取值范围是( ) A .10a ≤B .19a ≥C .10a ≥D .19a ≤87.已知命题p :[]1,1x ∃∈-,2330x x a --->;q :x R ∀∈,230x x a -+≠,若p 为假命题,q 为假命题,则实数a 的取值范围为( ) A .3,52⎡⎤⎢⎥⎣⎦B .[]0,2-C .[]1,2D .91,4⎡⎤⎢⎥⎣⎦88.已知全集U =R ,2511x A x x ⎧⎫-=≤⎨⎬-⎩⎭,则UA( )A .(]1,2B .(](),12,-∞+∞C .[)1,2D .()[),12,-∞+∞89.22132x x x +≥-+的解集是( )A .{}12x x <≤B .{10x x -≤<或}23x <≤C .{}04x x ≤≤D .{01x x ≤<或}24x <≤90.若变量,x y 满足约束条件50,20,4,x y x y y +-≥⎧⎪-+≤⎨⎪≤⎩则32z x y =-的最小值为( )A .5-B .72-C .52-D .2-91.设0,0m n >>,且21m n +=,则11m n+的最小值为( ) A .4B.3C.3+D .692.已知函数()2sin 4sin 9sin 2x x f x x -+=-,则函数()f x ( )A.有最小值B.有最大值-C .有最大值92-D .没有最值93.已知a ,b 为正实数,且228a b ab ++=,则2+a b 的最小值为( ) A .4B .92C .5D .11294.若2x >,则2242x x y x -+=-的最小值为( )A .4B .5C .6D .895.设0,0m n >>,且2520m n +=,则mn 的最大值为( )A B .C .10D .2096.已知0t >,函数y = ) A .1B .2C .3D .497.一元二次方程()25400ax x a ++=≠有一个正根和一个负根的一个充分不必要条件是( ) A .0a <B .0a >C .2a <-D .1a >98.不等式20ax x c -+>的解集为{21}x x -<<∣,函数2y ax x c =-+的图象大致为( )A .B .C .D .99.设实数m ,n 分别满足2192010m m ++=,220190n n ++=且1m n ⋅≠,则232mn m n++的值为( ) A .3719B .3719-C .319D .319-100.已知函数()ln x f x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦仅有一个实数解,则实数a 的取值范围是( ) A .()2,1e e --B .(]1,1e -C .()1,1e -D .()1,2e e -参考答案:1.C 【解析】 【分析】根据根式的性质及解一元二次不等式求定义域A ,再应用集合交运算求A B ,即可知整数的个数. 【详解】由题设,230x x -≥,可得定义域{|0A x x =≤或3}x ≥,所以{|10A B x x =-<≤或35}x ≤<,故其中整数元素有{0,3,4}共3个. 故选:C 2.D 【解析】 【分析】 求出集合A 、B ,B R,再由交集的运算可得答案.【详解】设集合{{}{}3101===+≥=≥-A x y x x x x ,{}21122242-⎧⎫⎧⎫⎪⎪⎛⎫=<=<=>-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎪⎪⎩⎭xx B x x x x ,则1|2⎧⎫=≤-⎨⎬⎩⎭R B x x ,所以()1|12⎧⎫=-≤≤-⎨⎬⎩⎭RAB x x .故选:D. 3.A 【解析】 【分析】 由12x x+≥得0x >,进而根据充分不必要条件求解即可. 【详解】解:12x x +≥等价于2210x x x-+≥,即()()222110x x x x x -+=-≥,所以0x >,即不等式12x x+≥的解集为0x >, 所以1≥x 是0x >充分不必要条件. 所以1≥x 是12x x+≥的充分不必要条件 故选:A 4.B 【解析】 【分析】根据方程2211m 3x y m 表示椭圆13m <<,且m ≠2,再判断必要不充分条件即可. 【详解】解:方程22113x ym m +=--表示椭圆满足103013m m m m ->⎧⎪-<⎨⎪-≠-+⎩,解得13m <<,且m ≠2所以“13m <<”是“方程2211m 3x y m 表示椭圆”的必要不充分条件. 故选:B 5.D 【解析】 【分析】根据函数的奇偶性排除AC 选项,特殊值检验排除排除B 选项,进而可求出结果. 【详解】由于函数2()22x x x f x -=+的定义域为R ,且()()22()2222x x x x x x f x f x ----===++, 所以()f x 为偶函数,故排除AC 选项;5525800(5)221025f -==+,4416256(4)22257f -==+, 由于()(5)4f f <,因此()f x 在()0,∞+上不是单调递增,故排除B 选项, 故选:D. 6.C 【解析】根据x 的范围代入相应的解析式即可. 【详解】函数()2,0,0⎧≥=⎨-<⎩x x f x x x ,则()()224f f f ⎡⎤-==⎣⎦. 故选:C . 7.C 【解析】 【分析】根据函数解析式,列出满足的条件,解得答案. 【详解】由已知1020102x x x -≠⎧⎪+≠⎪⎨⎪≥⎪+⎩,解得2x >-且1x ≠,所以()f x 的定义域为()()2,11,-⋃+∞,故选:C . 8.C 【解析】 【分析】分别求出集合,M N ,再根据交集的定义即可得出答案. 【详解】解:()(){}{}10120212x M xx x x x x x -⎧⎫=<=-+<=-<<⎨⎬+⎩⎭, {}{}21,13N y y x x M y y ==-∈=-≤<, 则{}[)111,1M N x x ⋂=-≤<=-. 故选:C. 9.D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,∈()222111t x x x =-=--≥-,∈(],2120ty ⎛⎫⎪⎭∈= ⎝,∈函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D 10.C 【解析】 【分析】采用换元即可求出答案. 【详解】令11t x x t =+⇒=-,则22()(1)2(1)1f t t t t =-+-+=,22(1)(1)21f x x x x -=-=-+. 故选:C. 11.C 【解析】 【分析】先利用换元法求()f x 的解析式,再代入3x =计算即可. 【详解】解:设1t x =+,则1x t =-,从而()12122(1)221t t f t t t t --=+-=+-+,即()12221x f x x x -=+-+,故()31232323149618f -=+-⨯+=+-+=.故选:C. 12.D 【解析】 【分析】由题可知函数()f x 在区间R 上为增函数,则f (x )在x =1左右两侧均为增函数,且左侧在x =1出函数值小于或等于右侧在x =1出函数值. 【详解】由题可知函数()f x 在区间R 上为增函数, 则()2012330a a a a ⎧-⎪⎨⎪--≤⎩>>+,解可得524a ≤:<.故选:D. 13.D 【解析】 【分析】根据基本初等函数的单调性、奇偶性以及函数奇偶性的定义逐项判断,可得出合适的选项. 【详解】对于A 选项,函数cos y x =为偶函数,且在()0,∞+上不单调; 对于B 选项,令()211f x x =+,该函数的定义域为R ,()()()221111f x f x x x -===+-+, 所以,函数211y x =+为偶函数,且该函数在()0,∞+上单调递减; 对于C 选项,令()22x x g x -=-,该函数的定义域为R ,()()22x xg x g x --=-=-,所以,函数22x x y -=-为奇函数;对于D 选项,令()ln h x x =,该函数的定义域为{}0x x ≠,()()ln ln h x x x h x -=-==, 所以,函数ln y x =为偶函数,当0x >时,ln y x =,故函数ln y x =在()0,∞+上为增函数. 故选:D. 14.C 【解析】 【分析】通过分析函数的奇偶性及单调可解决问题.【详解】因为()2()f x x x f x -=+=,且函数()f x 的定义域为R ,故函数()f x 为定义域R 上的偶函数,又当0x >时,()2f x x x =+在(0,)+∞上单调递增,所以()()1f a f a -≤,则有|1|||a a -≤,解得12a ≥. 故选:C 15.C 【解析】 【分析】根据奇函数的性质()()f x f x =--即可算出答案. 【详解】因为()f x 为奇函数,所以()010f m =-=,即1m =.当0x <时,0x ->,()()()224141x x f x f x x x --⎡⎤=--=---+=-+-⎣⎦. 故选:C 16.D 【解析】 【分析】根据给定条件利用奇偶性定义判断排除,再利用函数单调性判断作答. 【详解】指数函数2x y =,对数函数2log y x =都是非奇非偶函数,即选项B ,C 都不正确; 正弦函数sin y x =是R 上的奇函数,但在定义域R 上不单调,选项A 不正确; 幂函数3y x =是R 上的奇函数,且在R 上单调递增,选项D 正确. 故选:D 17.A 【解析】 【分析】根据函数奇偶性和单调性之间的关系解不等式即可求解. 【详解】因为对任意()12,0,x x ∈+∞,且12x x ≠都有()()21210f x f x x x -<-,所以函数在()0,∞+上单调递减,又()f x 是在R 上的奇函数,则在(),0∞-上也单调递减, 由()30f =,则()30f -=,2()3()2()3()()0f x f x f x f x f x x x x +---==≥,当0x >时,()0f x ≤,即()()3f x f ≤解得3x ≥, 当0x <时,()0f x ≥,即()()3f x f ≥-,解得3x ≤-, 综上,不等式的解集为(][),33,∞∞--⋃+, 故选:A. 18.C 【解析】 【分析】判断函数()32x f x x =+的单调性,又()13f =,所以将不等式转化为()2312f m m f ⎛⎫-< ⎪⎝⎭,利用函数的单调性求解关于m 的一元二次不等式即可. 【详解】因为()32x f x x =+在R 上单调递增,()13f =,所以不等式2332f m m ⎛⎫-< ⎪⎝⎭等价于()2312f m m f ⎛⎫-< ⎪⎝⎭,得2312m m -<,即22320m m --<,解得122m -<<.故选:C . 19.A 【解析】 【分析】根据(2)()f x f x +=-,()()0f x f x +-=,得到(4)()f x f x +=求解. 【详解】因为(2)()f x f x +=-,()()0f x f x +-=,所以()()f x f x -=-, 所以(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=,所以2021505411505444f f f⨯+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1112641144f f ⎛⎫⎛⎫=⨯++=+ ⎪ ⎪⎝⎭⎝⎭,1321445f f ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭.故选:A 20.A 【解析】 【分析】利用函数()f x 的性质,将72f ⎛⎫⎪⎝⎭变形为12f⎛⎫- ⎪⎝⎭,再利用题目提供的解析式计算即可. 【详解】 解:()f x 是R 上的奇函数,且(2)()f x f x +=,当(0,1)x ∈时,()41=-x f x1272331241121222221f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=+==-+=-=-=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A. 21.C 【解析】 【分析】根据题意,求出()f x -的解析式,再根据对数的运算可知()()6f x f x +-=-,即可求解. 【详解】解:∈())3f x x =-,∈())3f x x -=-,则()()6f x f x +-=-, ∈()1f a =-,∈()5f a -=-. 故选:C. 22.C 【解析】由函数()21x x x f k =-+,求得对称轴的方程为2k x =,结合题意,得到22k ≤或52k≥,即可求解. 【详解】由题意,函数()21x x x f k =-+,可得对称轴的方程为2k x =, 要使得函数()f x 在[]2,5上具有单调性, 所以22k ≤或52k≥,解得4k ≤或10k ≥.故选:C. 23.B 【解析】 【分析】根据幂函数、指数函数的性质判断大小关系. 【详解】由00.30.20.20.3020.30.20.2210.3c a b >===>>>==, 所以b a c <<. 故选:B 24.B 【解析】 【分析】由已知结合指数的运算可得,23x y +=,然后根据21122()222x y xy x y +=⨯⨯≤可求最值.【详解】解:x ,(0,)∈+∞y ,且3212()24x y y --==,32x y ∴-=-,即23x y +=,∴则21129(2)()2228x y xy x y +=⨯≤=,当且仅当322x y ==时取得最大值98. 故选:B . 25.A【分析】根据根式的性质,结合分数幂指数与根式的互化公式、指数幂的公式进行逐一判断即可. 【详解】A :因为3(2)8-=-2-,因此本选项正确; B:因为=C133344()()y x y x ≠+=+,所以本选项不正确;D :因为222n n m m -⎛⎫= ⎪⎝⎭,所以本选项不正确,故选:A 26.C 【解析】 【分析】把根式化为分数指数幂进行运算. 【详解】 0m >m===.故选:C . 27.A 【解析】 【分析】先判断()f x 的奇偶性,然后结合复合函数的单调性判断()f x 的单调性,由此确定正确选项. 【详解】()()1e e 1e 1e e 1e 1e 1e xx x x x x x xf x f x -------=-=-==+++,故()f x 是奇函数. 又()e 1221e 1e 1x x x f x +-==-++,由复合函数单调性可知()f x 单调递增.故选:A 28.C【分析】根据对数运算公式得到log 3(log 2x )=1,进而得到log 2x =3,x =8,根据指数幂运算可得到结果. 【详解】∈log 5(log 3(log 2x ))=0,∈log 3(log 2x )=1,∈log 2x =3,∈x =23=8,∈11228x --==故选:C. 29.B 【解析】 【分析】判断函数的奇偶性即可得函数图象的对称性. 【详解】函数()22x xy x -=-的定义域为R ,又()()()()2222x x x xf x x x f x ---=--=-=, 所以()22x xy x -=-为偶函数, 函数()22x xy x -=-的图象关于y 轴对称故选:B. 30.A 【解析】 【分析】根据函数的奇偶性,得出()()11f f -=-,即可求解. 【详解】因为0x >时,()23xf x =-,由题意函数()f x 为奇函数,所以()()111(23)1f f -=-=--=.故选:A.【解析】 【分析】根据函数的奇偶性可得()()3xf xg x --=,即可求解()f x 解析式,通过排除可得答案.【详解】解:由()()3xf xg x +=得:()()3x f x g x --+-=,即()()3x f x g x --=,由()()()()33x x f x g x f x g x -⎧+=⎪⎨-=⎪⎩解得:()332x x f x -+=,由3312x x -+≥=,排除BC . 由指数函数的性质(指数爆炸性)排除D . 故选:A 32.A 【解析】 【分析】先求出()f x 的定义域,再令2x满足()f x 的定义域范围求出x 的范围即可得2x f ⎛⎫⎪⎝⎭的定义域. 【详解】由903x -≥即39x ≤可得2x ≤ 所以()f x 的定义域为{}2|x x ≤, 令22x≤,可得4x ≤,所以函数2x f ⎛⎫⎪⎝⎭的定义域为(],4∞-, 故选:A . 33.D 【解析】 【分析】抽象函数求解定义域,要满足同一对应法则下取值范围相同,定义域是x 的取值范围. 【详解】因为[]1,1x ∈-,所以1,222x⎡⎤∈⎢⎥⎣⎦,故21,2log 2x ⎡⎤∈⎢⎥⎣⎦,解得:x ⎤∈⎦. 故选:D 34.C 【解析】计算()219,33x+∈,根据抽象函数定义域得到92133x <+<,解得答案.【详解】当()3,5x ∈时,()219,33x+∈,故92133x <+<,解得416x <<.故选:C. 35.A 【解析】 【分析】利用指对数函数的性质比较a ,b ,c 的大小. 【详解】由22444log 5log 42log 16log 10log 8 1.5b a c =>==>=>>= 所以b c a <<. 故选:A 36.C 【解析】 【分析】由指数函数的性质可知()20212022x xf x -=-是R 上的增函数;根据题意可知2021202220212022x x y y ---<-,即()()f x f y <,再根据函数的单调性,可得x y <,由此即可得到结果. 【详解】令()20212022x xf x -=-,由于2021,2022x x y y -==-均为R 上的增函数,所以()20212022x xf x -=-是R 上的增函数,因为2021202120222022x y x y ---<-,所以2021202220212022x x y y ---<-, 即()()f x f y <, 所以x y <,所以0x y -<. 故选:C . 37.D【分析】分析可知()22220x x m ++>对任意的()1,2x ∈恒成立,利用二次不等式的性质可得出关于实数m 的不等式,即可得解. 【详解】由已知可得()22120x xm ⨯++>,则()22220x x m ++>对任意的()1,2x ∈恒成立,因为()22,4x∈,所以,22220m ++≥,解得3m ≥-.故选:D. 38.C 【解析】 【分析】分类讨论1a >和01a <<两种情况,根据对数和指数函数的单调性结合4log xa x <得出a 的取值范围. 【详解】 解:由题意可得: 当1a >时,结合102x <<可得:log 04x a x <<,不满足题意; 当01a <<时,log a y x =在区间1(0,)2上单调递减,4x y =在区间1(0,)2上单调递增,满足题意4log xa x <时有:1214log ()2a ,即:1log ()22a .求解不等式可得实数a 的取值范围是:. 故选:C 39.B 【解析】 【分析】将100A =,0.02k =,()50L t =代入等式()()1e ktL t A -=-,求出t 的值,即可得解.【详解】令()0.02501001e t-=-,可得50ln 235=≈t .40.A 【解析】 【分析】根据实数的结构形式,构造函数,利用导数判断单调性,最后进行比较大小即可. 【详解】 设2ln 1ln ()(0)()x xf x x f x x x -'=>⇒=, 当e x >时,()0,()f x f x '<单调递减,1(e)e a f ==,ln 7(7)7b f ==,ln 5(5)5c f ==,因为75e >>,所以(7)(5)(e)f f f <<,即b c a <<,故选:A . 41.B 【解析】 【分析】由已知可得2log 3b =,结合零点存在定理可判断零点所在区间. 【详解】由已知得2log 3b =,所以()22log 3xf x x =+-,又()122121log 3log 3021f -=-=----<,()02220log 31log 300f =+-=-<, ()12221log 33log 301f =+-=-> ()22222log 36log 302f =+-=->, ()32223log 311log 303f =+-=->,所以零点所在区间为()0,1, 故选:B. 42.A 【解析】 【分析】根据对数的运算算出结果即可.【详解】433232495lg8lg lg16lg(495)lg1494916⨯⨯+=-+⨯==⨯,故选:A43.B【解析】【分析】先通过对数的运算性质和换底公式将c化简,进而通过中间量0和1并结合对数函数的单调性确定出a,b,c的范围,然后比较出大小.【详解】依题意,()1.5log 3.11,a=∈+∞,()5log0.1,0b=∈-∞,()2422222log4211ln20,1ln elog e log e log eln2c=====∈,故a c b>>.故选:B.44.C【解析】【分析】利用偶函数的定义经计算即可得解.【详解】因()f x为偶函数,且当0x>时,()1lnf x x=+,因此,当0x<时,0x>-,()()1ln()f x f x x=-=+-,所以()1ln()f x x=+-.故选:C45.C【解析】【分析】先求得()f x的定义域,然后求得12xf⎛+⎫⎪⎝⎭的定义域.【详解】依题意30431,344,14x x x <-≤<≤<≤,所以()f x 的定义域为3,14⎛⎤⎥⎝⎦,所以03111,04,22214x x x <≤--+≤<≤<, 所以函数12x f ⎛+⎫ ⎪⎝⎭的定义域为1,02⎛⎤- ⎥⎝⎦.故选:C 46.B 【解析】 【分析】通过换元得到()()21log 0,0,1a y t t -=>∈,根据对数函数的性质可得2201112a a <-<⇒<<,解出不等式即可得到结果. 【详解】函数()()()21log 21a f x x -=+,令()210,1t x =+∈,()()21log 0,0,1a y t t -=>∈ 根据对数函数的性质可得2201112a a <-<⇒<<解得1a <<1a <<-. 故选:B. 47.D 【解析】 【分析】 利用换元法,令t=,则0t >,从而可得111t =+>,然后利用对数的单调性可求得答案 【详解】 设t=,则0t >,∈111t =+>, ∈()lg 1lg 10t⎛=+> ⎝,∈函数()lg 1f x⎛= ⎝的值域为()0,∞+,故选:D .48.A【解析】【分析】转化为两个函数图像相交问题,结合图形可得.【详解】()1lg 3x f x x ⎛⎫=- ⎪⎝⎭的零点即为函数lg y x =与13xy ⎛⎫= ⎪⎝⎭的交点横坐标,如图. 记213x m ⎛⎫ ⎪⎝=⎭,则23lg lg x x m =-=,210m x =,310m x -= 所以023101x x == 由图知1301x x <<<所以1201x x <<故选:A49.C【解析】【分析】先求出函数的定义域,再根据复合函数的单调性的判断方法,“同增异减”求得函数的递减区间.【详解】令2t x x =- ,则由20t x x =->,得01x << , 而函数13log y t = 是单调减函数,要求213()log ()f x x x =-的单调递减区间, 就要求2t x x =-的递增区间,而2t x x =-的递增区间为1(,)2-∞ , 故213()log ()f x x x =-得单调递减区间为102⎛⎫ ⎪⎝⎭,,故选:C.50.B【解析】【分析】利用同底的指数函数与对数函数互为反函数求出a 值,再借助对数运算即可作答.【详解】依题意,函数()()log 0,1a f x x a a =>≠的反函数是x y a =,即函数x y a =的图象过点()1,3,则3a =,()3log f x x =,于是得()2323log 8log (log 8)log 31f ===,所以()2log 81f =.故选:B51.A【解析】【分析】根据幂函数的定义,结合对数函数的性质进行求解即可.【详解】解:∈函数f (x )=(3m -2)xm +2(m ∈R )是幂函数,∈3m -2=1,∈m =1,∈g (x )=log a (x -1)+1,令x -1=1得x =2,此时g (2)=log a 1+1=1,∈函数g (x )的图象所过定点P 的坐标是(2,1),故选:A .52.A【解析】【分析】数形结合,函数()f x 与()sin 2πy x =在区间15,22⎡⎤-⎢⎥⎣⎦上的交点横坐标即为g (x )的零点,根据对称性即可求零点之和.如图所示,()f x 与()sin 2πy x =在区间15,22⎡⎤-⎢⎥⎣⎦上一共有10个交点,且这10个交点的横坐标关于直线1x =对称,所以()g x 在区间15,22⎡⎤-⎢⎥⎣⎦上的所有零点的和是10. 故选:A .53.C【解析】【分析】通过解法方程()0g x =来求得()g x 的零点个数.【详解】由()0g x =可得()11f x -=.当0x ≤时,2211x x x +=⇒=-1x =-,当0x >时,lg 110x x =⇒=或110x =.故112x x -=-=()g x 的零点,1109x x -=⇒=-是()g x 的零点,1911010x x -=⇒=是()g x 的零点. 综上所述,()g x 共有3个零点.故选:C54.B【解析】根据极限的定义计算.【详解】由题意()()()()00111111lim lim (1)333x x f x f f x f f x x ∆→∆→+∆-+∆-'==∆∆. 故选:B .55.D【解析】【分析】由导数的几何意义得出切线方程.【详解】()e e x x f x x ='+,则(1)2e,(1)e 2e e f f ==-=-',由点斜式得2e 3e y x =-.故选:D.56.B【解析】【分析】求函数的导数,结合函数单调性,极值,函数零点的性质分别进行判断即可.【详解】函数()ln f x x x =定义域为()0,∞+,()1ln f x x '=+,令()0f x '=,则1=x e ,故D 错误; 当10x e <<时,()'0f x <,函数为减函数, 当1x e>时,()'0f x >,函数()f x 为增函数,故B 正确; 当1=x e 时,函数取得极大值,极大值为f (1e )1e =-,故A 错误, 作出函数的图象,可知C 错误.故选:B57.A【解析】【分析】利用偶函数求0x <的解析式再求导,根据导数的几何意义即可求()()1,1f --处的切线斜率.【详解】设0x <,则0x ->,1()e x f x x ---=-,又()f x 为偶函数,∈1()e x f x x --=-,则对应导函数为1()e 1x f x --'=--,∈()12f '-=-,即所求的切线斜率为2-故选:A58.A【解析】【分析】设公共点为(),P s t ,根据导数的几何意义可得出关于a 、s 的方程组,即可解得实数a 、s 的值.【详解】设公共点为(),P s t ,1e x y -=的导数为1e x y -'=,曲线1e x y -=在(),P s t 处的切线斜率1e s k -=,y =y ',曲线y =(),P s t处的切线斜率k =因为两曲线在公共点P处有公共切线,所以1e s -=1e s t -=,t =所以11e e s s --⎧=⎪⎨⎪=⎩=12s =,所以112e -=,解得a =故选:A .59.A【解析】【分析】求出()f x ',计算出()()f x f x -+以及()()f x f x ''-=,即可得解.【详解】()3321e x f x x =++,则()()222223e 3e 3666e 12e e e 21e x x x x x x x f x x x x -'=-=-=-+++++, 所以,()()()()3331e 333e 32231e 1e 1e 1e e 1e x x x x x xx x f x f x x x --+-+=-+++=+==+++++, ()()()223366e e 2e e 2x x x x f x x x f x --''-=⨯--=-=++++, 因此,()()()()20222022202220223f f f f ''++---=.故选:A.60.D【解析】【分析】对函数进行求导,求出(3)2f '=,再令1x =代入解析式,即可得到答案;【详解】'41()2(3)9f x f x x'∴=-+,∴41(3)2(3)33f f ''=-+(3)1f '⇒=, 22()2ln 9f x x x x ∴=-+,216(1)299f ∴=-=, 故选:D.61.C【解析】【分析】对()f x 求导,研究()f x 的单调性以及极值,再结合选项即可得到答案.【详解】()'2312f x x =-,由()'0f x >,得2x <-或2x >,由()'0f x <,得22x -<<,所以()f x 在(),2-∞-上递增,在()2,2-上递减,在()2,+∞上递增,所以极大值为(2)160f -=>,极小值为(2)160f =-<,所以()f x 有3个零点,且()f x 无最小值.故选:C62.A【解析】【分析】令()()g x xf x =,利用导数可判断其单调性,从而可解不等式()2e e x xf >. 【详解】设()()g x xf x =,则()()()0g x xf x f x ''=+>,故()g x 为R 上的增函数,而()2e e x x f >可化为()()e e 211x x f f >=⨯即()()g e 1x g >, 故e 1x >即0x >,所以不等式()2e ex x f >的解集为()0,+∞, 故选:A.63.D【解析】【分析】通过构造函数法,结合导数确定正确答案.【详解】构造函数()()()()()''e ,e 0x x F x f x F x f x f x ⎡⎤=⋅=+⋅>⎣⎦,所以()F x 在R 上递增,所以()()()()20210,02021F F F F -<<,即()()()()20212021e 20210,0e 2021f f f f -⋅-<<⋅.故选:D64.B【解析】【分析】将函数有两个极值点转化为其导数有两个零点进行求解即可.【详解】对原函数求导得,()2e x f x x a '=+,因为函数()()2e 1x f x x a a R =+-∈有两个极值点,所以()0f x '=有两个不等实根,即2e 0x x a +=有两个不等实根, 亦即2e x x a -=有两个不等实根. 令()2e x x g x =,则()()21e xx g x -'= 可知()g x 在(),1-∞上单调递增,在()1,+∞上单调递减,所以()()max 21eg x g ==, 又因为当0x <时,()0g x <,当0x >时,()0g x >, 所以2e 0a a ⎧-<⎪⎨⎪->⎩,解得20e a -<<, 即a 的范围是2,0e ⎛⎫- ⎪⎝⎭. 故选:B65.C【解析】【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率.【详解】根据导函数图象可知:当(),3x ∈-∞-时,()0f x '<,在()3,1x ∈-时,()0f x '≥, ∴函数()y f x =在(),3-∞-上单调递减,在()3,1-上单调递增,故∈正确;则3-是函数()y f x =的极小值点,故∈正确;在()3,1-上单调递增,∴1-不是函数()y f x =的最小值点,故∈不正确;函数()y f x =在0x =处的导数大于0,∴切线的斜率大于零,故∈不正确.故选:C .66.C【解析】【分析】对函数()f x 求导,即可得到()f x 的单调区间与极值点,即可判断.【详解】 解:因为ln ()x f x x x =-,所以2221ln 1ln ()1x x x f x x x---=-=',令2()1ln x x x ϕ=--,则1()20x x xϕ'=--<,所以2()1ln x x x ϕ=--在(0,)+∞上单调递减, 因为()10ϕ=,所以当01x <<时,()0x ϕ>,即()0f x '>;当1x >时,()0x ϕ<,即()0f x '<,所以()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞,故()f x 的极大值点为1,()()11f x f ==-极大值,即()()max 11f x f ==-,不存在最小值.故选:C .67.B【解析】【分析】求出函数的导数,根据函数()f x 在()-∞+∞,上是单调递减函数,由()0f x '≤在()-∞+∞,上恒成立求解.【详解】解:()321f x x ax x =-+--,()2321f x x ax ∴=-+-',因为函数()f x 在()-∞+∞,上是单调递减函数, 所以()0f x '≤在()-∞+∞,上恒成立,。

集合、函数及不等式试题

集合、函数及不等式试题

集合、函数、不等式测试题一、选择题(每小题5分,共50分)1、集合{}4≤=x x P ,则( )A .P ∉π B.P ∈π C.P ∈5 D. P ∈6 2、2:,2:==x q x p ,则p 是q 的( )A.充分不必要条件B. 必要不充分条件C.既不充分又不必要条件D.充要条件 3、如果b a >,那么( )A .bc ac > B. bc ac < C.c b c a ->- D. b ac > 4、设()[]6,2,4,1==B A ,则=⋃B A ( ) A .()4,1 B .[)6,2C .(]6,1D .[)4,2 5、不等式0122<++x x 的解集为( )A .{}1 B .()()+∞-⋃-∞-,11, C .R D .∅6、点()1,1关于原点的对称点是( ) A .()1,1-- B .()1,1- C .()1,1 D .()1,1-7、函数xy 1=是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .不具有奇偶性 8、下列各组中的两个函数,表示同一个函数的是( )A .x y xx y ==;2B .x y x y ==;C .()1;12+=+=x y x yD .x y x x y 1;2==9、函数51-=x y 的定义域是( ) A .[)+∞,5 B .(]5,∞- C .()()+∞⋃∞-,55, D .R 10、设()24-=x x f ,则()=-1x f ( ) A .34-x B .44-x C .54-x D .64-x二、填空题(每小题4分,共16分)11、已知{}6,5,4,3,2,1=A ,{}6,5,2=B ,则=⋂B A 12、设函数12+=x xy ,则()1f = 13、不等式24<-x 的解集是14、设()b x x f +=3,且()12=f ,则=b 三、计算、证明题(15、16各8分,17、18各9分,共34分)15、判断函数()2x x f =在()+∞,0的单调性.16、设全集为R ,()7,2=A ,[]2,2-=B ,求A C B A B A R ,,⋃⋂.17、当m 为何值时,方程()1131222=+--m x m x 有实数根.18、设()⎩⎨⎧≥<-=3,3,12x x x x x f ,(1)求函数的定义域, (2)求()()()4,3,0f f f 的值, (3)作出函数的图像.。

高一数学练习题加答案

高一数学练习题加答案

高一数学练习题加答案在高一数学的学习中,练习题是帮助学生巩固知识点和提高解题能力的重要工具。

以下是一些高一数学的练习题,以及相应的答案,供学生参考和练习。

练习题一:集合的概念与运算1. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

2. 若集合C = {x | x > 5},D = {x | x < 10},求C∩D。

3. 集合E = {x | x^2 - 4x + 3 = 0},求E的元素。

答案一:1. A∪B = {1, 2, 3, 4}。

2. C∩D = {x | 5 < x < 10}。

3. E = {1, 3}。

练习题二:函数的基本概念1. 判断函数f(x) = x^2 - 4x + 3的单调性。

2. 求函数g(x) = 3x + 2的反函数。

3. 已知f(x) = 2x + 1,求f(-1)。

答案二:1. 函数f(x) = x^2 - 4x + 3在(-∞, 2]上单调递减,在[2, +∞)上单调递增。

2. 函数g(x) = 3x + 2的反函数为g^(-1)(x) = (x - 2) / 3。

3. f(-1) = 2*(-1) + 1 = -1。

练习题三:不等式的解法1. 解不等式:2x + 5 > 3x - 2。

2. 已知不等式组:\[ \begin{cases} x + y \geq 3 \\ 2x - y \leq 4 \end{cases} \],求其解集。

3. 解绝对值不等式:|x - 2| < 4。

答案三:1. 解得:x < 7。

2. 解集为:1 ≤ x ≤ 5,y ≥ -2。

3. 解得:-2 < x < 6。

练习题四:三角函数的基本性质1. 已知sinθ = 3/5,求cosθ(假设θ为锐角)。

2. 求值:\[ \sin(\frac{\pi}{6}) + \cos(\frac{\pi}{6}) \]。

高考数学滚动过关检测三 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形

高考数学滚动过关检测三 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形

滚动过关检测三 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2022·河北保定模拟]已知P ={1,2,3},Q ={y |y =2cos θ,θ∈R },则P ∩Q =( )A .{1}B .{1,2}C .{2,3}D .{1,2,3}2.[2022·广东清远一中月考]“cos α=32”是“cos 2α=12”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知a =log 35,b =log 23,c =2-0.3,则a ,b ,c 的大小关系为( )A .c <b <aB .b <c <aC .c <a <bD .a <b <c4.已知函数f (x )=A sin(ωx +φ)A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f (x )=2sin ⎝⎛⎭⎫2x +π6 B .f (x )=2sin ⎝⎛⎭⎫2x +π3 C .f (x )=2sin ⎝⎛⎭⎫x +π3 D .f (x )=2sin ⎝⎛⎭⎫x -π6 5.[2022·山东淄博模拟]函数f (x )=(e x +e -x )tan x 的部分图象大致为( )6.[2022·河北衡水中学模拟]已知cos θ-sin θ=43,则θ的终边在( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.[2022·湖南株洲模拟]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若23a cos C -3b cos C =3c cos B ,则角C 的大小为( )A.π6B.π4C.π3D.2π38.[2022·皖南八校联考]已知函数f (x )=(3a )x -x 3a (a >1),当x ≥2e 时,f (x )≥0恒成立,则实数a 的取值范围为 A.⎝⎛⎭⎫e 3,+∞ B.⎣⎡⎭⎫2e 3,+∞ C .(1,e) D.⎝⎛⎦⎤1,2e 3 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列说法正确的有( )A .终边在y 轴上的角的集合为θ⎪⎪ θ=π2+2k π,k ∈Z B .已知3a =4b =12,则1a +1b=1 C .已知x ,y ∈R +,且1x +4y=1,则x +y 的最小值为8 D .已知幂函数f (x )=kx a 的图象过点(2,4),则k +a =310.[2022·辽宁丹东模拟]已知a ,b ∈R ,且3a <3b <1,则( )A .a 2<b 2B .ln|a |>ln|b |C.b a +a b>2 D .a +b +2ab >0 11.[2022·河北石家庄一中月考]对于△ABC ,有如下判断,其中正确的判断是( )A .若cos A =cosB ,则△ABC 为等腰三角形B .若△ABC 为锐角三角形,有A +B >π2,则sin A >cos B C .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形12.[2022·辽宁沈阳模拟]函数f (x )为定义在R 上的偶函数,且在[0,+∞)上单调递增,函数g (x )=x [f (x )-f (2)],则( )A .函数h (x )=f (x )cos x 为奇函数B .f (x )的解析式可能是f (x )=e x +e -x -x 2C .函数g (x )有且只有3个零点D .不等式g (x )≤0的解集为[-2,2]三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0log 2x ,x >0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________. 14.[2022·湖北石首一中月考]在△ABC 中,已知sin A sin B sin C =357,则此三角形最大内角度数为________.15.已知cos ⎝⎛⎭⎫π6-x =13,则cos ⎝⎛⎭⎫5π6+x -sin 2⎝⎛⎭⎫x -π6=________. 16.[2022·浙江杭州模拟]函数f (x )=2x -x 2的零点个数为________,若函数f (x )=a x -x 2(a >1)恰有两个零点,则a =________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)[2022·北京海淀模拟]设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin B =3b cos A .(1)求角A 的大小;(2)再从以下三组条件中选择一组条件作为已知条件,使三角形存在且唯一确定,并求△ABC 的面积. 第①组条件:a =19,c =5;第②组条件:cos C =13,c =42; 第③组条件:AB 边上的高h =3,a =3.18.(12分)[2022·山东日照模拟]已知函数f (x )=cos(πx +φ)⎝⎛⎭⎫0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝⎛⎭⎫x +13,求函数g (x )在区间⎣⎡⎦⎤-12,13上的最大值和最小值.19.(12分)[2021·新高考Ⅰ卷]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD = b ;(2)若AD =2DC ,求cos ∠ABC .20.(12分)已知:f (x )=3sin(π+x )sin ⎝⎛⎭⎫x -π2+cos 2⎝⎛⎭⎫π2+x -12. (1)求函数f (x )的单调递增区间;(2)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若f (A )=1,a =2,求△ABC 面积的最大值.21.(12分)[2022·湖北九师联盟]已知函数f (x )=ln x ,g (x )=x 2-x +1.(1)求函数h (x )=f (x )-g (x )的极值;(2)证明:有且只有两条直线与函数f (x ),g (x )的图象都相切.22.(12分)[2022·广东茂名五校联考]已知函数f (x )=ln x +x 2-ax .(1)当a =3时,求曲线y =f (x )在点P (1,f (1))处的切线方程;(2)若x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,证明:f (x 1)-f (x 2)>ln a 28+64-a 416a 2.。

高一数学 不等式、基本不等式与三角函数复习题(学生版)

高一数学 不等式、基本不等式与三角函数复习题(学生版)

16.若正数 x, y 满足 x 4 y 2xy 0 ,则 x y 的最小值为______.
三、解答题
17.已知函数

f
(x)
sin(x ) tan(x )
sin(x 3 ) cos(x 2
cos(x 3 )
)
2
.
(1)化简 f (x) ;
(2)若 f ( ) 1 ,求 sin cos 的值. 3
20.解关于
x
的不等式:
(a
2)x x 1
2
0
.
21.已知函数
f
x
A sin
x
x
R,
A
0,
0, 0
2
的图像如图所示.
(1)求函数 f x 的解析式;
(2)求函数 g x
f
x
12
f
x
12
的单调递增区间.
试卷第 3页,总 3页
π 8
cos
x
π 8
的单调递减区间为(

A.

3 4
π,

7 4
π

k
Z
B.

3 8
π,kπ
7 8
π

k
Z
C.

1 4
π,kπ
3 4
π

k
Z
D.

1 8
π,

3 8
π

k
Z
6.已知 是第二象限角,且 sin( ) 3 ,则 tan 2 的值为( ) 5
4
A.
5
B. 23 7
C. 24 7

数学必修一提升练习题

数学必修一提升练习题

数学必修一提升练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等:(1) A={x|x²3x+2=0},B={1, 2}(2) A={x|x为正整数},B={1, 2, 3, …}(1) f(x) = √(x²5x+6)(2) g(x) = 1/(x²x)(1) f(x) = |x|,g(x) = √(x²)(2) f(x) = x²,g(x) = (x+1)²2x1二、基本初等函数(1) f(x) = 2x+1,求f(3)(2) g(x) = 3x²4x+2,求g(1)2. 已知函数f(x) = ax²+bx+c,其中a、b、c为常数,且f(1)=3,f(1)=5,f(0)=2,求a、b、c的值。

(1) f(x) = 2x+3,g(x) = 3x+2(2) h(x) = x²,k(x) = 2x三、函数的性质(1) f(x) = 2x3(2) g(x) = x²+4x+1(1) f(x) = x³4x(2) g(x) = √(1x²)(1) f(x) = sin(x)(2) g(x) = cos(2x)四、函数图像(1) f(x) = 2x+1(2) g(x) = x²42. 根据图像判断函数的性质:(1) 单调递增(2) 奇函数(3) 周期函数五、综合运用1. 已知函数f(x) = x²2x+1,求f(x)的最小值。

2. 已知函数g(x) = |x2|,求g(x)在区间[0, 4]上的最大值和最小值。

3. 已知函数h(x) = ax²+bx+c,其中a、b、c为常数,且h(1)=4,h(1)=2,h(2)=8,求a、b、c的值,并求h(x)的最小值。

六、一元二次方程1. 解下列一元二次方程:(1) x² 5x + 6 = 0(2) 2x² 4x 6 = 02. 已知一元二次方程ax² + bx + c = 0(a≠0)的根为x₁和x₂,且x₁ + x₂ = 5,x₁x₂ = 3,求a、b、c的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合、不等式、函数练习题
1.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为
( ) A .1 B .—1 C .1或—1 D .1或—1或0
2..已知集合A ={x |x 2-3x -10≤0}集合B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取
A .(-∞,3]
B .(0,3]
C .[3,+∞)
D .(-3,0)
3.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( )
A 、 ()M
P S B 、 ()M P S C 、 ()u M P C S D 、 ()u M P C S
4.设{}022=+-=q px x x A ,{}05)2(62=++++=q x p x x B ,若⎭
⎬⎫
⎩⎨⎧=21B A ,则=B A ( ) (A )⎭⎬⎫⎩⎨⎧-4,31
,21 (B )⎭⎬⎫⎩⎨⎧-4,21 (C )⎭⎬⎫⎩⎨⎧31,21 (D)⎭
⎬⎫⎩⎨⎧21 5.函数2x y -=的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎭⎝⎦ D 、11,,222⎛⎫⎛⎫-∞ ⎪ ⎪⎝
⎭⎝⎭ 6.不等式3≤|5-2x |<9的解集是
A .(-∞, -2)∪(7, +∞)
B .[1, 4]
C .[-2, 1]∪[4, 7]
D .(-2, 1]∪[4, 7)
7.若不等式x >ax +2
3的解集为(4, b ),则a , b 的值分别为 A .36, 81 B .81, 36 C .41, 9 D .9, 4
1 8.设⎩
⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A .10 B .11 C .12 D .13
9.设2 2 (1)() (12)2 (2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x =
10.已知()y f x =的定义域为[-1,1],试求1(2)()2y f x f x =-+的定义域为
11. 设,若{}1I C A =-,则a=__________。

12.已知集合A ={1,2},B ={x x A ⊆},则集合B= .
13.50名学生做的物理、化学两种实验,已知物理实验做的准确得有40人,化学实验做的准确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人.
14.若集合S={}
23,a ,{}|03,T x x a x Z =<+<∈且S ∩T={}1,P=S ∪T,求集合P 的所有子集
15.设函数)(x f 对任意]21,0[,21∈x x 都有)()()(2121x f x f x x f •=+已知2)1(=f 求)4
1(),2
1(f f 16.函数()f x 对于x>0有意义,且满足条件)()()(,1)2(y f x f xy f f +==
(1)求)1(f ,)4(f ,)8(f (2)求)2(......)8()4()2(n f f f f ++++ 17.已知集合A={}37x x ≤≤,B={x|2<x<10},C={x | x<a },全集为实数集R.
(1) 求A ∪B ,(C R A)∩B ;(2) 如果A ∩C ≠φ,求a 的取值范围。

18. 已知集合A ={x |2a≤x≤a 2+1},B ={x |x 2-3(a+1)x+2(3a+1)≤0},求使A ⊆B 的a 的取值范围.
19.记关于x 的不等式01
x a x -<+的解集为P ,不等式11x -≤的解集为Q .(I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围.
20.已知函数b
ax x x f +=)(b a ,(为常数,)0≠a ,满足x x f f ==)(,1)2(有惟一解,求函数)(x f 的解析式和)]3([-f f 的值.
21.已知()f x 是一次函数,且满足:3(1)2(1)217f x f x x +--=+,求()f x
已知集合A 的元素全为实数,且满足:若a A ∈,则
11a A a
+∈-。

(1)若3a =-,求出A 中其它所有元素;
(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的所有元素?
(3)根据(1)(2),你能得出什么结论。

22.解不等式 (1) -1<2213<+-x x (2) .03
223222≤---+x x x x (3)||x +10-||x -2≥8 23. k 为何值时,关于x 的不等式13
642222<++++x x k kx x 的解集是一切实数.。

相关文档
最新文档