用正多边形拼地板教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用正多边形拼地板教学设计

Teaching design of parquet with regular poly gon

用正多边形拼地板教学设计

前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。

1、用相同的正多边形拼地板

教学目的

1.通过用相同的正多边形拼地板活动,巩固多边形的内角和与外角和公式。

2.通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是几个多边形的内角相加要等于360°。

3.使学生进一步认识图形在日常生活中的应用。

重点、难点

1.重点:通过操作使学生发现能拼成一个平面图形的关键。

2.难点:同上。

教学过程

一、复习提问

1.多边形的内角和公式是什么?外角和?

2.什么叫正多边形?

二、新授

本章开头已提出关于瓷砖的铺设问题,今天我们来探究用什么样的正多边形能拼成一个既不留下一丝空白,又不相互重叠的平面图形。

请同学们拿出预先准备好的若干张正三角形、正方形、正五边形、正六边形、正八边形。

先用正三角形拼图,你能拼出既不留空隙,又不重叠的平面图形?再依次用正方形、正五边形、正六边形,正八边形试一试,哪些可以,哪些不可以,你从中发现了什么?

通过学生亲自动手拼图,使他们发现能拼成既不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加恰好等于360°。

下面我们再通过用计算器计算,看看哪些正多边形能拼成符合以上条件的图形。

让学生填教科书表9.3.1

每个内角为多少度时能拼成符合以上条件的平面图呢?

因为60°×6=360°用6个正三角形瓷砖就可以铺满地面90°×4=360°即用4个正方形瓷砖就可以铺满地面。

为什么用正五边形瓷砖不能铺满地面呢?正八边形也不行?

(因为360°÷108°,360°÷154°得数都不是整数)

这就是说,当(360°÷ (n-2)•180°n )为正整数时

即2nn-2 为正整数时,用这样的正n边形就可以铺满地面。

请同学们看教科书,看图9.3.1中(1)、(2)、

(3)分别是用正三角形、正方形、正六边形拼成的。

三、巩固练习

你能用正三角形和正六边形两个结合在一起铺满地面吗? 四、作业

教科书练习。

-------- Designed By JinTai College ---------

相关文档
最新文档