人教版数学八年级数学上册添括号法则课 件

合集下载

数学人教版八年级上册添括号法则教学设计

数学人教版八年级上册添括号法则教学设计

添括号法则教学设计(xx)一、教学目标(一)知识技能1、理解并掌握添括号法则2、会利用添括号法则灵敏应用乘法公式(完全平方公式、平方差公式)(二)能力训练目标1、通过对去括号法则探索得到添括号法则同时培养学生的逆向思维能力2、进一步使学生烂熟乘法公式体会公式中字母的含义(三)情感与价值观鼓励学生算法多样化培养学生多方位思考问题的习惯提高学生的合作交流意识和创新精神二、教学重点理解添括号法则进一步熟悉乘法公式的合理利用三、教学难点在多项式与多项式的乘法中合适添括号达到应用乘法公式解决问题的目的四、教学方法引导-探究相结合教师由去括号法则引入添括号法则并引导学生合适添括号变形从而达到熟悉乘法公式应用的目的五、教具准备多媒体课件六、教学过程(一)问题域情景师:随机抽取几名同学,上黑板完成乘法公式的默写。

进入今天的主题——添括号法则强调重难点1、复习巩固练习1:下面各式的计算是否正确?如果不正确,应当怎样改正?(1)x yx2y22(2)x yx2y22(3)x yx2xy y222(4)x yx2xy y22学生练习老师点评。

练习2:运用完全平方公式计算(1)x2y 22(2)2a5 22(3)2s t(4)3x4y复习巩固为后面教学打下基础。

2、探索新知探索发现:去括号:a+(b+c)=a+b+ca-(b+c)=a-b-c反过来,添括号a+b+c=a+(b+c)a-b-c=a-(b+c)你有什么发现?(教师由去括号法则类比得到添括号法则,培养学生总结概括能力)归纳新知:添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;添括号时,如果括号前面是负号,括到括号里的各项都改变符号.3、应用新知做一做:练习1.在括号内填入合适的项:(1) x²–x+1 = x²–( );(2) 2 x²–3 x–1= 2 x²+( );(3)(a–b)–(c–d)= a–( ).练习2.判断下面的添括号对不对:(1) a²+2ab+b²=a²+(2ab+b²) ( )(2) a²–2ab+b²=a²–(2ab+b²) ( )(3) a–b–c+d=(a+d)–(b–c) ( )(4) (a–b+c)(–a+b+c)=[+(a–b)+c][–(a–b)+c] ( )=[c–(–a + b)][c+(–a + b)] ( )学生多练习,熟悉添括号法则。

人教版数学八年级数学上册添括号法则PPT精品课件

人教版数学八年级数学上册添括号法则PPT精品课件
人教版数学八年级数学上册14.2.2添 括号法 则课 件
人教版数学八年级数学上册14.2.2添 括号法 则课 件
2、解:( a +b + c)2 =[(a +b )+c]2 =(a + b)2+2×(a + b)×c+c2 =a2+2ab+b2+2ac+2bc+c2 =a2+b2+c2+2ab+2ac+2bc

a + b + c= a -( ﹣b -c

人教版数学八年级数学上册14.2.2添 括号法 则课 件
人教版数学八年级数学上册14.2.2添 括号法 则课 件
例5、运用乘法公式计算: 1、(x+2y-3)×(x-2y+3) 2、(a +b + c)2 1、解:(x+2y-3)×(x-2y+3)
= [x+(2y-3)][x-(2y-3)] =x2-(2y-3)2 =x2-(4y2-12y+9) =x2-4y2+12y-9
人教版数学八年级数学上册14.2.2添 括号法 则课 件
人教版数学八年级数学上册14.2.2添 括号法 则课 件 人教版数学八年级数学上册14.2.2添 括号法 则课 件
人教版数学八年级数学上册14.2.2添 括号法 则课 件
人教版数学八年级数学上册14.2.2添 括号法 则课 件
1、化简2a-(a-c),结果是( B ) A、a - c B、a + c C、3a – c 2、若2a-b=2,则8+(4a-2b)=( 12 ) 3、计算: 2x-z+3y = 2x-( z-3y ) a+b-3c =a+( b-3c ) 7y-x+8 = 7y-( x-8 )

人教版八年级上册数学:添括号法则(公开课课件)

人教版八年级上册数学:添括号法则(公开课课件)

互助交流
3. a b c2
你还有不 同方法吗?
解:原式= [ (a+b) +c ]2
= (a+b)2 +2 (a+b)c +c2
= a2+2ab +b2 +2ac +2bc +c2
= a2+b2+c2 +2ab+2bc +2ac.
达标检测 1. 计算:
⑴ x y 1x y 1
(2) x y 12
补助提升
1. x 12 x 12
2. x 1x 1x 2 1
课后作业
1.必做题:教科书第112页第3题。 2.选做题:教科书第112页第7题。
互助交流
运用乘法公式计算:
1.(a+b-c)(a-b+c)
解:原式= [ a+ ( b-c)] [ a- ( b-c)] =a2−( b-c)2 =a2 -(b2-2bc+c)2 =a2 -b2+2bc-c2
温馨提示:将(b-c)看作一个整体.
互助交流
运用乘法公式计算:( x +2y-3) (x- 2y +3)
通过本课时的学习,需要我们掌握: 1.添括号法则 添括号时,如果括号前面是正号,括到括号里的各项都不变符号; 如果括号前面是负号,括到括号里的各项都改变符号. 2.利用添括号法则灵活应用完全平方公式、平方差公式。
3.(a + b +c ) 2 = a2+b2+c2 +2ab+2bc +2ac.
4.一个重要数学思想:整体思想
自助探究
对于例5(1):运用了__平_方__差___公式,其中公式 中的a是____x____,b是__2_y_-3___.

数学人教版八年级上册14.2乘法公式(3)-添括号法则教学设计

数学人教版八年级上册14.2乘法公式(3)-添括号法则教学设计

14.2.3乘法公式——添括号法则教学设计天津第五十四中学戴文玉一、教材的地位和作用首先学生们在初一时学习过去括号法则,对此法则较为熟悉。

类比讲解添括号法则,可以借助于去括号法则反过来理解和运用。

同时添括号是本章的一个重点也是难点,对乘法公式的变式计算,以及今后学习因式分解、分式的运算及解方程等内容都会用到去括号和添括号的问题。

所以本节知识的教学对学生们的学习有承上启下的作用,要使学生掌握去括号和添括号法则,为今后学习打下基础。

二、学情分析初二的学生已经通过一年的学习掌握了一些必要数学基础知识和思考方式。

学生已初步了解了多项式的加减法、多项式乘法以及去括号法则等,这样的话本节课的知识比较易于理解。

另外学生们处于求知欲和表现欲都很强的阶段,可以给学生提高更多的表现机会,加强合作交流,多互动,多反馈。

同时在教学时,应注意讲练结合,随时注意纠正、反馈学生可能出现的符号、系数和计算等方面的错误。

二、教学目标(一)知识目标:掌握添括号法则的推导,能运用添括号法则,结合乘法公式,对项数是三项的多项式乘法进行运算;(二)能力目标:理解添括号法则的探究过程,学生经历合作交流,能够根据式子的结构特点,适当变形和灵活运用公式;(三)情感目标:让学生体会知识间的相互联系,掌握类比推理的方法。

培养学生合作交流的意识和探索知识的创新精神,鼓励学生大胆灵活运用知识和多角度思考问题的习惯。

三、教学重点、难点重点:添括号法则的推导,进一步熟悉乘法公式并灵活应用。

难点:掌握添括号法则,综合运用乘法公式对多项式变形计算。

四、教学方法小组合作、问题探究、变式训练、练习反馈五、教学过程六、教学反思:本节课的重点是添括号法则,所以在教学中要让学生掌握此法则并能灵活运用。

同时,计算的依据是各种乘法公式,所以学生对公式的熟练程度需要关注。

另外,添括号对式子进行变形时,要注意观察结构特点,掌握技巧,同时也要注意做题的步骤和依据。

本节课后还要加强训练,提醒学生符号的变化和公式的灵活应用。

八年级数学人教版(上册)第2课时添括号法则

八年级数学人教版(上册)第2课时添括号法则
第十四章 整式的乘法与因式分解
14.2 乘法公式 14.2.2 完全平方公式 第2课时 添括号法则
知识点 1 添括号法则 1.在括号内填上适当的项: (1)a+b-c=a+( b-c ). (2)a+b-c=a-( -b+c ). (3)a-b-c=a-( b+c ). (4)a+b+c=a-( -b-c ).
的值. 解:∵a2+b2=5,a-2b=-2, ∴原式=-2a+3a2+6b2-3b2+4b =-2(a-2b)+3(a2+b2) =-2×(-2)+3×5 =19.
以上解答过程正确吗?若不正确,请指出错在哪里,并写出正 确的解答过程.
解:不正确,将-b+c 添括号时出错,正确的解答过程如下: (a-b+c)2=[a-(b-c)]2=a2-2a(b-c)+(b-c)2=a2-2ab+2ac+ b2-2bc+c2=a2+b2+c2-2ab+2ac-2bc.
6.计算(m-2n-1)(m+2n-1)的结果为( A ) A.m2-4n2-2m+1 B.m2+4n2-2m+1 C.m2-4n2-2m-1 D.m2+4n-2m-1
4.(教材 P111 练习 T2 变式)运用乘法公式计算: (1)(a+b-1)2. 解:原式=[(a+b)-1]2 =(a+b)2-2(a+b)+1 =a2+2ab+b2-2a-2b+1.
(2)(a+b+c)(a-b-c). 解:原式=[a+(b+c)][a-(b+c)] =a2-(b+c)2 =a2-b2-2bc-c2.
(3)(2a+3b-1)(2a+3b+1). 解:原式=[(2a+3b)-1][(2a+3b)+1] =(2a+3b)2-1 =4a2+12ab+9b2-1.
易错点 添括号时符号出错 5.计算:(a-b+c)2. 解:原式=[a-(b+c)]2 =a2-2a(b+c)+(b+c)2 =a2-2ab-2ac+b2+2bc+c2 =a2+b2+c2-2ab-2ac+2bc.

课件_人教版数学八年级上册14添括号法则优秀精美PPT课件

课件_人教版数学八年级上册14添括号法则优秀精美PPT课件

(5) 2 x ²–3 x–1= 2 x ²+( 2、能应用添括号法则,结合乘法公式对项数是三项或三项以上的多项式乘法进行运算.
); –3x–1 );
检验
我们所学过的乘法公式有哪些?
1、平方差公式
(a+b)(a–b)=a2-b2
记忆口诀: 相同项平方减去相反项平方
2. 完全平方公式:
(a+b)2 = a2 + 2ab + b2 (a-b)2 = a2 - 2ab + b2
如果括号前面是负号,去掉括号后,括号里的各项都要变号.
(2) (2a+b+c)2; 例5 运用乘法公式计算:
(1) (2x-y-3)2
=(x+3+x)(x+3-x)
(4)(3a+b-2)(3a-b-2) 符号均没有变化
添括号法则与去括号法则有什么联系?
= x2- ( 4y2-12y+9) 添括号法则与去括号法则有什么联系?
(1)a+(b+c)=

1、能对比去括号法则,得到添括号法则,并能够正确的添括号;
运用添括号法则对下列式子进行变形
(2)a-b+c=a-( )
去括号.
(1)a+(b+c)= a+b+c 。 (2)a-(b-c)= a-b+c 。
等式两边颠倒,得
(3)a+b+c=a+ ( b+c ) (4)a-b+c=a- ( b-c )
(1) ( x +2y-3) (x- 2y +3) ; (2) (a + b +c ) 2.
解: (1) ( x +2y-3) (x- 2y +3)

人教八年级数学上册《 添括号法则》课件

人教八年级数学上册《 添括号法则》课件

(3) a+b-c=a-(-b+c); (4) a-b-c=a-(b+c)
观察
符号均没有变化
添上“+( )”, 括号 里的各项都不变符号;
a + b – c = a + ( b – c)
符号均发生了变化
添上“–( )”, 括号
里的各项都改变符号.
a + b – c = a – ( – b +c )
合作复习
2.去括号的法则是什么?
• 括号前面是“+”号,把括号和它前面的 “+”号去掉,括号里各项都不改变正负号。
• 括号前面是“-”号,把括号和它前面的“”号去掉,括号里各项都改变正负号。
上面是根据去括号法则得到的等式,
现在我们把上面四个式子反过来:
学科网
(1) a+b-c=a+(b-c);
(2) a-b-c=a+(-b-c)
ቤተ መጻሕፍቲ ባይዱ
所添括号前面是“+”号,
括到括号里的各项都不改变正负号。
所添括号前面是“-”号, 括到括号里的各项都改变正负号。
1、下列各式,等号右边添的括号正确吗? 若不正确,可怎样改正?
(1)2x2 3x 6 (2x2 3x 6) (2)2x2 3x 6 (2x2 3x 6) (3)a 2b 3c a (2b 3c) (4)m n a b m (n a b)
( 3 )a b c a ( 2、运用乘法公式计算:
).
(1) (a2b1)2; (2 )(2 x y z )2 x ( y z )
3、若使 x26xm 成为(x a)2 的完全平方式,
则m= ,a= 。
填空: 2xy²– x³– y³+ 3x²y

人教版数学八年级上册14.2.2添括号法则教案

人教版数学八年级上册14.2.2添括号法则教案
另外,我也注意到,在实践活动和小组讨论环节,有些同学表现出较强的自主学习能力,能够主动发现问题、解决问题。这让我深感欣慰,也提醒我要充分调动同学们的学习积极性,鼓励他们在课堂上积极思考、主动探究。
1.加强对添括号法则符号运算的讲解和练习,提高同学们的运算能力。
2.设计更多生活情境的例题,帮助同学们将理论知识与实际应用相结合。
5.激发学生的创新思维,鼓励学生在掌握添括号法则的基础上,探索和发现新的解题方法和技巧。
三、教学难点与重点
1.教学重点
(1)添括号法则的理解与记忆:本节课的核心是使学生理解和掌握添括号法则,即如何给整式乘法中的各项添加括号,使之成为便于计算的式子。例如,a×(b+c)=a×b+a×c。
(2)添括号法则的应用:通过实例分析,让学生学会在实际问题中运用添括号法则,简化计算过程。
此外,课堂上的小组讨论环节,同学们的参与度较高,但部分小组在讨论过程中,存在观点分歧,导致讨论进度较慢。在今后的教学中,我需要适时引导同学们进行有效沟通,提高讨论效率。
在讲授新课的过程中,我发现有些同学对添括号法则的基本概念掌握不够扎实。为了帮助同学们更好地理解这一法则,我决定在下一节课开始时,进行一次简短的知识回顾,巩固同学们对添括号法则的理解。
2.提高学生的数学运算能力,使学生能够准确、快速地运用添括号法则简化计算过程,提高解题效率。
3.培养学生的数学建模素养,让学生学会将现实问题转化为数学问题,运用添括号法则解决实际问题,从而增强数学应用的意识。
4.增强学生的团队合作意识,通过小组讨论、合作完成练习题,培养学生沟通交流能力和协作解决问题的能力。
3.引导同学们进行有效沟通,提高小组讨论的效率。
4.定期进行知识回顾,巩固同学们对添括号法则的理解。

人教版初中数学八年级上册【说课稿】 添括号

人教版初中数学八年级上册【说课稿】 添括号

乘法公式(3)――添括号各位老师大家好,今天我说课的题目是人教版数学八年级上册第十四章第二节《乘法公式(3)――添括号》,下面我从说教材、说教法、说学法、说教学过程以及说教学反思等几个方面对本课的设计进行说明。

一、说教材1、本节教材的地位和作用本节课是在学生学习去括号及整式乘法公式的基础上,重点研究了如何通过去括号法则探究添括号法则、运用添括号法则进行整式变形的课题。

添括号是本章的一个难点,为今后学习因式分解、分式的运算以及解方程等内容做好铺垫。

因此,本节课的内容在初中数学学习中起着承前启后的作用,通过本节课的学习可以使学生的思维变得更加开阔,也对以后更好的学习数学知识有很大的帮助。

2、教学目标(1)知识与技能:使学生掌握添括号法则,会运用法则进行整式变形,进一步灵活运用乘法公式进行计算。

培养学生独立思考,分析及归纳能力。

(2)过程与方法:经历由去括号到添括号的探索过程,培养学生的逆向思维能力;通过熟练运用添括号法则,渗透类比、转化和整体思想。

(3)情感态度与价值观:引导学生在独立思考的基础上,积极参与讨论,逐步培养学生的合作交流意识。

3、重点,难点分析:由于添括号是灵活运用整式乘法公式的基础,因此,添括号法则及其应用是本节的教学重点。

又由于在“-”号后面添括号时,学生很容易犯只改变被括到括号内的某一项的符号,而忽视改变被括到括号内的各项符号的问题。

因此,在“-”号后面添括号法则及其应用是本节课的教学难点。

下面,为了突出重点,突破难点,使学生能达到本节课设定的教学目标,我再谈谈本节课的教法和学法。

二、说教法以启发式教学为主,讨论、交流合作展示等方法为辅。

整个教学过程中,我通过让学生观察、思考、讨论、合作、展示,充分调动学生的学习积极性,让学生在教师的引导下始终处于一种积极的学习状态,充分体现学生是学习的主人,教师只是教学活动的组织者、合作者、参与者。

三、说学法按照新课改生本课堂的要求,把学习的主动权还给学生,提倡积极主动、勇于探索、合作交流的学习方式,体现学生在教学活动中的主体地位。

人教版数学八年级上册添括号法则ppt课堂课件

人教版数学八年级上册添括号法则ppt课堂课件

人教版数学八年级上册14.2.2添括号 法则课 件
知识点3 利用乘法公式计算
3.为了应用平方差公式计算 (x+3y-1)(x-3y+1),下列变形正确 的是( C ) A.[x-(3y+1)]2 B.[x+(3y+1)]2 C.[x+(3y-1)][x-(3y-1)] D.[(x-3y)+1][(x-3y)-1]
人教版数学八年级上册14.2.2添括号 法则课 件
人教版数学八年级上册14.2.2添括号 法则课 件
总结教学目标掌握多少:
1.类比去括号掌握添括号法则。 2.会用添括号法则,进行多项式的 变形计算。 3.培养学生类比归纳的数学思想
人教版数学八年级上册14.2.2添括号 法则课 件
人教版数学八年级上册14.2.2添括号 法则课 件
平方差公式: (a+b)(a-b) =a2-b2 完全平方公式: (a+b)2= a2+2ab+b2
(a-b)2= a2-2ab+b2
人教版数学八年级上册14.2.2添括号 法则课 件
人教版数学八年级上册14.2.2添括号 法则课 件
.去括号(口答):
新知探究
(1)a(bc)(;2)a(bc)
(3)a(bc)(;4)a(bc)
人教版数学八年级上册14.2.2添括号 法则课 件 人教版数学八年级上册14.2.2添括号 法则课 件
人教版数学八年级上册14.2.2添括号 法则课 件
教学目标: 1.类比去括号掌握添括号法则。 2.会用添括号法则,进行多项式的变形计算。 3.培养学生类比归纳的数学思想 学习重点:添括号法则及法则的应用。 学习难点:括号前面是“-”号,括到括号 里的各项都要改变符号。
(1 ) a ( b c ) a b c

人教版数学八年级上册第三课时 添括号法则课件

人教版数学八年级上册第三课时 添括号法则课件

中,正确的是
(D)
A.[(a+c)-b][(a-c)+b]
B.[(a-b)+c][(a+b)-c]
C.[(b+c)-a][(b-c)+a]
D.[a-(b-c)][a+(b-c)]
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
数学·八年级 (上)·配人教
8
5.在等式的括号内填上恰当的项:
(1)x2-y2+8y=x2-(__y_2-__8_y_____);
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
能力提升
数学·八年级 (上)·配人教
10
9.下列式子中不能运用乘法公式计算的是
A.(a+b-c)(a-b+c)
B.(a-b-c)2
C.(a+b)(a-b)
D.(2a+b+2)(a-2b-2)
10.已知a-b=-3,c+d=2,则(a-d)-(b+c)的值为
第十四章 整式的乘法与因式分解
上一页 返回导航 下一页
数学·八年级 (上)·配人教
15
17.运用乘法公式计算: (1)(x+2y-3)(x-2y+3); 解:原式=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-4y2+12y-9. (2)(a+2b-c)(a-2b-c)-(a-b-c)2. 解:原式=[(a-c)+2b]·[(a-c)-2b]-[(a-c)-b]2=(a-c)2-4b2-[(a-c)2 -2b(a-c)+b2]=(a-c)2-4b2-(a-c)2+2b(a-c)-b2=-5b2+2ab-2bc.
(__________)].
5
6.已知2a-3b2=5,则10-2a+3b2=_____. -3
7.(x2+x+M)2=(x2+x)2-6(x2+x)+M2,则M=_______.

14.2.2 第2课时添括号法则 人教版数学八年级上册同步课堂教案

14.2.2 第2课时添括号法则 人教版数学八年级上册同步课堂教案

第十四章整式的乘法与因式分解14.2 乘法公式14.2.2 完全平方公式第2课时添括号法则一、教学目标1.了解并掌握添括号法则.2.熟练应用添括号法则进行计算.二、教学重难点重点:添括号法则.难点:灵活应用添括号法则进行计算.三、教学过程【新课导入】[复习导入]平方差公式:(a+b)(a-b)=a2-b2.语言叙述:两个数的和与这两个数的差的积,等于这两个数的平方差.完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.学生积极思考,教师带领复习平方差公式和完全平方公式.之后利用多媒体展示如下“练一练,加强巩固:【新知探究】知识点添括号法则[提出问题]已经学过的去括号的法则是什么?[课件展示]教师利用多媒体展示如下两道小题:a+(b+c)=a+b+c;a-(b+c)=a-b-c.[学生思考]学生思考1分钟,积极举手发言,对于回答不正确的,教师积极予以纠正.[提出问题]把上面两个等式的左右两边反过来,你得到了什么?[学生回答]a+b+c=a+(b+c);a-b-c=a-(b+c).[课件展示]教师利用多媒体展示如下动画.帮助学生探索总结添括号法则:[提出问题]你能用自己的话说一说该怎样添括号吗?[小组讨论]学生思考,小组间互相讨论,之后代表发言,对于回答不完整的,其他代表予以补充.[归纳总结]添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).也就是说,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.简记为:“负变正不变”. [课件展示]教师利用多媒体展示如下示例.帮助学生理解添括号法则:[课件展示]教师利用多媒体展示以下例题:例1 填空:a2-2b+c3-d=+(a2-2b+c3-d) ;=-(-a2+2b-c3+d);=a-(2b-c3)-d;=a+c3-(2b+d) .例2 运用乘法公式计算:(1) (x+2y-3)(x-2y+3);解:(1)(x+2y-3)(x-2y+3)=[x+(2y–3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9.(2) (a+b+c)2.解:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.[归纳总结]有符号相同也有符号不同的两个三项式相乘,可变形用平方差公式计算,需要分组:完全相同的项为一组(作为公式中的“a”),绝对值相同符号相反的项为另一组(作为公式中的“b”).多项式的平方的计算,把其中两项看成一个整体,再按照完全平方公式进行计算.[课件展示]根据例题中遇到的常见点,总结如下注意事项:【课堂小结】【课堂训练】1.下列变形中,错误的是( D )A.-x+y=-(x-y)B.-x-y=-(y+x)C.a+b-c=a+(b-c)D.a-b-c=a-(b-c)2.将多项式3m3+m2+4m-5添括号正确的是( B )A.3m3+m2+(4m+5)B.3m3+(m2+4m-5)C.3m3+m2-(-4m-5)D.3m3-(m2+4m-5)3.为了运用平方差公式计算(x+2y-1)(x-2y+1),以下变形正确的是( B )A.[x-(2y+1)]2B.[x+(2y-1)][x-2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]24.在等号右边的横线上填上适当的项.(1)a-b+c-d=a-( b-c+d );(2)a+b-c+d=a+b-( c-d );(3)a+b-c+d=a+b+d+( -c );(4)a-b+c-d=a+c-( b+d ).5.已知2a-3b=5,则10-2a+3b=5.【解析】10-2a+3b=10-(2a-3b)=10-5=5.6.分别按下列要求把多项式5a2b-2ab+3ab3-2b2添上括号:(1)把前两项括到前面带有“+”的括号里,后两项括到前面带有“-”的括号里;解:5a2b-2ab+3ab3-2b2=+(5a2b-2ab)-(-3ab3+2b2);(2)把后三项括到前面带有“-”的括号里;解:5a2b-2ab+3ab3-2b2=5a2b-(2ab-3ab3+2b2);(3)把二次项括到前面带有“-”的括号里,其余项括到前面带有“+”的括号里.解:5a2b-2ab+3ab3-2b2=-(2ab+2b2)+(5a2b+3ab3).7.计算:(1)(x-y-m+n)(x-y+m-n);解:原式=[(x-y)-(m-n)][(x-y)+(m-n)]=(x-y)2-(m-n)2=x2-2xy+y2-m2+2mn-n2.(2)(3a+b-2)(2-3a-b).解:原式=(3a+b-2)[-(3a+b-2)]=-(3a+b-2)2=-[(3a+b)-2]2=-[(3a+b)2-2×(3a+b)×2+22]=-[(9a2+6ab+b2)-(12a+4b)+4]=-(9a2+6ab+b2-12a-4b+4) =-9a2-6ab-b2+12a+4b-4. 【教学反思】本节是乘法公式的最后一节,内容较为简单,但错误率较高,尤其是添加括号前是“-”的时候,所以需要学生多加注意,同时,在进行多项式乘以多项式的计算时,利用添括号法则可对式子进行变形,然后利用乘法公式从而简化多项式的乘法计算,这也为后面的因式分解的学习打好基础.课堂教学中,知识点学生基本掌握,对于易错点,还需加强练习.教师应帮助学生消化知识中的难点,教与学的方法灵活些,不一定按照备好的程序循规蹈矩,而要根据学生的现状,随时调整学法和教法,使教学得至高效.。

八年级数学上册 添括号法则学案 (新版)新人教版

八年级数学上册 添括号法则学案 (新版)新人教版

添括号法则一、课前准备【合作复习】(时约5分钟)要求:. 课前认真完成下列各题,.(做题时要细心哦!)去括号: (1))(c b a -+=_______________ (2))(c b a --=_______________去括号法则:去括号时,如果括号前面是正号,直接去掉正号和括号,括号里的各项都___________;如果括号前面是负号,直接去掉负号和括号,括号里的各项都____________.2、根据上题结果填空:(1)c b a -+=_____________ (2)c b a +-=_____________二、课堂学习【自主学习】(用时约10分钟)要求:(课前自学课本155页—156页的例5内容,对有疑惑内容做标记)添括号法则1、添括号时,如果括号前面是 ,括到括号里的各项都 ;如果括号前面是 ,括到括号里的各项都2.在等号右边的括号内填上适当的项(1)a+b-c=a+( ) (2)a-b+c=a-( )(3)a-b-c=a-( ) (4)a+b+c=a-( )3、运用乘法公式计算(1))32)(32(+--+y x y x (2))1)(1(-+++y x y x解: (1))32)(32(+--+y x y x=[][])()(-+x x=22)(-x =)(2-x = 得(2))1)(1(-+++y x y x=[][]1)(1)(-+=1)(2- =1)(- =跟踪练习:运用平方差公式计算:)2)(2(z y x z y x --++跟踪练习:(=-+)122b a【展示提升】(用时约5分钟)自主学习3合作交流1三、随堂检测1计算、(1)(x+y+z )(x-y-z ) (2)(2x-y-3)2四、拓展延伸 计算、)1)1(22(-+m m五、小结反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。

9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
1、这节课你主要学习了哪些内 容?
2、添括号法则是什么?
习题14.2第3题

1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。

2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
1、平方差公式: (a + b)×(a - b)=a2-b2
2、完全平方公式: (a + b)2 = a2+2ab+b2 (a - b)2 = a2-2ab+b2
3、去括号的法则是什么?
括号前面是“﹢”号,把括 号和它前面的“﹢”号去掉, 括号里各项都不改变符号。
括号前面是“﹣”号,把括 号和它前面的“﹣”号去掉, 括号里各项都改变符号。
1、解:(x+2y-3)×(x-2y+3) = [x+(2y-3)][x-(2y-3)]
=x2-(2y-3)2 =x2-(4y2-12y+9)
=x2-4y2+12y-9
2、解:( a +b + c)2 =[(a +b )+c]2 =(a + b)2+2×(a + b)×c+c2 =a2+2ab+b2+2ac+2bc+c2

3.把握好故事情节,是欣赏小说的基础, 也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点, 从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。

4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
如果括号前面是负号,即“﹣”, 括到括号里的各项都改变符号。
1、下列各式,等号右边添的括号是 否正确?若不正确,怎么改正? (1)5x-y+7=+(5x+y-7) (2)2x2-3x+9=﹣(﹣2x2+3x-9) √ (3)a-b-4c=a-(b+4c)√ (4)m-3n-x+y=m-(3n+x+y)
(1)a+(b-c)
(2)a+(﹣b-c)
(3)a-( ﹣b+c)
(4)a-( b+c)
解:(1) a+(b-c) = a+b-c
(2) a+(﹣b-c) = a-b-c
(3) a-( ﹣b+c) = a + b - c
(4) a-( b+c) = a-b-c
问题1、现在我们将上面等式左右两边互换过来, 你有什么发现?
添上“﹢()”,括号
(1)a+b-c =a+(b-c) 里各项都不改变符号
(2)a-b-c=a+(﹣b-c)
(3)a + b – c= a-( ﹣b+c) 添上“﹣()”,括
号里各项都改变符号
(4)a-b-c= a-( b+c)
问题2、你能将发现的规律类比去括号法则表述 出来吗?
添括号时,
如果括号前面是正号,即“﹢”, 括到括号里的各项都不变符号;
感谢观看,欢迎指导!
怎 样 检 验
检验的方法:用去括号法则来检验 添括号是否正确
2、在等号右边的括号内填上适当的项,并用去括 号法则检验:
a + b- c= a – b + c= a -( b - c

a + b- c= a -( ﹣ b + c

a + b + c= a -( ﹣b -c

例5、运用乘法公式计算: 1、(x+2y-3)×(x-2y+3) 2、(a +b + c)2

5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。

6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。

7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
=a2+b2+c2+2ab+2ac+2bc
1、化简2a-(a-c),结果是( B ) A、a - c B、a + c C、3a – c 2、若2a-b=2,则8+(4a-2b)=( 12 ) 3、计算: 2x-z+3y = 2x-( z-3y )
a+b-3c =a+( b-3c )
7y-x+8 = 7y-( x-8 )
相关文档
最新文档