中考复习:等腰三角形

合集下载

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形一、选择题1. 下列命题中,属于假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60∘2. 如图,在△ABC中,∠B=∠C, AB=5,则AC的长为()A.2B.3C.4D.53. 如图:等腰直角△ABC中,若∠ACB=90∘,CD=DE=CE,则∠DAB的度数为()A.60∘B.30∘C.45∘D.15∘4. 等腰三角形的一腰上的高与另一腰的夹角是48∘,它的一个底角的度数是()A.48∘B.21∘或69∘C.21∘D.48∘或69∘5. 已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝6. 等腰直角三角形的底边长为5,则它的面积是()A.25B.12.5C.10D.6.257. 如图,△ABC中,∠ABC=90∘,∠C=30∘,AD是角平分线,DE⊥AC于E,AD、BE相交于点F,则图中的等腰三角形有()A.2个B.3个C.4个D.5个8. 一个角是60∘的等腰三角形是()A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确9. 以下关于等边三角形的判定:①三条边相等的三角形是等边三角形;①有一个角是60∘的等腰三角形是等边三角形;①有两个角为60∘的三角形是等边三角形①三个角相等的三角形是等边三角形其中正确的是()A.只有①①①B.只有①①①C.只有①①①D.①①①①10. 如图,在△ABC中,∠B=60∘,AB=9,BP=3,AP=AC,则BC的长为()A.8B.7C.6D.511. 等腰三角形一腰上的高等于该三角形另一边长的一半.则其顶角等于()A.30∘B.30∘或150∘C.120∘或150∘D.120∘、30∘或150∘12. 等腰三角形的一个角比另一个角的2倍少20度,等腰三角形顶角的度数是( )A.140∘B.20∘或80∘C.44∘或80∘D.140∘或44∘或80∘二、填空题13. 等腰三角形一腰的高等于腰长的一半,则其顶角的度数为________.14. 如图,△ABC是边长为8的等边三角形,点D在BC的延长线上,做DF⊥AB,垂足为F,若CD=6,则AF的长等于________.15. 如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm,则直角三角形(4)的斜边长为________.16. 如图等边三角形ABC中,AB=3,D、E是BC上的两点,AD、AE把△ABC分割成周长相等的三个三角形,则CD=________.17. 如图,在△ABC中,∠ABC=∠C,∠A=100∘,BD平分∠ABC交AC于点D,点E是BC上一个动点.若△DEC是直角三角形,则∠BDE的度数是________.三、解答题18. 从①∠B=∠C;①∠BAD=∠CDA;①AB=DC;①BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).已知:________(只填序号),求证:△AED是等腰三角形.19. 如图,BD//AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.20. 如图所示,在矩形ABCD中,DE⊥CE,∠ADE=30∘,DE=4,求这个矩形的周长.21. 如图,在△ABC中,∠ACB−∠B=90∘,∠BAC的平分线交BC于点E,∠BAC的外角∠CAD 的平分线交BC的延长线于点F,试判断△AEF的形状.22. (1)如图①,△ABC是等边三角形,△ABC所在平面上有一点P,使△PAB,△PBC,△PAC都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来. 25.(2)如图①,正方形ABCD所在的平面上有一点P,使△PAB,△PBC,△PCD,△PDA都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来.参考答案13.【答案】30∘或150∘14.【答案】115.【答案】416.【答案】−3+3√331617.【答案】30∘或70∘18.证明:选择的条件是:①∠B=∠C①∠BAD=∠CDA(或①①,①①,①①);证明:在△BAD和△CDA中,① {∠B=∠C,∠BAD=∠CDA,AD=DA,① △BAD≅△CDA(AAS),① ∠ADB=∠DAC,即在△AED中∠ADE=∠DAE,① AE=DE,△AED为等腰三角形.19.证明:∵BD//AC,① ∠EBD=∠C,BD=BC,BE=AC,① △EDB≅ABC(SAS),① ∠D=∠ABC20.解:① 四边形ABCD是矩形,① ∠A=∠B=90∘,AD=BC.在Rt△ADE中,① ∠A=90∘,∠ADE=30∘,DE=4,① AE=12DE=2,AD=√3AE=2√3.① DE⊥CE,∠A=90∘,① ∠BEC=∠ADE=90∘−∠AED=30∘.在Rt△BEC中,① ∠B=90∘,∠BEC=30∘,BC=AD=2√3, ① BE=√3BC=6,① AB=AE+BE=2+6=8,① 矩形ABCD的周长=2(AB+AD)=2(8+2√3)=16+4√3.21.解:△AEF是等腰直角三角形;理由如下:如图所示:① AE平分∠BAC,AF平分∠CAD,① ∠EAC=12∠BAC,∠FAC=12∠CAD,① ∠BAC+∠CAD=180∘,① ∠EAC+∠FAC=12(∠BAC+∠CAD)=90∘,即∠EAF=90∘,① ∠ACB−∠B=90∘,① ∠ACB=90∘+∠B,① ∠1=90∘−∠B=∠B+∠BAC,① ∠B=12(90∘−∠BAC),① ∠4=∠B+∠AEF,① AE平分∠DAC,① ∠3=∠4=∠B+∠AEF,① ∠BAC+∠3+∠4=180∘,① 2(∠B+∠AEF)+∠BAC=2[12(90∘−∠BAC)+∠AEF]+∠BAC=180∘,① ∠AEF=45∘,① ∠AFE=45∘,① △AEF是等腰直角三角形.22.【解答】(1)10个,如解图①,当点P在△ABC内部时,P是边AB.BC.CA的垂直平分线的交点:当点P在△ABC外部时,P是以三角形各顶点为圆心,边长为半径的圆与三条垂直平分线的交点每条垂直平分线上得3个交点,故具有这样性质的点P共有10个.(2)9个,如解图①.两条对角线的交点是1个,以正方形各顶点为圆心,边长为半径画圆,在正方形里面和外面的交点一共有8个,故具有这样性质的点P共有9个.。

中考数学复习高频考点知识讲解与练习18---等腰三角形

中考数学复习高频考点知识讲解与练习18---等腰三角形

中考数学复习高频考点知识讲解与练习第18讲等腰三角形【考点知识总汇】一、等腰三角形的判定与性质1.判定:如果一个三角形有两个角相等,那么这两个角所对的边也(简写“”)。

2.性质(1)等腰三角形的两个底角(简写为“”)。

(2)等腰三角形顶角的、底边上的高和底边上的互相重合(简写成“三线合一”)。

(3)等腰三角形是图形,底边上的中线(或底边上的高或顶角的平分线)所在的直线是它的对称轴。

知识点总结:二、等边三角形的判定与性质1.判定(1)三个角的三角形是等边三角形。

(2)有一个角等于60 的三角形是等边三角形。

2.性质(1)等边三角形的三个内角都,并且每一个角都等于。

(2)等边三角形是轴对称图形,并且有条对称轴。

21AB知识点总结: 1.由于等边三角形是特殊的等腰三角形,所以等边三角形具有等腰三角形的所有性质,但等边三角形具有的性质等腰三角形不一定具有。

2.等边三角形的性质和判定的题设和结论也正好相反,要注意区别。

三、线段的垂直平分线1.性质:线段垂直平分线上的点与这条线段两个端点的距离。

2.判定:与一条线段两个端点距离相等的点,在这条线段的上。

知识点总结:1.线段的垂直平分线的性质是证明线段相等或垂直的重要方法。

2.垂直平分线的性质与判定的题设和结论也正好相反,注意区别。

高频考点1、等腰三角形的性质与判定【范例】如图, 90=∠ABC ,E D ,分别在AC BC ,上,DE AD ⊥,且DE AD =,点F 是AE 的中点,FD 与AB 相交于点M 。

(1)求证:FCM FMC ∠=∠。

(2)AD 与MC 垂直吗?并说明理由。

得分要领:等腰三角形的“三线合一”,包括以下三个结论:如图,在△ABC 中,AC AB =。

1.若BC AD ⊥,则DC BD =,21∠=∠。

2.若DC BD =,则BC AD ⊥,21∠=∠。

3.若21∠=∠,则BC AD ⊥,DC BD =。

【考题回放】1.若等腰三角形的顶角为40 ,则它的底角数为( )A.40B.50C.60D.702.如图,在△ABC 中,AC AB =,且D 为BC 上一点,AD CD =,BD AB =,则B ∠的度数为( )A.30B.36C.40D.45第2题 第3题3.如图,在△ABC 中,AC AB =, 40=∠A ,点D 在AC 上,DC BD =,则ABD ∠的度数是。

中考数学一轮复习:第19课时等腰三角形课件

中考数学一轮复习:第19课时等腰三角形课件

返回目录
4. (202X龙岩5月质检8题4分)三个等边三角形的摆放位置如图,若∠3=60°,
则∠1+∠2的度数为( B )
A. 90°
B. 120° C. 270°
D. 360°
第4题图
No
B. ∠AEF= 12∠ABC D. ∠AEB=∠ACB
No
第1题图
第19课时 等腰三角形
返回目录
2. (202X莆田5月质检14题4分)如图,△ABC中,AB=3 5 ,AC=4 5 ,点F在
AC上,AE平分∠BAC,AE⊥BF于点E.若点D为BC中点,则DE的长为 5
____2____.
第2题图
例题图①
例题图②
No
第19课时 等腰三角形
返回目录
类型一 等腰三角形的判定及计算(202X.5)
1. (202X宁德5月质检10题4分)如图,已知等腰△ABC,AB=BC,D是AC上一点,
线段BE与BA关于直线BD对称,射线CE交射线BD于点F,连接AE,AF.则下列关
系正确的是( B ) A. ∠AFE+∠ABE=180° C. ∠AEC+∠ABC=180°
第1题图
No
第19课时 等腰三角形
解:在△BAD和△CAD中,
AB=AC
BD=CD ,
AD=AD
△BAD≌△CAD(SSS).
∴∠BAD=∠CAD,
∴∠BDA=∠CDA=90°,AD⊥BC,
即AD是底边BC的高.
∴BC边上的中线、高以及∠BAC的平分线互相重合
No
返回目录
返回思维导图
第19课时 等腰三角形
No
第19课时 等腰三角形
返回目录
类型二 等边三角形性质的相关计算(202X.5)

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形

中考数学专题复习:等腰三角形一、选择题1. 若等腰三角形的顶角为50°,则它的底角度数为( )A .40°B .50°C .60°D .65° 2. 如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°3. 一个等腰三角形两边的长分别为75和18,则这个三角形的周长为()A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定4. 如图,在△ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°5. 如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒6. 如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1B .2个C .3个D .4个CE F7. △ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A. 120°B. 125°C. 135°D. 150°8. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则()A. x -y 2=3B. 2x -y 2=9C. 3x -y 2=15D. 4x -y 2=21二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm . 10. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD11. 如图,在△ABC 中,AB =AC ,∠BAC 的平分线AD 交BC 于点D ,E 为AB 的中点.若BC =12,AD =8,则DE 的长为________.ECB A12. 如图,在△ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若△AFC 是等边三角形,则∠B =________°. ABC DE F13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为________.15. 如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为__________.16. 如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M 是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.MD CBA三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;ODABCxy(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.19. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.20. 如图,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连接CD,AE,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.21. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P 由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA 方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.参考答案1. 【答案】D2. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .3. 【答案】[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.4. 【答案】B【解析】可利用三角形的外角性质求∠ FEC 的度数,结合等腰三角形与平行线的性质,可得∠ EDC 、∠B 均与∠C 相等.即:∵AB =AC ,∴∠B =∠C =65°.∵DF ∥AB ,∴∠ EDC =∠B =65°.∴∠FEC =∠EDC +∠C =65°+65°=130°.5. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠, ∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C . 6. 【答案】C【解析】∵△ABC 和△ADE 都是等腰直角三角形,∴AB=AC ,AD=AE ,∵∠BAD=90°+∠CAD ,∠CAE=90°+∠CAD ,∴∠BAD=∠CAE ,在△AEC 与△ADB 中, AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△AEC ≌△ADB(SAS),∴BD=CE ,故①正确;∴∠ADB=∠AEC ,∵∠DEF+∠AEC+∠EDA=90°,∴∠DEF+∠ADB+∠EDA=90°∴∠DEF+∠EDF=90∘,∴BD ⊥CE ,故②正确;∵作AN ⊥CE ,AM ⊥BD∵△AEC ≌△ADB(SAS),∴AM=AN,∵AF是∠BFE的角平分线,∠BFE=90°,∴∠AFE=45°,故④正确,故③正确;因为QF≠PF,故③错误。

中考数学考点20等腰三角形总复习(原卷版)

中考数学考点20等腰三角形总复习(原卷版)

等腰三角形【命题趋势】在中考中.等腰三角形常以选择题和填空题的形式考查;也经常在解答题中结合二次函数考查;等边三角形常以选择题、填空题和解答题考查.经常与圆综合题作为考查。

【中考考查重点】一、等腰三角形二、等边三角形考点一:等腰三角形的性质与判定1.(2021秋•绥棱县期末)有两边相等的三角形的两边长为4cm.5cm.则它的周长为()A.8cm B.14cm C.13cm D.14cm或13cm 2.(2021秋•延边州期末)如图.在△ABC中.AD是角平分线.且AD=AC.若∠BAC=60°.则∠B的度数是()A.45°B.50°C.52°D.58°3.(2021秋•和平区校级期中)如图.∠ABC、∠ACB的平分线相交于点F.过F作DE ∥BC.交AB于点D.交AC于点E.BD=3cm.EC=2cm.则DE=5cm.4.(2021秋•龙凤区校级期末)已知等腰三角形一腰上的高线与另一腰的夹角为40°.那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°性质1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线.底边上的中线.底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形.有2条对称轴判定1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式.其中a是底边常.hs是底边上的高5.(2021•淄博)如图.在△ABC中.∠ABC的平分线交AC于点D.过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=80°.∠C=40°.求∠BDE的度数.6.(2021秋•临江市期末)如图.在△ABC中.AB=AC.点D、E、F分别在AB、BC、AC 边上.且BE=CF.BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时.求∠DEF的度数.7.(2020秋•呼和浩特期末)如图.点O是等边△ABC内一点.D是△ABC外的一点.∠AOB=110°.∠BOC=α.△BOC≌△ADC.∠OCD=60°.连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时.试判断△AOD的形状.并说明理由;(3)探究:当α为多少度时.△AOD是等腰三角形.考点二: 等边三角形的性质与判定8.(2021秋•浦城县期中)△ABC 是等边三角形.点P 在△ABC 内.P A =4.将△P AB 绕点A 逆时针旋转得到△P 1AC .则P 1P 的长等于( )A .4B .C .2D .9.(2020秋•紫阳县期末)如图.在等腰△ABC 中.AB =AC .点E 为AC 的中点.延长BC 到点D .使得CD =CE .延长DE 交AB 于点F .若∠A =60°.EF =4cm .则DF 的长为( )性质1. 三条边相等2. 三个内角相等.且每个内角都等于60°3. 等边三角形是轴对称图形.有3条对称轴判定1. 三条边都相等的三角形是等边三角形2. 三个角相等的三角形是等边三角形3. 有一个角的是60°的等腰三角形是等边三角形面积公式 是等边三角形的边长.h 是任意边上的高A.12cm B.10cm C.8cm D.6cm 10.(2021春•张店区期末)如图.P是等边三角形ABC内的一点.且P A=3.PB=4.PC=5.以BC为边在△ABC外作△BQC≌△BP A.连接PQ.则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°11.(2020秋•河东区期中)如图.点M.N分别在正三角形ABC的BC.CA边上.且BM=CN.AM.BN交于点Q.求证:∠BQM=60°.1.(2021秋•九龙坡区期中)如图.在△ABC中.AB=AC.点D为边AC上一点.且AD=BD.∠A=40°.则∠DBC的度数是()A.20°B.30°C.40°D.50°2.如图.为了让电线杆垂直于地面.工程人员的操作方法是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC.当固定点B.C到杆脚E的距离相等.且B.E.C在同一直线上时.电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.(2021秋•九台区期末)如图.已知△ABC的面积为24.AB=AC=8.点D为BC边上一点.过点D分别作DE⊥AB于E.DF⊥AC于F.若DF=2DE.则DF长为()A.4B.5C.6D.85.(2021秋•天河区期末)如图所示的正方形网格中.网格线的交点称为格点.已知A、B是两格点.如果C也是图中的格点.且使得△ABC为等腰三角形.则点C的个数是()A.6个B.7个C.8个D.9个5.(2021秋•南安市期末)如图:D为△ABC内一点.CD平分∠ACB.BD⊥CD.∠A =∠ABD.若BD=1.BC=3.则AC的长为()A.5B.4C.3D.26.(2021•滨州)如图.在△ABC中.点D是边BC上的一点.若AB=AD=DC.∠BAD=44°.则∠C的大小为.7.(2019•重庆)如图.在△ABC中.AB=AC.AD⊥BC于点D.(1)若∠C=42°.求∠BAD的度数;(2)若点E在边AB上.EF∥AC交AD的延长线于点F.求证:AE=FE.8.(2021秋•长春期末)如图.在等边△ABC中.点D在边BC上.过点D作DE∥AB交AC于点E.过点E作EF⊥DE.交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.9.(2020秋•淮南期末)已知.在等边三角形ABC中.点E在AB上.点D在CB的延长线上.且ED=EC.(1)【特殊情况.探索结论】如图1.当点E为AB的中点时.确定线段AE与DB的大小关系.请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发.解答题目】如图2.当点E为AB边上任意一点时.确定线段AE与DB的大小关系.请你直接写出结论.AE DB(填“>”、“<”或“=”);理由如下.过点E作EF∥BC.交AC 于点F.(请你完成以下解答过程).(3)【拓展结论.设计新题】在等边三角形ABC中.点E在直线AB上.点D在线段CB的延长线上.且ED=EC.若△ABC的边长为1.AE=2.求CD的长(请你画出相应图形.并直接写出结果).1.(2021•赤峰)如图.AB∥CD.点E在线段BC上.CD=CE.若∠ABC=30°.则∠D的度数为()A.85°B.75°C.65°D.30°2.(2021•青海)已知a.b是等腰三角形的两边长.且a.b满足+(2a+3b﹣13)2=0.则此等腰三角形的周长为()A.8B.6或8C.7D.7或8 3.(2021•广西)如图.⊙O的半径OB为4.OC⊥AB于点D.∠BAC=30°.则OD的长是()A.B.C.2D.3 4.(2020•铜仁市)已知等边三角形一边上的高为2.则它的边长为()A.2B.3C.4D.4 5.(2021•康巴什一模)如图所示.已知m∥n.等边△ABC的顶点B在直线n上.∠1=25°.则∠2的度数是()A.25°B.35°C.45°D.55°6.(2021•荆门一模)如图.△ABC是等边三角形.△BCD是等腰三角形.且BD=CD.过点D作AB的平行线交AC于点E.若AB=8.DE=6.则BD的长为()A.6B.C.D.7.(2021•丹东模拟)如图.△ABC是等边三角形.AD是BC边上的中线.点E在AD上.且DE=BC.则∠AFE=()A.100°B.105°C.110°D.115°8.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的△DEF的周长是.9.(2019•哈尔滨)如图.在四边形ABCD中.AB=AD.BC=DC.∠A=60°.点E为AD边上一点.连接BD、CE.CE与BD交于点F.且CE∥AB.若AB=8.CE=6.则BC的长为.10.(2021•朝阳)如图.在平面直角坐标系中.点A的坐标为(5.0).点M的坐标为(0.4).过点M作MN∥x轴.点P在射线MN上.若△MAP为等腰三角形.则点P的坐标为.1.(2021•贵港模拟)如图.在△ABC中.AB=BC.∠A=36°.AB的垂直平分线DE交AB于点D.交AC于点E.若AB=10.则CE的长为()A.5B.8C.10D.10 2.(2021•西湖区二模)如图.在△ABC中.点D在边BC上.且满足AB=AD=DC.过点D 作DE⊥AD.交AC于点E.设∠BAD=α.∠CAD=β.∠CDE=γ.则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°3.(2021•陕西模拟)如图.△ABC中.AB=AC.AD⊥BC于点D.DE⊥AB于点E.BF⊥AC 于点F.DE=2.则BF的长为()A.3B.4C.5D.6 4.(2021•西陵区模拟)如图.已知Rt△OAB.∠OAB=50°.∠AOB=90°.O点与坐标系原点重合.若点P在x轴上.且△APB是等腰三角形.则点P的坐标可能有()个.A.1个B.2个C.3个D.4个5.(2021•成都模拟)如图.把一张长方形纸片沿对角线折叠.若△EDF是等腰三角形.则∠BDC=()A.45°B.60°C.67.5°D.75°6.(2021•中山区一模)如图.直线m∥n.点A在直线m上.点B、C在直线n上.AB=CB.∠1=70°.则∠BAC等于()A.40°B.55°C.70°D.110°7.(2021•饶平县校级模拟)如图.在△ABC中.AB=6.AC=4.∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC分别交AB、AC于M、N.则△AMN的周长为()A.12B.10C.8D.不确定8.(2021•商河县校级模拟)如图.△ABC的面积为8cm2.AP垂直∠B的平分线BP于P.则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2 9.(2021•甘谷县一模)如图.已知:∠MON=30°.点A1.A2.A3……在射线ON上.点B1.B2.B3……在射线OM上.△A1B1A2.△A2B2A3.△A3B3A4……均为等边三角形.若OA1=1.则△A7B7A8的边长为()A.64B.32C.16D.128 10.(2021•蔡甸区二模)如图.△ABC中.点D在BC边上.且∠ADB=90°∠CAD.(1)求证:AD=AC;(2)点E在AB边上.连接CE交AD于点F.且∠CFD=∠CAB.AE=BD.①求∠ABC的度数;②若AB=8.DF=2AF.直接写出EF的长.。

等腰三角形中考复习

等腰三角形中考复习

等腰三角形教学目标:1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.4.掌握角平分线的性质及判定.考情分析:等腰三角形的概念、性质、判定是中考的重点内容,在选择题、填空题、解答题中均有出现;等边三角形、线段的垂直平分线及角的平分线在中考中也经常考查.知识梳理一、等腰三角形1.等腰三角形的有关概念及分类有两边相等的三角形叫做等腰三角形,三边相等的三角形叫做等边三角形,也叫做正三角形;等腰三角形分为腰和底______的等腰三角形和______三角形.2.等腰三角形的性质(1)等腰三角形的两个底角相等(简称为“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);(3)等腰三角形是轴对称图形.3.等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”).二、等边三角形的性质与判定1.等边三角形的性质(1)等边三角形的内角相等,且都等于________;(2)等边三角形的三条边都________.2.等边三角形的判定(1)________相等的三角形是等边三角形;(2)________相等的三角形是等边三角形;(3)有一个角为________的等腰三角形是等边三角形.三、线段的垂直平分线1.概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫________.2.性质:线段垂直平分线上的点到这条线段两个端点的距离________.3.判定:到一条线段的两个端点__________的点在线段的垂直平分线上,线段的垂直平分线可以看作是到线段两端点距离相等的点的集合.四、角的平分线1.性质:角平分线上的点到角的两边的距离________.2.判定:角的内部到角的两边距离相等的点在角的______上,角的平分线可以看作是到角的两边距离相等的点的集合.自主测试1.等腰三角形的周长为14,其中一边长为4,那么,它的底边长为__________.2.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=5,AC=4,则D点到AB的距离是__________.3.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.4.等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定方法探究考点一、等腰三角形的性质与判定【例1】已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图甲,若点O在边BC上,求证:AB=AC;(2)如图乙,若点O在△ABC的内部,求证:AB=AC;解:(1)证明:过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC,∴∠B=∠C,从而AB=AC.(2)证明:过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF.在Rt△OEB和Rt△OFC中,∵OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF.又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC.方法总结1.要证明一个三角形为等腰三角形,须证明这个三角形的两条边相等或两个角相等,两种方法往往都需要证明三角形全等.2.若三角形中出现了高线、中线或角平分线,有时可以延长某些线段,构造出等腰三角形,然后用“三线合一”性质去处理.触类旁通1 如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.考点二、线段的垂直平分线【例2】如图,△ABC的周长为30 cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4 cm,则△ABD的周长是( )A.22 cm B.20 cm C.18 cm D.15 cm解析:由题意可知DE为AC的垂直平分线,所以AD=CD,AC=2AE=8 cm.因为△ABC 的周长为30 cm,所以AB+BC+AC=30 cm,所以AB+BC=22 cm.所以△ABD的周长为AB +BD+AD=AB+BC=22 cm.答案:A方法总结1.线段垂直平分线的性质有两个:(1)线段垂直平分线上的点到线段两个端点的距离相等;(2)线段垂直平分线垂直、平分这条线段.2.线段垂直平分线的性质定理在中考中常以选择题、填空题的形式出现,且常与三角形的周长结合命题.触类旁通2 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE 垂直平分AB,求∠B的度数.考点三、角的平分线【例3】如图,已知CD⊥AB于点D,BE⊥AC于点E,且CD,BE相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.证明:(1)∵∠1=∠2,CD⊥AB,BE⊥AC,∴OE=OD.∵∠3=∠4,∠CEO=∠BDO=90°,∴△OEC≌△ODB.∴OB=OC.(2)∵∠3=∠4,∠CEO=∠BDO=90°,OB=OC,∴△OEC≌△ODB.∴OE=OD.∵CD⊥AB,BE⊥AC,∴OA平分∠CAB.∴∠1=∠2.方法总结在解决有关角平分线的问题时通常做法是过角平分线上一点作角的两边的垂线.触类旁通3 如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是( )A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP 真题回顾1.(2012贵州铜仁)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN ∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )A.6 B.7 C.8 D.92.(2012江西南昌)若等腰三角形的顶角为80°,则它的底角是( )A.20° B.50° C.60° D.80°3.(2012浙江宁波)如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.4.(2012广东广州)如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为________.5.(2012湖南益阳)如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.6.(2012湖北随州)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.巩固练习1.如图,坐标平面内有一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2 B.3 C.4 D.52.在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC,交AB于点D,交AC 于点E,若BD+CE=9,则线段DE的长为( )A.9 B.8 C.7 D.63.如图,P,Q是△ABC边BC上的两点,且QC=AP=AQ=BP=PQ,则∠BAC=( )A.125° B.130° C.90° D.120°4.如图,在△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂线交BC于点E,则△ADE的周长等于__________.6.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=__________度.7.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是__________.8.如图所示,在△ABC中,D,E分别是边AC,AB上的点,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情况);(2)选择第(1)小题中的一种情况,证明△ABC是等腰三角形.。

中考数学复习考点知识与题型专题讲解23 等腰三角形

中考数学复习考点知识与题型专题讲解23 等腰三角形

中考数学复习考点知识与题型专题讲解专题22等腰三角形【知识要点】等腰三角形概念:有两边相等的三角形角等腰三角形。

等腰三角形性质:1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 等边三角形概念:三条边都相等的三角形,叫等边三角形。

它是特殊的等腰三角形。

等边三角形性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60º的等腰三角形是等边三角形。

(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。

(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。

(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。

(3)常用辅助线:①三线合一;②过中点做平行线【考查题型】考查题型一等腰三角形的定义【解题思路】考查等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.典例1.(2021·贵州黔南布依族苗族自治州·中考真题)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22变式1-1.(2021·广西玉林市·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形变式1-2.(2021·青海中考真题)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°变式1-3.(2021·湖南张家界市·中考真题)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或4考查题型二 根据等边对等角求角度典例2.(2021·广西中考真题)如图,AB 是⊙O 的弦,AC 与⊙O 相切于点A ,连接OA ,OB ,若∠O =130°,则∠BAC 的度数是( )A .60°B .65°C .70°D .75°变式2-1.(2021·甘肃兰州市·中考真题)如图,//AB CD ,AD CD =,165∠=︒,则2∠的度数是()A .50︒B .60︒C .65︒D .70︒变式2-2.(2021·山东临沂市·中考真题)如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒变式2-3.(2021·浙江温州市·中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°考查题型三根据三线合一求解典例3.(2021·广东深圳市·中考真题)如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2B.3C.4D.5变式3-1.(2021·铜仁市·中考真题)已知等边三角形一边上的高为)A.2B.3C.4D.变式3-2.(2021·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P 为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.﹣2C.+2D.考查题型四格点中画等腰三角形典例4在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4B.6C.8D.10变式4-1.(2021·山东枣庄市一模)如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个变式4-2.如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个考查题型五根据等角对等边证明等腰三角形典例5.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+12∠B=90°变式5-1.(2021·无锡市模拟)下列能断定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=2∠B=70°C.∠A=40°,∠B=70°D.AB=3,BC=6,周长为14变式5-2.如图,在△ABC 中,AB=AC,BO、CO 分别平分∠ABC、∠ACB,DE 经过点O,且DE∥BC,DE 分别交AB、AC 于D、E,则图中等腰三角形的个数为( )A .2B .3C .4D .5考查题型六 根据等角对等边求边长典例6.(2021·山东青岛市·中考真题)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为()A C ..变式6-1.(2021·山东济宁市·中考真题)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是()A .15海里B .20海里C .30海里D .60海里变式6-2.(2021·河北九年级其他模拟)如图,在▱ABCD 中,AB =8,BC =5,以点A 为圆心,以任意长为半径作弧,分别交AD 、AB 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠DAB 内交于点M ,连接AM 并延长交CD 于点E ,则CE 的长为( )A .3B .5C .2D .6.5考查题型七 等腰三角形性质与判定的综合典例7.(2021·浙江绍兴市·中考真题)问题:如图,在△ABD 中,BA =BD .在BD 的延长线上取点E ,C ,作△AEC ,使EA =EC ,若∠BAE =90°,∠B =45°,求∠DAC 的度数.答案:∠DAC =45°思考:(1)如果把以上“问题”中的条件“∠B =45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B =45°”去掉,再将“∠BAE =90°”改为“∠BAE =n °”,其余条件不变,求∠DAC 的度数.变式7-1.(2021·江苏淮安市·中考真题)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得30CAB ∠=︒,45ABC ∠=︒,8AC =千米,求A 、B 两点间的距离.(参考数据: 1.4≈,1.7≈,结果精确到1千米).变式7-2.(2021·辽宁鞍山市·中考真题)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40cm AC =,求支架BC 的长.(结果精确到1cm ,参考1.414≈ 1.732≈2.449≈)考查题型八 等边三角形的性质典例8.(2021·福建中考真题)如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF ∆的面积是()A .1B .12C .13D .14变式8-1.(2021·山西中考真题)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是()A .280cm πB .240cm πC .224cm πD .22cm π变式8-2.(2021·甘肃天水市·中考真题)如图,等边OAB 的边长为2,则点B 的坐标为()1,1B.C.D.A.()考查题型九等边三角形的性质与判定的综合典例9.(2021·内蒙古中考真题)如图,一个人骑自行车由A地到C地途经B地当他由A地出发时,发现他的北偏东45︒方向有一电视塔P,他由A地向正北方向骑行了到达B地,发现电视塔P在他北偏东75︒方向,然后他由B地向北偏东15︒方向骑行了6km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.变式9-1.(2021·内蒙古鄂尔多斯市·中考真题)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点均在格点上.①请按要求画图:将ABC绕点A顺时针方向旋转90°,点B的对应点为点B',点C的对应点为点C'.连接BB';∠AB B=°.②在①中所画图形中,'(2)(问题解决)如图2,在Rt ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE ,连接DE ,求∠ADE 的度数.(3)(拓展延伸)如图3,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE =∠ADC ,BE =CE =1,CD =3,AD =kAB (k 为常数),求BD 的长(用含k 的式子表示).考查题型十 含30°角的直角三角形典例10.(2021·海南中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .变式10-1.(2021·湖北中考真题)如图,点,,,A B C D 在O 上,OA BC ⊥,垂足为E .若30ADC ∠=︒,1AE =,则BC =( )A .2B .4C .11 / 11 变式10-2.(2021·山东枣庄市·中考真题)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是()A.(1,2-+ B.() C.(2+D.(-。

中考复习 等腰三角形

中考复习  等腰三角形
A
1 4 5
A
E
F
1
D
2
C
B
E
5.
如图,等边△ ABC中,点D在 B 延长线上,CE平分∠ACD, 且CE=BD。求证: △ ADE是等边三角形。
3 2
C
D
结束
(A) 49º (B) 41º (C) 36º (D) 8º
3.
下列条件:①已知两腰;②已知底边和顶角;③已 知顶角与底边;④已知底边和底边上的高;⑤已知 腰和腰上的高线。其中能确定一个等腰三角形的条 件是( C )。
A) ①②③ (C) ②④⑤ ( (B) ②③④ (D) ③④⑤
四、范例精析
1.
三、基本练习 填空题
1.
等腰三角形一腰上的中线把该三角形的周长分 为15,8两部分,则它的底边长为________. 3
2.
“同角的余角相等”的逆命题是 ___________________. 相等的角是同角的余角
3.
等腰三角形的一个内角为70º ,它一腰上的高与 底边所夹的度数为_________. 35º 或20º
已知等腰三角形的周长是21,其中一条边 长为5,求这个三角形的其他两条边长。 如图,BO平分∠CBA, CO平分∠ABC, 且 MN//BC,设AB=12,BC=24,AC=18,求 A △AMN的周长。
M
1
2.
O
3
N C
B
2
四、范例精析
3.
如图,在△ ABC中,AB=AC,P为BC 上的一动点,过P作PD⊥AB,PE⊥AC, A 垂足分别为D,E。CF为AB边上的高 线。

2ห้องสมุดไป่ตู้性质:
二、知识概要
性质 判定

中考一轮复习--第16讲 等腰、等边与直角三角形

中考一轮复习--第16讲 等腰、等边与直角三角形
∵AB+BD=CD+AC,∴DE=DF,
又AD⊥BC,∴△AEF是等腰三角形.∴∠E=∠F;
∵AB=BE,∴∠ABC=2∠E;
同理,得∠ACB=2∠F;∴∠ABC=∠ACB,
即AB=AC,△ABC是等腰三角形;
④在△ABC中,AD⊥BC,根据勾股定理,得
AB2-BD2=AC2-CD2,
即(AB+BD)(AB-BD)=(AC+CD)(AC-CD);
. 35°
解析:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中
线,∴AD=BD=CD,∴∠DBC=∠C=55°,∴∠ABD=90°-55°=35°.
考法1
考法2
等腰(边)三角形的性质与判定
例2(2019·重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.
(1)若∠C=42°,求∠BAD的度数;
(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.
分析:(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形
的内角和即可得到∠BAD=∠CAD=90°-42°=48°;(2)根据等腰三角形
的性质得到∠BAD=∠CAD,根据平行线的性质得到∠F=∠CAD,等量
代换得到∠BAD=∠F,于是得到结论.
∵∠D=90°,∴CD2+DF2=FC2,
∴CD2+12=32,∴CD=2 2 .
方法总结勾股定理是直角三角形中的一个重要性质,可以由角的
关系得到三角形的边的关系,常用的方法是已知直角三角形的两边
求第三边,或者是已知直角三角形三边之间的关系,列方程求出某
些边长.
考法1
考法2
对应练1(2019·安徽萧县期末)如图,在△ABC

等腰三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(解析版)

等腰三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(解析版)

专题17等腰三角形的核心知识点精讲1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.考点1:等腰三角形的性质与判定考点2:等边三角形的性质与判定性质 1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形,有2条对称轴判定 1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式,其中a 是底边常,hs 是底边上的高性质 1.三条边相等2.三个内角相等,且每个内角都等于60°3.等边三角形是轴对称图形,有3条对称轴判定 1.三条边都相等的三角形是等边三角形2.三个角相等的三角形是等边三角形3.有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长,h 是任意边上的高考点3:线段垂直平分线(1)线段垂直平分线的作图1.分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C 、D 两点;2.作直线CD ,CD 为所求直线(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上【题型1:等腰三角形的性质和判定】【典例1】(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为()A .25B .22C .19D .18【答案】C 【解答】解:由题意可得,MN 垂直平分BC ,∴DB =DC ,∵△ABD 的周长是AB +BD +AD ,∴AB +BD +AD =AB +DC +AD =AB +AC ,∵AB =7,AC =12,∴AB +AC =19,∴△ABD 的周长是19,故选:C .1.(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°【答案】C【解答】解:当等腰三角形的顶角为110°时,则它的底角==35°,故选:C.2.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D【解答】解:由题意得,解得,∵a2+b2=c2,且a=b,∴△ABC为等腰直角三角形,故选:D.3.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.【答案】(1)见解析;(2)CD=ED,理由见解析.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠CBD=∠EBD,∵DE∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB.(2)解:CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC,∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC,∴∠ADE=∠AED,∴AD=AE,∴CD=BE,由(1)得,∠EBD=∠EDB,∴BE=DE,∴CD=ED.【题型2:等边三角形的性质和判定】【典例2】(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交B C的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°【答案】C【解答】解:在等边△ABC中,∠ABC=60°,∵BD是AC边上的高,∴BD平分∠ABC,∴∠CBD=∠ABC=30°,∵BD=ED,∴∠DEC=∠CBD=30°,故选:C1.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°【答案】A【解答】解:∵△ABC为等边三角形,∴∠A=60°,∵∠A+∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△B OC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×12+=,∴△AOB与△BOC的面积之和为S△BOC故选:C.3.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是1+.【答案】1+.【解答】解:取AB中点D,连OD,DC,∴OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为AB中点,∴BD=1,BC=2,∴CD==,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=1,∴OD+CD=1+,即OC的最大值为1+.故答案为:1+.【题型3:线段的垂直平分线】【典例3】(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是13.【答案】13.【解答】解:∵DE是BC的垂直平分线.∴BD=CD,∴AC=AD+CD=AD+BD,∴△ABD的周长=AB+AD+BD=AB+AC=5+8=13,故答案为:13.1.(2023•吉林)如图,在△ABC中,AB=AC.分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.若∠BAC=110°,则∠BAE的大小为55度.【答案】55.【解答】解:∵AB=AC.∴△ABC是等腰三角形,∵分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.∴AE垂直平分BC,∴AE是∠BAC的平分线,∴∠BAE=∠BAC=55°.故答案为:55.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若A B=4,则DC的长是4.【答案】4.【解答】解:∵∠B=∠ADB,AB=4,∴AD=AB=4,∵DE是AC的垂直平分线,∴DC=AD=4,故答案为:4.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=10°,则∠C的度数是40°.【答案】40°.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.一.选择题(共9小题)1.若等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或12【答案】C【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.2.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°【答案】D【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,∵AD是等边△ABC的一条中线,∴AD⊥BC,∠CAD=∠BAC=30°,∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠AED+∠CAD=180°,∴∠ADE=75°,∴∠EDC=90°﹣75°=15°,故选:D.3.如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A.AB,AC两边中线的交点处B.AB,AC两边高线的交点处C.∠B与∠C这两个角的角平分线的交点处D.AB,AC两边的垂直平分线的交点处【答案】D【解答】解:∵生活超市到这三个居民小区的距离相等,∴生活超市应建在△ABC的三边的垂直平分线的交点处.故选:D.4.在△ABC中,若AB=AC=3,∠B=60°,则BC的值为()A.2B.3C.4D.5【答案】B【解答】解:∵AB=AC,∠B=60°,∴△ABC为等边三角形,∴BC=AB=3.故选:B.5.如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.若AB=12,AC=8,BC=13,则△AEF的周长是()A.15B.18C.20D.22【答案】C【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠EBD=∠EDB,∴ED=EB,同理可证得DF=FC,∴AE+AF+EF=AE+EB+AF+FC=AB+AC=20,即△AEF的周长为20,故选:C.6.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.10【答案】C【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴BD+CD=AC=10.∴BC=△BDC的周长﹣(BD+CD)=18﹣10=8,故选:C.7.如图,在△ABC中,∠A=90°,边AB的垂直平分线交AB于点D,交BC于点E,已知BE=3,则B C长为()A.5B.6C.7D.8【答案】B【解答】解:如图所示,连接AE,∵DE是AB的垂直平分线,∴EA=EB,∴∠B=∠EAB,∵∠A=90°,∴∠B+∠C=90°,∠BAE+∠CAE=90°,∴∠CAE=∠C,∴EA=EC,∴EC=EB,∴BC=BE+CE=2BE=6,故选:B.8.如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点F,若∠BAC=140°,则∠EAF的度数为()A.95°B.100°C.105°D.110°【答案】B【解答】解:∵∠BAC=140°,∴∠B+∠C=180°﹣∠BAC=40°,∵AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,∴EA=EB,FA=FC,∴∠B=∠BAE,∠C=∠FAC,∴∠BAE+∠FAC=40°,∴∠EAF=∠BAC﹣(∠BAE+∠FAC)=100°,故选:B.9.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE的度数为()A.20°B.25°C.30°D.35°【答案】C【解答】解:∵P是等边△ABC的边AC的中点,∴BP平分∠ABC,∠ABC=60°=∠ACB,∴∠PBC=30°,∵PE=PB,∴∠PBC=∠E=30°,∴∠CPE=∠ACB﹣∠E=30°,故选:C.二.填空题(共6小题)10.如图所示,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交A C于点E,则∠EBC的度数是18度.【答案】见试题解答内容【解答】解:∵DE是线段AB的垂直平分线∴AE=BE∵∠C=90°,∠A=36°∴∠EBA=∠A=36°∴∠EBC=90°﹣36°﹣36°=18°.11.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC与点E,∠A=∠ABE.若AC=7,BC=4,则BD的长为.【答案】.【解答】解:∵CD平分∠ACB,∴∠BCD=∠ECD,∵BE⊥CD,∴∠BDC=∠EDC=90°,∵CD=CD,∴△BDC≌△EDC(ASA),∴BC=CE=4,BD=DE,又∵∠A=∠ABE,∴AE=BE,∵AC=7,BC=4,∴AE=AC﹣CE=3,∴BE=AE=3,∴BD=BE=,故答案为:.12.如图,在等边三角形ABC中,AD⊥BC,垂足为D,则∠BAD=30°.【答案】30.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=∠ADB﹣∠B=30°;故答案为30.13.如图,在边长为4的等边△ABC中,点P为BC边上任意一点,PE⊥AB于点,PF⊥AC于点F,则PE+PF的长度和为2.【答案】2.【解答】解:如图所示,连接AP,作CD⊥AB交AB于点D,=S△ABP+S△ACP,则S△ABC即AB•CD=AB•PE+AC•PF,∵△ABC为等边三角形,∴AB=AC,∴CD=PE+PF,∵AB=AC=BC=4,CD⊥AB,∴,∴,∴,故答案为:.14.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于点D.若BC=9,AD=5,则△ABD的面积为.【答案】.【解答】解:∵AB的垂直平分线交BC于点D,∴DB=DA=5,∴CD=BC﹣BD=9﹣5=4,在Rt△ACD中,∵∠C=90°,∴AC===3,=×5×3=.∴S△ABD故答案为:.15.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为2.【答案】见试题解答内容【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=4,∴DE=.故答案为:2.三.解答题(共3小题)16.已知,如图,△ABC是等边三角形,D是边AC的中点,E是BC延长线上的一点,DB=DE.求∠CD E的度数.【答案】30°.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵D是边AC的中点,∴,∵DB=DE,∴∠E=∠DBC,∴∠E=30°,∵∠BCD=60°,∴∠CDE=∠BCD﹣∠E=30°.17.图①中所示的遮阳伞,伞柄垂直于地面,其示意图如图②.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN,CM=CN.(1)求证:PC垂直平分MN;(2)若CN=PN=60cm,当∠CPN=60°时,求AP的值.【答案】(1)见解析;(2)60cm.【解答】(1)证明:在△CMP和△CNP中,,∴△CMP≌△CNP(SSS),∴∠MPB=∠NPB,∵PM=PN,∴△PMN是等腰三角形,∴PB⊥MN,BM=BN,∴PC垂直平分MN;(2)解:∵CN=PN=60cm,∴当伞收紧时,点P与点A重合,∴AC=CN+PN=120cm,当∠CPN=60°时,∵CN=PN,∴△CPN是等边三角形,∴PC=PN=60cm,∴AP=AC﹣PC=60cm.18.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为20cm,AC=7cm,则DC的长为多少?【答案】(1)见解析;(2).【解答】(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为20cm,∴AB+BC+AC=20cm,∵AC=7cm,∴AB+BC=13cm,∵AB=EC,BD=DE,∴AB+BD=DE+EC=DC,∵AB+BC=AB+BD+DC=2DC=13cm∴.一.选择题(共5小题)1.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E的度数为()A.25°B.20°C.15°D.7.5°【答案】C【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∵DF=DE,∴∠E=∠DFE=15°.故选:C.2.如图,用一张矩形纸片DEFG覆盖等边△ABC,且DG∥BC,若边AB被DG、EF三等分,则△ABC被覆盖(阴影部分)的面积是未被覆盖的面积的()A.B.C.D.【答案】A【解答】解:如图:DG交AB于M,交AC于L,EF交AB于N,AC于K,∵DG∥BC,边AB被DG、EF三等分,∴△AML∽△ANK,△ABC∽△ANK,∴BP=,,∴,,=9a,设S△ABC=a,S△ANK=4a,则S△AML=4a﹣a=3a,∴S四边形MNKL∴未被覆盖的面积为:9a﹣3a=6a,△A B C被覆盖(阴影部分)的面积是未被覆盖的面积,故选:A.3.如图,在等边三角形ABC中,AB=AC=BC=10cm,DC=4cm.如果点M,N都以2cm/s的速度运动,点M在线段CB上由点C向点B运动,点N在线段BA上由点B向点A运动.它们同时出发,当两点运动时间为t秒时,△BMN是一个直角三角形,则t的值为()A.B.C.D.【答案】D【解答】解:∵点M、N都以2cm/s的速度运动则CM=2t,BM=10﹣2t,BN=2t,当∠BMN=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BNM=30°,∴BN=2BM,即2t=2×(10﹣2t),解得:,当∠BNM=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BMN=30°,∴BM=2BN,即2×2t=(10﹣2t),解得:,综上所述,t的值为或时,△BMN是一个直角三角形.故选:D.4.如图,在等边△ABC中,AB=5,点D在AB上,且BD=1,点E、F分别是BC、AC上的点,连接DE,EF,如果∠DEF=60°,DE=EF,那么BE的长是()A.3B.3.5C.4D.4.5【答案】C【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC=5,∵∠BEF=∠C+∠EFC=∠DEF+∠BED,∠DEF=∠C=60°,∴∠BED=∠EFC,在△DBE和△ECF中,,∴△DBE≌△ECF(AAS),∴DB=EC=1,∴BE=BC﹣EC=5﹣1=4.故选:C.5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为2cm2,则△PBC的面积为()A.0.8cm2B.1cm2C.1.2cm2D.不能确定【答案】B【解答】解:如图,延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP≌△EBP(ASA),∴AP=PE,=S△EBP,S△ACP=S△ECP,∴S△ABP=S△ABC=×2=1(cm2),∴S△PBC故选:B.二.填空题(共4小题)6.如图,边长为5cm的正三角形ABC向右平移1cm,得到正三角形A'B'C',此时阴影部分的周长为12 cm.【答案】见试题解答内容【解答】解:由题意得,△ABC为等边三角形,BC=5cm,BB'=1cm,∴B'C=BC﹣BB'=5﹣1=4cm,且阴影部分为等边三角形,∴阴影部分的周长为3×4=12cm,故答案为12.7.如图,在等边△ABC中,点D、E分别在边AB、AC上,DE∥BC,点F在BC延长线上,且EB=EF,若BD=4,BF=8,则线段DE的长为2.【答案】2.【解答】解:过E点作EH⊥BF,设DE=x,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等边三角形,∵BD=4,∴EC=BD=4,AB=BC=AC=4+x,∠ACB=60°,在Rt△CHE中,∵∠ACB=60°,EC=BD=4,∴∠HEC=180°﹣∠ACB﹣∠EHC=180°﹣60°﹣90°=30°,∴,∴BH=BC﹣CH=4+x﹣2=2+x,∵EB=EF,∴△EBF是等腰三角形,∵EH⊥BF,BF=8,∴BH=FH=4,∴2+x=4,∴x=2,∴DE=2.故答案为:2.8.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AB于O,则:①DB=AE;②∠AMC=∠DNC;③△MCE是等腰三角形;④△MCN是等边三角形;⑤∠AOD=60°.其中,正确的有①②④⑤.【答案】①②④⑤.【解答】解:△ACD和△BCE都是等边三角形,∴AC=AD=CD,CE=CB=BE,∠ACD=∠DAC=∠ADC=60°=∠BCE=∠CBE=∠CEB,∴∠DCE=60°,∴∠ACE=∠DCB=120°,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=BD,∠EAC=∠BDC,故①符合题意;∴∠AOD=∠ACD=60°,故⑤符合题意;在△ACM和△DCN中,,△ACM≌△DCN(ASA),∴AM=DN,CM=CN,∠AMC=∠DNC,∴△MCN是等腰三角形;△MCN是等边三角形;故②④符合题意,综上:①②④⑤都符合题意.故答案为:①②④⑤.9.如图,四边形ABCD,AD=1,,BC=3,点E为AB的中点,连接DE、CE,使得∠DEA+∠CEB=60°,则DC的最大值为.【答案】##.【解答】【详解】解:将△ADE沿DE翻折得到△MDE,将△BCE沿CE翻折得到△NCE,连接MN,由翻折可知:∠AED=∠MED,∠BEC=∠NEC,AD=MD=1,BC=NC=3,∵E是AB中点,,∴,∵∠DEA+∠CEB=60°,∴∠AEM+∠BEN=120°,∴∠MEN=60°,∴△EMN是等边三角形,∴,∴CD≤DM+MN+CN,当D,M,N,C共线时,CD取得最大值为,故答案为:.三.解答题(共2小题)10.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE=DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).【答案】见试题解答内容【解答】解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=11.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?【答案】(1)△BPQ是等边三角形;(2)当t=2s或t=4s时,△PBQ是直角三角形.【解答】解:(1)如图,根据题意得:AP=tcm,BQ=2tcm,当t=2时,AP=2cm,BQ=4cm,∵△ABC是边长为6cm的等边三角形,∴AB=6cm,∠B=60°,∴BP=4cm,∴BP=BQ,∴△BPQ是等边三角形;(2)△PBQ中,BP=6﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,①当∠BQP=90°时,∠B=60°,∴∠BPQ=30°,∴BQ=BP,即t=,解得:t=2;②当∠BPQ=90°时,同理得:BP=BQ,即6﹣t=t,解得:t=4,答:当t=2s或t=4s时,△PBQ是直角三角形.1.(2022•大连)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6B.3C.1.5D.1【答案】C【解答】解:由已知可得,MN是线段AC的垂直平分线,设AC与MN的交点为E,∵∠ACB=90°,MN垂直平分AC,∴∠AED=∠ACB=90°,AE=CE,∴ED∥CB,∴△AED∽△ACB,∴,∴,∴AD=AB,∴点D为AB的中点,∵AB=3,∠ACB=90°,∴CD=AB=1.5,故选:C.2.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【答案】见试题解答内容【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.3.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交A C于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.。

中考数学专题复习第4章三角形第14讲等腰三角形和直角三角形含答案

中考数学专题复习第4章三角形第14讲等腰三角形和直角三角形含答案

第14讲 等腰三角形和直角三角形☞【基础知识归纳】☜☞归纳 一、等腰三角形1.等腰三角形的定义: 有两条边相等 的三角形是等腰三角形.2.等腰三角形的性质①等腰三角形两个底角 相等 ;②等腰三角形 顶角的平分线 、 底边上的中线 、 底边上的高 互相重合, 简称:“三线合一”③等腰三角形是轴对称图形,有 1 条对称轴. 3.等腰三角形的判定方法①定义判定:一个三角形中,如果有两条边 相等 ,那么这个三角形是等腰三角形. ②判定定理:等角对等边;即一个三角形中,如果有两个角相等,那么这两个角所对的边 相等 .4.等边三角形的性质①等边三角形的各角都 相等 ,并且每—个角都等于 60 度; ②等边三角形是轴对称图形,有 3 条对称轴. 5.等边三角形的判定①三边都 相等 的三角形是等边三角形; ②三个角都 相等 的三角形是等边三角形; ③有一个角等于 60 度的等腰三角形是等边三角形.☞归纳二、直角三角形 1.直角三角形的定义 有一个角是 直角 的三角形叫做直角三角形 2.直角三角形的性质①直角三角形的两个锐角 互余 ;②在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的 一半 ; ③在直角三角形中,斜边上的中线等于斜边的 一半 3.直角三角形的判定①两个内角和为 90° 的三角形是直角三角形;②一边上的中线等于这条边的 一半 的三角形是直角三角形 4.勾股定理及逆定理【勾股定理】如果直角三角形两条直角边分别为,a b ,斜边为c ,那么222a b c += 【逆定理】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形☞【常考题型剖析】☜☺ 题型一、等腰三角形【例1】(2016贺州) 一个等腰三角形的两边长分别为4,8,则它的周长为( )A. 12B. 16C. 20D. 16或20【答案】C【分析】当等腰三角形的三边为4, 4, 8时,因为4+4=8,不符合题意,舍去;当等腰三角形的三边为4, 8, 8时,因为4+8>8符合题意,此时它的周长为4+8+8=20【例2】(2016邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A. AC>BCB. AC=BCC.∠A>∠ABCD. ∠A=∠ABC 【答案】A【解答】∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.【举一反三】1. (2016湘西州) 一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A. 13cmB. 14cmC. 13cm或14cmD. 以上都不对【答案】c【分析】当等腰三角形的三边为4, 4, 5时,因为4+4>5,符合题意,此时它的周长为4+4+5=13cm;当等腰三角形的三边为4, 5, 5时,因为4+5>5符合题意,此时它的周长为4+5+5=142. (2016通辽) 等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为【答案】69°或21°【解答】分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=21°;综上所述:等腰三角形底角的度数为69°或21°.3. (2016淮安) 已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的 周长是 【答案】10【分析】当等腰三角形的三边为2,2,4时,因为2+2=4,不符合题意,舍去;当等腰三角形的三边为2,4,4时,因为2+4>4符合题意, 此时它的周长为2+4+4=104. (2016随州) 已知等腰三角形的一边长为9,另一边长为方程28150x x -+=的根, 则该等腰三角形的周长为 【答案】19或21或23【解答】解方程28150x x -+=得x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21; 当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去; 当等腰三角形的三边长为9、5、5时,其周长为19; 综上,该等腰三角形的周长为19或21或23,5. (2016安顺) 已知实数,x y 满足480x y --=,则以,x y 的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对 【答案】B【分析】根据非负数的意义列出关于x 、y 的方程并求出x 、y 的值,再根据x 是腰长和底边长两种情况讨论求解.【解答】解:根据题意得4080x y -=⎧⎨-=⎩,解得48x y =⎧⎨=⎩, (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.6. (2016荆门) 已知3是关于x 的方程2(1)20x m x m -++=的一个实数根,并且这个 方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 【答案】D【分析】把x=3代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为27120x x -+=,解得123,4x x ==,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11; ②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10. 综上所述,该△ABC 的周长为10或11.7. (2016荆门) 如图,△ABC 中,AB=AC ,AD 是∠BAC 的平分线.已知AB=5,AD=3, 则BC 的长为( )A. 5B. 6C. 8D. 10 【答案】C【分析】根据等腰三角形的性质得到AD ⊥BC ,BD=CD ,根据勾股定理即可得到结论. 【解答】解:∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD=CD ,∵AB=5,AD=3,∴22AB AD -,∴BC=2BD=8,☺ 题型二、直角三角形【例3】(2015毕节) 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )3,4,523【答案】B【分析】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形;因为 22212)3)+=,所以能够组成直角三角形【例4】(2016南充) 如图,在Rt△ABC 中,∠A=30°,BC=1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A. 1B. 2C. 3D. 1+3 【答案】A【解析】如图,∵在Rt△ABC 中,∠C=90°,∠A=30°,∴BC=12AB, 又∵BC=1 ∴AB=2BC=2.又∵点D 、E 分别是AC 和BC 的中点, ∴DE 是△ACB 的中位线,∴DE=12AB=1.故选A .【举一反三】1. (2015来宾) 下列各组线段中,能够组成直角三角形的一组是( )A. 1, 2, 3B. 2, 3, 4C. 4, 5, 6D. 1,2,3 【答案】D【分析】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形;因为 2221(2)(3)+=,所以能够组成直角三角形2. (2016甘孜州) 直角三角形斜边长是5,一直角边的长是3, 则此直角三角形的面积为 . 【答案】6【分析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为4.该直角三角形的面积S =12×3×4=63. (2016泉州) 如图3,在Rt △ABC 中,E 是斜边AB 的中点,若AB=10,则CE= .图3 图4 【答案】5【分析】根据直角三角形斜边上的中线等于斜边的一半,可得CE= 12AB=1102⨯=5.4. (2016百色) 如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=( ) A. 6 B. 62 C. 63 D.12 【答案】A【解答】∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×12=6,5. (2016深圳龙岭期中) 如图,在△ABC 中,AB=AC ,DE∥BC, 则下列结论中不正确的是( )A. AD=AEB. DB=ECC. ∠ADE=∠CD. DE=12BC 【答案】D【分析】由DE 与BC 平行,得到△ADE ∽△ABC ,由相似得比例,根据AB=AC ,得到AD=AE ,进而确定出DB=EC ,再由两直线平行同位角相等,以及等腰三角形的底角相等,等量代换得到∠ADE=∠C, 而DE 不一定为中位线,即DE 不一定为BC 的一半,即可得到正确选项.☞【巩固提升自我】☜1. (2014广东) 一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 【答案】A【分析】①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.2. (2015广州) 已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的 两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A. 10 B. 14 C. 10或14 D. 8或10 【答案】B【分析】解:将x=2代入方程,得:4﹣4m+3m=0,解得:m=4.当m=4时,原方程为28120x x -+=, 解得:122,6x x ==,∵2+2=4<6,∴此等腰三角形的三边为6、6、2, ∴此等腰三角形的周长C=6+6+2=14.3. (2016广州) 如图3,已知△ABC 中,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线, DE 交AB 于点D ,连接CD ,则CD=( )图3 图4A. 3B. 4C. 4.8D. 5【答案】D【解答】∵AB=10,AC=8,BC=6, ∴222BC AC AB +=,∴△ABC 是直角三角形, ∵DE 是AC 的垂直平分线,∴AE=EC=4,DE ∥BC ,且线段DE 是△ABC 的中位线,∴DE=3, ∴AD=DC=22AE DE +=5.4. (2015南宁) 如图4,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( ) A. 35° B. 40° C . 45° D . 50° 【答案】A若测得AM 的长为1.2km ,则M ,C 两点间的距离为( )图5 图6A. 0.5kmB. 0.6kmC. 0.9kmD. 1.2km【答案】D解:∵△ABD 中,AB=AD ,∠B=70°, ∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°, ∵AD=CD ,∴∠C=(180°﹣∠ADC )÷2=(180°﹣110°)÷2=35°【分析】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12AB=AM=1.2km6. (2015丹东) 如图6,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°【答案】A解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=12∠A=12×30°=15°7. (2016海南) 如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD 对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A. 6B. 62332【答案】D解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴×3=。

中考数学复习《等腰三角形与等边三角形》

中考数学复习《等腰三角形与等边三角形》

(B)
A. 5个
B. 4个
C. 3个
D. 2个
6. 如图1-4-4-11,△ABC中,BE平分∠ABC,CE平分∠ACB,DF 经过点E,分别与AB,AC相交于点D,F,且DF∥BC. (1)求证:△DEB是等腰三角形; (2)求证:DF-BD=CF.
证明:(1)∵BE平分∠ABC, ∴∠ABE=∠CBE. ∵DF∥BC,∴∠DEB=∠CBE. ∴∠ABE=∠DEB. ∴BD=DE. ∴△DEB是等腰三角形. (2)∵CE平分∠ACB,∴∠ACE=∠BCE. ∵DF∥BC,∴∠FEC=∠BCE. ∴∠ACE=∠FEC. ∴EF=CF. ∵BD=DE,∴DF-BD=CF.
第一部分 教材梳理
第四章 图形的认识(一) 第4节 等腰三角形与等边三角形
知识梳理
概念定理
1. 等腰三角形 (1)定义:两边相等的三角形叫做等腰三角形. (2)性质 ①性质定理:等腰三角形的两个底角相等(简称:等边对等 角). ②推论:等腰三角形顶角的平分线、底边上的中线及底边上 的高线互相重合(简称:三线合一).
解:(1)∵△ABC是等边三角形, ∴∠B=60°. ∵DE∥AB,∴∠EDC=∠B=60°. ∵EF⊥DE,∴∠DEF=90°. ∴∠F=90°-∠EDC=30°. (2)∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形. ∴ED=DC=2. ∵∠DEF=90°,∠F=30°, ∴DF=2DE=4.
(3)其他性质 ①等腰直角三角形的两个底角相等且等于45°. ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但 顶角可为钝角(或直角).
③等腰三角形的三边关系:设腰长为a,底边长为b,则
________.
④等腰三角形的三角关系:设顶角为∠A,底角为∠B,∠C,

中考数学黄金知识点系列专题15等腰三角形

中考数学黄金知识点系列专题15等腰三角形

专题15 等腰三角形 聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定等腰三角形的判定定理及推论: 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

二.等边三角形1.定义三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°3.判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1.定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线.2.性质线段垂直平分线上的一点到这条线段的两端距离相等3.判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上.名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2016山东滨州第6题)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5°D.52.5°【答案】D.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】(2016山东枣庄第4题)如图,在△ABC中,AB = AC,∠A = 30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D等于A.15° B.17.5° C.20° D.22.5°B第4题图【答案】A.【解析】考点:等腰三角形的性质;三角形的内角和定理.考点典例二、等腰三角形的多解问题【例2】(2016湖南怀化第8题)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm【答案】C.【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.【举一反三】(2016湖南湘西州第14题)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】考点:等腰三角形的性质;三角形三边关系.考点典例三、等边三角形的性质与判定【例3】(2016年福建龙岩第15题)如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC= .【答案】2.【解析】试题分析:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2. 考点:等边三角形.【点睛】本题主要考查了等边三角形的判定和性质,解题的关键是利用性质和判定解决.【举一反三】(2016四川达州第15题)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.3.【答案】24+9【解析】考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.考点典例四、线段垂直平分线的性质运用【例3】(2016湖南长沙第17题)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.【答案】13.【解析】试题分析:已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.【点睛】本题考查了线段垂直平分线的性质,熟记性质是解题的关键.【举一反三】(2016山东威海第10题)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG【答案】A.【解析】考点:黄金分割;全等三角形的判定与性质;线段的垂直平分线的综合运.课时作业☆能力提升一、选择题1.(2016湖南湘西州第14题)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】试题分析:分4cm为等腰三角形的腰和5cm为等腰三角形的腰两种情况:①当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,周长为13cm;②当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,周长为14cm,故答案选C.考点:等腰三角形的性质;三角形三边关系.2. (2016四川甘孜州第9题)如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.5【答案】C.【解析】考点:等腰三角形的判定与性质;平行线的性质.3. (2016辽宁营口第8题)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB【答案】D.【解析】试题分析:∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.考点:作图—基本作图;线段垂直平分线的性质.4. (2016河南第6题)如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为【】(A)6 (B)5 (C)4 (D)3【答案】D.【解析】考点:勾股定理;三角形的中位线定理.5.(2016河北第16题)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()第16题图A.1个B.2个C.3个D.3个以上【答案】d.【解析】试题分析:M、N分别在AO、BO上,一个;M、N其中一个和O点重合,2个;反向延长线上,有一个,故答案选D.考点:等边三角形的判定.6.在平面直角坐标系中,点A,B(,动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.5【答案】B.【解析】考点:1.等腰三角形的判定;2.坐标与图形性质;3.分类讨论;4.综合题;5.压轴题.7.(2016山东滨州第6题)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5°D.52.5°【答案】D.【解析】考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.二、填空题8. (2016贵州遵义第14题)如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= 度.【答案】35.【解析】试题分析:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=35°,故答案为:35.考点:线段垂直平分线的性质.9.(2016江苏苏州第17题)如图,在△A BC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.【答案】27.【解析】试题分析:过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B ′DE ≌△BDE ,∴B ′F=12B ′E=BE=2,DF=23,∴GD=B ′F=2,∴B ′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB ′=27.考点:1轴对称;2等边三角形.10. (2016湖北随州第12题)已知等腰三角形的一边长为9,另一边长为方程x 2﹣8x+15=0的根,则该等腰三角形的周长为 .【答案】19或21或23.【解析】考点:一元二次方程的解法;三角形三边关系;等腰三角形的性质.11. (2016广西河池第18题)如图的三角形纸片中,AB =AC ,BC =12cm ,∠C =30°,折叠这个三角形,使点B 落在AC 的中点D 处,折痕为EF ,那么BF 的长为 cm .【答案】143. 【解析】试题分析:过D 作DH ⊥BC ,过点A 作AN ⊥BC 于点N ,∵AB =AC ,∴∠B =∠C =30°,根据折叠可得:D F =BF ,∠EDF =∠B =30°,∵AB =AC ,BC =12cm ,∴BN =NC =6cm ,∵点B 落在AC 的中点D 处,AN ∥DH ,∴NH =HC =3cm ,∴DH =3tan cm ),设BF =DF =xcm ,则FH =12﹣x ﹣3=9﹣x (cm ),故在Rt △DFC 中,222DF DH FH =+,故222(9)x x =+-,解得:x =143,即BF 的长为:143cm .故答案为:143.考点:翻折变换(折叠问题).12. (2016内蒙古通辽第14题)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 .【答案】69°或21°.【解析】考点:等腰三角形的性质;分类讨论.13. (2016福建南平第16题)如图,等腰△ABC 中,CA =CB =4,∠ACB =120°,点D 在线段AB 上运动(不与A 、B 重合),将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,给出下列结论: ①CD =CP =CQ ;②∠PCQ 的大小不变;③△PCQ ; ④当点D 在AB 的中点时,△PDQ 是等边三角形,其中所有正确结论的序号是 .【答案】①②④.【解析】③如图,过点Q 作QE ⊥PC 交PC 延长线于E ,∵∠PCQ =120°,∴∠QCE =60°,在Rt △QCE 中,tan ∠QCE =QE CQ ,∴QE =CQ ×tan ∠QCE =CQ ×tan 60°=,∵CP =CD =CQ ,∴S △PCQ =12CP ×QE =12CP ×=22,∴CD 最短时,S △PCQ 最小,即:C D ⊥AB 时,CD 最短,过点C 作CF ⊥AB ,此时CF 就是最短的CD ,∵AC =BC =4,∠ACB =120°,∴∠ABC =30°,∴CF =12BC =2,即:C D 最短为2,∴S △PCQ 最小222=误;④∵将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,∴AD =AP ,∠DAC =∠PAC ,∵∠DAC =30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形,∴④正确,故答案为:①②④.考点:几何变换综合题;定值问题;最值问题;综合题;翻折变换(折叠问题).14. (2016四川达州第15题)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.【答案】24+93.【解析】考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.15.(2016湖南长沙第17题)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.【答案】13.【解析】考点:线段的垂直平分线的性质.16.(2016湖南娄底第17题)如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.【答案】13.【解析】试题分析:将△ABC沿直线DE折叠后,使得点A与点C重合,由折叠的性质可得AD=CD,由AB=7,BC=6,可得△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.考点:翻折变换(折叠问题).三、解答题17. (2016山东淄博第22题)(8分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).【答案】(1)详见解析;(2)详见解析.【解析】∴BE=21BG=21(BA+AG )=21(AB+AC ).考点:三角形中位线定理;等腰三角形的判定与性质.18. (2016湖南怀化第17题)如图,已知AD=BC ,AC=BD .(1)求证:△ADB≌△BCA;(2)OA 与OB 相等吗?若相等,请说明理由.【答案】(1)详见解析;(2)OA=OB,理由详见解析.【解析】考点:全等三角形的判定与性质;等腰三角形的判定.19.(2016广西河池第21题)如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.【答案】(1)作图见解解析;(2)AB=AD=BC.【解析】考点:作图—基本作图;作图题.20.(2016辽宁营口第25题)已知:如图①,将∠D=60°的菱形ABCD沿对角线AC剪开,将△ADC沿射线DC方向平移,得到△BCE,点M为边BC上一点(点M不与点B、点C重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.(1)①求证:∠ANB=∠AMC;②探究△AMN的形状;(2)如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.【答案】(1)①证明见解析;②△AMN是等边三角形;(2)①成立,②不成立,△AMN是等腰直角三角形.【解析】(2)①如图2,∠ANB=∠AMC成立,理由是:在正方形ABCD中,∴∠BAC=∠DAC=∠BCA=45°,∵∠NAM=45°,∴∠NAB=∠MAC,由平移得:∠EBC=∠CAD=45°,∵∠ABC=90°,∴∠ABN=180°﹣90°﹣45°=45°,∴∠ABN=∠ACM=45°,∴△ANB∽△AMC,∴∠ANB=∠AMC;②如图2,不成立,△AMN是等腰直角三角形,理由是:∵△ANB∽△AMC,∴AN ABAM AC=,∴AN AMAB AC=,∵∠NAM=∠BAC=45°,∴△NAM∽△BAC,∴∠ANM=∠ABC=90°,∴△AMN是等腰直角三角形.考点:四边形综合题;探究型;压轴题.。

中考总复习之等腰三角形与直角三角形

中考总复习之等腰三角形与直角三角形

中考总复习之等腰三角形与直角三角形在中考数学的复习中,等腰三角形和直角三角形是两个非常重要的知识点。

它们不仅在几何题目中经常出现,而且在解决实际问题中也有着广泛的应用。

接下来,让我们系统地复习一下这两个重要的三角形类型。

一、等腰三角形(一)定义等腰三角形是指至少有两边相等的三角形。

相等的两条边称为这个三角形的腰,另一边称为底边。

两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

(二)性质1、等腰三角形的两个底角相等(简写成“等边对等角”)。

例如,在等腰三角形 ABC 中,AB = AC,那么∠B =∠C。

2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“三线合一”)。

若 AD 是等腰三角形 ABC 的顶角平分线,则 AD 也是底边 BC 上的中线和高;反之亦然。

(三)判定1、有两条边相等的三角形是等腰三角形。

2、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

(四)常见题型1、计算角度:利用等腰三角形的性质,求出顶角或底角的度数。

例如,已知等腰三角形的一个底角为 70°,则顶角为 180° 70°× 2 =40°。

2、证明线段相等:通过证明三角形是等腰三角形,得出两条线段相等。

3、求边长:根据等腰三角形的性质和已知条件,计算出三角形的边长。

二、直角三角形(一)定义有一个角为 90°的三角形,叫做直角三角形。

直角所对的边称为斜边,其余两边称为直角边。

(二)性质1、直角三角形两直角边的平方和等于斜边的平方(勾股定理)。

若直角三角形的两条直角边分别为 a、b,斜边为 c,则 a²+ b²=c²。

2、在直角三角形中,斜边上的中线等于斜边的一半。

例如,在直角三角形 ABC 中,∠C = 90°,D 是斜边 AB 的中点,则 CD = 1/2 AB 。

3、直角三角形的两个锐角互余。

数学中考考点专题复习训练及答案解析15:等腰三角形与直角三角形

数学中考考点专题复习训练及答案解析15:等腰三角形与直角三角形

考点15 等腰三角形与直角三角形一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.学-科网3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是 A .35°B .20°C .35°或20°D .无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35°,70°是底角,顶角是40°,它的一腰上的高与底边所夹的角的度数是20°,故选C .典例2 如图,等腰三角形ABC 中,∠BAC =90°,在底边BC 上截取BD =AB ,过D 作DE ⊥BC 交AC 于E ,连接AD ,则图中等腰三角形的个数是A .1B .2C .3D .4【答案】D【名师点睛】此题考查了等腰三角形的性质和判定以及三角形的内角和定理,由已知的条件利用相关的性质,求得各个角的度数是正确解题的关键.1.等腰三角形的周长为15 cm,其中一边长为3 cm.则该等腰三角形的腰长为A.3 cm B.6 cm C.3 cm或6 cm D.3 cm或9 cm考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.学_科网【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,∠PAB的度数是A.10°B.15°C.20°D.25°【答案】C【解析】因为AD=AP,所以∠APD=∠ADP,因为∠APD=70°,所以∠ADP=70°,所以∠PAD=180°-70°-70°=40°,因为∠BAC=60°,所以∠PAB=60°-40°=20°,故选C.3.如图,四边形ABCD是正方形,△PAD是等边三角形,则∠BPC等于A.20°B.30°C.35°D.40°考向四等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是a2+c2=b2;若a为斜边,则关系式是b2+c2=a2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n)(n是大于1的整数),其中是勾股数的有A.1组B.2组C.3组D.4组【答案】D【解析】①∵62+82=100=102,∴6、8、10是勾股数;②∵72+242=252,∴7,24,25是勾股数;③∵92+122=152,∴9,12,15是勾股数;④∵(n2-1)2+(2n)2=(n2+1)2,∴n2-1,2n,n2+1(n)(n是大于1的整数)是勾股数,故选D.【名师点睛】本题考查了勾股数的判断,解题的关键是根据勾股数的定义分别对每一组数进行分析.6.如图,一圆柱高8 cm,底面半径为6πcm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是A.12 cm B.10 cm C.8 cm D.6 cm1.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形2.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于A.30°B.40°C.45°D.36°3.下列长度的线段中,能构成直角三角形的一组是A.3,4,5B.6,7,8C.12,25,27 D.23,25,424.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为A.8 B.4 C.12 D.65.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A∶∠B∶∠C=3∶4∶56.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17 C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5 C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A.8个B.9个C.10个D.11个9.如图,Rt△ABC中,∠B=90〬,AB=9,BC=6,,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于A.5 B.6 C.4 D.310.将一个有45°角的三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A.6 B.32C.42D.6211.等腰三角形的一腰的中线把三角形的周长分成16 cm和12 cm,则等腰三角形的底边长为______.12.如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为__________.学科_网13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE 的长为__________.14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠EFD =__________°.17.如图,在矩形ABCD 中,AB =5,BC =7,点E 是AD 上的一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,CA 1的长为__________.18.如图,在等腰三角形ABC 中,AC =BC ,分别以BC 和AC 为直角边向上作等腰直角三角形△BCD 和△ACE ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G .求证:CG 垂直平分AB .19.如图,一架2.5 m长的梯子斜立在竖直的墙上,此时梯足B距底端O为0.7 m.(1)求OA的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.如图,△ABC是等边三角形,点D、E分别在边BC、AC上,AE=BD,连接DE,过点E作EF⊥DE,交线段BC的延长线于点F.(1)求证:CE=CF;(2)若BD=12CE,AB=9,求线段DF的长.21.已知:如图,有人在岸上点C的地方,用绳子拉船靠岸,开始时,绳长CB=10米,CA⊥AB,且CA=6米,拉动绳子将船从点B沿BA方向行驶到点D后,绳长CD=62米.(1)试判定△ACD的形状,并说明理由;(2)求船体移动距离BD的长度.1.(2018·南通)下列长度的三条线段能组成直角三角形的是 A .3,4,5 B .2,3,4 C .4,6,7D .5,11,122.(2018·滨州)在直角三角形中,若勾为3,股为4,则弦为 A .5 B .6 C .7D .83.(2018·湖州)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则 ∠ACE 的度数是A .20°B .35°C .40°D .70°4.(2018·宿迁)若实数m 、n 满足|2|40m n -+-=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 A .12 B .10 C .8D .65.(2018·绥化)已知等腰三角形的一个外角为130︒,则它的顶角的度数为__________.6.(2018·青海)如图,将Rt ABC △绕直角顶点C 顺时针旋转90°,得到DEC △,连接AD ,若∠BAC =25°,则∠BAD =__________.7.(2018·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__________.8.(2018·桂林)如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,则图中等腰三角形的个数是__________.9.(2018·襄阳)已知CD 是△ABC 的边AB 上的高,若CD =3,AD =1,AB =2AC ,则BC 的长为__________. 10.(2018·嘉兴)已知,在ABC △中,AB AC =,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E F ,,且DE DF =.求证:ABC △是等边三角形.11.(2018·广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形. (2)画一个底边长为4,面积为8的等腰三角形. (3)画一个面积为5的等腰直角三角形.(4)画一个边长为22,面积为6的等腰三角形.1.【答案】B【解析】当3 cm 是底时,则腰长是(15-3)÷2=6(cm ),此时能够组成三角形;当3 cm 是腰时,则底是15-3×2=9(cm ),此时3+3<9,不能组成三角形,应舍去,故选B . 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】B【解析】∵四边形ABCD 是正方形,△PAD 是等边三角形, ∴9060150BAP BAD PAB ∠=∠+∠=︒+︒=︒. ∵PA =AD ,AB =AD ,∴PA =AB , ∴180150152ABP ︒-︒∠==︒,∴901575PBC ABC ABP ∠=∠-∠=︒-︒=︒,同理:75PCB ∠=︒,∴180757530BPC ∠=︒-︒-︒=︒.故选B . 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5. 6.【答案】B【解析】如图,底面圆周长为2πr ,底面半圆弧长为πr ,即半圆弧长为:12×2π×6π=6(cm ),展开得:变式拓展∵BC=8 cm,AC=6 cm,根据勾股定理得:AB=2268+=10(cm),故选B.1.【答案】C【解析】∵原式可化为a2+b2=c2,∴此三角形是直角三角形,故选C.2.【答案】D【解析】∵AD=BD,∴∠A=∠ABD,∴∠BDC=2∠A.∵BD=BC,∴∠C=∠BDC=2∠A.∵AB=AC,∴∠ABC=∠C=2∠A,由三角形内角和定理,得∠A+2∠A+2∠A=180°,即∠A=36°.故选D.4.【答案】C【解析】∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4,∴BC=BD+DC=8+4=12,故选C.5.【答案】D【解析】A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A∶∠B∶∠C=3∶4∶5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形.故选D.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD22AB BD-=4.故选C.考点冲关8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt△ACH中,∵AH=3,∠AHC=90°,∠ACH=30°,∴AC=2AH=6,在Rt△ABC中,AB22226662AC BC+=+=D.11.【答案】203cm或12 cm【解析】设等腰三角形的腰长是x,底边是y,根据题意得162122xxxy⎧+=⎪⎪⎨⎪+=⎪⎩或122162xxxy⎧+=⎪⎪⎨⎪+=⎪⎩,解得323203xy⎧=⎪⎪⎨⎪=⎪⎩或812xy=⎧⎨=⎩,经检验,均符合三角形的三边关系.因此三角形的底边是203cm或12 cm.故答案为:203cm或12 cm.12.【答案】60°【解析】∵△ABC是等边三角形,∴∠A=∠B=60°,∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=360°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°,故答案为:60°.13.【答案】4【解析】∵△BDE是正三角形,∴∠DBE=60°.∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°,∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=4,∴BE=DE=4,故答案为:4.14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10.16.【答案】15【解析】∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.17.【答案】32或42【解析】如图,过点A1作A1M⊥BC于点M.∵点A的对应点A1恰落在∠BCD的平分线上,∠BCD=90°,∴∠A1CM=45°,即△AMC是等腰直角三角形,∴设CM=A1M=x,则BM=7-x.又由折叠的性质知AB=A1B=5,∴在直角△A1MB中,由勾股定理得A1M2=A1B2-BM2=25-(7-x)2,∴25-(7-x)2=x2,解得x1=3,x2=4,∵在等腰Rt△A1CM中,CA1A1M,∴CA118.【解析】∵CA=CB,∴∠CAB=∠CBA,∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△BCF中,AF BF AC BC CF CF=⎧⎪=⎨⎪=⎩,∴△ACF≌△BCF(SSS),∴∠ACF=∠BCF,∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.19.【解析】在直角△ABO中,已知AB=2.5 m,BO=0.7 m,则AO,∵AO=AA′+OA′,∴OA′=2 m,∵在直角△A′B′O中,AB=A′B′,且A′B′为斜边,∴OB′=1.5 m,∴BB′=OB′-OB=1.5 m-0.7 m=0.8 m.答:梯足向外移动了0.8 m.20.【解析】(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AE=BD,∴AC-AE=BC-BD,∴CE=CD,且∠ACB=60°,∴△CDE是等边三角形,∴∠ECD=∠DEC=60°,∵EF⊥DE,∴∠DEF=90°,∴∠CEF=30°,∵∠DCE=∠CEF+∠CFE=60°,∴∠CEF=∠CFE=30°,∴CE=CF.(2)∵BD=12 CE,CE=CD,∴BD=12CD,∵AB=9,∴BC=9,∴BD=3,CD=6,∵CE=CF=CD,∴CF=6,∴DF=DC+CF=12.21.【解析】(1)由题意可得:AC=6 m,DC=62m,∠CAD=90°,可得AD=22CD AC-=6(m),故△ACD是等腰直角三角形.(2)∵AC=6 m,BC=10 m,∠CAD=90°,∴AB=22BC AC-=8(m),则BD=AB-AD=8-6=2(m).答:船体移动距离BD的长度为2 m.1.【答案】A【解析】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.直通中考4.【答案】B【解析】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去;②若腰为4,底为2,则周长为:4+4+2=10,故选B.5.【答案】50︒或80︒【解析】∵等腰三角形的一个外角为130︒,∴与130°相邻的内角为50°,当50︒为顶角时,其他两角都为65︒,65︒;当50︒为底角时,其他两角为50︒,80︒,所以等腰三角形的顶角为50︒或80︒,故答案为:50︒或80︒.6.【答案】70°【解析】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.7.【答案】2或2.5【解析】如图,∵AB=2,AD=7,∴BD=BC+CD=AD-AB=5,∵AB,BC,CD可构成以BC为腰的等腰三角形,∴BC=AB 或BC=CD,∴BC=2或BC=2.5,故答案为:2或2.5.8.【答案】3【解析】∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.9.【答案】2327△是锐角三角形,如图1,【解析】分两种情况:①当ABC∵CD⊥AB,∴∠CDA=90°,∵CD=3,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4-1=3,∴BC2222CD BD+=+=;3(3)23②当ABC△是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=2222CD BD+=+=.综上所述,BC的长为23或27,(3)527故答案为:23或27.10.【解析】∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.11.【解析】如图所示:。

中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)

中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)

中考数学专题复习等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。

中考数学一轮复习:等腰三角形与直角三角形

中考数学一轮复习:等腰三角形与直角三角形

【解析】∵△ABD 是等边三角形, ∴∠B=60° , ∴∠C=30° , ∴BC=2AB=2×2=4, ∴AC= BC2-AB2= 42-22=2 3. ∴△ABC 的周长为 AB+BC+AC=2+4+2 3=6+2 3.
如图,四边形 ABCD 中,∠BAD=∠BCD=90° ,AB=AD,若四边形 ABCD 的面积是 24 cm ,则 AC 的长是________cm.
知识点三
线段的中垂线
1.概念:垂直且平分一条线段的直线叫做这条线段的垂直平分线,也叫中垂线. 2.性质 线段中垂线上的点到这条线段两个端点的距离相等. 3.判定 到一条线段的两个端点距离相等的点在中垂线上, 线段的中垂线可以看作是到线段两端 点距离相等的点的集合.
知识点四
直角三角形的性质与判定
1.性质 (1)直角三角形的两个锐角互余; (2)勾股定理:a2+ b2=c2(在 Rt△ABC 中,∠ C= 90° ); (3)在直角三角形中,如果有一个锐角等于 30° ,那么它所对的直角边等于斜边的一半; (4)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角为 30° ; (5)直角三角形斜边上的中线等于斜边的一半. 2.判定 (1)有一个角是 90° 的三角形是直角三角形; (2)勾股定理的逆定理; (3)如果一个三角形一边上的中线等于这边的一半,那么这个三角形为直角三角形; (4)有两个角互余的三角形是直角三角形.
如图,过边长为 1 的等边△ABC 的边 AB 上一点 P,作 PE⊥AC 于 E,Q 为 BC 延长线上一点,当 PA=CQ 时,连结 PQ 交 AC 边于 D,则 DE 的长为( )
1 1 2 A. B. C. D.不能确定 3 2 3 解析:过点 P 作 PF∥BC,由已知△ABC 为等边三角形可证△APF 也为等边三角形, 于是 AP=PF,又因为 AP=CQ,则 PF=CQ,于是可证△PFD≌△QCD,于是 FD=DC; 1 另一方面,因为△APF 为等边三角形,且 PE⊥AC,则 AE=EF,于是可得 EF+FD= AC 2 1 = ,故选 B. 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 三、重点:等腰三角形的性质和判定。

难点:分类讨论思想。
知识的梳理 概念
一、等腰三角形 1.定义:有两边相等的三角形叫做等腰三角形
2.性质: ⑴等腰三角形的两个底角相等
(在一个三角形中,等边对等角) ⑵等腰三角形的顶角平分线、底边
上的中线和高线互相重合 (等腰三角形三线合一) (3)是轴对称图形
B D
∵ AD=1/2BC=1/2AB AD ⊥BC
∴ ∠B= 300 ∴ ∠BAC= ∠C
= 1/2(1800﹣300 )
= 750
C
A
(2)当顶角B为钝角时,如图:
D ∵ AD ⊥BC
B
AD=1/2BC=1/2AB ∴ ∠ABD= 300
C
A ∴ ∠BAC= ∠C= 1/2 ∠).定义:
有两边相等的三角形叫做等腰三角形
(2).判定定理: 有两个角相等的三角形是等腰三角形
等腰三角形的性质
• 例1 已知: 在△ABC中,AB=AC, ∠B =80°.求∠C和∠A的度数.
• 例2 如图10.3.3,在△ABC中,AB=AC, D是BC边上的中点,∠B=30°,求∠ADC 和∠1的度数.
• 一、教学目标:
• 1.掌握等腰三角形的性质、等腰三角形的判定; • 2.能灵活运用等腰三角形的性质和判定解决相关问题; • 3.在等腰三角形腰和底不明确或顶角不明确时要用分类 讨
论的思想,让学生体会分类讨论思想。
• 二、考情分析:
• 等腰三角形的概念、性质、判定是中考的一重点,在选择 题、填空题、解答题中都有涉及。
2. 若等腰三角形的一个内角是45°,则它的顶角为90°( 错 )
(填对 或错!) 3.若等腰三角形的一外角是100°,
那么它的三个内角分别是_5_0_°__、_5_0_°__、_8_0_°__或_8_0_°__、_8_0_°__、_2_0_°.
4.等腰三角形一腰上的高是腰长的一半,则顶角度数为 ___30_°__或_1_50_°____。 5.等腰三角形一个内角为80度,则另外两个内角 分别为5_0_°_、_5_0_°_或_8_0_°_、_2_0。°
【数与代数】 1、 概念分段定义 2、 公式、定理、法则分段表达 3、 实施某些运算引起分类讨论 4、 含参方程或不等式
【几何】 5、 图形位置不确定 6、 图形形状不确定 【其他】 题设本身有分类
1、 明确分类对象 2、 明确分类标准 3、 逐类分类、分级得到阶段性结果 4、 用该级标准进行检验筛选结果 5、 归纳作出结论
A
BA
C
80°
20°
A
80°
BA
50° 50°
B C
50°
50°
B
例2、已知⊙O的半径为5cm,AB、CD是⊙O的弦,且AB=6cm,

二、图形不确定的分类讨论
例1、在下图三角形的边上找出一点,使得该点与三角形的两 顶点构成等腰三角形.
C 110°
A
20°
50° B
(1)、对∠A进行讨论 (2)、对∠B进行讨论 (3)、对∠C进行讨论
20°
A
C
20°
BA C
C
65° 65° 50°
BA C
C
110° 35°
35°
B
20° 20°
热点3:与相似三角形有关的分类讨论
(1) 对应边不确定
(2) 对应角不确定
【类型三:圆中的分类讨论】 热点1:点与圆的位置关系不确定 热点2:弦所对弧的优劣情况的不确定而分类讨论 热点3:两弦与直径位置 热点4:直线与圆的位置的不确定 热点5:圆与圆的位置的不确定
一、概念中的分类讨论
1、已知|a|=3,|b|=2,且ab<0,则a - b = ;
(3)当顶点B为直角时,
高AD与腰AB重合 则有AD=AB=BC,与已知矛盾, 故∠B≠ 900
∴ ∠BAC的度数为900 或750或 150
(分类讨论思想)
在解等腰三角形的题目时,经常 会运用分类思想讨论,以防止掉 入数学“陷阱”!
1.若等腰三角形二条边的长分别是4和8,则它的周长为__2_0___.
总结:在解等腰三角形的题目时,经常会运用
分类思想讨论,以防止掉入数学“陷阱”!
每个数学结论都有其成立的条件,每一种数学方法的使用 也往往有其适用范围,在我们所遇到的数学问题中,有些问题 的结论不是唯一确定的,有些问题的结论在解题中不能以统一 的形式进行研究,还有些问题的已知量是用字母表示数的形式 给出的,这样字母的取值不同也会影响问题的解决,由上述几 类问题可知,就其解题方法及转化手段而言都是一致的,即把 所有研究的问题根据题目的特点和要求,分成若干类,转化成 若干个小问题来解决,这种按不同情况分类,然后再逐一研究 解决的数学思想,称之为分类讨论思想。
图 10.3.3
分类讨论思想
例 3、已知ΔABC是等腰三角形,BC边上 的高恰好等于BC边长的一半,求∠BAC的度 数。
解:1、当BC为底边时,如图:
A
∵AD ⊥BC,
AD=1/2BC=BD=CD,
∴ ∠BAD= ∠B= ∠C
= ∠CAD= 450
∴ ∠BAC= 900
B
D
C
2、当BC为腰时,设∠B为顶角,分下面几种 情况 讨论: (1) 顶角B为锐角时,如图:
【类型一、与数与式有关的分类讨论】
热点1:实数分类、绝对值、算术平方根 热点2:与函数及图象有关的分类讨论 :变量取值范围、 增减性
热点3:含参不等式 热点4:涉及问题中待定参数的变化范围的分类讨论。 热点5:含参方程
【类型二、三角形中的分类讨论】
热点1. 与等腰三角形有关的分类讨论:在等腰三角形中,无论边还 是顶角、底角不确定的情况下,要分情况求解,有时要分钝角三角 形、直角三角形、锐角三角形分别讨论解决. (1) 与角有关的分类讨论 (2) 与边有关的分类讨论 (3) 与高有关的分类讨论 热点2:与直角三角形有关的分类讨论:在直角三角形中,如果没有 指明哪条边是直角边、斜边,这需要根据实际情况讨论;当然,在 不知哪个角是直角时,有关角的问题也需要先讨论后求解.
2、等腰三角形的两边为6和8,那么此三角形的周长为

3、如半径为3cm的⊙O1与半径为4cm的⊙O2 相切,两圆的圆 心距O1O2= cm.
1、直角三角形的两边为3和4,那么第三边长为

2、等腰三角形的一个角的度数为40°,那么此三角形的另两
个角的度数为

3、若半径为3和5的两个圆相切,则它们的圆心距为
相关文档
最新文档