丙烯压缩机油路系统

合集下载

丙烯制冷压缩机系统管道设计

丙烯制冷压缩机系统管道设计

CHEMICALENGINEERINGDESIGN化工设计2023,33(5)柳 坤:高级工程师。

2010年硕士研究生毕业于郑州大学化工过程机械专业。

主要从事石油化工管道设计工作。

联系电话:18380201806,E mail:liukun@chengda com。

丙烯制冷压缩机系统管道设计柳 坤 中国成达工程有限公司 成都 610041摘要 丙烯制冷压缩机系统是石化装置烯烃分离装置的关键系统之一,其制冷过程中介质温度经历自72 2℃至 40 6℃的工况,存在大量低温管道,合理的管道设计对装置的正常运行有着重要的意义。

本文探讨了丙烯制冷压缩机系统的管道设计,提出了设计时应把握的原则;同时,从参数设计、方案布置、应力分析、支吊架设计等方面,深入分析了丙烯制冷压缩机系统的设计要点,为今后类似系统的管道设计提供了参考依据。

关键词 烯烃分离装置;丙烯制冷压缩机;管道设计;应力分析DOI:10.3969/j.issn.1007-6247.2023.05.007 丙烯制冷压缩机系统是烯烃分离装置的关键系统之一[1],介质温度经历自72 2℃至-40 6℃的工况,冷热条件同时存在,具有与一般压缩机系统不同的特点,其管道设计的合理与否直接影响着装置的正常运行。

目前无太多文献对此系统的管道设计做全面且系统的讨论,本文结合某烯烃分离项目,对丙烯制冷压缩机系统的管道设计进行深入的分析,为今后类似系统的管道设计提供参考。

1 机组概况及工艺流程本文中丙烯制冷压缩机系统由压缩机组及其附件(包括油站、高位油箱等设备)、蒸汽透平机组及其附件(包括凝汽器、两级射汽抽气装置、凝结水泵、排气安全阀等设备)、多段吸入罐、冷凝器、冷剂储罐、排污罐等组成。

丙烯制冷压缩机组及附属设备工艺流程见图1。

1 透平;2 丙烯制冷压缩机;3 丙烯冷凝器;4 丙烯冷剂储罐;5 预切割塔再沸器;6 四段吸入罐;7 三段吸入罐;8 二段吸入罐;9 一段吸入罐;10 丙烯液相排出泵图1 丙烯制冷压缩机组及附属设备工艺流程简图 丙烯制冷压缩机为四段离心式压缩机,气相丙烯从四段吸入罐注入系统,将系统压力充压至0 3MPa,再泄压至火炬系统,反复三次将系统内氮气置换,然后将系统充压至适合压力,将液相丙烯注入四段吸入罐,并在二、三、四段吸入罐内建立液相,以使系统启动。

PK-301循环丙烯压缩机(组)——迷宫压缩机(组)操作

PK-301循环丙烯压缩机(组)——迷宫压缩机(组)操作

PK-301循环丙烯压缩机(组)——迷宫压缩机(组)操作PK301的操作(一)首次开车1、准备工作a.充油通过曲轴箱油视镜观察油位,油泵工作时,油位大约处于视窗中间,而泵启动之前,油面要相应高些,约3/4处。

b.盘车可以手动盘车,如机组庞大可以准备机械盘车或用电动机驱动盘车。

注意:在手动或机械盘车之前,压缩机的启动主开关要锁住。

c.正确设定冷却水量打开冷却水阀,调节冷却水量,确保压缩机各点温度正常。

注意:冷却水量的正确设定要在机器运行稳定,经过一定时间压缩机各点温度稳定时,方可调定完毕。

d.检查安全阀的功能(正常应在开工前校定完成)。

e.打开吸入和排放管线上的阀f.启动预润滑油泵,控制油压在0.35-0.4Mpa2、开车(首次开车)采用打开旁路回流方法进行无压起动,短时间起动电机如无不正常的噪声,则再次起动,在运转大约10分钟之后,在停车状态下测量轴承温度(应为45℃)和活塞杆温度(应为120℃以下)。

温度正常,再次启动,开始有压运行(调节回流量PV34001)。

(二)正常开停车1、开车前准备1) 打开所有冷却水(按正常操作水量投用)。

2) 投用所有仪表。

3) 油温20℃以上。

4) 通知变电所送电。

5) 检查各分离罐液位是否低于5%(超过5%不能起动),并检查各阀流向是否正确。

6) 确认曲轴箱润滑油液位正常。

7) 确认PV34001全开状态。

8) 打开C301进/出口阀门。

9) 启动辅助油泵,调节油压至0.35-0.4Mpa,手动盘车。

10) 设定C301负荷为0,以减少启动转矩。

2、开车启动C301,达到正常转速后,加载至50%,30秒后提负荷到100%,与内操联系设定旁通阀开度,30秒辅助油泵将自动停,检查各仪表显示值是否在正常值范围直至运行稳定。

3、停车1) 来自DCS或者来自LOP的压缩机停机信号(按压“压缩机停机”按钮)。

2) 阀门卸荷器应保留在它们当前的负载处。

3) 辅助润滑油泵自动起动,为了停机后的润滑,要运行大约2分钟。

烯烃压缩区装置操作与控制—作业丙烯制冷

烯烃压缩区装置操作与控制—作业丙烯制冷
丙烯压缩机工艺流程
ONTENTS
1 工序的任务及意义
目 2 工艺原理 录
3 工艺流程
01 工 序 的 任 务 及 意 义
丙烯制冷压缩机160C701系统可以为低温分离过程提供-40℃、 -24℃ 、7℃的换热介质。不同温度等级的冷剂是通过在不同压力 下丙烯汽化而获得的。
02工



离心压 缩机工 作原理
03 凝液系统及真空系统处理
步骤
关闭真空喷射器的蒸汽入口阀,打开通大
1
气阀门将真空破坏。
2
破坏真空后关闭密封蒸汽供给阀。
关闭泄漏蒸汽冷凝液真空喷射器的蒸汽入
3
口阀。
4
打开透平缸体导淋排凝。
步骤
5
关闭安全阀密封冲洗水阀门。
取消备泵联锁,停运行冷凝液泵、热井泵,
6
关冷凝液外送阀。
7
闭BFW 给水阀。
压缩机组通过汽轮机驱动,叶轮作高速运转
1
产生一定的离心力
由于旋转离心力的作用及叶轮中的扩压流动 2 ,使气体的压力得到提高
3 随后在扩压室中又进一步把速度能转化为压 力能,从而进一步提高气体的压力
汽轮机 的工作
原理
汽轮机通过冲动原理将蒸汽的热能转变为机 1 械功。 2 从喷嘴喷出的高速汽流冲击在装于叶轮上的
2 160C701系统停车
目 录
3 凝液系统及真空系统处理 4 160C701 氮气置换 5 160-C-701 油系统停车
6 停干气密封系统
01 停 工 前 各 项 准 备
1
准备
2
工作
3
4
物资准备 人员准备 学习准备 安全防护准备
02 1 6 0 C 7 0 1 系 统 停 车

浅谈丙烯压缩机组开车要点

浅谈丙烯压缩机组开车要点

浅谈丙烯压缩机组开车要点浅谈丙烯压缩机组开车要点【摘要】本文深入研究了丙烯压缩机组开车的操作知识,论述了当前丙烯压缩机开车的流程、开车过程中的异常问题,给出了机组开车的操作标准与要点,为现实的生产提供参考价值。

【关键词】机组;开车;流程;标准一、机组开车流程汽轮机润滑油系统→冷凝液系统→暖管→真空系统→轴封系统→压缩机的启动→检查系统压力、温度、流量均正常。

二、压缩机组开车步骤1、汽轮机润滑油系统:检查润滑油箱在正常液位。

检查油温,假设过低,启动油箱加热器,对油箱中的油进行加热,当油温到达22℃时,启动主油泵,同时做油系统联锁试验,确认油泵出口压力至正常的0.90MPa左右,润滑油总管压力0.105MPa,汽轮机控制油压0.67~0.74MPa。

当油冷器出口油温在35℃时,电加热器自动关闭。

开充油阀给高位油箱上油,直至液位到达开车条件。

2、冷凝液系统a、确认凝结水泵具备启动条件,将启动打就地。

b、向凝汽器补入脱盐水,热井水位补到上限。

c、翻开主、辅凝结泵进口阀,进行泵体排气,有连续不断的水排出后关闭。

d、对主、辅凝结泵手动盘车,确认转动灵活、无卡涩。

e、启动主凝结泵。

1〕按主凝结泵启动按钮,启动主凝结泵。

2〕待电流回落后,缓慢翻开出口阀。

3〕PLC翻开冷凝液循环阀,进行全回流,检查系统有无泄漏;检查压力、电流、振动、声音、是否正常,泵体密封有无泄漏。

4〕将备用泵打自动。

3、暖管翻开蒸汽放空阀,翻开TTV阀排凝导淋。

稍开隔离阀进行低压〕暖管,注意汽温提升速度不应超过5℃/min,当管道温度到达120~130℃后,可以按0.1MPa/min的速率提升管内压力,蒸汽压力升至2.5MPa、温度到达300℃以上时,暖管结束。

4、轴封及真空系统1〕确认排气平安阀水封有水溢出,抽气器凝结水投用。

2〕逐渐开启启动抽气器的进汽阀,阀后压力约为0.2MPa,暖管5min之后,开大进气阀,升至正常工作压力,缓慢翻开启动抽气器与凝汽器之间空气阀,使系统建立真空。

丙烯压缩机油路系统

丙烯压缩机油路系统
衡; • 1.1.2保证机组的安全运行,当汽轮机转速
过高时,它可以自动关小调节汽门使汽轮机 转速下降;
3、速关装置
3.1 速关装置油路走向 高压油从“P”进入基本模块,在基本模块壳体内分为五路:
• 第一路经手动停机阀(2274)和电磁阀(2225)进入停 机卸荷阀 (2030),克服弹簧力使阀处于关闭状态。正常 运行时,通向停机卸荷阀的速关油不泄油。速关油是由冗 余模块内部管路引入的。
油温:40±5℃ 润滑油压:0.25~0.35MPa 调速油压: 0.85MPa 油过滤器压差:<0.15MPa 主油泵出口压力:1.1MPa 油箱液位:液位计60% 回油温度:<85℃ 氮气压力为:200mmH2O,氮气流量:10Nm3/h。
二、调速系统
• 1.汽轮机调速系统的任务 • 1.1.1使汽轮机组输出的功率与负荷保持平
• 速关阀在线试验阀 (1845)
• 供速关阀活塞做活动 性试验
3.3.2 冗余模块
组成
功能
• (2226)电磁阀
• 电动紧急停机
• (2040)停机卸荷阀 • 快速卸掉速关油压
3.3.3 启动模块
组成
功能
• (1839)启动阀 • (1830)关闭阀 • (1742)电液转换器 • (5600)单向阻尼阀
讲述ቤተ መጻሕፍቲ ባይዱ容
一、润滑油系统: 1、润滑油的作用 2、油路的介绍 3、油系统主要设备介绍 4、高位油槽与蓄压器 5、润滑油系统控制指标
二、调速器系统
1、调速器的任务 2、调速系统的油路介绍 3、速关装置 4、紧急停车的原理 5、建立启动油、速关油、开
启速关阀
6、速关阀在线试验 7、错油门与油动机 8、电液转换器原理 9、盘车系统

丙烯压缩机的介绍

丙烯压缩机的介绍

-10 4.257 74.97 4639 7066 3937 11003 43.69 14.97 58.66
0
5.772 76.83 3424 7302 3794 11096 44.55 13.85 58.40
10
7.685 79.09 2569 7547 3651 11198 45.39 12.80 58.19
该机组由3mcl527压缩机和nk3236轮机组成3mcl527型离心压缩机由一缸两段七级组成一段四级二段三级压缩机与汽轮机由膜片联轴器无锡创明公司供联接压缩机和汽轮机安装在同一钢底座上整个机组采用润滑油站供油润滑压缩机的轴端密封采用约翰克兰科技天津有限公司的干气密封干气密封的控制系统也由约翰克兰科技天津有限公司提供
开车时,液体丙烯从槽车导入丙烯贮槽, 然后依次导入丙烯闪蒸槽、丙烯闪蒸分离 器,最后通过液体丙烯管线去低温甲醇洗 工序。
• 装置正常生产时,从低温甲醇洗工序来的
-气体丙烯,压力约0.13MPa, 进入丙烯闪 蒸分离器,气体中的液滴分离出来后以 25460 Nm3/h进入丙烯压缩机低压缸(一 段)进口。
正常点
额定点
转速(r/min) 功率(kw)
调速范围 (r/min)
电子跳闸转速 (r/min)
进汽压力MPa(G) 进汽温度(℃) 排气压力MPa(A) 耗汽量(t/h)
7570 3118
7570 3430
额定转速的80%-105%
8584
2.1 330 0.01 17.1
6 工艺流程概述 丙烯流程:
• 丙烯贮槽出来的温度压力1.80MPa的液体丙
烯进入低温甲醇洗工序各换热器做蒸发制 冷剂,各冷点蒸发后的气体返回本系统完 成制冷循环。
• 为了防止压缩机喘振,采用了两段防喘振

丙烯透平压缩机防喘振故障分析及优化改造

丙烯透平压缩机防喘振故障分析及优化改造

2019年12月管网之间的阻力,确保充足处理气量,获得更高的吸入压力;其次,控制压缩机机组间压降。

在压缩机机组油系统控制阀实际运行期间,其机端间的压降也是机组运行能耗量明显增多的重要因素之一,为从根本上调节压缩机机组间压降,将原有极间冷却器替换为高效换热器,减少多余管道与弯头,确保压缩机油系统控制阀的运行能耗量与预期目标相符。

3.2加强压缩机机组结构设计管理对油系统控制阀内的三元流叶轮。

三元流叶轮主要就是为气体流动设计的叶轮结构形式,通过对原有三元流叶轮进行改造,可切实提升压缩机机组叶轮运行效率,切实提升油系统控制阀设备生产能力[5];做好叶轮抛光工作,叶轮表面粗糙度与运行期间的能耗情况具有直接关联,需相关工作人员及时采用精铸以及打磨抛光等形势,提升叶轮表面的光洁度。

对压缩机机组的管线布局设计方案进行不断优化,以期更好控制管道内压力。

结合实际生产工作对压缩机机组运行情况提出的更高要求,对管路布局进行调整,确保管路内的入口压力与出口压力之间的压差不超过5%。

对能够造成压损设备的结构,如冷却装置、控制阀等进行优化,采用更加科学合理的方式对压缩机机组油系统控制阀结构进行改进,从根本上降低油系统控制阀故障发生几率。

3.3注重油系统控制阀的集中控制与热回收通常情况下,压缩机机组并不是单机运行,因此为做好节能降耗工作,还需对多台压缩机组油系统控制阀进行集中控制。

积极开发压缩机机组集中控制系统,调整压缩机工作时间与转速,确保压缩机机组内的用气量下降,运行性能良好,工作状态得到全程控制。

同时,积极采用热回收技术,借助热能回收交换装置,将热能传递给冷却水,在热能加热后将保温水存储起来,以便回收压缩工作热量,解决压缩机机组油系统控制阀自身散热问题,为充分发挥出油系统控制阀在增强压缩机机组节能降耗性能中的积极作用奠定了坚实的技术基础。

4结语总而言之,压缩机机组作为当前工业生产领域的重要设备之一,如其内部油系统控制阀出现运行故障问题,极有可能造成生产能耗量过大,对企业稳定有序发展造成严重不利影响。

丙烯压缩机组油站油压稳定技术改造

丙烯压缩机组油站油压稳定技术改造

丙烯压缩机组油站油压稳定技术改造作者:魏科学肖亮来源:《中国化工贸易·下旬刊》2018年第01期摘要:压缩机会因为油站压力低低跳车,所以油站的主副油泵切换,事故油泵启动的时机,是压缩机油站稳定运行的关键。

其次就是油泵出口油压的压力调整,同时油箱回油压力的调整的及时性,也是严重影响油站油压系统的稳定。

关键词:压缩机油站;压力变送器;自力式调节阀;油压稳定压缩机在运行过程中,油站的稳定运行是必不可少的重中之重。

我厂在2016年6月21日,丙烯压缩机因油压低低发生跳车事故。

机组跳车后现场检查机组备用油泵、事故油泵均处于运行状态。

查看机组SOE记录,显示主油泵停机,0.5s后润滑油油压低低联锁触发机组跳车,跳车同时事故油泵启动,1.1s秒后润滑油泵辅泵启动。

此次机组跳车事故留下几个疑问:①事故油泵为何在备用油泵前启动;②事故油泵已启动为何没有维持住油压;③油压调节是否滞后。

1 问题分析首先查阅机组相关资料,丙烯压缩机油路如图:从图中可以看出油泵出口油压PIAS_17103在油过滤器后,实际现场压力变送器导压管从油过滤器后长度约为3米位置处开孔取压,管径为φ12,润滑油压力调节阀PIC_17101由PIAS_17103在机组康吉森PLC内部PID自动调节控制,而润滑油回油压力调节阀PIC_17100由PIAS_17100在机组康吉森PLC内部PID自动调节控制,这个原因导致了油压调节的滞后性。

当润滑油泵主泵停止后,油压滞后调节导致油压瞬间调至跳车值,机组已经跳车,事故油泵和辅助油泵启动启动已经于事无补。

其次油站控制逻辑为:①PIAS17103低于0.15MPa、汽轮机控制油压力PSA17201低,任一个条件满足,启动备用油泵;②润滑油总管压力开关PSA17100、PSA17101、PSA17102压力低于0.1MPa,任意两个条件满足,润滑油压力低低跳压缩机,同时启动事故油泵。

综上所述,为防止此类事故再次出现,现场组织相关单位再次模拟主油泵故障做测试,油压还是不能保持。

烯烃分离装置丙烯制冷压缩机管道设计要点

烯烃分离装置丙烯制冷压缩机管道设计要点

山 东 化 工 收稿日期:2019-06-27烯烃分离装置丙烯制冷压缩机管道设计要点赵小溪(中石化广州工程有限公司,广东广州 510620)摘要:本文针对烯烃分离装置中丙烯制冷压缩机的管道设计工作,归纳总结了丙烯制冷压缩机厂房布置、管道布置及低温管道的设计要点,提出了丙烯制冷机组管道设计工作中需要注意的问题,为后续此类管道设计工作提供了借鉴与参考。

关键词:烯烃分离;丙烯压缩机;管道设计中图分类号:TQ055.8 文献标识码:A 文章编号:1008-021X(2019)16-0184-03PipingDesignPrinciplesofPropyleneRefrigerationCompressorinOlefinSeparationUnitZhaoXiaoxi(GuangzhouPetrochemicalEngineeringCorporation/Sinopec,Guangzhou 510620,China)Abstract:Inthispaper,thepipelinedesignofthepropylenerefrigerationcompressorinolefinseparationunitwasanalyzedandillustratedfromtheplantlayout,pipinglayoutanddesignpointsoflowtemperaturepipelinesofpropylenerefrigerationcompressor.Meanwhile,theproblemstowhichspecialattentionshouldbepaidinthedesignwereputforwardbasedontheauthor'sknowledge,whichoffersareferenceforthepipingdesignofthispart.Keywords:olefinseparation;propylenecompressor;pipelinedesign 近年来,随着甲醇制烯烃(MTO)技术的发展和烯烃分离单元工艺的进一步优化,甲醇制烯烃联合装置向着更加高效、节能、平稳的方向发展。

丙烯卸车压缩机说明书

丙烯卸车压缩机说明书

丙烯卸车压缩机说明书丙烯卸车压缩机是一种广泛应用于工业领域的设备,主要用于将丙烯气体压缩成高压气体并输送到目标地点,具有极高的效率和安全性。

本说明书将全面介绍丙烯卸车压缩机的结构、工作原理以及操作步骤,以提供用户合理、安全地操作设备。

一、结构丙烯卸车压缩机主要由压缩机本体、润滑系统、冷却系统、控制系统等部分组成。

压缩机本体由气缸、曲轴箱、连杆、活塞等关键部件组成,确保了气体的高效压缩。

润滑系统可对关键部件进行润滑和冷却,保证设备的长时间稳定运行。

冷却系统通过循环冷却剂,降低设备的温度,防止过热引发事故。

控制系统则负责设备的开关和监控,保障设备的安全运行。

二、工作原理丙烯卸车压缩机的工作原理基于压缩机的变容工作过程。

气体首先进入气缸,然后通过曲轴箱的连杆和活塞进行压缩。

随着活塞的运动,气体被不断压缩,压力逐渐升高。

一旦达到设定压力,控制系统将停止进气,避免压力过高,保证安全。

随后,高压气体通过管道输送到目标地点,实现丙烯的运输。

三、操作步骤1. 检查设备:确保设备无异味、无明显损坏,润滑系统和冷却系统正常运行。

2. 开启电源:按照设备接线图连接电源,确保电压稳定。

3. 启动冷却系统:按照说明书操作,启动冷却系统,确保设备温度处于正常范围。

4. 打开压缩机:根据设备的操作面板,逐步打开压缩机的阀门,将气体进入气缸。

5. 监测压力:通过控制系统的压力表,随时监测气体的压力,确保在安全范围内运行。

6. 停止压缩:当压力达到设定值时,关闭压缩机的阀门,停止压缩。

注意及时清理气缸内的残余气体。

7. 输送气体:通过管道将高压气体输送到目标地点,确保管道连接良好,无泄漏。

8. 关闭设备:根据操作面板的操作步骤,逆序关闭设备,断开电源,保证设备的安全性和使用寿命。

通过本说明书,您可以全面了解丙烯卸车压缩机的结构、工作原理和操作步骤,掌握正确的使用方法和安全注意事项。

在实际操作中,请务必遵循操作规程,确保人身安全和设备安全。

丙烯制冷压缩机组密封油系统漏油的原因及解决措施

丙烯制冷压缩机组密封油系统漏油的原因及解决措施

作者简介柳念先男助理工程师现任独山子石化公司乙烯厂乙烯车间设备管理联系电话丙烯制冷压缩机组密封油系统漏油的原因及解决措施陈刚陈大勇全兰摘要丙烯制冷压缩机自年以来出现机组润滑油泄漏并且泄漏量持续加大油内漏进入工艺系统同时又造成油品跑损为保持机组稳定运行根据泄漏状坚持到乙烯厂停工检修对丙烯制冷压缩机浮环密封附件更换及处理后关键词油气分离器前言密封油从油泵出来后分两路进入压缩机两端然后流过内由于外所经密封腔排入轴承室少量密封油经内密封环与轴的间隙流入密封腔后进入油气分离器进行油气分离分离出的气相返回裂解单元的分离出的润滑油通过密封油脱气槽密封油主要起到密封作自丙烯制冷压缩机密封油根据统计平均每天需向油箱补油一次每次补油量为六桶约合一吨左一年泄漏量约为由于丙烯制冷压缩机密封系统采用浮环油膜密封该密封系统在机组运行过程中导致丙烯制冷系统制冷效果下降密封油在低温处聚集通过每周对工艺系统换热器及每次将近约严重时会造成换热器液位假指示目前采取措施是现场定期对润滑油泄漏部位及然氮气吹扫清除积存的润滑油密封油系统工艺流程简图通过平时我们的分析和研究我们断定压缩机组油系统漏油主要是压缩主要表现在两大方面的气相线窜至分析压缩机组油系统漏油的原因在此基础上分压缩机密封油系统工艺流程简图如图浮环密封的工作原理及示意图图密封油系统工艺流程简图浮环密封是一种轴向和径向密封组合的混合密封浮环密封主要是由高压环环低压环环防转弹簧以及辅助密封等部高压环的作用是利用高压密封油在浮环与轴间形成的油膜产阻止所密封的气体通过浮环与轴套间的间隙沿轴向外漏但会有少量密封油从此间隙中向密封气体侧泄漏因高压环两侧压差较小低压环的作用是利用高压密封油在浮环与轴间形成的油膜产生节流降压阻止密封油流向低压侧使密因低压环两侧压差较大为防止泄油量过大视情况低压环防转销的作用是只允许浮环随轴浮动防止浮环随辅助密封的作用是与壳体的静端面轴向紧密贴和防止气体沿径向浮环与轴轴之间充满了密封由于浮环与轴之间存在偏心当轴转动时在偏心圆柱间隙内将形成的油膜产生流体动压力浮环密封主要是油膜起作用浮环密封浮环密封系统内漏的原因分析浮环密封中外环只起保压作用浮环密封系统无论外环还是内环它们的漏油量的计算公式均如下式中影响浮环漏油量的因素有密封环与轴之间的密封间隙正比于以当密封间隙每增大而密封油漏油量却要增加提高密封效果看浮环间隙应尽量减小但间隙太小又会导致浮环工作条件的恶化乃至浮环抱轴故障的发生浮环间隙过大浮环间隙一般在下列范围选取内浮环半径间隙外浮环半径间隙中年我们所测得的浮环内环间隙在大检浮环间隙不是导致浮环密封系统中内浮环两侧压差正比于即压差越漏油量是相对偏心度密封油漏油量正比于则漏油量越大则漏说明浮环和轴之间没有磨损所以偏心度不应该发密封油泄漏量与密封油粘度成反比而流体的粘度又是随其温度的升所以则油的粘密封油的温度越低节流长度密封油泄漏量与密封浮环即节流长度越长漏油量越小节流长度越短在浮环密封系俘环的轴向尺寸不会发生变化除上述外还有以下一些原因可能引起浮环密封内漏量增大内环中作为辅助密封的用于径向密封的由于零配件损坏或存在杂质或机组检修时装配质量问题浮环间隙不能造成密封油回油不或者气气压差不稳或者气气压差信号变送器灵敏度出现问题汽轮机转速波动也会影响浮环密封油膜的形成造成密封失综上所述结合我装置具体情况我们分析泄漏原因主要有以下两方面压缩机密封系统采用浮环油膜密封从年月检修到现在已经机组密封系统浮环油膜密封组件磨损严重密封油漏进工艺系统密封油脱气系统油气分离器的工作状况较差从而密封油随气相线窜到系统外加大了密封油的损失密封油系统泄漏的解决措施在年我们有针对性的采取了一些措施首先对密封油系统进行了检修此外环解体检查发现基密封油系统油气分离器气由以前的更改为目前的油气分离器解体检查发现于是对气相线及回油线进行了其次在工况允许的情况下控制密封油高位槽的液位尽量降低油气压差油气压差由检修前的降到目前的同时对气提同时确保密封油应干净无水分及机械杂质参考气之间的关系密切注意各参数的变化通过以大检修前我们每周至少要对工艺系统段间罐和换热器至少排油一次而大检修后我们至今没有排过油可以说压缩机两轴端的浮检修后密封油泄漏量丙烯制冷压缩机于检修后月运行至目前密封油系统工作正常润滑油泄漏量月日机组运行到油箱液位略有下降根据油箱液位刻度进行估算泄漏量约为计公照此泄漏量计算每年润滑油损失约为比检修前减少泄漏近小结及建议由于压缩机密封系统采用浮环该密封系统在机组运行过程中不可避目前其他厂家大多采用较先进的干气密封系统建议我们在可行的条件下进行更换油气分离效果不好参考文献任晓善等化工机械维修手册化学工业出版社钱锡俊等编泵和压缩机石油大学出版社。

丙烯压缩制冷开车总结08.04

丙烯压缩制冷开车总结08.04

丙烯压缩制冷开车总结08.04第一篇:丙烯压缩制冷开车总结08.04丙烯压缩开车总结2018年7月31日17:00点接调度通知,丙烯压缩制冷B单元做开车准备。

丙烯压缩制冷B单元装置状态为润滑油系统处于运行状态,其他设备均在停车备用状态。

现场运行人员接到开车通知后,有序做开车前的准备工作,经过几个小时不间断的工作,至23:20B单元压缩机具备冲转条件,进入正式开车程序。

一、开车过程18:00开始放空暖管,中控逐渐开大放空主线,投用汽轮机盘车;缓慢将速关阀前放空开至1/3阀位;18:30冷凝液系统建立循环,现场运行人员启冷凝液泵(P005)、疏水泵(P006),通过补充脱盐水保持液位平衡,通知调度准备外送冷凝液;18:45轴封蒸汽、抽气器投用,现场运行人员开启动抽气器蒸汽和空气侧阀门,进行抽真空作业;轴封蒸汽阀门打开两扣;22:30蒸汽暖管至350℃,具备开车条件,通过A/B单元一级密封气连接跨线为B单元提供一级密封气;23:30打开速关阀,机组开始冲转;00:00汽轮机冲转至600rpm,处于低速暖机状态;00:10调节轴封蒸汽流量,打开B001A/B上液阀门、CL007前后切断阀;00:27转速升至1500 rpm,现场将汽轮机6个导淋关1/3;00:40启动抽气器切换至运行抽气器,关闭CH100,CH200;00:51微开一二段激冷降低压缩机入口温度;系统通过临界转速区,现场检查各仪表及声音震动正常。

关闭CH103、CH203、CH004、CH005、CH104、CH204、CH105、CH205,所有电动阀门操作处于停止位;01:10转速升至2600 rpm,发现系统压力上涨较快,同时储槽B001A/B液位持续降低;01:23转速升至3910 rpm,CP008上涨至1.94MPa;01:30汽轮机升速完毕,现场增大循环水量,在投用水冷器时,转速最低掉至3578 rpm,将B001A/B之间跨线打开,做系统补液准备;01:32手动激活防喘阀,调节防喘和激冷;01:55运行工况好转,转速恢复3910 rpm,全关汽轮机6个导淋,关闭热井和集液箱补水;02:40丙烯输送泵送电后,向储槽补丙烯;03:38一级密封气由A单元工艺气切至B单元工艺气;03:50投用丙烯蒸发器W005、W006、W008;04:53停丙烯输送泵,系统共补充丙烯18.47t。

丙烯压缩机操作规程

丙烯压缩机操作规程

冷冻站装置操作规程南耀煤制气有限责任公司二○一八年十二月★内部资料,注意保密冷冻站装置操作规程(试行本)编号:编制:审核:审定:批准:日期:发布日期:年月日实施日期:年月日目录1 岗位任务及意义 (1)2 装置说明 (1)3 工艺过程概述 (1)3.1 生产原理 (1)3.1.1 离心式压缩机的工作原理 (1)3.1.2 丙烯压缩制冷原理 (1)3.2 工艺流程简述 (2)4 工艺参数和设计指标 (3)4.1 工艺指标 (3)4.2 原料规格 (4)4.3 产品规格 (4)4.4 公用工程物料规格 (4)4.5 原料消耗、公用工程消耗及能耗指标 (5)5 原始开车 (8)5.1 开车前的准备工作 (8)5.2 开车统筹图 (8)5.3 投用干气密封系统 (8)5.4 投用润滑油系统 (9)5.5 压缩机联试 (11)5.6 工艺气开车 (11)5.6.1气密性试验 (11)5.6.3 系统N2置换 (12)5.6.4 系统丙烯气置换 (12)5.6.5系统充液 (13)5.6.6系统的启动 (13)6 工艺操作及调整 (14)6.1 丙烯分离器的液位调节参数调节 (14)6.2 压缩机防喘振控制 (14)6.3 系统丙烯补充 (14)7 装置正常停车 (14)7.1 停工准备 (14)7.2 停工统筹图 (15)7.3 停工操作 (15)7.3.1 长期停车 (15)7.3.2 短期停车 (16)8 装置紧急停车 (16)8.1.紧急停车程序 (16)8.2.紧急停车后的处理 (17)9 单体设备操作规程 (17)9.1 油冷器的切换维修或清洗 (17)9.2 油过滤器的切换维修或清洗 (18)9.3 润滑油泵的开停与倒泵 (18)9.3.1 开泵 (18)9.3.2 停车 (18)9.3.3 倒泵 (18)10 常见故障处理 (18)10.1 丙烯压缩机机组故障 (18)11 装置联锁与控制方案 (30)11.1 DCS系统概述 (30)11.2 联锁及紧急处理说明 (30)11.2.1 联锁说明 (30)11.3 丙烯压缩机控制方案 (32)12 安全生产及环境保护 (33)12.1 安全生产制度 (33)12.2 丙烯液体的灌装安全须知 (33)12.3 安全技术要点 (34)12.3.1 丙烯CH3CH3 (34)12.3.2 氮N2 (34)13 附表和附图 (35)13.1 工艺参数自动控制一览表、报警值一览表 (35)13.1.1 温度显示报警一览表 (35)13.1.2 压力显示报警一览表 (35)13.1.3 液位控制及报警一览表 (36)13.1.4 流量控制及报警一览表 (36)13.2 分析化验项目频次一览表 (36)13.3 安全阀定压一览表 (37)13.4 SIS联锁值一览表 (37)13.5 带控制点的工艺流程图PFD (39)14 以岗位责任制为中心的八项管理制度:(单独成册) (41)14.1 岗位责任制 (41)14.2 交接班制 (41)14.3 巡回检查制 (42)14.4 安全生产责任制 (43)14.5 设备维护保养制 (43)14.6 质量负责制 (44)14.7 岗位练兵制 (44)14.8 班组经济核算制 (45)1岗位任务及意义本岗位使用电机驱动离心式压缩机,以丙烯为介质,通过压缩,用循环水冷凝,节流降压蒸发,达到制冷效果,提供冷量给低温甲醇洗单元中各深冷器,补偿系统冷量损失。

丙烯压缩机在环氧氯丙烷生产中的操作要领

丙烯压缩机在环氧氯丙烷生产中的操作要领

丙烯压缩机在环氧氯丙烷生产中的操作要领关键词:丙烯压缩机环氧氯丙烷操作要领我公司环氧氯丙烷工序采用的工艺为丙烯和氯气的卤代反应,对于丙烯气的反应压力有一定的要求,出于满足生产能力的需要,我公司采购了2DW-75/0.6-12型丙烯压缩机。

2DW-75/0.6-12型丙烯压缩机压缩机为两列对动平衡型固定式往复活塞压缩机。

其生产能力为排气量75Nm3/min,额定排气压力1.2MPa(g),完全能够适应我生产部门的实际需要。

2DW-75/0.6-12型丙烯压缩机工作原理为:增安型高压异步电动机驱动压缩机的曲轴旋转带动两侧连杆,并经过十字头,活塞杆分别使两侧活塞在气缸内作水平方向的往复运动,当压缩机工作时,复动式活塞两侧分别吸气和压气,使自由状态的丙烯气先经组合式Y型过滤器被吸入一级气缸,并压缩到0.3MPa~0. 4MPa,后排出至中间冷却器,经冷却后然后被吸入二级气缸,并继续压缩到1.2 MPa,后排出到后冷却器,最终排出至用户气管道由用户进行后继处理。

出于安全的考虑,2DW-75/0.6-12型丙烯压缩机在一级排气管路上装有一级安全阀,在二级排气缓冲罐上装有二级安全。

一级安全阀开启压力0.45MPa,二级开启压力1.3MPa。

压缩机的进气管路前端装有组合式Y型过滤器,其作用为减少压缩机吸入丙烯气中所含杂物。

在后冷却器出口管路上装止回阀,可保证气体不反流至压缩机。

为使压缩机轻载启动和轻载停车,我们在设计气管道时设置了一旁通管道,即在进气管道和排气管道之间接一管道,管道中间装一截止阀,启动和停车时,打开截止阀运转一段时间后,关此截止阀。

本压缩机为保持输出气量稳定,设置有进气机械式叉阀自动控制装置,可根据出口压力开启与关闭,实现出口气量0-50-100%三档调节。

压缩机具有仪表自动控制装置,实现对主机有关部位的压力、温度的监测,以及超过规定值时的报警显示和切断电源,保证压缩机的正常运转。

我们根据其工作原理,再结合下面的工艺流程,对于丙烯压缩机在实际工作中的操作要领做了一下归纳,按照开车前、开车时、运行中、停车时四个部分进行总结。

烯烃分离装置中丙烯制冷压缩机运行状况分析

烯烃分离装置中丙烯制冷压缩机运行状况分析

2221 丙烯制冷压缩机的运行简介丙烯制冷压缩机作为MTO装置烯烃分离技术中的关键设备,其运行状况对烯烃分离的稳定运行影响很大。

丙烯制冷压缩机是丙烯制冷系统最核心的设备,一般来说都选用离心式压缩机,该类型的压缩机具有各个等级之间的压力变化范围小、能量利用效率高、日常操作稳定和使用范围广,排气均匀无脉动、设备体积小,流量大,质量轻,连续运转周期长,运转平稳可靠,易损件少,维修方便,并且压缩机润滑油不会污染输送气体等优点,在化工,能源等工业生产中应用非常普遍,在生产中发挥着重要的作用。

2 影响制冷压缩机稳定运行的因素作为M T O 装置下游烯烃分离技术的核心设备丙烯制冷压缩机,其主要是为混合气体的低温分离提供冷量,因为烯烃制冷压缩机的稳定运行对产出合格的烯烃产品非常重要。

根据多年现场实际经验分析得出了影响制丙烯冷压缩机的主要因素: 运行负荷的变化,丙烯制冷压缩机的运行负荷主要表现在透平蒸汽的用量与调速阀的开关大小上,丙烯冷剂用户所需的负荷增加,使得丙烯冷剂蒸发量增大,为保证各段吸入压力的稳定,需要增加压缩机的负荷,从而导致压缩机吸入量的增多,压缩机的排气压力增加,流量增大,出口冷凝器的负荷增大,进而压缩机的负荷增大,为了达到制冷效果,操作人员应当及时调节压缩机的负荷,使其保持平稳的状态运行。

脱乙烷塔顶部冷凝器使用丙烯作为冷剂,进入冷凝器的气相物料增加,使得丙烯的汽化量增加,丙烯制冷压缩机的负荷也增加,影响其稳定运行。

乙烯塔回流量发生变化时,冷凝器的凝气量也随之发生变化,导致丙烯制冷压缩机的负荷发生变化,影响其稳定运行。

乙烯精馏塔的进料温度发生变化时,若温度升高,回流比会增加,也就是说丙烯冷剂增加,丙烯制冷压缩机负荷随之增大,因此乙烯塔进料温度变化对丙烯制冷压缩机的稳定运行产生影响。

经压缩冷凝后的丙烯作为乙烯汽化器的热介质给液相乙烯加热并回收冷量,气态的乙烯为聚乙烯装置提供反应器进料,当聚乙烯装置进料流量变化或处于开停车状态时,丙烯制冷压缩机的负荷随之发生变化,造成压缩机的稳定运行受到影响。

丙烯压缩机油路系统共36页

丙烯压缩机油路系统共36页

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫相称。——韩非
丙烯压缩机油路系统
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CHAPTER THREEOPERA TIONINTRODUCTIONTurbine applications differ widely; therefore, operating procedures must be tailored to each particular installation. Instructions in this chapter provide a recommended procedure for the initial start-up and serve as a guide for establishing routine operating procedures.Operating personnel must review this technical manual to become familiar withthe safety precautions and operating procedures for YR Turbines. Particularattention should be directed to the WARNINGS, CAUTIONS, and NOTES inthis chapter.For location of parts described in the following text, refer to the Steam Chest Assembly and Typical YR Turbine Assembly figures in Chapter 4.STEAM SUPPL YSteam should be free from moisture and preferably superheated. A receiver type separator with ample drains should be provi ded upstream of the shut-off valve to prevent water from entering the turbine. When a separator is not provided, a continuous drain must be connected to the lowest point of the steam inlet piping.CAUTIONIf continuous drainers are on the steam piping orturbine drains, check frequently to verify that properoperation is maintained. Failure to drain water fromsteam lines or turbine casing may result in erosion,thrust failures, and/or poor performance.The steam strainer protects the turbine from large particles of scale, welding beads, etc. This strainer does not protect against abrasive matter, boiler compound, acids or alkaline substances, all of which may be carried over in the steam. These substances may corrode, erode or form deposits on the internal turbine parts, thus reducing efficiency and power. Feed water treatment and boiler operation must be carefully controlled to verify a supply of clean steam for long-term satisfactory operation.Chapter 3OperationSAFETY PRECAUTIONS1. Do not operate the turbine if inspection shows that the rotor shaft journals and/or shaft packing case areas are corroded.2. Before starting, verify the rotor rotates freely by hand and that it is not rubbing any stationary parts.CAUTIONDo not rotate shaft until lubrication has been applied.Rotating the shaft without lubrication may result indamage to the rotor shaft and bearing liners .If rubbing or vibration occurs during operation,immediately shut down the turbine, investigate andcorrect the cause.3. Verify all piping (steam, water, air) and electrical connections are made before operating the turbine.4. Verify that all valves, controls, trip mechanisms and safety devices are in good operating condition.-WARNING-UNDER NO CIRCUMSTANCES SHOULD THE TRIPV ALVE BE BLOCKED OR HELD OPEN TO CAUSE THETRIP SYSTEM TO BECOME INOPERA TIVE.OVERRIDING THE TRIP SYSTEM AND ALLOWING THETURBINE TO EXCEED THE RATED (NAMEPLATE) TRIPSPEED MAY RESULT IN FATAL INJURY TOPERSONNEL AND EXTENSIVE TURBINE DAMAGE.IN THE EVENT THE TRIP SYSTEM MALFUNCTIONS:IMMEDIATEL Y SHUT THE TURBINE DOWN BYCLOSING THE INLET STEAM SHUT-OFF V ALVE.5. Before initial start-up, after major maintenance and after an extended shutdown, do not leave the turbine unattended at any time until proper operation with load has been Demonstrated.PREPARING THE TURBINE FOR INITIAL START-UPNOTEComplete installation work before attempting to operateturbine. (Refer to Chapter 2.)1. Disconnect the coupling between the turbine and driven machine. Turbines driving through reduction gears can remain coupled to the gear and operated together.2. Disconnect the steam inlet piping at the turbine and blow out the line with the supply steam to remove any foreign material from the pipe. Use targets for determination of cleanliness. (Refer to NEMA SM23 section 8.4 for additional details.)3. Verify the steam strainer is clean and properly installed in the steam chest inlet flange. Connect the pipe to the turbine as a permanent joint. Adjust piping hangersto eliminate any unacceptable strain on the turbine in cold and hot conditions. Piping strains must be calculated in agreement with current NEMA SM23 standards.4. If operating a condensing turbine, clean rust preventative compound from internal turbine surfaces.CAUTIONRust preventative compound will foul surfacecondenser tubes if not removed before operating theturbine.NOTEAs an alternative to manually cleaning the turbine internalsto remove rust preventative compound, the turbine may berun for several hours while exhausting to atmosphere.5. Remove bolting from the steam end bearing cap and the exhaust end bearing cap. Lift the caps approximately 1 inch (25 mm) and pry out the top bearing liners torelease the oil rings (if supplied). Remove the bearing caps and roll out the bottom bearing liners by lifting up on the rotor and rotating the bearing liners toward the positioning lugs. Clean and inspect the bearing liners. Keep the steam and exhaust end bearing liners separate.CAUTIONAttempting to remove the bearing caps without pryingout the top bearing liners can distort the oil rings.Distorted oil rings will not rotate and fail to provideadequate lubrication, resulting in bearing failures.NOTETurbines with Class 3 (or higher) rotors are pressurelubricated and may not have oil rings supplied. (Refer tothe Turbine Operating Data page located in the front of thismanual to determine the rotor class.)6. Clean the rotor shaft journals, locating bearing, and the bearing housings with clean,lint free rags. If turbine is equipped with Kingsbury type thrust bearings, removethrust bearings and clean; reassemble per Supplement 03-91, located in Chapter 8 Accessories.7. Lift the weight off the rotor and roll the bottom bearing liners into place. Make certainthe positioning lugs on the liners are correctly seated in the bearing housing locatinggrooves.CAUTIONVerify that the steam end and exhaust end bearingliners are not interchanged.8. Place the top bearing liners on the shaft journals. If the turbine is ring oiled, positionoil rings in the slots of the top liners. Flood the rotor locating bearing, shaft journals,and bearing liners with oil. (Refer to Chapter 5 for proper oil levels and lubrication requirements.)9. Replace the bearing caps. Verify that the positioning lugs on the top liners engagethe grooves in the bearing caps. Apply a very thin coat of sealant to the split line.Insert the dowel pins and tighten all bolts.10. If supplied, review the driven machine instruction manual for pre-start inspection procedures.11. Inspect the governor linkage. For specific details on preparing the governor for start-up, refer to Chapter 6, and the governor manuals located in Chapter 8 Accessories.12. Verify that all lube oil piping has been installed and the lubrication system has been flushed.CAUTIONIf the turbine is pressure lubricated, verify orifice plugsare installed at the bearing housings. If orifice plugsare not installed, oil leakage will occur.13. Verify free movement and clearances of the trip system. Manually activate theoverspeed trip pin to verify the ov erspeed trip system is functional.14. Fabricate a clamp or other blocking device to secure the coupling sleeve (if supplied) to the hub while operating the uncoupled turbine.NOTEUse a balanced adapter to secure balanced gear typecoupling hubs during uncoupled operation.15. Verify that the exhaust relief valve is installed correctly and operates at the correct pressure.-WARNING-THE TURBINE SHOULD NOT BE OPERATED UNLESSTHE A TMOSPHERIC RELIEF V ALVE OR OTHERPROTECTIVE DEVICE HAS BEEN INSTALLEDBETWEEN THE TURBINE EXHAUST CONNECTIONAND FIRST EXHAUST ISOLATION V ALVE (ORCONDENSER, IF THE TURBINE IS A CONDENSINGTURBINE).THE A TMOSPHERIC RELIEF V ALVE OR OTHERPROTECTIVE DEVICE MUST BE DESIGNED FOR FULLRELIEF OF THE MAXIMUM STEAM FLOW THROUGHTHE TURBINE WITHOUT EXCESSIVE EXHAUSTPRESSURE.FAILURE TO INSTALL THIS TYPE OF DEVICE MAYRESULT IN SEVERE EQUIPMENT DAMAGE AND/ORSEVERE INJURY OR DEATH TO PERSONNEL.16. Fill oil lubricators (if ring oiled) or oil reservoir (if pressure lubricated) with proper oil. (Refer to Chapter 5 for details.)17. Inspect and test all controls, alarms, trips and relief valves. Calibrate and install all instrumentation.18. Roll the shaft by hand through several revolutions, checking for possible binding or rubbing. Any sign of binding or rubbing should be thoroughly investigated before attempting to start the unit.19. If automatic controllers or regulators are supplied, do not enable during initial start-up; use only after the general operation of the equipment has been determinedsatisfactory.INITIAL START-UP1. Open drain valves to drain water from the steam inlet piping, turbine casing, steam chest, and the exhaust piping.2. V erify that the lube oil temperature is greater than 70°F (20°C).3. If turbine is ring oiled, check that oil lubricators are filled. If turbine is pressure lubricated, prime the oil pump(s) and verify that the oil reservoir is filled to the correct level. Start the auxiliary oil pump (if supplied) and circulate the lubricating oil. Check the oil piping for leaks and that oil is being delivered to the bearings.4. Adjust the governor speed setting to minimum speed. (Refer to “Governor Operation” in Chapter 6.)5. Completely open the overload hand valves (if supplied). For further details review the section on overload hand valves in this chapter.6. V erify that the trip valve is closed and open the turbine exhaust isolation valve.7. V erify proper oil pressure is present (pressure lubricated with auxiliary oil pump only).8. Latch the trip valve resetting lever.9. Commission the eductor/ejector (if supplied).NOTEWhen ejectors/eductors are used on packing case leakofflines, the customer can turn on at their discretion.However, care must be taken to prevent steam fromblowing out of packing cases along the turbine shaft, whichmay contaminate oil in bearing housings.10. Close the intermediate leakoff valve (BYRHH and optional on BYRH turbines) and maintain closed position until leakoff pressure builds to line pressure.11. For condensing turbines, close all drain valves and commission main condenser according to manufacturer’s instructions.12. Slowly open the main steam isolation valve until the turbine reaches approximately 500 rpm.CAUTIONSteam should not be admitted to the turbine casing bypartially opening the main steam isolation valve while the rotor is stationary. This condition will cause uneven heating of the turbine rotor and casing, which may result in a distorted casing, bowed rotor shaft or other related problems.13. For condensing turbines, adjust the sealing steam supply valve to permit a slight amount of steam to be discharged from the packing case leakoff drain lines. Apressure of 3 to 5 psig (0.20 to 0.35 bar) is usually sufficient sealing steam pressure. However, care must be taken to prevent steam from blowing out of the packing casesand along the turbine shaft.CAUTIONIf sealing steam is allowed to leak into the bearinghousings, the lubricating oil may becomecontaminated and form sludge and foam. To preventthis condition, adjust the sealing steam accordingly.14. Immediately verify operation of the trip valve by striking the trip lever. Close the main steam isolation valve as the turbine speed decreases.15. Latch the resetting lever and slowly open the main steam isolation valve to bring the turbine back to 500 rpm. If the turbine is ring oiled, remove the inspection plugs fromthe bearing caps and check to be sure the oil rings are rotating. Verify proper oilpressure is present (pressure lubricated only). Monitor the speed carefully during thelow speed operation.CAUTIONDo not leave the turbine unattended at any time duringthe initial start-up.16. Introduce cooling water to bearing housing cooling chambers or oil cooler (if supplied) to prevent overheating. (Refer to Chapter 5 [Table 5-3], for recommended bearing operating temperatures.)17. Listen for any unusual noises, rubbing, or other signs of distress in the turbine. Do not operate if any of these conditions are present. Monitor the turbine for signs of overheating and excessive vibration. (Refer to the Troubleshooting Guide in Chapter7 for possible causes and corrective actions for abnormal conditions which mightoccur.)18. When the turbine is thoroughly warmed up and low speed operation is determined tobe satisfactory, close the overload hand valves (if supplied).19. For non-condensing turbines, close all drain valves provided no signs of condensateare visible at all drain lines.20. Proceed with wearing in of the carbon rings (if supplied). (Refer to Turbine Operating Data Sheet located in the front of this manual, for steam seals supplied with this unit.)a. Gradually increase turbine speed to 1000 rpm and hold for 10-15 minutes.b. Reduce turbine speed to 500 rpm and hold for 5-10 minutes, allowing shaft tocool.c. Increase turbine speed by 1000 rpm and hold for 10-15 minutes.d. Reduce turbine speed by 500 rpm and hold for 5-10 minutes, allowing shaft tocool.e. Continue increasing turbine speed by 1000 rpm and decreasing by 500 rpm untilrated operating speed as shown on the turbine nameplate is achieved.NOTEThe stepped start up procedure (wearing in of the carbonrings) must be done for the first 2 or 3 turbine starts, orafter installation of new carbon rings. Failure to do so mayresult in improper wearing in of carbon rings and causeexcessive packing case steam leakage.21. After the turbine is operating, closely observe oil pressures and temperatures. For condensing turbines, adjust sealing steam to maintain 3 to 5 psig (0.20 to 0.35 bar).22. Verify the overspeed trip by temporarily overriding the governor to actuate the overspeed trip mechanism. (Refer to Control System, Chapter 6, for specific detailson overspeeding the turbine.)CAUTIONDo not operate the turbine more than 2% above therated trip speed listed on the turbine nameplate. If theoverspeed trip does not operate within 2% of thedesignated speed, shut the turbine down and makenecessary adjustments as described in Chapter 4,Overspeed Trip System.Three consecutive, non-trending trip speeds within the required range (refer toTurbine Data sheet located in the front of this manual) must be recorded to verify safe trip system operation. After a turbine trip and the speed decreases by 15-20% ofrated speed, the resetting lever may be relatched and the turbine brought back up in speed.-WARNING-DURING TESTING OF THE MECHANICAL OVERSPEEDTRIP, THE FOLLOWING GUIDELINES MUST BEADHERED TO:A. LIMIT PERSONNEL TO THE MINIMUM NUMBERREQUIRED TO CONDUCT THE OVERSPEEDTESTS.B. THE MAIN STEAM ISOLATION V ALVE TO THETURBINE MUST NOT BE FULL Y OPENED. ITSHOULD ONL Y BE OPENED AS FAR ASNECESSARY TO REACH THE TRIP SPEED.C. DURING THE TEST, TRAINED PERSONNEL MUSTOPERATE THE MAIN STEAM ISOLATION V ALVETO THE TURBINE.D. TWO SOURCES OF SPEED INDICATION AREPREFERRED. BOTH SHOULD BE OF KNOWNACCURACY AND CURRENT CALIBRATION.23. Continue operating the turbine for approximately one hour, while carefully monitoring bearing temperatures, turbine speed, vibrations levels, and listening for any unusual noises.24. Shut down the turbine upon satisfactory completion of the initial run. (Refer to “Turbine Shut Down” at the end of this chapter.)25. Couple the turbine to the driven equipment. If the turbine is used with a speed reduction gearbox or other special equipment, follow all instructions pertaining tothose particular items.ROUTINE START-UP1. V erify proper oil pressure is present (pressure lubricated only).2. Open drain valves to drain water from the steam inlet piping, turbine casing, steam chest, and the exhaust piping.3. V erify that the lube oil temperature is greater than 70°F (20°C).4. If turbine is ring oiled, check that oil lubricators are filled. If turbine is pressure lubricated, prime the oil pump(s) and verify that the oil reservoir is filled to the correctlevel. Start the auxiliary oil pump (if supplied) and circulate the lubricating oil.5. Completely open the overload hand valves (if supplied). For further details, review the section on overload hand valves in this chapter.6. V erify that the trip valve is closed and open the turbine exhaust isolation valve.7. Latch the trip valve resetting lever.8. V erify proper oil pressure is present (pressure lubricated with auxiliary oil pump only).9. Commission the eductor/ejector (if supplied).NOTEWhen ejectors/eductors are used on packing case leakofflines, the customer can turn on at their discretion.However, care must be taken to prevent steam fromblowing out of packing cases along the turbine shaft, whichmay contaminate oil in bearing housings.10. Close the intermediate leakoff valve (BYRHH and optional on BYRH turbines) and maintain closed position until leakoff pressure builds to line pressure.11. For condensing turbines, close all drain valves and commission main condenser according to manufacturer’s instructions.12. Slowly open the main steam isolation va lve until the turbine reaches approximately 500 rpm.CAUTIONSteam should not be admitted to the turbine casing bypartially opening the main steam isolation valve whilethe rotor is stationary. This condition will causeuneven heating of the turbine rotor and casing whichmay result in a distorted casing, bowed rotor shaft orother related problems.13. For condensing turbines, adjust the sealing steam supply valve to permit a slight amount of steam to be discharged from the packing case leak off drain lines. A pressure of 3 to 5 psig (0.20 to 0.35 bar) is usually sufficient sealing steam pressure. However, care must be taken to prevent steam from blowing out of the packing casesand along the turbine shaft.CAUTIONIf sealing steam is allowed to leak into the bearinghousings, the lubricating oil may becomecontaminated and form sludge and foam. To preventthis condition, adjust the sealing steam accordingly.14. Immediately verify operation of the trip valve by striking the trip lever. Close the main steam isolation valve as the turbine speed decreases.15. Latch the resetting lever and slowly open the main steam isolation valve to bring the turbine back to 500 rpm. If the turbine is ring oiled, remove the inspection plugs fromthe bearing caps and check that the oil rings are rotating. If the turbine is pressure lubricated, verify proper oil pressure is present.16. Introduce cooling water to bearing housing cooling chambers or oil cooler (if supplied) to prevent overheating. (Refer to Chapter 5 [Table 5-3] for recommended bearing operating temperatures.)17. Listen for any unusual noises, rubbing, or other signs of distress in the turbine. Do not operate if any of these conditions are present. Monitor the turbine for signs of overheating and excessive vibration. (Refer to the Troubleshooting Guide in Chapter7 for possible causes and corrective actions for abnormal conditions which might occur.)18. For non-condensing turbines, close all drain valves, provided no signs of condensate are visible at all drain lines.19. Adjust governor to attain desired speed as load is applied to the turbine. (Refer to “Control System”, Chapter 6). Close ov erload hand valves as required by turbine operation. (Refer to the “Unit Outline” in Chapter 10, Technical Drawings, foroverload hand valve settings.)20. After the turbine is operating, closely observe oil pressures and temperatures. For condensing turbines, adjust sealing steam to maintain 3 to 5 psig (0.20 to 0.35 bar).OVERLOAD HAND V ALVES (Optional)Overload hand valves are used sometimes to control the steam flow through an extra bank of nozzles. These valves can serve three functions:a. When closed, the valves will provide more efficient turbine operation at reduced load with normal steam conditions by reducing the nozzle area and also reducing thesteam flow.b. In some applications, overload hand valves are used to develop the required powerby opening the valves when steam conditions are less than normal (such asencountered during boiler start-up).c. Sometimes overload hand valves are used to develop increased power for meeting overload requirements with normal steam conditions.(Refer to the “Turbine Outline” in Chapter 10, Technical Drawings, for overload hand valve positioning versus turbine power, speed and operating steam conditions.) For the bestefficiency and speed control, open only the overload hand valves required for the actual steam conditions present and power required.TABLE 3-1OVERLOAD HAND V ALVESTurbine Frame Size Number of TurnsAYR 7BYR, BYRIH 9CYR, CYRH 12DYR, DYRH, DYRM, DYRN 12DYR, DYRH, DYRM, DYRNwith 8" inlet14BYRH, BYRHH 12NOTEOverload hand valve must be positioned either completelyopen or completely closed. Turning the stemcounterclockwise approximately 1½ turns will open thepilot valve. (Refer to Table 3-1 for the correct number ofturns required to completely open the main valve disk.)Open all overload hand valves during start-ups to verifyeven heating of casing and prevention of valves binding inthe casing. The overload hand valves can be completelyclosed if not needed when governor control is reached.CAUTIONOperation of the overload hand valve, in anythingother than completely open or completely closedposition, can cause valve failure and possible internaldamage to the turbine.For further information on Auto-Overload hand valves (if supplied), refer to Supplement 02-86-R1, in Chapter 8.TURBINE SHUTDOWNCAUTIONBefore shutting down turbine, verify that the governorsystem and trip system are in proper working order. Ifthe operational integrity is uncertain, shut off the mainsteam isolation valve to stop the turbine.1. Reduce the turbine speed to a minimum.2. Shut down the turbine by striking the top of the trip lever by hand.3. Observe the action of the trip valve and linkage.4. Close the main steam isolation valve.NOTEIsolation valves, located in the turbine inlet steam piping,must be closed after the trip valve has closed. Do not usethe trip valve as a long-term shut-off valve.5. If non-condensing turbine, close the exhaust valve and open turbine casing drains.6. If condensing turbine, shut down the condensing equipment, open the turbine casing drains and close the sealing steam shut-off valve.CAUTIONDo not apply sealing steam to the packing cases whilethe turbine rotor is idle. This condition will causeuneven heating of the turbine rotor and casing whichmay result in a distorted casing, bowed rotor shaft orother related problems.7. Allow the rotor to come to a complete stop and cool down for approximately 2 hours before turning off the cooling water or stopping auxiliary oil pump, if supplied.8. If the turbine is to be taken out of service for an extended period, follow the storage instructions in Chapter 1.OPERATION OF EMERGENCY AND STANDBY TURBINESEmergency and standby turbines do not require a warm-up period before applying the load and may be rapidly placed into service. However, it is important that turbines used for emergency and standby services have drain li nes open and isolating valves closed whenthe turbine is idle. Turbines not used for extended periods should be inspected and operated occasionally to verify good working condition.Where impractical to operate the turbine, the rotor should be turned over by hand to introduce oil to the journal bearings (oil ring lubricated turbines). If an auxiliary oil pump is furnished (pressure lubricated turbines), oil can be supplied to the bearings by operatingthe pump. To prevent corrosion, introduce dry, heated air into the casing during shutdown periods.CAUTIONSteam should not be admitted to the turbine casing bypartially opening the main steam isolation valve whilethe rotor is stationary. This condition will causeuneven heating of the turbine rotor and casing, andmay result in a distorted casing, bowed rotor shaft orother related problems.。

相关文档
最新文档