[历年真题]2016年四川省高考数学试卷(文科)
2016年高考四川文科数学

2016年高考四川文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i 【答案】C 【解析】试题分析:由题意,22(1)122i i i i +=++=,故选C. 考点:复数的运算.2. 设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)3 【答案】B考点:集合中交集的运算. 3. 抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义. 4. 为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度【答案】A【解析】试题分析:由题意,为得到函数sin()3y x π=+,只需把函数sin y x =的图像上所有点向左移3π个单位,故选A.考点:三角函数图像的平移.5. 设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 【答案】A 【解析】试题分析:由题意,1x >且1y >,则2x y +>,而当2x y +>时不能得出,1x >且1y >.故p 是q 的充分不必要条件,选A. 考点:充分必要条件.6. 已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)2 【答案】D考点:函数导数与极值.7. 某公司为激励创新,计划逐年加大研发奖金投入。
四川省高考数学试题及答案(文科)(精编版)汇编

绝密★启封前2016年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.1.设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i2.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.33.抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)4.为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度5.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.27.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20 C.18 D.99.已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是()A.B.C.D.10.设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是()A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)二、填空题:本大题共5小题,每小题5分,共25分.11.sin750°=.12.已知某三棱锥的三视图如图所示,则该三棱锥的体积是.13.从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b为整数的概率是.14.若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(﹣)+f(2)=.15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.三、解答题(共6小题,满分75分)16.(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.17.(12分)如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.18.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.19.(12分)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为e n,且e2=2,求e12+e22+…+e n2.20.(13分)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳21.(14分)设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.2016年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.【解答】解:(1+i)2=1+i2+2i=1﹣1+2i=2i,故选:C.2.【解答】解:∵集合A={x|1≤x≤5},Z为整数集,则集合A∩Z={1,2,3,4,5}.∴集合A∩Z中元素的个数是5.故选:B.3.【解答】解:抛物线y2=4x的焦点坐标是(1,0),故选:D4.【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A5.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.6.【解答】解:f′(x)=3x2﹣12;∴x<﹣2时,f′(x)>0,﹣2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选D.7.【解答】解:设第n年开始超过200万元,则130×(1+12%)n﹣2015>200,化为:(n﹣2015)lg1.12>lg2﹣lg1.3,n﹣2015>=3.8.取n=2019.因此开始超过200万元的年份是2019年.故选:B.8.【解答】解:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=﹣1不满足进行循环的条件,故输出的v值为:故选:C9.【解答】解:如图所示,建立直角坐标系.B(0,0),C,A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.故选:B.10.【解答】解:设P1(x1,y1),P2(x2,y2)(0<x1<1<x2),当0<x<1时,f′(x)=,当x>1时,f′(x)=,∴l1的斜率,l2的斜率,∵l1与l2垂直,且x2>x1>0,∴,即x1x2=1.直线l1:,l2:.取x=0分别得到A(0,1﹣lnx1),B(0,﹣1+lnx2),|AB|=|1﹣lnx1﹣(﹣1+lnx2)|=|2﹣(lnx1+lnx2)|=|2﹣lnx1x2|=2.联立两直线方程可得交点P的横坐标为x=,∴|AB|•|x P|==.∵函数y=x+在(0,1)上为减函数,且0<x1<1,∴,则,∴.∴△PAB的面积的取值范围是(0,1).故选:A.二、填空题:本大题共5小题,每小题5分,共25分.11.【解答】解:sin750°=sin(2×360°+30°)=sin30°=,故答案为:.12.【解答】解:由三视图可知几何体为三棱锥,底面为俯视图三角形,底面积S==,棱锥的高为h=1,∴棱锥的体积V=Sh==.故答案为:.13.【解答】解:从2,3,8,9中任取两个不同的数字,分别记为a,b,基本事件总数n==12,log a b为整数满足的基本事件个数为(2,8),(3,9),共2个,∴log a b为整数的概率p=.故答案为:.14.【解答】解:∵函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,∴f(2)=f(0)=0,f(﹣)=f(﹣+2)=f(﹣)=﹣f()=﹣=﹣=﹣2,则f(﹣)+f(2)=﹣2+0=﹣2,故答案为:﹣2.15.【解答】解:①设A(0,1),则A的“伴随点”为A′(1,0),而A′(1,0)的“伴随点”为(0,﹣1),不是A,故①错误,②若点在单位圆上,则x2+y2=1,即P(x,y)不是原点时,定义P的“伴随点”为P(y,﹣x),满足y2+(﹣x)2=1,即P′也在单位圆上,故②正确,③若两点关于x轴对称,设P(x,y),对称点为Q(x,﹣y),则Q(x,﹣y)的“伴随点”为Q′(﹣,),则Q′(﹣,)与P′(,)关于y轴对称,故③正确,④∵(﹣1,1),(0,1),(1,1)三点在直线y=1上,∴(﹣1,1)的“伴随点”为(,),即(,),(0,1)的“伴随点”为(1,0),(1,1的“伴随点”为(,﹣),即(,﹣),则(,),(1,0),(,﹣)三点不在同一直线上,故④错误,故答案为:②③三、解答题(共6小题,满分75分)16.【解答】解:(I)∵1=(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,∴解得:a=0.3.(II)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量=30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.(Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5=0.48<0.5,0.48+0.5×0.52=0.74>0.5,∴中位数应在(2,2.5]组内,设出未知数x,令0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5+0.52×x=0.5,解得x=0.038;∴中位数是2+0.06=2.038.17.【解答】证明:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,∵ME⊄平面PAB,PA⊂平面PAB,∴ME∥平面PAB.∵AD∥BC,BC=AE,∴ABCE是平行四边形,∴CE∥AB.∵CE⊄平面PAB,AB⊂平面PAB,∴CE∥平面PAB.∵ME∩CE=E,∴平面CME∥平面PAB,∵CM⊂平面CME,∴CM∥平面PAB;(II)∵PA⊥CD,∠PAB=90°,AB与CD相交,∴PA⊥平面ABCD,∵BD⊂平面ABCD,∴PA⊥BD,由(I)及BC=CD=AD,可得∠BAD=∠BDA=45°,∴∠ABD=90°,∴BD⊥AB,∵PA∩AB=A,∴BD⊥平面PAB,∵BD⊂平面PBD,∴平面PAB⊥平面PBD.18.【解答】(Ⅰ)证明:在△ABC中,∵+= ,∴由正弦定理得:,∴= ,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA= ,= += =1,= ,tanB=4.19.【解答】解:(Ⅰ)根据题意,数列{a n}的首项为1,即a1=1,又由S n+1=qS n+1,则S2=qa1+1,则a2=q,又有S3=qS2+1,则有a3=q2,若a2,a3,a2+a3成等差数列,即2a3=a2+(a2+a3),则可得q2=2q,(q>0),解可得q=2,则有S n+1=2S n+1,①进而有S n=2S n﹣1+1,②①﹣②可得a n=2a n﹣1,则数列{a n}是以1为首项,公比为2的等比数列,则a n=1×2n﹣1=2n﹣1;(Ⅱ)根据题意,有S n+1=qS n+1,③同理可得S n=qS n﹣1+1,④③﹣④可得:a n=qa n﹣1,又由q>0,则数列{a n}是以1为首项,公比为q的等比数列,则a n=1×q n﹣1=q n﹣1;若e 2=2,则e2==2,解可得a2=,则a2=q=,即q=,a n=1×q n﹣1=q n﹣1=()n﹣1,则e n2=1+a n2=1+3n﹣1,故e12+e22+…+e n2=n+(1+3+32+…+3n﹣1)=n+.20.【解答】(Ⅰ)解:如图,由题意可得,解得a2=4,b2=1,∴椭圆E的方程为;(Ⅱ)证明:设AB所在直线方程为y=,联立,得x2+2mx+2m2﹣2=0.∴△=4m2﹣4(2m2﹣2)=8﹣4m2>0,即.设A(x1,y1),B(x2,y2),M(x0,y0),则,|AB|==.∴x0=﹣m,,即M(),则OM所在直线方程为y=﹣,联立,得或.∴C(﹣,),D(,﹣).则︳MC︳•︳MD︳===.而︳MA︳•︳MB︳=(10﹣5m2)=.∴︳MA︳•︳MB︳=︳MC︳•︳MD︳.21.【解答】(Ⅰ)解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣=(x>0),当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a>0时,由f′(x)=0,得x==,∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,则f(x)在(0,)上为减函数,在(,+∞)上为增函数;综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0,)上为减函数,在(,+∞)上为增函数;(Ⅱ)证明:要证g(x)>0(x>1),即﹣>0,即证,也就是证,令h(x)=,则h′(x)=,∴h(x)在(1,+∞)上单调递增,则h(x)min=h(1)=e,即当x>1时,h(x)>e,∴当x>1时,g(x)>0;(Ⅲ)解:由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,∵t(1)=0,∴有t′(x)=2ax=≥0在(1,+∞)内恒成立,令φ(x)=,则φ′(x)=2a=,当x≥2时,φ′(x)>0,令h(x)=,h′(x)=,函数在[1,2)上单调递增,∴h(x)min=h(1)=﹣1.又2a≥1,e1﹣x>0,∴1<x<2,φ′(x)>0,综上所述,x>1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增,∴t′(x)>t′(1)≥0,即t(x)在区间(1,+∞)单调递增,∴a≥.。
2016年高考四川文科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(四川卷)数学(文科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年四川,文1,5分】设i 为虚数单位,则复数()21i +=( )(A ){}13x x -<< (B){}|11x x -<< (C ){}|12x x << (D ){}|23x x << 【答案】C【解析】试题分析:由题意,22(1i)12i i 2i +=++=,故选C .【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题. (2)【2016年四川,文2,5分】设集合{}15A x x =≤≤,Z 为整数集,则集合A Z 中元素的个数是( ) (A )6 (B)5 (C )4 (D)3 【答案】B【解析】由题意,{}1,2,3,4,5A Z =,故其中的元素个数为5,故选B .【点评】本题考查了集合的运算性质,考查了推理能力与计算能力,属于基础题. (3)【2016年四川,文3,5分】抛物线24y x =的焦点坐标是( ) (A)()0,2(B )()0,1 (C )()2,0(D )()1,0【答案】D 【解析】由题意,24y x =的焦点坐标为()1,0,故选D .【点评】本题考查的知识点是抛物线的简单性质,难度不大,属于基础题.(4)【2016年四川,文4,5分】为了得到函数sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数sin y x =的图象上所有的点( )(A )向左平行移动3π个单位长度 (B)向右平行移动3π个单位长度 (C )向上平行移动3π个单位长度(D)向下平行移动3π个单位长度【答案】A【解析】由题意,为得到函数sin 3y x π⎛⎫=+ ⎪⎝⎭,只需把函数sin y x =的图像上所有点向左移3π个单位,故选A .【点评】本题考查的知识点是函数图象的平移变换法则,熟练掌握图象平移“左加右减“的原则,是解答的关键. (5)【2016年四川,文5,5分】设:p 实数x ,y 满足1x >且1y >,:q 实数x ,y 满足2x y +>,则p 是q 的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】由题意,1x >且1y >,则2x y +>,而当2x y +>时不能得出,1x >且1y >.故p 是q 的充分不必要条件,故选A .【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题. (6)【2016年四川卷,文6,5分】已知a 函数()312f x x x =-的极小值点,则a =( )(A)4-(B)2- (C )4 (D )2【答案】D 【解析】()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 极小值为()2f ,由已知得2a =,故选D .【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象. (7)【2016年四川,文7,5分】某公司为激励创新,计划逐年加大研发奖金投入。
(精校版)2016年四川文数高考试题文档版(含答案)

高中数学学习材料 (灿若寒星 精心整理制作)2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网 (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年四川省高考数学文科试题含答案(Word版)

2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年高考四川卷文数试题解析(正式版)

第 1 页 共 15 页2016年高考四川文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i 【答案】C 【解析】试题分析:由题意,22(1)122i i i i +=++=,故选C. 考点:复数的运算.2. 设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)3 【答案】B考点:集合中交集的运算. 3. 抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义. 4. 为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度【答案】A第 2 页 共 15 页【解析】试题分析:由题意,为得到函数sin()3y x π=+,只需把函数sin y x =的图像上所有点向左移3π个单位,故选A.考点:三角函数图像的平移.5. 设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 【答案】A 【解析】试题分析:由题意,1x >且1y >,则2x y +>,而当2x y +>时不能得出,1x >且1y >.故p 是q 的充分不必要条件,选A. 考点:充分必要条件.6. 已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)2 【答案】D考点:函数导数与极值.7. 某公司为激励创新,计划逐年加大研发奖金投入。
(精校版)四川文数高考试题文档版(含答案).docx

2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网 (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年四川省高考数学文科试题有答案(Word版)AKMwKl

2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度 5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i2.(5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.33.(5分)抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)4.(5分)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度5.(5分)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.27.(5分)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年8.(5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20 C.18 D.99.(5分)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是()A.B.C. D.10.(5分)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是()A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)sin750°=.12.(5分)已知某三棱锥的三视图如图所示,则该三棱锥的体积是.13.(5分)从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b为整数的概率是.14.(5分)若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(﹣)+f(2)=.15.(5分)在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:•①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.‚②单元圆上的“伴随点”还在单位圆上.ƒ③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.三、解答题(共6小题,满分75分)16.(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.17.(12分)如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.18.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.19.(12分)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q >0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为e n,且e2=2,求e12+e22+…+e n2.20.(13分)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB 的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳21.(14分)设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.2016年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2016•四川)设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i【分析】利用复数的运算法则即可得出.【解答】解:(1+i)2=1+i2+2i=1﹣1+2i=2i,故选:C.【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.2.(5分)(2016•四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.3【分析】利用交集的运算性质即可得出.【解答】解:∵集合A={x|1≤x≤5},Z为整数集,则集合A∩Z={1,2,3,4,5}.∴集合A∩Z中元素的个数是5.故选:B.【点评】本题考查了集合的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)(2016•四川)抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)【分析】根据抛物线的标准方程及简单性质,可得答案.【解答】解:抛物线y2=4x的焦点坐标是(1,0),故选:D【点评】本题考查的知识点是抛物线的简单性质,难度不大,属于基础题.4.(5分)(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx 的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【分析】根据函数图象平移“左加右减“的原则,结合平移前后函数的解析式,可得答案.【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A【点评】本题考查的知识点是函数图象的平移变换法则,熟练掌握图象平移“左加右减“的原则,是解答的关键.5.(5分)(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2016•四川)已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.2【分析】可求导数得到f′(x)=3x2﹣12,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值.【解答】解:f′(x)=3x2﹣12;∴x<﹣2时,f′(x)>0,﹣2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选D.【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.7.(5分)(2016•四川)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年【分析】设第n年开始超过200万元,可得130×(1+12%)n﹣2015>200,两边取对数即可得出.【解答】解:设第n年开始超过200万元,则130×(1+12%)n﹣2015>200,化为:(n﹣2015)lg1.12>lg2﹣lg1.3,n﹣2015>=3.8.取n=2019.因此开始超过200万元的年份是2019年.故选:B.【点评】本题考查了等比数列的通项公式、不等式的性质,考查了推理能力与计算能力,属于中档题.8.(5分)(2016•四川)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20 C.18 D.9【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=﹣1不满足进行循环的条件,故输出的v值为:故选:C【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9.(5分)(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是()A.B.C. D.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+c osθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.故选:B.【点评】本题考查了数量积运算性质、圆的参数方程、三角函数求值,考查了推理能力与计算能力,属于中档题.10.(5分)(2016•四川)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB 的面积的取值范围是()A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)【分析】设出点P1,P2的坐标,求出原分段函数的导函数,得到直线l1与l2的斜率,由两直线垂直求得P1,P2的横坐标的乘积为1,再分别写出两直线的点斜式方程,求得A,B两点的纵坐标,得到|AB|,联立两直线方程求得P的横坐标,然后代入三角形面积公式,利用基本不等式求得△PAB的面积的取值范围.【解答】解:设P1(x1,y1),P2(x2,y2)(0<x1<1<x2),当0<x<1时,f′(x)=,当x>1时,f′(x)=,∴l1的斜率,l2的斜率,∵l1与l2垂直,且x2>x1>0,∴,即x1x2=1.直线l1:,l2:.取x=0分别得到A(0,1﹣lnx1),B(0,﹣1+lnx2),|AB|=|1﹣lnx1﹣(﹣1+lnx2)|=|2﹣(lnx1+lnx2)|=|2﹣lnx1x2|=2.联立两直线方程可得交点P的横坐标为x=,∴|AB|•|x P|==.∵函数y=x+在(0,1)上为减函数,且0<x1<1,∴,则,∴.∴△PAB的面积的取值范围是(0,1).故选:A.【点评】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用基本不等式求函数的最值,考查了数学转化思想方法,属中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016•四川)sin750°=.【分析】利用终边相同角的诱导公式及特殊角的三角函数值即可得答案.【解答】解:sin750°=sin(2×360°+30°)=sin30°=,故答案为:.【点评】本题考查运用诱导公式化简求值,着重考查终边相同角的诱导公式及特殊角的三角函数值,属于基础题.12.(5分)(2016•四川)已知某三棱锥的三视图如图所示,则该三棱锥的体积是.【分析】几何体为三棱锥,底面为俯视图三角形,棱锥的高为1,代入体积公式计算即可.【解答】解:由三视图可知几何体为三棱锥,底面为俯视图三角形,底面积S==,棱锥的高为h=1,∴棱锥的体积V=Sh==.故答案为:.【点评】本题考查了棱锥的三视图和体积计算,是基础题.13.(5分)(2016•四川)从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b 为整数的概率是.【分析】由已知条件先求出基本事件总数,再利用列举法求出log a b为整数满足的基本事件个数,由此能求出log a b为整数的概率.【解答】解:从2,3,8,9中任取两个不同的数字,分别记为a,b,基本事件总数n==12,log a b为整数满足的基本事件个数为(2,8),(3,9),共2个,∴log a b为整数的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.14.(5分)(2016•四川)若函数f(x)是定义R上的周期为2的奇函数,当0<x <1时,f(x)=4x,则f(﹣)+f(2)=﹣2.【分析】根据函数奇偶性和周期性的性质将条件进行转化求解即可.【解答】解:∵函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,∴f(2)=f(0)=0,f(﹣)=f(﹣+2)=f(﹣)=﹣f()=﹣=﹣=﹣2,则f(﹣)+f(2)=﹣2+0=﹣2,故答案为:﹣2.【点评】本题主要考查函数值的计算,根据函数奇偶性和周期性的性质将条件进行转化是解决本题的关键.15.(5分)(2016•四川)在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:•①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.‚②单元圆上的“伴随点”还在单位圆上.ƒ③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是②③.【分析】根据“伴随点”的定义,分别进行判断即可,对应不成立的命题,利用特殊值法进行排除即可.【解答】解:①设A(0,1),则A的“伴随点”为A′(1,0),而A′(1,0)的“伴随点”为(0,﹣1),不是A,故①错误,②若点在单位圆上,则x2+y2=1,即P(x,y)不是原点时,定义P的“伴随点”为P(y,﹣x),满足y2+(﹣x)2=1,即P′也在单位圆上,故②正确,③若两点关于x轴对称,设P(x,y),对称点为Q(x,﹣y),则Q(x,﹣y)的“伴随点”为Q′(﹣,),则Q′(﹣,)与P′(,)关于y轴对称,故③正确,④∵(﹣1,1),(0,1),(1,1)三点在直线y=1上,∴(﹣1,1)的“伴随点”为(,),即(,),(0,1)的“伴随点”为(1,0),(1,1的“伴随点”为(,﹣),即(,﹣),则(,),(1,0),(,﹣)三点不在同一直线上,故④错误,故答案为:②③【点评】本题主要考查命题的真假判断,正确理解“伴随点”的定义是解决本题的关键.考查学生的推理能力.三、解答题(共6小题,满分75分)16.(12分)(2016•四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【分析】(I)先根据频率分布直方图中的频率等于纵坐标乘以组距求出9个矩形的面积即频率,再根据直方图的总频率为1求出a的值;(II)根据已知中的频率分布直方图先求出月均用水量不低于3吨的频率,结合样本容量为30万,进而得解.(Ⅲ)根据频率分布直方图,求出使直方图中左右两边频率相等对应的横坐标的值.【解答】解:(I)∵1=(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,∴解得:a=0.3.(II)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量=30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.(Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5,0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x,令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x=0.5,解得x=0.06;∴中位数是2+0.06=2.06.【点评】本题用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.17.(12分)(2016•四川)如图,在四棱锥P﹣ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.【分析】(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,证明平面CME∥平面PAB,即可证明直线CM∥平面PAB;(II)证明:BD⊥平面PAB,即可证明平面PAB⊥平面PBD.【解答】证明:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,∵ME⊄平面PAB,PA⊂平面PAB,∴ME∥平面PAB.∵AD∥BC,BC=AE,∴ABCE是平行四边形,∴CE∥AB.∵CE⊄平面PAB,AB⊂平面PAB,∴CE∥平面PAB.∵ME∩CE=E,∴平面CME∥平面PAB,∵CM⊂平面CME,∴CM∥平面PAB;(II)∵PA⊥CD,∠PAB=90°,AB与CD相交,∴PA⊥平面ABCD,∵BD⊂平面ABCD,∴PA⊥BD,由(I)及BC=CD=AD,可得∠BAD=∠BDA=45°,∴∠ABD=90°,∴BD⊥AB,∵PA∩AB=A,∴BD⊥平面PAB,∵BD⊂平面PBD,∴平面PAB⊥平面PBD.【点评】本题主要考查了直线与平面平行的判定,平面与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.18.(12分)(2016•四川)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【分析】(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明.(Ⅱ)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.【点评】本题主要考查了正弦定理,余弦定理,两角和的正弦函数公式,三角形内角和定理,三角形面积公式的应用,考查了转化思想,属于中档题.19.(12分)(2016•四川)已知数列{a n}的首项为1,S n为数列{a n}的前n项=qS n+1,其中q>0,n∈N+和,S n+1(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为e n,且e2=2,求e12+e22+…+e n2.【分析】(Ⅰ)根据题意,由数列的递推公式可得a2与a3的值,又由a2,a3,a2+a3成等差数列,可得2a3=a2+(a2+a3),代入a2与a3的值可得q2=2q,解可得q的值,进而=2S n+1,进而可得S n=2S n﹣1+1,将两式相减可得a n=2a n﹣1,即可得数列{a n}是可得S n+1以1为首项,公比为2的等比数列,由等比数列的通项公式计算可得答案;=qS n+1,同理有S n=qS n﹣1+1,将两式相减可得a n=qa n﹣1,分析可得(Ⅱ)根据题意S n+1a n=q n﹣1;又由双曲线x2﹣=1的离心率为e n,且e2=2,分析可得e2==2,解可得a2的值,由a n=q n﹣1可得q的值,进而可得数列{a n}的通项公式,再次由双曲线的几何性质可得e n2=1+a n2=1+3n﹣1,运用分组求和法计算可得答案.【解答】解:(Ⅰ)根据题意,数列{a n}的首项为1,即a1=1,=qS n+1,则S2=qa1+1,则a2=q,又由S n+1又有S3=qS2+1,则有a3=q2,若a2,a3,a2+a3成等差数列,即2a3=a2+(a2+a3),则可得q2=2q,(q>0),解可得q=2,则有S n=2S n+1,①+1进而有S n=2S n﹣1+1,②①﹣②可得a n=2a n﹣1,则数列{a n}是以1为首项,公比为2的等比数列,则a n=1×2n﹣1=2n﹣1;=qS n+1,③(Ⅱ)根据题意,有S n+1同理可得S n=qS n﹣1+1,④③﹣④可得:a n=qa n﹣1,又由q>0,则数列{a n}是以1为首项,公比为q的等比数列,则a n=1×q n﹣1=q n﹣1;若e 2=2,则e2==2,解可得a2=,则a2=q=,即q=,a n=1×q n﹣1=q n﹣1=()n﹣1,则e n2=1+a n2=1+3n﹣1,故e12+e22+…+e n2=n+(1+3+32+…+3n﹣1)=n+.【点评】本题考查数列的递推公式以及数列的求和,涉及双曲线的简单几何性质,注意题目中q>0这一条件.20.(13分)(2016•四川)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB 的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳【分析】(Ⅰ)由题意可得a=2b,再把已知点的坐标代入椭圆方程,结合隐含条件求得a,b得答案;(Ⅱ)设出直线方程,与椭圆方程联立,求出弦长及AB中点坐标,得到OM所在直线方程,再与椭圆方程联立,求出C,D的坐标,把︳MA︳•︳MB︳化为,再由两点间的距离公式求得︳MC︳•︳MD︳的值得答案.【解答】(Ⅰ)解:如图,由题意可得,解得a2=4,b2=1,∴椭圆E的方程为;(Ⅱ)证明:设AB所在直线方程为y=,联立,得x2+2mx+2m2﹣2=0.∴△=4m2﹣4(2m2﹣2)=8﹣4m2>0,即.设A(x1,y1),B(x2,y2),M(x0,y0),则,|AB|==.∴x0=﹣m,,即M(),则OM所在直线方程为y=﹣,联立,得或.∴C(﹣,),D(,﹣).则︳MC︳•︳MD︳===.而︳MA︳•︳MB︳=(10﹣5m2)=.∴︳MA︳•︳MB︳=︳MC︳•︳MD︳.【点评】本题考查椭圆的标准方程,考查了直线与圆锥曲线位置关系的应用,训练了弦长公式的应用,考查数学转化思想方法,训练了计算能力,是中档题.21.(14分)(2016•四川)设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【分析】(Ⅰ)求导数,分类讨论,即可讨论f(x)的单调性;(Ⅱ)要证g(x)>0(x>1),即﹣>0,即证,也就是证;(Ⅲ)由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,再构造函数,求导数,即可确定a的取值范围.【解答】(Ⅰ)解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣=(x>0),当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a>0时,由f′(x)=0,得x==,∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,则f(x)在(0,)上为减函数,在(,+∞)上为增函数;综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0,)上为减函数,在(,+∞)上为增函数;(Ⅱ)证明:要证g(x)>0(x>1),即﹣>0,即证,也就是证,令h(x)=,则h′(x)=,∴h(x)在(1,+∞)上单调递增,则h(x)min=h(1)=e,即当x>1时,h(x)>e,∴当x>1时,g(x)>0;(Ⅲ)解:由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,∵t(1)=0,∴有t′(x)=2ax=≥0在(1,+∞)内恒成立,令φ(x)=,则φ′(x)=2a=,当x≥2时,φ′(x)>0,令h(x)=,h′(x)=,函数在[1,2)上单调递增,∴h(x)min=h(1)=﹣1.又2a≥1,e1﹣x>0,∴1<x<2,φ′(x)>0,综上所述,x>1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增,∴t′(x)>t′(1)≥0,即t(x)在区间(1,+∞)单调递增,∴a≥.【点评】本题考查导数知识的综合运用,考查函数的单调性,不等式的证明,考查恒成立成立问题,正确构造函数,求导数是关键.参与本试卷答题和审题的老师有:沂蒙松;豫汝王世崇;wkl197822;sxs123;wfy814;lcb001;zlzhan;maths;w3239003;qiss;danbo7801(排名不分先后)菁优网2017年3月17日。