正多边形的中心
人教版九年级数学上教案第24章第11课时正多边形和圆 含课堂练习+每课一测有答案
第8课时 正多边形和圆【教学目标】1.了解正多边形的中心、中心角、边心距、半径等概念; 2.理解正多边形和圆的关系; 3.能够进行正多边形的有关计算.【知识要点】1. 的多边形叫正多边形.2.一个正多边形的外接圆的圆心叫做这个正多边形的 , 叫做正多边形的半径, 叫做正多边形的半径,中心到正多边形一边的距离叫做这个正多边形的 . 3.正n 边形的中心角度数为 ,每一个内角度数为 . 4.正n 边形的边长为a ,边心距为r ,则其面积为 .【探究新知】例1.(正多边形的证明)如图,△ACD 是⊙O 的等腰三角形,顶角∠CAD =36°,弦CE 、DB 分别平分∠ACD 、∠ADC .求证:五边形ABCDE 为正五边形.E B【练习】如图,AB ⌒ =BC ⌒=CD ⌒=DE ⌒ =EF ⌒ =F A ⌒ ,试证明六边形ABCDEF 是⊙O 的内接正六边形.EB例2.(正多边形的计算)圆的内接正六边形的边长为4.⑴求此正六边形的半径、边心距;⑵求同圆中内接正四边形、正三角形的周长.【练习】如图,八边形ABCDEFGH 是正八边形,其外接圆的半径为2,求正八边形的面积.H G F O E DC BA1. 下列命题中,假命题的是( )A .各边相等的圆内接多边形是正多边形;B .正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心;C .正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心;D .一个外角小于一个内角的正多边形一定是正五边形.2. 周长相等的正三角形、正四边形、正六边形的面积S 3,S 4,S 6的大小关系是( )A .S 3>S 4>S 6B .S 6>S 4>S 3C .S 6>S 3>S 4D .S 4>S 6>S 3 3. 同圆的内接正四边形与外切正四边形的面积之比是( )A .1:3B .1:2C .1:2D .2:14. 已知⊙O 的半径为6㎝,则:它的内接正三角形的边心距为 ㎝,边长为 ㎝. 它的外切正三角形的半径为 ㎝,边长为 ㎝. 它的外切正六边形的半径为 ㎝,边长为 ㎝. 5. 正 边形的中心角等于18°,正十边形的一个内角等于它的中心角的 倍. 6. 任何一个正多边形都有一个 圆和 圆,这两个圆是 圆.7. 已知一个正n 边形的边心距为4㎝,周长为27㎝.求这个正n 边形的面积.8.如图,正方形ABCD 内接于⊙O ,点E 、F 分别为DA 、DC 的中点,过点E 、F 作弦的MN ,若⊙O 的半径为12.⑴求MN 的长;⑵连接OM 、ON ,求圆心角∠MON 的度数CB9.已知:如图,△OAB 为正三角形,以O 为圆心,OA 为半径的⊙O ,直径FC ∥AB ,AO 、BO 的延长线交⊙O 于D 、E .求证:六边形ABCDEF 是⊙O 的内接正六边形.OFE D C BA(完成时间:45分钟,满分:100分)一、选择题(每题5分,共25分)1. (2009年义乌))在正三角形、正方形、正五边形、正六边形中不能单独镶嵌平面的是( )A .正三角形B .正方形C .正五边形D .正六边形2. (2009年上海市)下列正多边形中,中心角等于内角的是( )A .正六边形B .正五边形C .正四边形 C .正三边形3. (2010年广西柳州)一个正多边形的一个内角为120°,则这个正多边形的边数为( )A .9B .8C .7D .64. (2010甘肃兰州)如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A .2B .3CD.5.工(2010山东济南)如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是( )A .32cmB .3cmC .332cm D .1cm二、填空题(每题5分,共25分)6. (2009年甘肃庆阳)如图,将正六边形绕其对称中心O 旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是 度.7. (2010河北)如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 . 8. 半径为R 的圆内接正六边形的周长是 .9. 如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,且BC ∥Q R ,则∠AOQ= .10.已知正六边形的两条对边相距20㎝,则它的边长是 . 三、解答题(每题10分,共50分)11.如图,正五边形ABCDE 中,点M 是CD 的中点.求证:AM ⊥CD .MED CBA第9题图 R Q POD CB A第7题图第5题图第4题图 第6题图12.已知一个正三角形与一个正六边形面积相等,求两者边长之比.13.如图,正六边形ABCDEF 内接于半径为5的⊙O ,四边形EFGH 是正方形.⑴求正方形的面积;⑵连接OF 、OG ,求∠OGF 的度数.H G OFED CB A14.如图,已知正三角形ABC 的边长为6,剪去三个角后得到一个正六边形,求此正六边形的边长与面积.H G M FE D CBA15.如图①②③中,点E 、D 分别是,正三角形ABC 、正四边形ABCM 、正五边形ABCMN 中以点C 为顶点的相似邻两边上的点,且BE =CD ,DB 交AE 于P 点. ⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为 ,图③中,∠APD 的度数为 . ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况?若能,写出推广问题与结论;若不能,请说明理由.图①NPE D C B A图②P M E D CBA图①P E D CBA【参考答案】【要点梳理】1. 各边相等,各角也相等 ;2.中心、正多边形外接圆的半径、 外接圆的圆心、边心距;3.n︒360;nn ︒-180)2(;4.21nar 【问题探究】例1.证∠ACR =∠DCE =∠ADB =∠CDB =∠CAD =36°,再利用圆周角定理,证明五段弧相等,即可证明边相等,角相等.. 练习:略例2.⑴半径:4,;边心距:32;⑵正四边形的周长:216,正三角形的周长:312练习:提示:过点B 作BM ⊥OA ,可求出BM =1,即得△OAB 的面积,从而可得正八边形的面积为24. 【课堂操练】1.D ;2.B ;3.C ;4.3、36;12、312;34、34;5.二十,4;6.外接圆,内切圆,同心圆;7.54;8.⑴MN =312;⑵120°.9.略. 【每课一测】 一、选择题1.B ;2.C ;3.D ;4.D ;5.A 二、填空题6.60;7.8;8.6R ;9.75°;10.3320三、解答题11.略;12.3∶213.⑴25;⑵15°;14.36;15.⑴60°;⑵90°;108°;⑶能.推广的问题与结论为:点E 、D 分别为正n 边形ABCM N …中以C 点为顶点的相邻两边上的点,且BE =CD ,BD 与AE交于点P ,则∠APD 的度数为nn ︒-180)2(.。
正多边形和圆及正多边形的有关计算
中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。
今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。
正多边形与圆-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(原卷版)
正多边形与圆知识点一、正多边形各边相等,各角也相等的多边形是正多边形.判断一个多边形是否是正多边形(),必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).例:下列说法正确的是()A. 平行四边形是正四边形B. 矩形是正四边形C. 菱形是正四边形D. 正方形是正四边形【解答】D【解析】A选项,平行四边形的四条边、四个角不一定都相等;B选项,矩形四个角相等,但是四条边不一定相等;C选项,菱形四条边相等,但是四个角不一定相等;D选项,正方形的四条边和四个角都相等,故选D.知识点二、正多边形与圆的关系一般地,用量角器把一个圆等分,依次连接各等分点所得的多边形是这个圆的内接正多边形,这个圆是这个正多边形的外接圆,正多边形的外接圆的圆心叫做正多边形的外心,外接圆的半径叫做正多边形的半径.1.正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心;(2)正多边形外接圆的半径叫做正多边形的半径;(3)正多边形每一边所对的圆心角叫做正多边形的中心角;(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.2.正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.3.正多边形的性质(1)正多边形都只有一个外接圆,圆有无数个内接正多边形;(2)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;(3)正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心;(4)边数相同的正多边形相似。
它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方;(5)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.例:如图所示,在正六边形ABCDEF中,已知AB=10,求这个正六边形的半径、周长、面积.【解答】见解析【解析】连接CF、BE相交于点O,则O为正六边形的中心,过点O作OH⊥BC,如图所示:由题意可得∠BOC=60°,OB=OC,∴∠BOH=30,在△OBH中,正六边形的半径,,.知识点三、正多边形的画法1.用量角器等分圆由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以等分圆;根据同圆中相等弧所对的弦相等,依次连接各分点就可画出相应的正n边形.2.尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图:(1)正四、八边形:在⊙O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形. 再逐次平分各边所对的弧(即作∠AOB的平分线交于E) 就可作出正八边形、正十六边形等,边数逐次倍增的正多边形.(2)正六、三、十二边形的作法:通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,任意画一条直径AB,分别以A、B为圆心,以⊙O的半径为半径画弧与⊙O相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点.显然,A、E、F(或C、B、D)是⊙O的3等分点.同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分……巩固练习一.选择题1.如图,⊙O的周长等于4πcm,则它的内接正六边形ABCDEF的面积是()A.√3B.3√3C.6√3D.12√32.如图,点A、B、C、D、E、F是⊙O的等分点,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为()A.π+32√3B.π−3√32C.π+3√32D.π−3√323.用48m长的篱笆在空地上围成一个正六边形绿地,绿地的面积是()A.96√3m2B.64√3m2C.32√3m2D.16√3m2 4.如图,⊙O的外切正八边形ABCDEFGH的边长2,则⊙O的半径为()A.2 B.1+√2C.3 D.2+√2 5.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:√3B.2:3:4 C.1:√3:2 D.1:2:3 6.已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是()A.2 B.1 C.√3D.√32二.填空题7.如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=度.8.一个蜘蛛网如图所示,若多边形ABCDEFGHI为正九边形,其中心点为点O,点M、N分别在射线OA、OC上,则∠MON=度.9.已知正三角形的边心距为1,那么它的边长为.10.若正多边形的一个中心角为40°,则这个正多边形的一个内角等于.11.如图,正五边形ABCDE内接于⊙O,点F为BC上一点,连接AF,若∠AFC=126°,则∠BAF的度数为.12.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a=cm.̂的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在13.点A、C为半径是6的圆周上两点,点B为AC该圆直径的三等分点上,则该菱形的边长为.14.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.15.同一个圆的内接正方形和外切正六边形的边长之比为.16.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.̂上不同于点C的任意一点,则∠BPC的度数是17.如图,正方形ABCD是⊙O的内接正方形,点P在劣弧CD度.18.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=.三.解答题19.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.20.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.21.如图,⊙O外接于正方形ABCD,P为弧AD上一点,且AP=1,PC=3,求正方形ABCD的边长和PB的长.22.如图,⊙O的周长等于 8πcm,正六边形ABCDEF内接于⊙O.(1)求圆心O到AF的距离;(2)求正六边形ABCDEF的面积.23.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5√2cm,求⊙O的半径R.24.已知边长为1的正方形ABCD内接于⊙O,延长BC到点E,使CE=BC,连接AE交⊙O于F,求证:EF,FA的长是方程5x2−5√5x+6=0的两根.25.(1)如图1,在圆内接正六边形ABCDEF中,半径OC=4,求正六边形的边长.(2)如图2,在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求证:AB=AC.。
正多边形模型总结及经典练习题
正多边形模型总结及经典练习题
正多边形是一个具有相等边长和相等内角的多边形。
在几何学中,正多边形是非常重要的概念,它有许多有趣的性质和应用。
在本文档中,我们将总结正多边形的特点,并提供一些经典的练题来加深研究。
正多边形的特点
正多边形具有以下特点:
1. 边长相等:正多边形的每条边都具有相同的长度。
2. 内角相等:正多边形的每个内角都具有相同的大小。
3. 外角相等:正多边形的每个外角都具有相同的大小。
4. 中心对称:正多边形以中心为对称轴,对称的各个部分完全相同。
经典练题
以下是一些经典的正多边形练题,供大家练和巩固所学知识:
1. 一个正三角形的内角和是多少?
2. 一个正五边形的外角和是多少?
3. 如果一个正七边形的边长是5厘米,它的周长是多少?
4. 一个正十边形的内角和是多少?
5. 如果一个正十二边形的外角是30度,它的内角是多少度?
希望通过对以上练题的思考和求解,能够加深对正多边形的理解和掌握。
以上就是对正多边形模型的总结及经典练习题的介绍。
希望本文档能够帮助大家更好地理解和运用正多边形的概念。
如果有任何疑问或需要进一步的解释,请随时向我提问。
谢谢!。
2023-2024学年九年级上数学:正多边形和圆(精讲教师版)
2023-2024学年九年级上数学:第24章圆
24.3
正多边形和圆
正多边形和圆
(1)正多边形与圆的关系
只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
一个正多边形的外接圆的圆心叫作这个正多边形的中心,外接圆的半径叫作这个正多边形的半径;正多边形每一边所对的圆心角叫作正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的边心距.
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
第1页(共15页)。
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。
2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。
②正多边形的半径:外接圆的半径叫做正多边形的半径。
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。
(名师整理)最新中考数学专题复习《正多边形与圆的位置关系》精品教案
中考数学人教版专题复习:正多边形与圆的位置关系一、教学内容正多边形和圆1.正多边形的有关概念.2.正多边形和圆的关系.3.正多边形的有关计算.二、知识要点1.正多边形的定义各边相等、各角也相等的多边形叫做正多边形.如正三角形(即等边三角形)、正四边形(即正方形)、正五边形、正六边形、正n边形等.2.正多边形与圆的关系(1)从圆的角度看:等分圆周可获得正多边形,把圆分成n(n≥3)等份.①依次连结各分点所得的多边形是这个圆的内接正n边形.②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.(2)从正多边形的角度看:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.13.正多边形的有关概念(1)正多边形的中心:正多边形的外接圆(或内切圆)的圆心.(2)正多边形的半径:正多边形外接圆的半径.(3)正多边形的边心距:中心到正多边形的一边的距离(即正多边形的内切圆的半径).(4)正多边形的中心角:正多边形每一边所对的圆心角.正多边形的每一个中心角的度数是360°n.ORB1A1B2A2B3A3Cr4.正n边形的对称性当n为奇数时,正n边形只是轴对称图形;当n为偶数时,正n边形既是轴对称图形,也是中心对称图形.5.一些特殊正多边形的计算公式边数n内角A n中心角αn半径R 边长a n边心距r n周长P n面积S n360°120°R3R12R 33R343R2490°90°R2R22R42R 2R26120°60°R R32R6R323R22三、重点难点重点是正多边形的概念和计算,难点是正确理解正多边形和圆的关系.【典型例题】例1.如图所示,既是轴对称图形,又是中心对称图形的有__________.线段正三角形正方形正五边形正六边形(1)(2)(3)(4)(5)解:(1)(3)(5)评析:因正方形、正六边形的边数为偶数,所以线段、正方形、正六边形既是轴对称图形,又是中心对称图形.例2.(1)如果一个正多边形的中心角为24°,那么它的边数是__________.(2)正多边形的一个外角等于45°,那么这个正多边形的内角和等于__________,中心角是__________.分析:利用正多边形的内角和及中心角的计算公式求解.(1)依题意得360°n=24°,∴n=15.(2)n×45°=360°,∴n=8.由内角和公式得(8-2)·180°=1080°,∴中心角为360°8=45°.解:(1)15,(2)1080°,45°.例3.如图所示,小明同学在手工制作中,把一个边长为12cm的等边三角形纸片贴在一个圆形纸片上.若三角形的三个顶点恰好都在这个圆上,求该圆的半径.34A BCOD分析:由题意知这个三角形是圆的内接正三角形.解:如图所示,连结OB ,过O 作OD ⊥BC 于D ,则正△ABC 的中心角=360°3=120°,∠BOD =12×120°=60°,∠OBD =90°-∠BOD =30°,∴OD =12BO .又BD =12BC =12×12=6(cm ),∴OB 2-OD 2=62,即OB 2-(12OB )2=62, ∴OB =43cm .评析:把实际问题转化为正三角形的外接圆的问题是解题的关键.例4. 已知圆内接正方形的面积为8,求同圆内接正六边形的面积.分析:解决问题的关键是“同圆”,通过圆的半径可以把正方形的条件转化为正六边形的条件,从而解决问题.解:由正方形的面积为8,可知正方形的边长为22,设该圆半径为R ,正六边形的边长和边心距分别为a 6和r 6. 则2R =4,a 6=R ,r 6=32·a 6.∴S 6=6×12a 6·r 6=6×12×2×32×2=63.例5. 用折纸的方法,可直接剪出一个正五边形(如图所示)方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等份的线折叠,再沿CD 剪5开,使展开后的图形为正五边形,则∠OCD 等于( )A . 108°B . 90°C . 72°D . 60°AB ABOOCD分析:本题考查学生的动手能力和灵活运用所学知识的能力,这里的O 点是所剪正五边形的中心,由题可知∠COD =36°,所以剪得的三角形正好是五边形一边和两条半径所构成的三角形的一半,所以∠OCD =90°. 解:B例6. 如图(1)、(2)、(3)、…、(n ),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连接OM 、ON .(1)求图(1)中∠MON 的度数;(2)图(2)中∠MON 的度数是__________,图(3)中∠MON 的度数是__________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).分析:(1)连接OB 、OC ,注意△OBM ≌△OCN ,可得∠MON =∠BOC =120°. (2)同理,由△OBM ≌△OCN ,可得∠MON =∠BOC =90°. (3)由(1)(2)知,∠MON =∠BOC ,即∠MON =∠BOC =90°.A BCO M N A B C DOM N BC D E O MN ABOM…(1)(2)(3)(n )A解:(1)方法一:连接OB 、OC ,∵正△ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120° 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,6∴∠BOM =∠CON ,∴∠MON =∠BOC =120°. 方法二:连接OA 、OB ,∵正△ABC 内接于⊙O . AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. 又∵BM =CN ,∴AM =BN , 又∵OA =OB ,∴△AOM ≌△BON ,∴∠AOM =∠BON ,∴∠MON =∠AOB =120°. (2)图(2)中,∠MON =360°4=90°,图(3)中,∠MON =360°5=72°. (3)图(n )中,∠MON =360°n .评析:(1)△OBM 与△O CN 是旋转全等三角形. 图(1)中△OCN 绕点O 顺时针旋转120°,与△OBM 重合;图(2)旋转90°,图(3)旋转72°……. (2)注意由特殊到一般的思想,归纳出∠MON =360°n .【方法总结】1. 正n 边形的中心角为360°n ,与正n 边形的一个外角相等,与正n 边形的一个内角互补. 求中心角常用以上方法.2. 正多边形的外接圆半径R 与边长a 、边心距r 之间的关系式为R 2=r 2+(12a )2,这是把正n 边形分成了2n 个全等的直角三角形,把正n 边形的有关计算转化为直角三角形中的问题.【模拟试题】(答题时间:50分钟) 一、选择题1. 若一个正多边形的一个外角是40°,则这个正多边形的边数是( )A. 10B. 9C. 8D. 62.下列命题中正确的是()A.正多边形都是中心对称图形B.正多边形一个内角的大小与边数成正比C.正多边形一个外角的大小随边数的增加而减小D.边数大于3的正多边形对角线都相等3.一个正多边形的中心角是36°,则其一定是()A.正五边形B.正八边形C.正九边形D.正十边形4.正多边形的一边所对的中心角与该正多边形一个内角的关系是()A.两角互余B.两角互补C.两角互余或互补D.不能确定5.圆内接正三角形的边心距与半径的比是()A. 2∶1B. 1∶2C.3∶4D.3∶26.下列命题中:①三边都相等的三角形是正三角形;②四边都相等的四边形是正四边形;③四角都相等的四边形是正四边形;④各边都相等的圆的内接多边形是正多边形.其中正确的有()A. 1个B. 2个C. 3个D. 4个*7.已知四边形ABCD内接于⊙O,给出下列三个条件:①︵AB=︵BC=︵CD=︵DA;②AB=BC=CD=DA;③∠A=∠B=∠C=∠D.则在这些条件中,能够判定四边形ABCD是正四边形的条件共有()A. 0个B. 1个C. 2个D. 3个**8. A点是半圆上一个三等分点,B点是︵AN的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为()7M NA. 1B.22C. 2 D.3-1二、填空题1.用一张圆形的纸片剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小为__________cm.2.如果一个正多边形的内角和是900°,则这个多边形是正__________边形.3.正十边形至少绕中心旋转__________度,它与原正十边形重合.4.若正三角形、正方形、正六边形的周长都相等,它们的面积分别为S3、S4、S6,则S3、S4、S6由大到小的排列顺序是__________.5.正六边形DEFGHI的顶点都在边长为6cm的正三角形ABC的边上,则这个正六边形的边长是__________cm.*6.如图是某广场地面的一部分,地面的中央是一块正六边形地砖,周围用正三角形和正方形的大理石密铺,从里向外共铺了12层(不包括正六边形地砖),每一层的外边界都围成一个多边形.若正中央正六边形地砖的边长为0.5米,则第12层的外边界所围成的多边形的周长是__________.三、解答题1.解答下列各题:89(1)分别求出正十边形、正十二边形的中心角.(2)已知一个正多边形的一个中心角为18°,求它的内角的度数. (3)正六边形的两条平行边间的距离为12cm ,求它的外接圆的半径.2. 如图所示,求中心为原点O ,顶点A 、D 在x 轴上,半径为4cm 的正六边形ABCDEF 的各个顶点坐标.3. 用一块半径R =60cm 的圆形木料,做“八仙桌”(正方形)桌面或“八角桌”(正八边形)桌面,哪个面积大?大多少?(结果保留三个有效数字)**4. 请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:A A A BBB CCCD DO OOM M M NNN E图1图2图3…(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,且∠NOC =60°. 请证明:∠NOC =60°.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =__________,且∠DON =__________度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =__________,且∠EON =__________度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:______________________________.1011【试题答案】一、选择题1. B2. C3. D4. B5. B6. B7. C8. C (解析:如图所示,作点B 关于直线MN 的对称点B ’,连结OB ’,PB ’,BB ’.M N二、填空题1. 42. 七3. 364. S 6>S 4>S 35. 26. 39米三、解答题1. (1)正十边形的中心角为360°10=36°,正十二边形的中心角是360°12=30°. (2)中心角为18°的正多边形的边数为36018=20,正二十边形的内角为(20-2)·180°20=162°. (3)由题意得r 6=6(cm ),由于正六边形的边长与半径相等,∴R 2=(12R )2+r 62,∴34R 2=36,R =43(cm ).2. A (-4,0)、B (-2,-23)、C (2,-23)、D (4,0)、E (2,23)、F (-2,23)3. “八仙桌”的面积为7200平方厘米,“八角桌”的面积为72002平方厘米,所以“八角桌”比“八仙桌”的面积大2980平方厘米.4. (1)证明:∵△ABC 是正三角形,∴∠A =∠ABC =60°,AB =BC ,在△ABN 和△BCM 中,⎩⎨⎧AB =BC∠A =∠ABCAN =BM,∴△ABN ≌△BCM . ∴∠ABN =∠BCM . 又∵∠ABN +∠OBC =60°,∴∠BCM+∠OBC=60°,∴∠NOC=60°.(2)在正方形中,AN=DM,∠DON=90°.(3)在正五边形中,AN=EM,∠EON=108°.(4)以上所求的角恰好等于正n边形的内角(n-2)·180°n.12。
正多边形与圆的有关的证明和计算知识讲解及典型例题解析
正多边形与圆的有关的证明和计算知识讲解及典型例题解析【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠E AB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠A OC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。
正多边形与圆(八大题型)( 原卷版)
A.1B.2C. D.
解题技巧提炼
主要考查了正多边形和圆,正六边形的性质、正方形的性质,等边三角形的性质,勾股定理,正确掌握它们的性质是解决问题的关键.
【变式3-1】(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )
A. B. C.3D.2
正多边形.
◆2等于 的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,得到圆的n个等分点;
(2)顺次连接各等分点.
【例题1】下列命题正确的是( )
A.各边相等的多边形是正多边形
B.正多边形一定是中心对称图形
C.各角相等的圆内接多边形是正多边形
D.正多边形外接圆的半径是正多边形的半径
半径
外接圆的半径叫做正多边形的半径.
边心距
内切圆的半径叫做正多边形的边心距.
中心角
正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.
任何正多边形都有一个外接圆和一个内切圆.
◆2、正多边形的判定:
一个多边形必须同时满足各边相等,各角也相等才能判定其是正多边形,两个条件缺一不可,如菱形的各边相等,但各角不一定相等,矩形的各角相等,但各边不一定相等,因此它们不是正多边形.
解题技巧提炼
根据正多边形的相关概念进行判断即可,正n边形(n≥3,n为整数)都是轴对称图形,都有n条对称轴,且这些对称轴都交于一点,当n为偶数时,正n边形为中心对称图形.
【变式1-1】下列说法中,错误的是( )
A.正多边形的外接圆的圆心,就是它的中心
B.正多边形的外接圆的半径,就是它的半径
C.正多边形的内切圆的半径,就是它的边心距
(苏科版)九年级上册数学《第2章对称图形---圆》
正多边形和圆
正多边形和圆【基础知识精讲】一、基本概念(1)正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心:正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心.(3)正多边形的半径:外接圆的半径叫做正多边形的半径.(4)正多边形的边心距:内切圆的半径叫做正多边形的边心距.(5)正多边形的中心角:正多边形的每一边所对的外接圆的圆心角叫做正多边形的中心角.每个中心角都等于n ︒360.二、定理(1)把圆分成n(n≥3)等份:①依次连结各分点所得的多边形是这个圆的内接正n边形.②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.(2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.三、值得注意的问题(1)正多边形的定义中的两个条件“各边都相等”,“各角都相等”缺一不可.(2)正n边形每一个中心角和每一个外角都相等,都等于n ︒360.(3)边数相同的正多边形相似,与相似三角形性质类似.【重点难点解析】本节的重点是正多边形的概念及正多边形和圆的关系的两个定理.难点是对正多边形和圆关节的理解和证明.〔例1〕求证:以正多边形的内切圆的切点为顶点的多边形是正多边形.以正五边形为例证明.如图7-36所示,已知正五边形ABCDE 的各边切⊙O 于点A′、B′、C′、D′、E′.求证:五边形A′B′C′D′E′为正五边形.〔证明〕连结OA′、OE′、OB′.则OE′⊥AE,OA′⊥AB,OB′⊥BC, 即∠AE′O=∠AA′O=∠BA′O=∠BB′O=90° ∵∠A=∠B,而在四边形AA′OE′和A′BB′O 中, 有∠A=∠A′OE′,∠B=∠A′OB′,∴∠A′OE′=∠A′OB′,∴⌒''E A =''B A ⌒同理有''B A ⌒=''C B ⌒=''D C ⌒=''E D ⌒即A′、B′、C′、D′、E′五点把⊙O 五等份. ∴五边形A′B′C′D′E′为正五边形.〔例2〕如图7-37所示,已知正五边形ABCDE,求作正五边形ABCDE的内切圆.〔作法〕(1)分别作BC、CD两边的垂直平分线,交点为O.(2)以O为圆心,以O到CD的距离(OM的长)为半径作圆,则⊙O 就是五边形ABCDE的内切圆.【难题巧解点拨】〔例1〕求证:各角相等的圆外切五边形是正五边形.已知:如图7-38,五边形ABCDE中,∠A=∠B=∠C=∠D=∠E.边AB,BC,CD,DE,EA分别与⊙O相切于点A′,B′,C′,D′,E′.求证:五边形ABCDE是正五边形.〔证明〕连结OA′,OB′,OE′,则OA′⊥AB,OB′⊥BC,OE′⊥AE.由∠A=∠B ⇒∠E′OA′=∠A′OB′⇒''E A ⌒=''B A ⌒,同理,''B A ⌒=''C B ⌒=''D C ⌒=''E D ⌒=''A E ⌒,即切点A′,B′,C′,D′,E′是⊙O 的五等分点.由“把圆分成n 等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正多边形”知,五边形ABCDE 是正五边形.〔例2〕如图7-39,已知:六边形ABCDEF 中∠A=∠B=∠C=∠D =∠E=∠F,边AB 、BC 、CD 、DE 、EF 、FA 与⊙O 分别相切于点A′、B′、C′、D′、E′、F′,求证:六边形ABCDEF 为正六边形(即各角相等的圆外切六边形是正六边形)证明:作⊙O 的半径OA′,OC′,OB′ ∴OA′⊥AB,OB′⊥BC,OC′⊥CD, ∠B=∠C,∴∠1=∠2∴''C B ⌒=''D C ⌒=''E D ⌒=''F E ⌒=''A F ⌒即切点A′、B′、C′、D′、E′、F′为⊙O 六等分点 ∴六边形ABCDEF 为正六边形【课本难题解答】例.如图7-40,正五边形的对角线AC 和BC 相交于点M.求证:(1)ME =AB ;(2)ME 2=BE·BM(1)提示:根据正多边形都有外接圆和同圆中圆周角与圆心角的关系.可知∠AEM=25a =36°,∠EAM=α5=72°由三角形内角和定理可得∠EMA=72° 所以ME =EA =AB(2)提示:△ABE∽△MAB ⇒AB 2=MA·BE ⇒ME 2=BE·BM【命题趋势分析】正多边形和圆是各类考试所要考查内容,其考查题型一般是选择题,填空题.【典型热点考题】例1.正十五边形的中心角等于 度.(2000年上海)分析:运用“正n 边形每个中心角都等于n︒360”求解,应填24。
正多边形的特点和性质
正多边形的特点和性质一、正多边形的定义正多边形是指所有边相等,所有角也相等的多边形。
二、正多边形的性质1.正多边形的所有边相等。
2.正多边形的所有角相等。
3.正多边形的对角线互相平分,且对角线将正多边形分成若干个全等的小三角形。
4.正多边形的中心角等于其所对的外角,且中心角和外角的和为180度。
5.正多边形的内角和为(n-2)×180度,其中n为正多边形的边数。
6.正多边形的对角线数量为n(n-3)/2,其中n为正多边形的边数。
三、正多边形的特点1.正多边形的边数必须是正整数。
2.正多边形的边数越多,其形状越接近圆。
3.正多边形的面积可以通过其边长和中心角来计算。
4.正多边形的外接圆半径等于其边长乘以根号2除以2。
5.正多边形的内切圆半径等于其面积除以边长。
四、正多边形与圆的关系1.正多边形的中心即为外接圆的圆心。
2.正多边形的边长等于外接圆的直径。
3.正多边形的内切圆半径等于其中心到边的距离。
五、正多边形的分类1.根据边数,正多边形可以分为正三角形、正四边形、正五边形、正六边形等。
2.根据对称性,正多边形可以分为正三角形、正方形、正五边形、正六边形等。
六、正多边形的应用1.在建筑中,正多边形的形状常用于设计美观和结构稳定。
2.在艺术中,正多边形的形状常用于图案设计和装饰。
3.在数学中,正多边形的研究可以帮助理解多边形的性质和几何学的基本概念。
七、正多边形的证明1.欧几里得证明了正多边形的中心角等于其所对的外角。
2.欧拉证明了正多边形的对角线互相平分。
3.哈密顿证明了正多边形的中心到边的距离等于内切圆半径。
八、正多边形的拓展1.正多边形可以扩展为正多面体,即所有面都是正多边形的三维图形。
2.正多边形的对称性可以扩展到正多面体的对称性。
3.正多边形的性质和应用也可以扩展到正多面体。
习题及方法:1.习题:一个正八边形的边长是8厘米,求它的面积。
答案:首先,正八边形的中心角是360°/8 = 45°。
数字中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)
中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.(2015•镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【高清课堂:正多边形与圆的有关证明与计算自主学习4】【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【高清课堂:正多边形与圆的有关证明与计算自主学习2】【变式3】(2015•广西自主招生)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.(2015秋•江都市期中)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC 交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。
初中数学圆的知识点总结
初中数学圆的知识点总结圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径面积计算公式:1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方点、直线、圆和圆的位置关系1.点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。
多边形中心角公式
多边形中心角公式首先,我们先来了解一下什么是中心角。
中心角是指以多边形的中心为顶点,连接中心和两个相邻顶点所形成的角。
它是一个顶点处的内角和。
假设我们有一个正n边形,记作n-gon,其中n表示边的数量,那么在n-gon中,每个中心角的度数都相等,并且等于360度除以n。
让我们以正五边形(五边形的每个内角度数都相等)作为例子来说明导出多边形中心角公式的过程。
首先,我们需要绘制一个正五边形,并在其中心处标记一个点作为中心。
然后,我们需要连接中心和每个顶点,形成五个中心角。
现在,我们来计算一个中心角的度数。
根据中心角的性质,我们可以看出中心角的度数等于中心处的内角和。
在五边形中,每个内角的度数都是108度(因为五边形的每个内角和等于(5-2)×180/5=540/5=108度)。
又因为中心角的度数等于中心处的内角和,所以每个中心角的度数也是108度。
现在,我们来计算多边形中心角公式。
根据我们之前的观察,我们可以得出结论:多边形中心角的度数等于360度除以多边形的边数。
所以,对于任何正n边形,每个中心角的度数都是360度除以n。
举个例子,让我们计算一个正六边形中心角的度数。
根据多边形中心角公式,每个中心角的度数应该是360度除以6,即60度。
同样的推理,我们可以计算出正四边形的中心角度数为360度除以4,即90度;正三角形的中心角度数为360度除以3,即120度。
总结一下,多边形中心角公式是一个很有用的数学公式,可以用来计算正多边形中每个中心角的度数。
它是360度除以多边形的边数。
这个公式对于解决各种几何问题和角度计算都非常实用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六边形的边长等于它的半径.
rR
∴亭子的周长 L=6×4=24(m)
B
P
C
在Rt OP中 C , OC4,PCBC42 22
根据勾股定理,心可距 r得 边 4222 2 3
亭子的面 S积1Lr1242 22
341.6(m2)
正n边形的一个内角的度数是____________;
360 中心角是___________;
正多边形的中心
1
三条边相等,三个角也相等(60度)
四条边都相等,四个角也相等(90度)
正多边形: 各边相等,各角也相等的多边形叫做正多边形。 正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边形。
想一想:课本P105 练习1 菱形是正多边形吗?矩形是正多边形吗?为什么?
活动1 观看下列美丽的图案
正多边形的中心角与外角的大小关系
是________.
n
相等
(n2)•180 n
练习 P105 2.3.
抢答题:
1、O是正 圆与
△ABC的中心,它是△ABC的 圆的圆心。
内切
2、OB叫正△ABC的
,它是正△ABC的半径 外接
圆的半径。
3、OD叫作正△ABC的 它是正△ABC的 圆的半径。
内切
边心距
B
边心距 r R2( a)2 , 2
面积S 1L•边心距r) ( 1na•边心距r) (
2
2
例 有一个亭子它地基是半径为4m的正六边形,求 地基的周长和面积(精确到0.1平方米).
解:
由于ABCDEF是正六边形,所以 F
E
它的中心角等于360 60, 6
OBC是等边三角形,从而正 A
. O
证明:∵AB=BC=CD=DE=EA ∴AB=BC=CD=DE=EA ∵BCE=CDA=3AB ∴∠1=∠2 同理∠2=∠3=∠4=∠5 又∵顶点A、B、C、D、E都在⊙O上, ∴五边形ABCDE是⊙O的内接五边形.
A
1
B 2
5E
3
4
C
D
只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形。
这个圆就是这个正多边形的外接圆
结论:如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形
思考: 各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为 什么?如果不是,举出反例.
正多边形的中心:一个正多边形的外接圆的圆心.
正多边形的半径: 外接圆的半径
E
D
72度
角, D
内切
边心距 中心
E C
.O
A
F
B
1、正多边形的各边相等 2、正多边形的各角相等
3、正多边形都是轴对称图形,一个正n边形 共有n条对称轴,每条对称轴都通过n边形 的中心。
4、边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心。
画正多边形的方法
1.用量角器等分圆 2.尺规作图等分圆
19
(1)正四、正八边形的尺规作图 (2)正六、正三 、正十二边形的尺规作图
小结: 1、怎样的多边形是正多边形?
你能举例说明吗? 2、怎样判定一个多边形是正多边形?
根据正多边形与圆关系的 第一个定理
布置作业:《名师点练》P62~P63
各边相等,各角也相等的多边形 叫做正多边形。
汇报结束 谢谢大家!
请各位批评指正
正多边形的中心角: 正多边形的每一条 边所对的圆心角.
F
中心角
. O.
半径R
C
边心距r
正多边形的边心距: 中心到正多边形的一边 的距离.
中心角 360
n
E 中心角
.
边心距把△AOB分成2个全等的直角三角形
F
.O
AOGBOG180 n
设正多边形的边长为a, 半径为R,它的周长为L=na.
R
A
G
D
C a B
停
问题1
这些美丽的图案,都是在日常生活中我们经常能看到的、利用正多边形得到的物体.你能 从这些图案中找出正多边形来吗?
问题2 你知道正多边形和圆有什么关系吗?你能否借助圆做出一个正多边形来?
D A
弦相等(多边形的边相等) 弧相等—
圆周角相等(多边形的角相等)
B
C
—多边形是正多边形
将一个圆五等分,依次连接各分点得到一个五边形,这个五边形一定是正五边形吗?如果是请你 证明这个结论.
外接
A
.O
D
C
4、正方形ABCD的外接圆圆心O叫做 正方形ABCD的
中心
5、正方形ABCD的内切圆的半径OE叫做
正方形ABCD的
边心距
A
D
.O
E
B
C
6、⊙O是正五边形ABCDE的外接圆,弦AB的
弦心距OF叫正五边形ABCDE的
,
它是正五边形ABCDE的
圆的半径。
7、 ∠AOB叫做正五边形ABCDE的 它的度数是