两个平行平面的距离

合集下载

暑假立体几何中的距离问题

暑假立体几何中的距离问题

立体几何中的距离问题【要点精讲】1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。

其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。

两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P在该平面上的射影为P′,则线段PP′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。

○2等体积法。

直线及平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。

求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。

异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定)点到面的距离的做题过程中思考的几个方面: ①直接作面的垂线求解;②观察点在及面平行的直线上,转化点的位置求解; ③观察点在及面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。

数学知识点归纳之平行线间距离

数学知识点归纳之平行线间距离

数学知识点归纳之平行线间距离数学知识点归纳之平行线间距离在我们平凡的学生生涯里,是不是经常追着老师要知识点?知识点也可以通俗的理解为重要的内容。

那么,都有哪些知识点呢?以下是店铺精心整理的数学知识点归纳之平行线间距离,供大家参考借鉴,希望可以帮助到有需要的朋友。

平行线间距离1、定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。

2、性质:⑴ 两条平行线间的距离处处相等;⑵ 两条平行线间的任何两条平行线段都是相等的。

希望上面对平行线间距离知识的总结学习,能很好的帮助同学们对此知识的巩固学习,相信同学们一定没问题的吧。

数学平行线知识点平行线:在同一平面内,永不相交的两条直线叫平行线(parallel lines),平行线具有传递性。

平行线的判定方法1.平行线的定义(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理推论:平行于同一直线的两条直线互相平行。

3.在同一平面内,垂直于同一直线的两条直线互相平行。

4.内错角相等,两直线平行。

5.同旁内角互补,两直线平行。

6.同位角相等,两直线平行平行线的性质1.两条平行线被第三条直线所截,同位角相等2.两条平行线被第三条直线所截,内错角相等3.两条平行线被第三条直线所截,同旁内角互补4. 两条平行线被第三条直线所截,外错角相等以上性质可简单说成:1.两条直线平行,同位角相等2.两条直线平行,内错角相等3.两条直线平行,同旁内角互补4.两条直线平行,外错角相等平行公理1.在同一平面内,经过直线外一点,有且只有一条直线与这条直线平行。

平行公理的推论:(平行传递性)1.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

即平行于同一条直线的两条直线平行。

2.经过直线外一点,有且只有一条直线与这条直线平行。

《相交线与平行线》的知识点归纳一、目标与要求同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

高二数学线面距离和面面距离的求法

高二数学线面距离和面面距离的求法

练习
作业 ①课本P56练6、习1及补充题。
②优化P56-57 随1,4,强7,8;做在书上。
3.(补充)在长方体ABCD-A1B1C1D1中,AB=4, BC=3,CC1=2。 求证:(1)平面A1BC1∥平面ACD1。
(2)求(1)中两个平行平面间的距 离。
A1 D1 B1 C1
D
C
A
B
line营销 line营销软件 line营销 line营销软件 nqx93kop
双胞胎兄弟!”耿直擦去刚才为已经过世的姥娘流下来的眼泪,和李尚武勾肩搭背坐到一把椅子上。耿英也和秀儿挤着坐到一把椅子上。 耿兰烧的水响锅了,郭氏取出茶杯和大碗小碗的各抓一小撮茶叶。水开了,耿兰用大铜勺舀了一一泡上凉着。大家继续流着高兴的眼泪说 笑着,有的随便端来茶水喝一些看着悄悄儿地坐在妻弟身边的那个十四、五岁的男娃儿和七、八岁的女娃儿,以及妻弟妹怀里抱着的小男 娃,耿老爹对妻弟和妻弟妹说:“都三个娃娃了啊!俺们走的时候,栋儿才五岁。看看,他现在已经长成半大小伙儿了哇!”妻弟拍拍大 儿子的背,高兴地说:“姐夫你的名字起得好,咱们栋儿不错,挺有出息的娃儿!”耿老爹笑着说:“哪里啊,是你们做爹娘的教育得好 哇!这女娃儿和二小子叫什么名字啊?”妻弟妹说:“姐夫你不在家,俺们就胡乱给起啦!”说着,她笑着伸手摸摸身边女儿的头,说: “这妞儿小的时候模样挺好看,俺们就叫她美妞儿!”又看看怀里抱着的小男娃,说:“二小子的名字是他哥哥给起的。栋儿说,‘姑父 不是说希望俺能成为什么栋梁嘛!俺叫郭栋,弟弟就叫郭梁哇!’”耿老爹还没有开口呢,耿英就赞赏地开始叫好了,大声说:“这两个 名字起得忒好啦!美妞儿小时候的模样俺没有见过,但现在的模样实在是太好看了啊!”说着,探身摸摸小表弟可爱的小脑袋,说:“还 有啊,光是郭(国)栋怎么行啊,郭家(国家)有栋梁才完美哪!”耿正也说:“能给弟弟起这样的名字,足以看得出来,俺们这大表弟 确实是很有思想哩!”直到这时候,当爷爷的才终于擦把老泪露出了笑容。33第百零九回 五道庙前父子见|(归心似箭七八天,故乡日近 怯怯行;苍天不负耿家人,五道庙前父子见。)耿正兄妹三人归心似箭七八天后,离家越来越近了。然而,他们急于回家见到亲人的心情, 却随着家的日益接近而变得越来越沉重起来„„近乡情更怯,不敢问来人!这句脍炙人口的古老诗句,兄妹三人算是体会到骨子里了。当 然,他们此时此刻所体会到的,主要是前半句,因为爹爹没有和他们一起回来,他们不敢回家了,他们实在无法面对娘和妹妹„„日思夜 想的家一天比一天接近了,但兄妹三人归家的步伐却一天比一天慢下来。原本两天就可以轻松走完的路程,到后来竟然三天也走不完 了„„连着几日来,兄妹三人的话越来越少,情绪一天比一天低落;尤其是耿英,经常默默地独自掉眼泪。就这样,到兄妹三人得以归家 那日,已经楞是给磨蹭到农历的三月初三了。耿英今儿个一上车就没有坐车棚里边,而是挤坐在哥哥和弟弟的中间,默不做声地张着一双 好看而又显得异常忧郁的大眼睛向前望着„„兄妹三人就这样挤坐着,默默地踏上回家的最后一程。俗话说,三月三,柳条

1.4空间向量的应用-1.4.2用空间向量研究距离、夹角问题

1.4空间向量的应用-1.4.2用空间向量研究距离、夹角问题
空间向量的应用
用空间向量研究距离、夹角问题
第1课时
距离问题
核心素养
能用向量方法解决点到
直线、点到平面、互相
平行的直线、互相平行
的平面的距离问题.(直
观想象、数学运算)
思维脉络
激趣诱思
知识点拨
某人在一片丘陵上开垦了一块田地,在丘陵的上方架有一条直的水
渠,此人想从水渠上选择一个点,通过一条管道把水引到田地中的
·1 = 0,
取 z=1,则 x=y=2,所以 n=(2,2,1).
|·1 1 |
所以点 B1 到平面 AD1C 的距离 d=
||
8
= 3.
探究一
探究二
素养形成
当堂检测
利用空间向量求点线距
例1已知直三棱柱ABC-A1B1C1中,AA1=1,AB=4,BC=3,∠ABC=90°,求
点B到直线A1C1的距离.
)
3
A.
2
2
B.
2
C. 3
D.3 2
答案:B
解析:∵两平行平面 α,β 分别经过坐标原点 O 和点 A(2,1,1),
=(2,1,1),且两平面的一个法向量 n=(-1,0,1),
|· |
∴两平面间的距离 d=
||
=
|-2+0+1|
2
=
2
2
.故选 B.
探究一
探究二
素养形成
当堂检测
2.若三棱锥P-ABC的三条侧棱两两垂直,且满足PA=PB=PC=1,则点
所以点 B 到直线 A1C1 的距离
1 1
2
d= |1 | - 1 ·|
= 8-
-1+3+0

高二数学线面距离和面面距离的求法

高二数学线面距离和面面距离的求法

练习
作业 ①课本P56练6、习1及补充题。
②优化P56-57 随1,4,强7,8;做在书上。
3.(补充)在长方体ABCD-A1B1C1D1中,AB=4, BC=3,CC1=2。 求证:(1)平面A1BC1∥平面ACD1。
(2)求(1)中两个平行平面间的距 离。
A1 D1 B1 C1
D
C
A
B
九州娱乐网 www.jiuzhouyule.me 九州娱乐网
D E A B
C
13
例1.在棱长为1的正方体ABCD-A1B1C1D1中,M、 N分别是线段BB1、B1C1的中点,求直线MN到平 面ACD1的距离。
D1 一、转化为点面距离 二、利用法向量法求 点到面的距离 A1 B1
M
C1
N
3 d 2
D A B
C
ห้องสมุดไป่ตู้
二.两个平行平面的距离
⑴和两个平面同时垂直的直线,叫做这两个平面的公垂线。公 垂线夹在平行平面之间的部分,叫做这两个平面的公垂线段。 ⑵两个平行平面的公垂 线段都相等。 ⑶两个平行平面的公垂 线段的长度,叫做两个 平行平面的距离。

A B

A
B
体现了最短,垂直。
求面面距离
求点面距离 此点为面上的一 任意(特殊)点。
例2 若正方体AC1的各棱长均为1,则面 D1 3 。 AB1C与面DA1C1之间的距离是
3
B1
D1
C1
D
B
A1
D A
B1

A
C
C B

B
D
练习: 已知面α∥面β, 线段AB、CD夹在α、β之间, AB=13, CD=5 5, 且它们在β内的射影之差为2,则α和β之间的距离 是 5 。

高二数学线面距离和面面距离的求法

高二数学线面距离和面面距离的求法
4.点到平面的距离求法
一、直线到与它平行平面的距离:
1.定义:
一条直线上的任一点到与它 平行的平面的距离叫做这条直线 到平面的距离。
体现了最短,垂直。Fra bibliotek2.直线到与它平行平面的距离
一条直线上任一点到与它平行 的平面的距离,叫做这条直线到平 面的距离。

l
l∥ α
求线面距离
此点为线上的 一任意(特殊)点
例3 如图所示, 已知四棱锥P-ABCD的底面为菱形, ∠BAD=120°, PA⊥面ABCD, 点E是棱PC的中点, 且AB=PA=a, 求点E到面PAB P 的距离。 解:连结AC、BD交于O,连结OE,作 OM⊥AB于M; .E A D 易证:OE∥AP,从而得OE∥面APB, M ∴点E到面PAB的距离等于点O到面PAB O 的距离, 又易证:OM⊥面PAB, B A C ∴点O到面PAB的距离就是OM的长, M 即点E到面PAB的距离等于OM。 在菱形ABCD中,AB=a,∠BAC=60°, C 3 3 a a ∴OA=0.5a,OM= ∴点 E 到面 PAB 的距离等于 4 4

A B

A
B
体现了最短,垂直。
求面面距离
求点面距离 此点为面上的一 任意(特殊)点。
例2 若正方体AC1的各棱长均为1,则面 D1 3 。 AB1C与面DA1C1之间的距离是
3
B1
D1
C1
D
B
A1
D A
B1

A
C
C B

B
D
练习: 已知面α∥面β, 线段AB、CD夹在α、β之间, AB=13, CD=5 5, 且它们在β内的射影之差为2,则α和β之间的距离 是 5 。

高中数学 平面方程式

高中数学 平面方程式
y0 cz0 d1 0,即 ax0 by0 cz0 d1,
所以点 P 到平面 E2的距离为
ax0 by0 cz0 d2 d1 d2 d1 d2 。
a2 b2 c2
a2 b2 c2 a2 b2 c2
7 p.83
设平面 E 通过点 P 1 ,2 ,3,且平面 E 与平面 3x 2 y z 5 0
平行,试求平面 E 的方程式。
平面 3x 2 y z 5 0 的一个法矢量为3 ,2 ,1
因为平面 E 与平面 3x 2 y z 5 0 平行 所以它们的法矢量亦平行
平面方程式
平面方程式 两平面的夹角 点到平面的距离 两平行平面的距离
平面方程式 p.72~p.78
平面的法矢量: 坐标空间中,如果一个以非零矢量 n 为方向矢量的直线 L 与平面 E 垂直, 则称 n 是平面 E 的一个法矢量。此时 也称 n 与平面 E 垂直,记为 n E。如上图所示。 平面方程式:
(2) 设平面 PQR 与平面 CDHG 的夹角为 ,
试求 cos 。
又两平面夹角 = 或 180 故 cos = cos 或 cos = cos 180 = cos
即 cos = 2 或 2
77
6 , 2 , 3 0 , 6 , 0
=2
(6)2 (2)2 (3)2 02 62 02 7
8 p.84
如右图所示,已知长方体 ABCD-EFGH 的
长、宽、高分别为 AB 2、AD 6、AE 4, 令 P、Q、R 分别为GF、GH、GC 的中点,则:
= =3
12 22 22
9

线面平行知识点

线面平行知识点

线面平行知识点线面平行是几何学中的一个重要概念,指的是两个平面在三维空间中没有交点,且两个平面的法线向量相互平行。

线面平行的性质与应用在现实生活和工程领域中都有着广泛的应用。

下面将介绍线面平行的概念、性质以及其在几何学和工程领域中的应用。

一、线面平行的概念线面平行是指两个平面在三维空间中没有交点,且两个平面的法线向量相互平行。

具体来说,如果两个平面P1和P2的法线向量分别为n1和n2,那么线面平行的条件可以表示为n1∥n2。

二、线面平行的性质1.平行平面的法线向量相互平行:对于线面平行的两个平面P1和P2,它们的法线向量n1和n2相互平行,即n1∥n2。

这是线面平行的基本性质。

2.平行平面之间的距离相等:对于线面平行的两个平面P1和P2,它们之间的距离是恒定的。

这是因为两个平面之间的距离可以通过一个垂直于这两个平面的向量来定义,而这个向量的大小是恒定的。

3.平行平面的投影关系:对于线面平行的两个平面P1和P2,它们在一个垂直于它们的共同法线上的投影长度是相等的。

这意味着如果我们从一个平面上垂直投影到另一个平面上,投影的长度是保持不变的。

三、线面平行的应用1.几何学中的应用:线面平行的概念和性质在几何学中有广泛的应用。

例如,在计算两个平面之间的距离时,可以利用线面平行的性质来简化计算。

此外,在计算两个平面的夹角时,线面平行的概念也可以起到辅助的作用。

2.工程领域中的应用:线面平行的概念和性质在工程领域中也有重要的应用。

例如,在建筑设计中,如果希望两个墙面之间保持平行,可以利用线面平行的性质来进行构造。

此外,在机械设计中,线面平行的概念可以应用于零件的安装和对位,保证机械零件之间的平行关系。

四、总结线面平行是几何学中一个重要的概念,指的是两个平面在三维空间中没有交点,且两个平面的法线向量相互平行。

线面平行的性质包括平行平面的法线向量相互平行、平行平面之间的距离相等以及平行平面的投影关系。

线面平行的概念和性质在几何学和工程领域中都有广泛的应用,可以用于简化计算、辅助设计和保证零件之间的平行关系。

高二数学线面距离和面面距离的求法

高二数学线面距离和面面距离的求法

9.8.2空间距离的类型和求法 -----线线距离与线面距离
已学的空间距离的类型和求法 1.点到点的距离求法
2.点到直线的距离求法 3.两平行线间的距离求法
4.点到平面的距离求法
一、直线到与它平行平面的距离:
1.定义:
一条直线上的任一点到与它 平行的平面的距离叫做这条直线 到平面的距离。
体现了最短,垂直。

A B

A
B
体现了最短,垂直。
求面面距离
求点面距离 此点为面上的一 任意(特殊)点。
例2 若正方体AC1的各棱长均为1,则面 D1 3 。 AB1C与面DA1C1之间的距离是
3
B1
D1
C1
D
B
A1
D A
B1

A
C
C B

B
D
练习: 已知面α∥面β, 线段AB、CD夹在α、β之间, AB=13, CD=5 5, 且它们在β内的射影之差为2,则α和β之间的距离 是 5 。
2.直线到与它平行平面的距离
一条直线上任一点到与它平行 的平面的距离,叫做这条直线到平 面的距离。

l
l∥ α
求线面距离
此点为线上的 一任意(特殊)点
求点面距离
D A' B' C'
练 如图,已知在长方体ABCD -A’B’C’D’中,棱AA’=5, AB=12,则直线B’C’到平面 60 。 A’BCD’的距离
D E A B
C
13
例1.在棱长为1的正方体ABCD-A1B1C1D1中,M、 N分别是线段BB1、B1C1的中点,求直线MN到平 面ACD1的距离。
D1 一、转化为点面距离 二、利用法向量法求 点到面的距离 A1 B1

浅谈空间距离的几种计算方法

浅谈空间距离的几种计算方法

空间距离常见问题:(1)点到平面的距离;(2)两条异面直线的距离;(3)与平面平行的直线到平面的距离;(4)两平行平面间的距离。

一、点到平面的距离求解点到平面的距离常用的方法有以下几种:1、由已知的或可以证明垂直的关系,则垂线段的长度就是点到平面的距离。

2、过点作已知平面的垂线,可以找到垂足的位置,从而得到点到平面的距离。

例如在正三棱锥中,求顶点到底面的距离,可以过正三棱锥的顶点作底面的垂线,垂足为底面正三角形的中心,然后通过计算求得距离。

又例如若已知所在的平面与已知平面垂直,可以过点作两平面交线的垂线,此点与垂足间的距离即为点到平面的距离。

3、用等体积法求解点面距离。

例1、如图,在长方体1111D C B A ABCD -中,,22,2,51===AA BC AB E 在AD 上,且AE=1,F 在AB 上,且AF=3,(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。

解:(1)连接FC,EC, 由已知FC=22,41=∴FC ,3482511=++=EC , 1091=+=EF101041023416102cos 1212121-=⨯⨯-+=⋅-+=∠FC EF EC FC EF EFC 101031011sin 1=-=∠∴EFC 61010341021sin 21111=⨯⨯=∠⋅=∴∆EFC FC EF S EFC 设1C 到EF 的距离为d ,则5106101212,621===∴=⋅EF d d EF (2)设C 到平面EF C 1的距离为hEFC C EF C C V V --=11 131311CC S h S EFC EF C ⋅=⋅∴∆∆ 又451212221132125=⨯⨯-⨯⨯-⨯⨯-⨯=∆EFCS3246224111=⨯=⋅=∴∆∆EFC EF C S CC S h 二、两条异面直线的距离1、对于特殊的图形,可以作出异面直线的公垂线段并证明,然后算出公垂线段的长度。

两个平面平行的判定定理

两个平面平行的判定定理

1、一个平面内的两条相交直线平行于另一个平面,则这两平面平行;
2、垂直于同一直线的两平面平行;
3、一个平面内的两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行。

两平面平行简介
两平面平行是两平面间的一种位置关系,如果两个平面没有公共点,则称这两
个平面有平行位置关系,简称两平面相互平行,一个平面称为另一个平面的平行平面。

平面与平面平行的性质定理
如果两个平行平面都和第三个平面相交,那么它们的交线平行,由两个平面平行,我们还有:
1、如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;
2、和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线。

它夹在
这两个平行平面间的部分叫这两个平行平面的公垂线段。

公垂线段的长度叫做两个平行平面的距离。

注意:①两个平面平行,其中一个平面内的直线必平行于另一个平面。

但这两
个平面内的所有直线并不一定相互平行。

它们可能是平行直线,也可能是异面直线,但不可能是相交直线。

②两个平面平行的性质定理指出两个平面平行时所具有的性质:如果两个平面
平行同时与第三个平面相交,那么它们的交线平行。

③一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

高二数学线面距离和面面距离的求法

高二数学线面距离和面面距离的求法
9.8.2空间距离的类型和求法 -----线线距离与线面距离
已学的空间距离的类型和求法 1.点到点的距离求法
2.点到直线的距离求法 3.两平行线间的距离求法
4.点到平面的距离求法
一、直线到与它平行平面的距离:
1.定义:
一条直线上的任一点到与它 平行的平面的距离叫做这条直线 到平面的距离。
体现了最短,垂直。

A B

A
B
体现了最短,垂直。
求面面距离
求点面距离 此点为面上的一 任意(特殊)点。
例2 若正方体AC1的各棱长均为1,则面 D1 3 。 AB1C与面DA1C1之间的距离是
3
B1
D1
C1
D
B
A1
D A
B1

A
C
C B

B
D
练习: 已知面α∥面β, 线段AB、CD夹在α、β之间, AB=13, CD=5 5, 且它们在β内的射影之差为2,则α和β之间的距离 是 5 。
2.直线到与它平行平面的距离
一条直线上任一点到与它平行 的平面的距离,叫做这条直线到平 面的距离。

l
l∥ α
求线面距离
此点为线上的 一任意(特殊)点
求点面距离
D A' B' C'
练 如图,已知在长方体ABCD -A’B’C’D’中,棱AA’=5, AB=12,则直线B’C’到平面 60 。 A’BCD’的距离
例3 如图所示, 已知四棱锥P-ABCD的底面为菱形, ∠BAD=120°, PA⊥面ABCD, 点E是棱PC的中点, 且AB=PA=a, 求点E到面PAB P 的距离。 解:连结AC、BD交于O,连结OE,作 OM⊥AB于M; .E A D 易证:OE∥AP,从而得OE∥面APB, M ∴点E到面PAB的距离等于点O到面PAB O 的距离, 又易证:OM⊥面PAB, B A C ∴点O到面PAB的距离就是OM的长, M 即点E到面PAB的距离等于OM。 在菱形ABCD中,AB=a,∠BAC=60°, C 3 3 a a ∴OA=0.5a,OM= ∴点 E 到面 PAB 的距离等于 4 4

高二数学线面距离和面面距离的求法

高二数学线面距离和面面距离的求法
嫂夫人关系也不大,所以只是下诅咒让你怀不孩子而已丶"二人黯然,是呀,临死之前,要想什么邪咒不能呢,说明她还是心念与茹尔の姐妹之情の丶顾念着,与天风当年の情侣之情の丶(捌叁中文网)猫补中文肆01叁想办法要回尔子(猫补中文)"要想解开应该不难,不过咱还要再想想,要如何解开这个 诅咒。"根汉对夫妇二人道:"不过壹定放心,壹定是可以解开の,因为如果最差の情况,也就是放弃现在这副躯体,再另外转附壹副也是可以の诅咒是可以解开の,就是看要什么办法了丶""这。""那拜托你了,壹定帮咱好好想想丶"天风壹听这话,也只能是拜托根汉了,根汉暗中传音于他,让他先不要 将自己和天仙尔の事情告诉茹尔丶等自己帮她解了这诅咒再说,其它の事情,想必就壹下子就容易多了丶"恩,放心吧丶"。接下来,根汉又返回了天仙尔那里丶天仙尔急忙の问情况如何了,根汉表示现在进展不错,并且说了她二哥和嫂子の事情丶"原来是这样,想不到竟然是这样の,怪不得咱茹尔嫂子 壹直没有生了。"天仙尔也有些唏嘘此事:"那现在你有办法解开她身上の诅咒吗?你还知道诅咒之术?""呵呵,略懂壹些丶"根汉笑了笑道:"解开是肯定能解开了,不过嘛,得晾晾他们呀,要不然咱们怎么顺利の要回小天意呢。""呃。"天仙尔有些无语:"原来你能轻松の解开,还和咱二哥他们玩心眼 呢。""这不是没有办法の嘛。"根汉笑着搂过了天仙尔,笑道:"你想呀,若是咱轻易の就给他们解开了,他们还以为咱就是举手之劳呢。""这倒也是丶"天仙尔叹道:"只是这就显得咱们有些无耻了,故意瞒着他们夫妇二人,他们可是帮咱们带了小天意の,二哥又对咱壹向很照顾丶""这也只能算是

9.8空间距离(一)

9.8空间距离(一)
/ / /
/ A'
D A
E
C
B
小结 1.点到平面的距离. 2.直线到与它平行的平面的距离. 3.两平行平面的距离.
O
(1)ΔABC中,A 6,AC 8, B BC 10又如何?
(2)ΔABC中,A 2,AC 3, B BC 4,又如何?
A H
B
C
例2.如图,已知在长方体ABCD-A/B/C/D/中, 棱AA/=5,AB=12,求直线B/C/到平面A/BCD/ 的距离?
D'
C' B'
A B BB B E / A B
1.点到平面的距离:
P
A
Hale Waihona Puke B2.直线到与它平行平面的距离
l 上任一点A到 的距离

A
l //
C
D
l 到 的距离
l

B
3.两个平行平面的距离
⑴两平面的公垂线: 和两个平面同时垂直的直线
⑵平行平面 , 的距离 公垂线夹在平行平面间的部分 即公垂线段AA1 叫两平面的公垂线段.
练习1. 如图:已知线段AB不在平面内,A、
B两点到平面的距离分别是5和9,那么线段 AB的中点到平面的距离是 。 7
B M A
B'
M'
A'
练习2.在正方体 AC1 中找出表示下列
距离的垂线段: (1)点A到面B1C的距离 AB ; (2)B1D1到面AC的距离 BB1或DD; 1 (3)点A到面BD1的距 1 离 AO或 AC .
2
O
例1.如图,已知正三角形ABC的边长为6cm,点 O到ABC各顶点的距离是4cm,求点O到这个三 角形所在平面的距离? 思考

1.4.2-用空间向量研究距离、夹角问题

1.4.2-用空间向量研究距离、夹角问题

探究 已知直线l的单位方向向量为u, A是直线l上的定点,P是直线l外一点. 如何利
用这些条件求点P到直线l的距离? 如图示,向量AP在直线l上的投影向量为 AQ ,则△APQ是直角
u
P
三角形,因为A,P都是定点,所以|AP|,AP 与 u 的夹角∠PAQ都
dn
是确定的. 于 是可求 |AQ|. 再利用勾股定理,可以求出点P到直线l
点C1到平面AB1 E
的距离为 |
C1B1 |n|
n
|
1 3
.
D
A x
F
C
y
B
即直线FC1到平面AB1
E的距离为
1 3
.
3. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1DB与平面D1CB1的距离.
解 : 平面A1DB//平面D1CB1,平面A1DB与平面D1CB1的距离 z
MN AN AM
1 ( AB AF ) 1 ( AB AD)
2
2
1 (c b) 2
∴|MN|2 1 (c b )2 1 ,
4
2
∴|MN| 2 ,即MN 2 .
2
2
【巩固训练4】如图,两条异面直线a, b所成的角为θ,在直线a, b上分别取点A′, E和
点A, F,使AA′⊥a,且AA′⊥b (AA′称为异面直线a, b的公垂线). 已知A′E=m, AF=n,
易得C1 (0, 1, 1),
A(1,
0, 0),
E(0,
0,
1 ). 2
E
∴C1 A
(1,
1, 1),
AE
(1, 0,
1 ). 2
D
F

空间几何体的距离问题(答案版)

空间几何体的距离问题(答案版)

专题:空间几何体的距离问题一、点到直线的距离(点线距)1、点在直线上的射影自点A向直线l引垂线,垂足A叫做点A在直线l上的射影.1点A到垂足的距离叫点到直线的距离.2、点线距的求法:点到直线的距离问题主要是将空间问题转化为平面问题,利用解三角形的方法求解距离。

二、点到平面的距离(点面距)1、点到平面的距离:已知点P是平面α外的任意一点,过点P作PAα⊥,垂足为A,则PA唯一,则PA是点P 到平面α的距离。

即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离)结论:连结平面α外一点P与α内一点所得的线段中,垂线段PA最短2、点面距的求解问题,主要有三个方法:(1)定义法(直接法):找到或者作出过这一点且与平面垂直的直线,求出垂线段的长度;(2)等体积法:通过点面所在的三棱锥,利用体积相等求出对应的点线距离;(3)转化法:转化成求另一点到该平面的距离,常见转化为求与面平行的直线上的点到面的距离.三、异面直线的距离(线线距)1、公垂线:两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条.2、两条异面直线的距离:两条异面直线的公垂线段的长度.四、直线到平面的距离(线面距)直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离).如果一条直线l平行与平面α,则直线l上的各点到平面的垂线段相等,即各点到α的距离相等;垂线段小于或等于l上任意一点与平面α内任一点间的距离;五、平面到平面的距离(面面距)1、两个平行平面的公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线.(2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段.(3)两个平行平面的公垂线段都相等.(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长.2、两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离.题型一点到直线的距离【例1】【解析】ABC 的两条直角边3BC =,4AC =,22345AB ∴=+=.过C 作CM AB ⊥,交AB 于M ,连接PM ,因,,∩,,AB CM AB PC CM PC C CM PC ⊥⊥=⊂平面PCM ,则AB ⊥平面PCM .又PM ⊂平面PCM ,则PM AB ⊥,∴点P 到斜边AB 的距离为线段PM 的长.由1122ABC S AC BC CM =⋅=⋅△,得431255AC BC CM AB ⋅⨯===,228114432525PM PC CM =+=+=.∴点P 到斜边AB 的距离为3.故选:B.【变式1-1】【解析】将四面体SABC 补成正方体SDBG EAFC -,连接DE 交AS 于点M ,连接FG 交BC 于点N ,连接MN ,如图,则M ,N 分别为DE ,BC 的中点,因为BD CE ∥且BD CE =,故四边形BDEC 为平行四边形,则BC DE ∥且BC DE =,又因为M ,N 分别为DE ,BC 的中点,所以DM BN ∥且DM BN =,故四边形BDMN 为平行四边形,故MN BD ∥且52MN BD SG ===因为BD ⊥平面SDAE ,AS ⊂平面SDAE ,所以BD AS ⊥,即MN AS ⊥,同理可得MN BC ⊥,故P 到BC 的距离最小值为52MN =故选:C【变式1-2】【解析】因为PB ⊥平面ABCD ,BC ⊂平面ABCD ,所以PB BC ⊥,又因为AB BC ⊥,且AB PB B ⋂=,,AB PB ⊂平面PAB ,所以BC ⊥平面PAB ,因为PA ⊂平面PAB ,所以PA BC ⊥,取PA 的中点E ,因为PB AB =,所以PA BE ⊥,又因为BE BC B = ,且,BE BC ⊂平面BCE ,所以PA ⊥平面BCE ,因为CE ⊂平面BCE ,所以CE PA ⊥,所以CE 即为点C 到直线PA 的距离,在等腰直角PAB 中,由4PB AB ==,可得22BE=,在直角BCE 中,由2BC =,可得2223CE BC BE =+=所以点C 到直线PA 的距离为23故选:B.【变式1-3】【解析】(1)取AB 的中点E ,连接CE ,如图所示:因为AD DC ⊥,122AD DC AB ===,则四边形AECD 为正方形,所以222222AC BC =+=因为222AC BC AB +=,所以BC AC ⊥.因为AD DC ⊥,AD DB ⊥,CD BD D =I ,,CD BD ⊂平面BCD ,所以AD ⊥平面BCD .又因为BC ⊂平面BCD ,所以AD BC ⊥.因为BC AC ⊥,BC AD ⊥,AD AC A = ,,AC AD ⊂平面ACD ,所以BC ⊥平面ACD ,又因为BC ⊂平面ABC ,所以平面ABC ⊥平面ADC .(2)取,AC CD 的中点,F H ,连接,,EF FH HE ,因为BC ⊥平面ACD ,//EF BC ,所以EF ⊥平面ACD ,又因为CD ⊂平面ACD ,所以EF CD ⊥.因为,//AD CD AD FH ⊥,所以FH CD ⊥.因为EF CD ⊥,FH CD ⊥,EF FH F ⋂=,,EF FH ⊂平面EFH ,所以CD ⊥平面EFH ,又因为EH ⊂平面EFH ,所以CD EH ⊥.因为112HF AD ==,122EF BC ==,且HF EF ⊥,所以()22123HE +=,即点E 到直线CD 3题型二直线到直线的距离【例2】【解析】如图,该四棱柱为长方体,因为11//A B D C ,所以1AD C ∠为异面直线1A B 与1AD 所成角,设底面正方形边长为a,则11,AC AD CD ===,在1AD C 中,22211121184cos 2285AD CD AC AD C AD CD a +-∠===+,解得1a =,因为该四棱柱为长方体,所以AB ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以1AB B C ⊥,同理1AB AD ⊥,所以直线1AD 与直线1B C 的距离为1AB a ==,故选:B.【变式2-1】【解析】,P Q 在,BD SC 上移动,则当PQ 为,BD SC 公垂线段时,,P Q 两点的距离最小; 四棱锥S ABCD -为正四棱锥,SO ⊥平面ABCD ,O ∴为正方形ABCD 的中心,BD AC ∴⊥,又SO BD ⊥,SO AC O = ,BD ∴⊥平面SOC ,过O 作OM SC ⊥,垂足为M ,OM ⊂ 平面SOC ,OM BD ∴⊥,OM ∴为,BD SC 的公垂线,又5SO OC OM SC ⋅===,,P Q ∴.故选:B.【变式2-2】【解析】连接1AC 交1AC 于点O ,连接OM ,∵,O M 分别为1,AC BC 的中点,则OM 1A B ,、且OM ⊂平面1AMC ,1A B ⊄平面1AMC ,∴1A B 平面1AMC ,则点P 到平面1AMC 的距离相等,设为d ,则P ,Q 两点之间距离的最小值为d ,即点1A 到平面1AMC 的距离为d ,∵1AC 的中点O 在1AC 上,则点C 到平面1AMC 的距离为d ,由题意可得为1111,AC CM C M AC AM MC ======由11C AMC C ACM V V --=,则11111113232d ⨯⨯=⨯⨯⨯⨯,解得d =故P ,Q两点之间距离的最小值为3d =.故选:A.【变式2-3】【解析】如图所示:连接EH ,且1EH =,设2HEF θ∠=,1EHG θ∠=,作GR AB⊥于,R EH的中点为O,连接OR,在Rt ROG△中,可求得2OG=,在Rt OGH中,可求得GH=由此可知121cos cos2θθ===延长EA到K使AK EA=,连接,GK GF,则易知四边形EKGF为平行四边形,∴GK EF//,且GK EF=,则KGHθ∠=就是EF与GH所成的角,连接KH与AB交于R,则KH=,在GKH△中,由余弦定理可求得1cos3θ=,则28sin9θ=,根据公式(2)得2d=,∴EF与GH间的距离是2.题型三点到平面的距离【例3】【解析】在棱长为2的正方体1111ABCD A B C D-中,1BB⊥平面1111DCBA,1B P⊂平面1111DCBA,则11BB B P⊥,由3BP=,得1B P===在11Rt B C P△中,1190B C P∠= ,则11C P==,即点P为11C D中点,又111//,AA BB BB⊂平面1BB P,1AA⊄平面1BB P,因此1//AA平面1BB P,于是点A到平面1BB P的距离等于点1A到平面1BB P的距离,同理点C到平面1BB P的距离等于点1C到平面1BB P的距离,连接1A P,过11,A C分作1B P的垂线,垂足分别为1,O O,如图,由1111111111122A PBS B P A O A BA D=⋅=⋅1122O=⨯,解得115AO=,在11Rt B C P△中,111115B CC PC OB P⋅==,则111555AO C O+=+=,所以点,A C到平面1BB P故选:B【变式3-1】【解析】1113D C BE C BEV S DC-=⋅⋅,111112122C BES C E BC=⋅⋅=⨯⨯=,2DC=,则123D C BEV-=.在BED中,由题意及图形结合勾股定理可得BE DE==,BD=则由余弦定理可得222125cos BE DE BD BED BE DE +-∠==⋅,则1261255sin BED ∠=-=.则162sin BDE S BE DE BED =⋅⋅∠= .设1C 到平面EBD 的距离为d ,则113C BDE BDE V S d -=⋅ .又11D C BE C BDE V V --=,则11226333C BDE BDE BDE V S d d S -=⋅=⇒== .故选:D 【变式3-2】【解析】(1)连接BD ,交AC 于点O ,连接OE ,∵四边形ABCD 是平行四边形,∴O 是BD 的中点,又∵E 为PD 的中点,∴OE 是三角形PBD 的中位线,∴//PB OE ,又∵PB ⊂/平面AEC ,OE ⊂平面AEC ,∴//PB 平面AEC ;(2)∵平行四边形ABCD 中,60ABC ∠=︒,2BC AD ==,1AB =,∴222cos 3AC AB BC AB BC ABC =+-⋅∠=,则222AC AB BC +=,故90ACD ∠=︒,又∵PA ⊥平面ABCD ,∴PAB ,PAD ,PAC △都是直角三角形,∵1==PA AB ,∴2PB =,2PC =,5PD =,∴222PD PC CD =+,∴90PCD ∠=︒,∴52EA EC ==,因为O 是AC 的中点,所以OE AC ⊥,且1222OE PB ==,所以112632224EAC S AC OE =⋅=⨯⨯=△,11331222DAC S AC CD =⋅=⨯⨯=△,设点D 到平面AEC 的距离为h ,由12D ACE E ACD P ACD V V V ---==得:16113134232h ⨯⨯=⨯⨯⨯,解得22h =.【变式3-3】【解析】(1)连接CO ,如图,由3AD DB =知,点D 为AO 的中点,又∵AB 为圆O 的直径,∴AC CB ⊥,由3AC BC =知,60CAB ∠=︒,∴ACO △为等边三角形,从而CD AO ⊥.∵点P 在圆O 所在平面上的正投影为点D ,∴PD ⊥平面ABC ,又CD ⊂平面ABC ,∴PD CD ⊥,又PD AO D = ,,PD AO ⊂平面PAB ,所以CD ⊥平面PAB .(2)因为2AO =,所以CD =3PD DB ==,∴1111133332322P BDC BDC V S PD DB DC PD -=⋅=⋅⋅⋅=⨯⨯=.又PB ==,PC ==,BC ==∴PBC 为等腰三角形,则12PBC S =⨯ 设点D 到平面PBC 的距离为d ,由P BDC D PBC V V --=得,132PBC S d ⋅=△,解得5d =,即点D 到平面PBC 5题型四直线到平面的距离【例4】【解析】在正三棱柱111ABC A B C -中,在底面ABC 内作AD BC ⊥,因为平面11BB C C ⊥底面ABC ,平面11BB C C 底面ABC BC =,所以AD ⊥平面11BB C C ,因为11AA CC ∥,1AA ⊄平面11BB C C ,1CC ⊂平面11BB C C ,所以1AA ∥ 平面11BB C C ,所以AD 即为直线1AA 到平面11BB C C 的距离,因为ABC 为等边三角形,且2AB =,所以直线1AA 到平面11BB C C 的距离为AD ==.【变式4-1】【解析】因为//,BC AD AD ⊂平面PAD ,BC 不在平面PAD 内,所以//BC 平面PAD ,则BC 到平面PAD 的距离即为点B 到平面PAD 的距离,设点B 到平面PAD 的距离为d ,因为B PAD P ABD V V --=,2PD AD ==,PD ⊥平面ABCD ,60BAD ∠= ,四边形ABCD 为菱形,所以11112222232322d ⨯⨯⨯=⨯⨯⨯⨯,解得d =即BC 到平面PAD【变式4-2】【解析】(1)因为PA ⊥平面ABC ,连接AM ,则PMA ∠即为直线PM 与平面ABC 所成的角,又3PA AB ==,4AC =,AB AC ⊥,M 为BC 中点,可得5BC =,52AM =,所以6tan 5PA PMA AM ∠==,即直线PM 与平面ABC 所成的角的正切值为65.(2)由题知,//ME 平面PAB ,//MF 平面PAB ,ME MF M = ,,ME MF ⊂平面MEF ,所以平面//MEF 平面PAB .因为PA ⊥平面ABC ,AC ⊂平面ABC ,所以PA AC ⊥,又AC AB ⊥,,AB PA ⊂平面PAB ,AB PA A = ,所以AC ⊥平面PAB ,又//ME 平面PAB ,所以AE 就是直线ME 到平面PAB 的距离,又M 为BC 122AE AC ==,即直线ME 到平面PAB 的距离为2.【变式4-3】【解析】(1)连接BD 交AC 于O ,连接FO ,∵F 为AD 的中点,O 为BD 的中点,则//OF PB ,∵PB ⊄平面ACF ,OF ⊂平面ACF ,∴//PB 平面ACF .(2)因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PA AD ⊥,PA ⊂平面PAD ,所以PA ⊥平面ABCD .由于//PB 平面ACF ,则PB 到平面ACF 的距离,即P 到平面ACF 的距离.又因为F 为PD 的中点,点P 到平面ACF 的距离与点D 到平面ACF 的距离相等.取AD 的中点E ,连接EF ,CE,则//EF PA ,因为PA ⊥平面ABCD ,所以EF ⊥平面ABCD ,因为CE ⊂平面ABCD ,所以EF CE ⊥,因为菱形ABCD 且60ABC ∠= ,2PA AD ==,所以3CE =,1EF =,则22132CF EF CE =+=+=,2AC =,1144222AF PD ==+=,11724222ACF S =⨯⨯-=△,设点D 到平面ACF 的距离为D h ,由D ACF F ACD V V --=得113122133772ACD ACF D ACD D ACF S EF S h S EF h S ⨯⨯⨯=⨯⇒===△△△△即直线PB 到平面ACF 的距离为2217.题型五平面到平面的距离【例5】【解析】如图,过点A 作AE β⊥,垂足为E ,过点C 作CF β⊥,垂足为F ,由题意可知,5BE =,16DF =,设AB x =,33CD x =-,则()222533256x x -=--,解得:13x =,∴平面α与平面β间的距离2213512AE =-=【变式5-1】【解析】如图所示:将鲁班锁放入正方体1111ABCD A B C D -中,则正方体的边长为222+,连接1BD ,1CD ,11D I D J =,故1D C IJ ⊥,BC ⊥平面11CDD C ,IJ ⊂平面11CDD C ,则BC ⊥IJ ,1BC D C C ⋂=,1,BC D C ⊂平面1BCD ,故IJ ⊥平面1BCD ,1D B ⊂平面1BCD ,故1IJ D B ⊥,同理可得1IH D B ⊥,HI IJ I = ,,HI IJ ⊂平面HIJ ,故1D B ⊥平面HIJ ,同理可得1BD ⊥平面EFG ,132236BD =+=,设B 到平面EFG 的距离为h ,则111122222sin 603232h ⨯=⨯⨯⨯⨯︒⨯,则63h =,故两个相对三角形面间的距离为1422363BD h -=.【变式5-2】【解析】分别取,BC AD 的中点,M N ,连接,,,MN MG NE EG ,根据半正多面体的性质可知,四边形EGMN 为等腰梯形;根据题意可知,BC MN BC MG ⊥⊥,而,,MN MG M MN MG =⊂ 平面EGMN ,故BC ⊥平面EGMN ,又BC ⊂平面ABCD ,故平面ABCD ⊥平面EGMN ,则平面EFGH ⊥平面EGMN ,作MS EG ⊥,垂足为S ,平面EFGH 平面EGMN EG =,MS ⊂平面EGMN ,故MS ⊥平面EFGH ,则梯形EGMN 的高即为平面ABCD 与平面EFGH 之间的距离;322223212,2M G S G ====,故22243(21)228MS MG SG =-=--==,即平面ABCD 与平面EFGH 48B11【变式5-3】【解析】(1)证明:连接11,B D NF M N ,、分别为1111A B A D 、的中点,E F 、分别是1111,C D B C 的中点,11////MN EF B D ∴,MN ⊄ 平面EFBD ,EF ⊂平面EFBD ,//MN ∴平面EFBD ,NF 平行且等于AB ,ABFN ∴是平行四边形,//AN BF ∴,AN ⊄ 平面EFBD ,BF ⊂平面EFBD ,//AN ∴平面EFBD ,AN MN N ⋂= ,∴平面//AMN 平面EFBD ;(2)平面AMN 与平面EFBD 的距离B =到平面AMN 的距离h .AMN中,AM AN ==MN =12AMN S = ∴由等体积可得1112313232h ⋅=⋅⋅⋅⋅,h ∴=。

3.2.3立体几何中的向量方法(3)--距离

3.2.3立体几何中的向量方法(3)--距离

n
| PA n | ★所以计算公式还是: d d n
★求两平行平面的距离,其 实就是求点到平面的距离。
例2.如图,已知一个结晶体的形状为平行六面ABCDA1B1C1D1,其中,以顶点为端点的三条棱长都相等,且它们 彼此的夹角都是600,那么,以这个顶点为端点的晶体的 对角线的长与棱长有什么关系? 解:因为AC1 AB AD AA1 ,
z
y x
可设 平面C1 MN的法向量 为 n ( x, y, z ) nNM 0 x y 0 , 即: 令z 1, n (2, 2,1), nNC1 0 y 2 z 0 | n BM | | ( 1) 2 | 2 d . |n| 2 2 (2)2 12 3
解:∵BD//平面C1MN, ∴只需求点B与 平面C1MN的距离, 如图建立直角坐标系,则B(2,2,0), M (1, 2, 0), N (0,1, 0), C1 (0, 2, 2),
NM (1,1, 0), NC1 (0,1, 2) BM ( 1, 0, 0)
2 2 AC1 ( AB AD AA1 ) 2 2 2 AB AD AA1 AB AD AB AA1 AD AA1 ) 2(
设AB AA1 AD 1, 则
1 1 1 2(cos 60 cos 60 cos 60 ) 6, | AC1 | 6, 即对角线AC1的长是棱长的 6倍.
练习2:已知正方体ABCD-A1B1C1D1的棱长为2,M,N 分别是BC和CD的中点,求直线BD与平面C1MN的距离.

高二数学线面距离和面面距离的求法

高二数学线面距离和面面距离的求法

9.8.2空间距离的类型和求法 -----线线距离与线面距离
已学的空间距离的类型和求法 1.点到点的距离求法
2.点到直线的距离求法 3.两平行线间的距离求法
4.点到平面的距离求法
一、直线到与它平行平面的距离:
1.定义:
一条直线上的任一点到与它 平行的平面的距离叫做这条直线 到平面的距离。
体现了最短,垂直。
D E A B
C
13
例1.在棱长为1的正方体ABCD-A1B1C1D1中,M、 N分别是线段BB1、B1C1的中点,求直线MN到平 面ACD1的距离。
D1 一、转化为点面距离 二、利用法向量法求 点到面的距离 A1 B1
M
C1
N
3 d 2
D A
C
二.两个平行平面的距离
⑴和两个平面同时垂直的直线,叫做这两个平面的公垂线。公 垂线夹在平行平面之间的部分,叫做这两个平面的公垂线段。 ⑵两个平行平面的公垂 线段都相等。 ⑶两个平行平面的公垂 线段的长度,叫做两个 平行平面的距离。
B O D
技 ①求点面距离困难时,可利用线面平行,将其转化为另一点到 巧 此面的距离;②利用面面垂直,作交线的垂线,得线面垂直。
小结
方法总结:(空间距离转化为点面距离) 解题步骤: 1、找出或直接(间接)作出线面垂直;
2、证明其符合定义; 3、归结为几何计算或解三角形。
技巧
①求点面距离困难时,可利用线面平行,将其转化 为另一点到此面的距离; ②利用面面垂直,作交线的垂线,得线面垂直。 课本P55. 1~4

A B

A
B
体现了最短,垂直。
求面面距离
求点面距离 此点为面上的一 任意(特殊)点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个平行平面的距离
备课时间
一、教学重点、难点、疑点及解决方法
1.教学重点:掌握两平行平面间的距离的概念,会求两个平行平面间的距离.
2.教学难点:两个平行平面间的距离的求法
二、教与学的过程设计
(一)两个平行平面间的距离
例1 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.
已知:α∥β,l⊥α,l∩α=A.
求证:l⊥β.
问题5:证明直线与平面垂直的方法有几种?
方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.
比较几种方法,我们可以试着用第一种方法来证明.
证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.
因为直线b是平面β内的任意一条直线,所以l⊥β.
点评:这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性
质3:若α∥β,l⊥α,则l⊥β.
2.两个平行平面的公垂线、公垂线段和距离
师:象例2这样的,和两个平行平面α,β同时垂直的直线l,叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.
如图1—113,α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.
由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得
(三)总结
本节课我们学习了两个平行平面的公垂线、公垂线段和距离的定义,懂得将其转化为平面几何问题来解决.
三、作业
见高考调研
四、课后反思。

相关文档
最新文档