数学物理方法 第五章 傅立叶变换
数学物理方法 复变函数 第五章 傅立叶变换

∫
ρ (x) d x = m......(4)
ቤተ መጻሕፍቲ ባይዱ
也即
-∞
∫
∞
-∞
lim ρ l (x) d x = m
l→ 0
由 (3) 、( 4)可以看出质点线密度
分布函数的直观图像。
它在
x ≠ 0时 , 为 0; 在 x = 0时,为 ∞ 。它的积分值为 m. 也即由 (3) 、 共 (4) 同来描述。
因此 , 在 Dirac 首次引入 δ 函数时,曾遭到许多数 学家的非难 但它在近代物理学中有 许多重要的应用 , 它可以用来描述物 理学中的一切点量 (点质量 \ 点电荷 \ 瞬时源 )且物理图象清 晰 .这样迫使数学家对 δ 函数的性质等进行研究 和解释 .
下一页 上一页 返回
第5章
傅里叶变换(Fourier transforms)
-∞
第5章
傅里叶变换(Fourier transforms)
第5节 δ函数
五 δ函数的性质
2 δ 函数具有挑选性
若 a = 0, 则有
这 一 性 质 表 明 , 虽 然 δ (x) 是 广 义 函 数 , 但 它 和 任 何 连 续 函 数 的 乘 积 在 ( - ∞, + ∞) 内 的 积 分 都 有 明 确 的 意 义 。 这 使 得 它在近代物理和工程技术中有广泛的应用。
..........
...(1)
下一页 上一页 返回
第5章
傅里叶变换(Fourier transforms)
第5节 δ函数
引入δ 一 引入δ函数的物理背景
注意 rect() 的写法 : 即保证 rect() 中的量的绝对值 >
数学物理方法 第五章 傅里叶变换

将上式改写成
f (x) 0 C() cos[x ()]d
其中
1
C() [ A()]2 [B()]2 2
称为f (x)的振幅谱
() arctan[B() / A()] 称为f (x)的相位谱
与傅里叶级数的情形类似,奇函数f (x)的傅里叶积分
是傅里叶正弦积分。
A
2N
0 0
[cos( 0 )t cos( 0 )t]dt
N 2
A
sin( 0 0
)t
sin( 0 )t 0
0 0
A sin( N 2 )[ 1 1 ]
0
0 0
解:f (t)是偶函数,可按余弦展开。
f (t) 0 A() costd
其中:
A() 2
f ( ) cos d
0
2
T
0
h cos d
2h
sin T
例2 由2N个(N是正整数)正弦波组成的有限正弦波列:
f
(t
)
A
sin
0t
l
cos
l
k x
l
cos n x
l
dx
0
(k n)
l
sin
l
k x sin
l
n x
l
dx
0
(k n)
l
cos
l
k x sin
l
数学物理方程第五章 傅里叶变换

1 k
1 k
0 2E0 ] 1 k [1 ( 2 n ) 2 ] 1
k 2n 1 k 2 n.
2012-8-1
阜师院数科院
b1
E0 2
,
和
bk 0
E (t )
E0
E0 2
sin t
2E0
1 (2n)
n 1
1
2
cos 2 n t .
f ( ) sin d .
(5.2.4) 是 f(x) 的傅里叶积分,(5.2.5) 为它的傅里叶变换。
f ( x ) A ( ), B ( )
为某函数从时域到频域的变换。频域中的函数可能是连续的。
傅里叶积分定理:若函数 f(x) 在区间 ( , ) 上满足条件(1) 在任意有限区间满足狄 里希利条件;(2) 在区间 ( , ) 上绝对可积(即
2 2
0
( ) tg
1
[ B ( ) / A ( )].
C ( )
为振幅谱
3. 奇、偶函数 偶函数
2012-8-1
( )
为相位谱
A ( ) cos xd ,
f (x) A ( )
0
奇函数
f (x) B ( )
B ( ) sin xd ,
f (x)
k
c
k
e
ikx
,
ck
1 2
f ( )e ( 1 ik e
ikx
d
0
1 2 ( 1 ik
数学物理方法 5 傅里叶变换

4
( t , t 0)
由上例可以推断:一个周期为2l的函数f(x+2l)= f(x) 可以 看作是许多不同频率的简谐函数的叠加.
6
2. 三角函数族及其正交性 引入三角函数族
①其中任意两个不同的函数之积在 [-l,l]上的积分等于 0 .
②两个相同的函数的乘积在[-l,l]
上的积分不等于 0 .
(2m ,(2m 1) ) ((2m 1) , 2m )
k
ce
k
ik
ikx
,
1
0
1
2
x
0
f ( )e
1 d 2
0
1 e
0
ik
1 d 2
1 e ik d
1 1 ik ( e ) 2 ik
ak cos
l
l
d
12
1 l k ak f ( )cos d ( k 1, 2 , ) l l l
类似地, 用 sin kπξ/l 乘 ① 式两边, 再逐项积分可得
1 l k bk f ( )sin d l l l
归纳:
(k 1, 2, )
变换 延拓
23
3. 傅里叶级数的复数形式
利用欧拉公式导出
• 1 • 2
24
5.2 傅里叶积分与傅里叶变换 (一) 傅里叶变换
周期函数的性质是f(x+2l)=f(x), x每增大2l,函数值就重复 一次,非周期函数没有这个性质,但可以认为它是周期2l∞ 的周期函数。所以,我们也可以把非周期函数展开为所谓“傅 里叶积分”。 考察复数形式的傅里叶级数:
数学物理方法梁昆淼答案

数学物理方法梁昆淼答案【篇一:第五章傅里叶变换数学物理方法梁昆淼】>?t1.函数 f(t)???0?12. 函数 f(t)???03.设(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)(|t|?1)(|t|?1)的傅里叶变换为f(?)?2sin?/??。
的傅立叶变换像函数,的傅立叶变换像函数为 _______________________ 。
4.?2012?2011excosx??(x??) dx?[sinx??(x??e??。
5. ?12009?6 ?2008) ]dx? 6.?xsinx?(x? ?1?3) dx?。
7. ?xsinx?(x?) dx? ?128.?[(x2?1)tan(sinx)??(x?)] dx? 。
?201038?911??9.?x3 ?(x?3) dx?-27 。
?tf(t)?10.函数 ??0(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)。
(0?t?1)?1?(?1?t?0)的傅里叶变换为。
11. f(t)???1?0(|t|?1)?12. 在(??,?)这个周期上,f(x)?x。
其傅里叶级数展开为?k?1?2sinkx k13.当0?x?2时,f(x)??1;当?2?x?0时,f(x)?1;当|x|?2时,f(x)?0。
则函数的f(x)傅里叶变换为b(?)?2??(1?cos2?)1?14已知函数f(x)的傅里叶变换为f(?),试证明f(ax)的傅里叶变换为f()。
af[f(ax)]?1?2????f(ax)e?i?xdx【令x?y/a】?1?2????f(y)e?i?aydya【令y?x】?1?f(x) ?i?ax2????aedx?1?af(a)a---(2分) ---(2分) ---(2分) ---(2分) 证明:【篇二:8000份课程课后习题答案与大家分享~~】> 还有很多,可以去课后答案网(/bbs)查找。
数学物理方法 第五章 傅里叶变换

l
2
1 2 2 2 2 [ f ( x )] dx 2la0 l a k l bk 2l l k 1 k 1
l n n
n n 1 l k x 2 k x 2 2 l 2 l 2 [ f ( x )] dx a k [cos ] dx bk [ sin ] dx l l l 2l l l k 0 k 1 n n 1 l k x 2 k x 2 2 l 2 l 2 [ f ( x )] dx a k [cos ] dx bk [ sin 10 ] dx l l l 2l l l k 0 k 0
积化和差后容易证明其余三式, 例如:
cos( ) cos( ) 2 cos cos kx nx 1 ( k n )x ( k n )x cos cos cos cos l l 2 l l l l kx nx 1 l ( k n )x ( k n )x -l cos l cos l dx 2 -l cos l dx -l cos l dx
0πx πx 2πx kx 1 cos , cos , cos , , cos , l l l l 0πx πx 2πx kx sin 0, sin , sin , , sin , l l l l
k x -l 1 cos l dx 0 (k 0) 正交性 l k x -l 1 sin l dx 0 l k x n x -l cos l cos l dx 0 (k n) l k x n x -l sin l sin l dx 0 (k n) l k x n x -l cos l sin l dx 0
f (x) f (x+2l) • -l o +l •
傅里叶变换原理

傅里叶变换原理傅里叶变换是一种将信号从时域转换到频域的数学工具。
它的原理是将一个信号分解成不同频率的正弦和余弦波的叠加,从而得到信号在频域上的表示。
这种变换在信号处理、图像处理、通信系统等领域中得到广泛应用。
在傅里叶变换中,信号可以表示为一个连续的函数,通常用f(t)表示。
这个函数可以是任何类型的信号,例如音频信号、图像信号、电信号等。
傅里叶变换将这个函数分解成不同频率的正弦和余弦波的叠加,这些波的频率从0开始,一直到无穷大。
傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示信号在频域上的表示,ω表示频率,e^(-iωt)表示一个复数,它的实部是cos(ωt),虚部是sin(ωt)。
这个公式可以理解为将信号f(t)与一个复数e^(-iωt)相乘,然后对整个信号进行积分。
这个积分的结果就是信号在频域上的表示。
傅里叶变换的一个重要应用是信号滤波。
在信号处理中,我们经常需要去除一些噪声或者干扰信号。
这时候可以使用傅里叶变换将信号转换到频域上,然后通过滤波器去除不需要的频率成分,最后再将信号转换回时域。
这个过程被称为频域滤波。
傅里叶变换还可以用于信号压缩。
在图像处理中,我们经常需要将一张高分辨率的图像压缩成低分辨率的图像,以便在网络传输或者存储时节省带宽和存储空间。
这时候可以使用傅里叶变换将图像转换到频域上,然后去除高频成分,最后再将图像转换回时域。
这个过程被称为频域压缩。
傅里叶变换是一种非常重要的数学工具,它可以将信号从时域转换到频域,从而方便我们进行信号处理、图像处理、通信系统等领域的研究和应用。
傅里叶变换

线性性质
k f(x) → k F(ω); f(x)+g(x) → F(ω)+ G(ω)
分析性质
f '(x) → iωF(ω);
∫
x
∞
f ( x ) dx →
1 iω
F (ω )
傅里叶变换
位移性质
f(x-a) → exp(-iωa)F(ω) ; exp(iφx)f(x) → F(ω-φ)
相似性质
f(ax) → F(ω/a)/a; f(x/b)/b → F(bω) .
卷积性质
f(x)*g(x)≡∫f(ξ)g(x-ξ)dξ → 2πF(ω)G(ω); f(x)g(x) → F(ω)*G(ω)≡∫ F(φ)G(ω-φ)dφ
对称性质
正变换与逆变换具有某种对称性; 适当调整定义中的系数后,可以使对称性更加明显.
傅里叶变换
应用举例
rect( x) → sin 1 ω /(π ω) 2
S1 1
S3 0.75
0.5
0.5 0.25
-3
-2
-1 -0.5
1
2
3
-3
-2
-1 -0.25 -0.5 -0.75
1
2
3
-1
S6 0.75 0.5 0.25 -3 -2 -1 -0.25 -0.5 -0.75 1 2 3 -3 -2 -1
S24 0.75 0.5 0.25 1 -0.25 -0.5 -0.75 2 3
展开系数:
1 cn = 2L
∫
L
L
exp(i
nπ x ) f ( x)dx L
傅里叶生平
1768年生于法国 1807年提出"任何 周期信号都可用正 弦函数的级数表示" 1822年发表"热的 分析理论",首次 提出"任何非周期 信号都可用正弦函 数的积分表示" 返 回