数学物理方法 第五章 傅立叶变换
数学物理方法 复变函数 第五章 傅立叶变换
∫
ρ (x) d x = m......(4)
ቤተ መጻሕፍቲ ባይዱ
也即
-∞
∫
∞
-∞
lim ρ l (x) d x = m
l→ 0
由 (3) 、( 4)可以看出质点线密度
分布函数的直观图像。
它在
x ≠ 0时 , 为 0; 在 x = 0时,为 ∞ 。它的积分值为 m. 也即由 (3) 、 共 (4) 同来描述。
因此 , 在 Dirac 首次引入 δ 函数时,曾遭到许多数 学家的非难 但它在近代物理学中有 许多重要的应用 , 它可以用来描述物 理学中的一切点量 (点质量 \ 点电荷 \ 瞬时源 )且物理图象清 晰 .这样迫使数学家对 δ 函数的性质等进行研究 和解释 .
下一页 上一页 返回
第5章
傅里叶变换(Fourier transforms)
-∞
第5章
傅里叶变换(Fourier transforms)
第5节 δ函数
五 δ函数的性质
2 δ 函数具有挑选性
若 a = 0, 则有
这 一 性 质 表 明 , 虽 然 δ (x) 是 广 义 函 数 , 但 它 和 任 何 连 续 函 数 的 乘 积 在 ( - ∞, + ∞) 内 的 积 分 都 有 明 确 的 意 义 。 这 使 得 它在近代物理和工程技术中有广泛的应用。
..........
...(1)
下一页 上一页 返回
第5章
傅里叶变换(Fourier transforms)
第5节 δ函数
引入δ 一 引入δ函数的物理背景
注意 rect() 的写法 : 即保证 rect() 中的量的绝对值 >
数学物理方法 第五章 傅里叶变换
将上式改写成
f (x) 0 C() cos[x ()]d
其中
1
C() [ A()]2 [B()]2 2
称为f (x)的振幅谱
() arctan[B() / A()] 称为f (x)的相位谱
与傅里叶级数的情形类似,奇函数f (x)的傅里叶积分
是傅里叶正弦积分。
A
2N
0 0
[cos( 0 )t cos( 0 )t]dt
N 2
A
sin( 0 0
)t
sin( 0 )t 0
0 0
A sin( N 2 )[ 1 1 ]
0
0 0
解:f (t)是偶函数,可按余弦展开。
f (t) 0 A() costd
其中:
A() 2
f ( ) cos d
0
2
T
0
h cos d
2h
sin T
例2 由2N个(N是正整数)正弦波组成的有限正弦波列:
f
(t
)
A
sin
0t
l
cos
l
k x
l
cos n x
l
dx
0
(k n)
l
sin
l
k x sin
l
n x
l
dx
0
(k n)
l
cos
l
k x sin
l
数学物理方程第五章 傅里叶变换
1 k
1 k
0 2E0 ] 1 k [1 ( 2 n ) 2 ] 1
k 2n 1 k 2 n.
2012-8-1
阜师院数科院
b1
E0 2
,
和
bk 0
E (t )
E0
E0 2
sin t
2E0
1 (2n)
n 1
1
2
cos 2 n t .
f ( ) sin d .
(5.2.4) 是 f(x) 的傅里叶积分,(5.2.5) 为它的傅里叶变换。
f ( x ) A ( ), B ( )
为某函数从时域到频域的变换。频域中的函数可能是连续的。
傅里叶积分定理:若函数 f(x) 在区间 ( , ) 上满足条件(1) 在任意有限区间满足狄 里希利条件;(2) 在区间 ( , ) 上绝对可积(即
2 2
0
( ) tg
1
[ B ( ) / A ( )].
C ( )
为振幅谱
3. 奇、偶函数 偶函数
2012-8-1
( )
为相位谱
A ( ) cos xd ,
f (x) A ( )
0
奇函数
f (x) B ( )
B ( ) sin xd ,
f (x)
k
c
k
e
ikx
,
ck
1 2
f ( )e ( 1 ik e
ikx
d
0
1 2 ( 1 ik
数学物理方法 5 傅里叶变换
4
( t , t 0)
由上例可以推断:一个周期为2l的函数f(x+2l)= f(x) 可以 看作是许多不同频率的简谐函数的叠加.
6
2. 三角函数族及其正交性 引入三角函数族
①其中任意两个不同的函数之积在 [-l,l]上的积分等于 0 .
②两个相同的函数的乘积在[-l,l]
上的积分不等于 0 .
(2m ,(2m 1) ) ((2m 1) , 2m )
k
ce
k
ik
ikx
,
1
0
1
2
x
0
f ( )e
1 d 2
0
1 e
0
ik
1 d 2
1 e ik d
1 1 ik ( e ) 2 ik
ak cos
l
l
d
12
1 l k ak f ( )cos d ( k 1, 2 , ) l l l
类似地, 用 sin kπξ/l 乘 ① 式两边, 再逐项积分可得
1 l k bk f ( )sin d l l l
归纳:
(k 1, 2, )
变换 延拓
23
3. 傅里叶级数的复数形式
利用欧拉公式导出
• 1 • 2
24
5.2 傅里叶积分与傅里叶变换 (一) 傅里叶变换
周期函数的性质是f(x+2l)=f(x), x每增大2l,函数值就重复 一次,非周期函数没有这个性质,但可以认为它是周期2l∞ 的周期函数。所以,我们也可以把非周期函数展开为所谓“傅 里叶积分”。 考察复数形式的傅里叶级数:
数学物理方法梁昆淼答案
数学物理方法梁昆淼答案【篇一:第五章傅里叶变换数学物理方法梁昆淼】>?t1.函数 f(t)???0?12. 函数 f(t)???03.设(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)(|t|?1)(|t|?1)的傅里叶变换为f(?)?2sin?/??。
的傅立叶变换像函数,的傅立叶变换像函数为 _______________________ 。
4.?2012?2011excosx??(x??) dx?[sinx??(x??e??。
5. ?12009?6 ?2008) ]dx? 6.?xsinx?(x? ?1?3) dx?。
7. ?xsinx?(x?) dx? ?128.?[(x2?1)tan(sinx)??(x?)] dx? 。
?201038?911??9.?x3 ?(x?3) dx?-27 。
?tf(t)?10.函数 ??0(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)。
(0?t?1)?1?(?1?t?0)的傅里叶变换为。
11. f(t)???1?0(|t|?1)?12. 在(??,?)这个周期上,f(x)?x。
其傅里叶级数展开为?k?1?2sinkx k13.当0?x?2时,f(x)??1;当?2?x?0时,f(x)?1;当|x|?2时,f(x)?0。
则函数的f(x)傅里叶变换为b(?)?2??(1?cos2?)1?14已知函数f(x)的傅里叶变换为f(?),试证明f(ax)的傅里叶变换为f()。
af[f(ax)]?1?2????f(ax)e?i?xdx【令x?y/a】?1?2????f(y)e?i?aydya【令y?x】?1?f(x) ?i?ax2????aedx?1?af(a)a---(2分) ---(2分) ---(2分) ---(2分) 证明:【篇二:8000份课程课后习题答案与大家分享~~】> 还有很多,可以去课后答案网(/bbs)查找。
数学物理方法 第五章 傅里叶变换
l
2
1 2 2 2 2 [ f ( x )] dx 2la0 l a k l bk 2l l k 1 k 1
l n n
n n 1 l k x 2 k x 2 2 l 2 l 2 [ f ( x )] dx a k [cos ] dx bk [ sin ] dx l l l 2l l l k 0 k 1 n n 1 l k x 2 k x 2 2 l 2 l 2 [ f ( x )] dx a k [cos ] dx bk [ sin 10 ] dx l l l 2l l l k 0 k 0
积化和差后容易证明其余三式, 例如:
cos( ) cos( ) 2 cos cos kx nx 1 ( k n )x ( k n )x cos cos cos cos l l 2 l l l l kx nx 1 l ( k n )x ( k n )x -l cos l cos l dx 2 -l cos l dx -l cos l dx
0πx πx 2πx kx 1 cos , cos , cos , , cos , l l l l 0πx πx 2πx kx sin 0, sin , sin , , sin , l l l l
k x -l 1 cos l dx 0 (k 0) 正交性 l k x -l 1 sin l dx 0 l k x n x -l cos l cos l dx 0 (k n) l k x n x -l sin l sin l dx 0 (k n) l k x n x -l cos l sin l dx 0
f (x) f (x+2l) • -l o +l •
傅里叶变换原理
傅里叶变换原理傅里叶变换是一种将信号从时域转换到频域的数学工具。
它的原理是将一个信号分解成不同频率的正弦和余弦波的叠加,从而得到信号在频域上的表示。
这种变换在信号处理、图像处理、通信系统等领域中得到广泛应用。
在傅里叶变换中,信号可以表示为一个连续的函数,通常用f(t)表示。
这个函数可以是任何类型的信号,例如音频信号、图像信号、电信号等。
傅里叶变换将这个函数分解成不同频率的正弦和余弦波的叠加,这些波的频率从0开始,一直到无穷大。
傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示信号在频域上的表示,ω表示频率,e^(-iωt)表示一个复数,它的实部是cos(ωt),虚部是sin(ωt)。
这个公式可以理解为将信号f(t)与一个复数e^(-iωt)相乘,然后对整个信号进行积分。
这个积分的结果就是信号在频域上的表示。
傅里叶变换的一个重要应用是信号滤波。
在信号处理中,我们经常需要去除一些噪声或者干扰信号。
这时候可以使用傅里叶变换将信号转换到频域上,然后通过滤波器去除不需要的频率成分,最后再将信号转换回时域。
这个过程被称为频域滤波。
傅里叶变换还可以用于信号压缩。
在图像处理中,我们经常需要将一张高分辨率的图像压缩成低分辨率的图像,以便在网络传输或者存储时节省带宽和存储空间。
这时候可以使用傅里叶变换将图像转换到频域上,然后去除高频成分,最后再将图像转换回时域。
这个过程被称为频域压缩。
傅里叶变换是一种非常重要的数学工具,它可以将信号从时域转换到频域,从而方便我们进行信号处理、图像处理、通信系统等领域的研究和应用。
傅里叶变换
线性性质
k f(x) → k F(ω); f(x)+g(x) → F(ω)+ G(ω)
分析性质
f '(x) → iωF(ω);
∫
x
∞
f ( x ) dx →
1 iω
F (ω )
傅里叶变换
位移性质
f(x-a) → exp(-iωa)F(ω) ; exp(iφx)f(x) → F(ω-φ)
相似性质
f(ax) → F(ω/a)/a; f(x/b)/b → F(bω) .
卷积性质
f(x)*g(x)≡∫f(ξ)g(x-ξ)dξ → 2πF(ω)G(ω); f(x)g(x) → F(ω)*G(ω)≡∫ F(φ)G(ω-φ)dφ
对称性质
正变换与逆变换具有某种对称性; 适当调整定义中的系数后,可以使对称性更加明显.
傅里叶变换
应用举例
rect( x) → sin 1 ω /(π ω) 2
S1 1
S3 0.75
0.5
0.5 0.25
-3
-2
-1 -0.5
1
2
3
-3
-2
-1 -0.25 -0.5 -0.75
1
2
3
-1
S6 0.75 0.5 0.25 -3 -2 -1 -0.25 -0.5 -0.75 1 2 3 -3 -2 -1
S24 0.75 0.5 0.25 1 -0.25 -0.5 -0.75 2 3
展开系数:
1 cn = 2L
∫
L
L
exp(i
nπ x ) f ( x)dx L
傅里叶生平
1768年生于法国 1807年提出"任何 周期信号都可用正 弦函数的级数表示" 1822年发表"热的 分析理论",首次 提出"任何非周期 信号都可用正弦函 数的积分表示" 返 回
傅里叶变换
h rect( x) → h sin 1 ω /(π ω) 2
rect'( x) → i sin 1 ω /π 2
rect( x − a) → e−iaω sin 1 ω /(π ω ) 2
rect( x) ∗ rect( x) = rect(ξ )rect( x − ξ )dξ
2 = (1− | x |)rect( x / 2) → 2 sin 2 1 ω /( π ω ) 2
F ( p) = ∫ exp(− p x) f ( x)dx
0
∞
1 σ +i∞ f ( x) = F ( p ) exp( p x )dp ∫ 2π i σ −i∞
返 回
卷积性质
f(x)*g(x)≡∫f(ξ)g(x-ξ)dξ → 2πF(ω)G(ω); f(x)g(x) → F(ω)*G(ω)≡∫ F(φ)G(ω-φ)dφ
对称性质
正变换与逆变换具有某种对称性; 适当调整定义中的系数后,可以使对称性更加明显。
傅里叶变换
应用举例
rect( x) → sin 1 ω /(π ω) 2
y
F (k x , k y ) =
1 ( 2π )
∫∫
∞
−∞
e
−i ( k x x + k y y )
f ( x , y ) dxdy
v v v v v v 令r = xi + yj , k = kxi + k y j
v f (r ) =
v F (k ) =
∫∫
v i kv ⋅ rv v F (k )e dk
应用意义
把任意函数分解为简单周期函数之和,F(ω)的自变量为频 率,函数值为对应的振幅。
数学物理方法第五章傅里叶变换
l
l
l
l kx nx
sin cos dx0
l
l
l
l
1 2 dx 2 l
l
l
sin
2 k x dx
l
l
l
cos
2 k x dx
l
l
2、可以由函数的正交性求出傅立叶级数中的系数;
a f 1 l
0 2l l
xdx
a f 1l n l l
xconsxdx
l
(n1,2,3, )
b f 1l n l l
( a k cos
kπx l
b k sin
kπx )
l
k 1
2
2l l
说明 1、三角函数族是两两正交的
l kx
cos d x 0
l
l
(k 0),
l kx
sin d x 0
l
l
l kx nx
cos cos d x 0 (k n)
l
l
l
l kx nx
sin sin dx0 (kn),
f (x)
a
x
l
延拓到(- l,l)后再周期延拓,如图做偶延拓:
f (x)
a
l 0 l
x
所以
1l
x
a
a0
l
a(1
0
l
)dx 2
ak2 l0 la(1x l)co k lx sd x 2(2 4 n a 0 1 )2(k (k 2n )2n1 )
如图做奇延拓: f (x)
a
l
0l
x
2l x kx 2a
An 2cn
A n 称为f ( x)的振幅频谱(简称为频谱).它描述了各次谐波 的振幅随频率变化的分布情况。它清楚地表明了一个非正旋 周期函数包含了哪些频率分量及各分量所占的比重(如振幅 的大小)。因此频谱图在工程技术中应用比较广泛.所谓频谱 图,通常是指频率和振幅的关系图。
数学物理方法5傅里叶变换
图像增强
通过改变图像的频率成分,傅里叶 变换可以帮助增强图像的某些特征, 如边缘和纹理。
图像去噪
傅里叶变换可以帮助识别和去除图 像中的噪声,从而提高图像的质量。
量子力学
波函数分析
在量子力学中,波函数是一个描述粒子状态的函数。傅里叶变换 可以用来分析波函数的性质和行为。
量子纠缠
傅里叶变换在量子纠缠的研究中也有应用,可以帮助我们更好地理 解这种神秘的现象。
时间-频率分析
傅里叶变换将时间域的信号转换 为频率域的信号,通过分析信号 在不同频率下的强度和相位,可 以揭示信号的频率结构和变化规
律。
周期信号分析
对于周期信号,傅里叶变换可以 将其表示为一系列正弦波和余弦 波的叠加,从而方便地分析其频
率成分和振幅。
非周期信号分析
对于非周期信号,傅里叶变换将 其表示为无穷多个不同频率的正 弦波和余弦波的叠加,可以揭示
振动系统分析
在振动系统的分析中,傅里叶变换可以用于将时间域的振动信号转换为角频率域的信号, 从而方便地计算系统的固有频率、阻尼比等参数。
热传导分析
在热传导现象的分析中,傅里叶变换可以用于将时间域的温度分布转换为角频率域的温度 分布,从而方便地分析热传导的频率特性和变化规律。
05结果 具有共轭对称性,即F(-ω)=F*(ω)。
傅里叶变换的应用
01
02
03
信号处理
傅里叶变换在信号处理中 应用广泛,如频谱分析、 滤波、调制解调等。
图像处理
傅里叶变换在图像处理中 用于图像的频域分析,如 图像增强、去噪、特征提 取等。
数值分析
傅里叶变换在数值分析中 用于求解偏微分方程、积 分方程等数学问题。
数学物理方法 第5章 傅里叶变换
五、复数形式的傅里叶级数
如果 f (x) 是以 2l 为周期的周期函数,且满足狄里 希利条件,则可把 f (x) 展开为以下的复数形式的 傅里叶级数。
f ( x)
k
c e
k
i
kx l
其中
1 c k f ( x )e 2l l
l
i
kx l
dx
§5.2傅里叶积分与傅里叶变换
( x )
(0 l x)
(1) k 1 kx f ( x) sin k 1 k l 2l
【几点结论】
1. 定义在有限区间上的函数的傅里叶级数展开有 无穷多种形式。 f (0) f (l ) 0 2. 偶延拓可使级数满足边界条件 奇延拓可使级数满足边界条件 f (0) f (l ) 0 。
k 2n, n 1 k 2n 1, n 0
bk E0 sin t sin ktdt 0 E0 0 [cos(k 1)t cos(k 1)t ]dt 2
E sin(k 1)t sin(k 1)t 0 (k 1) (k 1) 2 0 E0 sin 2t t 2 2 0 k2 k 1
0 xl l x 0 x l
-l 0
F(x)
l
x
图5.7(a)
1 l 1 l 1 l l a0 F ( x)dx f ( x) xdx l 0 l 0 l 0 2
2 l kx 2 l kx 2 l kx ak F ( x) cos dx f ( x) cos dx x cos dx 0 0 0 l l l l l l
数学物理方法1课件——第五章 傅里叶变换
∑ ∑ ∞ sin (2n −1) x
m sin (2n −1) x
f (x) =
= lim
n=1 2n −1
m→∞ n=1 2n −1
(−π < x < π )
m=1 1
0.5
-3 -2 -1 -0.5 -1
1
2
3
m=2 0.75
0.5 0.25
-3 -2 -1 -0.25 -0.5 -0.75
第五章傅里叶变换51傅里叶级数52傅里叶变换53傅里叶变换的性质54函数约瑟夫傅里叶傅立叶早在1807年就写成关于热传导的基本论文热的传播在论文中推导出著名的热传导方程并在求解该方程时发现函数可以由三角函数构成的级数形式表示从而提出任一函数都可以展成三角函数的无穷级数
第五章 傅里叶变换
§ 5.1 傅里叶级数 § 5.2 傅里叶变换 § 5.3 傅里叶变换的性质 § 5.4 δ函数
其中傅里叶变换系数为:
∫ A(k) = 1
∞
f (x) cos(kx)dx
π −∞
∫ B(k) = 1
∞
f (x) sin(kx)dx
π −∞
傅里叶变换存在的条件:
¾
函数
f (x) 在 (−∞, ∞) 区间内绝对可积,即积分
∞
∫−∞
f (x) dx 收敛
¾ 函数 f (x) 在任意有限区间内满足狄里希利条件,即 f (x) 分段
3. 展开式中的波数kn或频率ωn,取值是不连续的,
即 n = 0,1, 2,... (实数形式的展开) 或 n = 0, ±1, ±2,... (复数形式的展开)。
§ 5.2 傅里叶变换
1、实数形式的傅里叶积分变换
傅里叶积分定理:设函数f(x)是区间[-∞, ∞]上的非周期函数,
傅里叶变换详细解释
傅里叶变换详细解释
傅里叶变换是数学中的一种重要分析工具,用于将一个函数表示为一系列复指数的加权和。
它得名于法国数学家约瑟夫·傅
里叶。
简单来说,傅里叶变换可以将一个函数或信号从时域(即时间域)转换到频域(即频率域),从而揭示出了信号中不同频率分量的强弱情况。
傅里叶变换的数学表示如下:
F(ω) = ∫[−∞,+∞] f(t) e^(−jωt) dt
其中,F(ω)表示频率为ω的复指数分量的权重,f(t)表示输入
函数或信号,e^(−jωt)表示复指数函数。
傅里叶变换将输入函
数或信号f(t)与复指数函数相乘,并对结果进行积分,得到频
率域的表示。
傅里叶变换可以将任意复数函数f(t)分解为多个复指数函数的
加权和,每个复指数函数的频率和权重由变换结果F(ω)确定。
所以,傅里叶变换可以将时域的函数转换为频域的复数表示。
傅里叶变换的应用非常广泛,尤其在信号处理、图像处理和通信领域中发挥着重要作用。
它可以帮助我们理解和分析信号的频域特性,如频率分量的强度、相位关系和频谱形状。
此外,傅里叶变换还可以用于信号滤波、频率分析、谱估计、图像压缩等方面。
总之,傅里叶变换通过将函数或信号从时域转换到频域,使我
们能够更好地理解和处理信号的频率特性,并在许多应用中发挥着重要的作用。
《傅里叶变换》课件
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、
第05章_傅里叶变换
傅里叶余弦级数
2 l kπ kπx ak f ( )cos d f (x) a0 ak cos k l 0 l l k1
WangChengyou © Shandong University, Weihai
f '(0) 0
f '(l ) 0
数学物理方法
第5章 傅里叶变换
WangChengyou © Shandong University, Weihai
数学物理方法
第5章 傅里叶变换
17
1 2l kπx ak f ( x)cos dx 2l l 0
2l 1 l kπx kπx x cos dx ( x 2l )cos dx l l 0 2l 2l
10
例1:要求在(-, )上,将f(x)=x2展开为Fourier级数,在 本题展开所得结果中置 x=0,由此验证
1 1 1 π 1 2 2 2 2 3 4 12
2
解: f(x)=x2,为偶函数
bk 0
1 3 1 2 a0 d 3π π 0
π
π 0
kπx f ( x) a0 ak cos l k 1
数学物理方法
第5章 傅里叶变换
1
第5章 傅里叶变换
§5.1 傅里叶级数 §5.2 傅里叶积分与傅里叶变换 §5.3 函数
WangChengyou © Shandong University, Weihai
数学物理方法
第5章 傅里叶变换
2
§5.1 傅里叶级数(Fourier Series) (一) 周期函数的傅里叶展开
WangChengyou © Shandong University, Weihai
数学物理方法傅里叶变换法
ut a2uxx 0
ux |x0 0
u |t0
0 0
( (
x x
0) 0)
(x (x
0) 0)
则 ut a2uxx 0
u |t0 20 (x)(- x )
u |t0 20 (x)
3
x
度趋于均匀,曲线下的面积为 0
O
即说明杂质总量不变,曲线跟纵轴相交处的切线都是水平的,
即硅片表面的浓度梯度为零,表明没有新的杂质进入硅片.
例5 恒定表面浓度扩散 在恒定表面浓度扩散中,包围硅片气体 中含有大量的杂质原子,源源不断穿过硅片表面向内部扩散,由
于杂质分子充足,硅片表面杂质浓度保持某个常数N0,这里所求 是半无界空间x>0中的定解问题
13
第一个积分中令 z (x ) / 2a t , dz d / 2a t
第二个积分中令 z ( x) / 2a t , dz d / 2a t
则有 w(x, t) N0 x/2a t ez2 dz N0
ez2 dz
x/2a t
e dk e e dk 2k2 k
2 4 2
2 (k 2 2 )2
2e e dk 2 4 2
2 (k 2 2 )2
0
2
2e 4 2
e d 2 2
0
2
2 e 4 2
ex2 dx
例6 泊松公式 求解三维无界空间中的波动问题
utt u |t
0
a23u 0