(完整版)平面向量的线性运算随堂练习(答案).docx

合集下载

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解)

平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。

3 B。

2 C。

1 D。

02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。

-4 B。

-1 C。

1 D。

43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。

1 B。

5/3 C。

3/5 D。

7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。

-4 B。

-2 C。

2 D。

45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。

充分必要条件 B。

必要不充分条件 C。

充分不必要条件 D。

既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。

$\frac{8}{3}$ B。

$\frac{26}{9}$ C。

$\frac{2}{3}$ D。

$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{6}$ B。

$\frac{\pi}{4}$ C。

$\frac{\pi}{3}$ D。

$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。

18 B。

2020年高中数学必修4 《平面向量的线性运算》 课后练习(含答案)

2020年高中数学必修4 《平面向量的线性运算》 课后练习(含答案)

2020年高中数学必修4 平面向量的线性运算课后练习一、选择题1.已知向量a,b满足,,且∣a+b∣=2,则向量a与b的夹角的余弦值为( )A. B. C . D.2.已知平面向量a,b的夹角为,且,则∣a+b∣=( )A.3B.C.7D.3.若非零向量a,b满足,且(a-b)⊥(3a+2b),则a与b的夹角为()A.0.25πB.0.5πC.0.75πD.π4.若|,且(a-b)⊥a,则a与b的夹角是()A. B. C. D.5.已知向量a,b满足=5,且,则向量a与b的夹角为()A. B. C. D.6.已知向量m,n满足,若,则向量n在m方向上的投影为()A.0.25 B.0.5 C.2 D.47.若两个非零向量a,b满足,则向量a+b与a-b的夹角是( )A. B. C. D.8.若,且与也互相垂直,则实数k的值为()A.-6B.6C.-3D.39.已知向量a,b满足,且则向量a与b的夹角的余弦值为( )A. B. C. D.10.若向量()A.2B.4C.12D.11.已知平面向量a与b的夹角为,且∣b∣=1,∣a+2b∣=2,则∣a∣()A. B. C. D.12.已知非零向量a,b的夹角为60°,且∣b∣=1,∣2a-b∣=1,则∣a∣=()A. 0.5B. 1C.D.2二、填空题13.若向量a与b互相垂直,且∣a∣=1,∣b∣=2,则∣a+2b∣=__________.14.已知向量a与b的夹角为120°,∣a∣=2,∣b∣=1,则∣a-2b∣=________.15.已知平面向量a,b满足b(a+b)=3,且∣a∣=1,∣b∣=2,则∣a+b∣=________.16.已知向量a,b满足:∣a∣=3,∣b∣=4,,则∣a-b∣= .三、解答题17.已知∣a∣=4,∣b∣=3,(2a-3b)(2a+b)=61.(1)求a与b的夹角θ;(2)求∣a+b∣.18.已知非零向量a,b满足∣a|=∣b∣=1,且.(1)求向量a与b的夹角θ的值.(2)求∣a+b∣的值。

平面向量的线性运算(含答案)

平面向量的线性运算(含答案)

平面向量的线性运算一、单选题(共10道,每道10分)1.设P是△ABC所在平面内的一点,,则( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义2.设D,E,F分别是△ABC的三边AB,BC,CA的中点,则等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义3.在△ABC中,,P是CR的中点,若,则m+n等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义4.如图,在△ABC中,,若,则的值是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义5.已知点P是△ABC内一点,且,则的值是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义6.设M是平行四边形ABCD的对角线的交点,O为任意一点(不与M重合),则等于( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义7.若M是△ABC的重心,O为任意一点,,则n的值是( )A.0B.1C.2D.3答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义8.在△ABC中,,,点P在AM上且满足,则的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:向量数乘的运算及其几何意义9.设P是等边△ABC所在平面内的一点,满足,若AB=1,则的值是( )A.4B.3C.2D.1答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算10.如图,BC,DE是半径为1的圆O的两条直线,,则的值是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:平面向量数量积的运算。

高中 平面向量的线性运算及基本定理 练习 含答案

高中 平面向量的线性运算及基本定理 练习 含答案

训练目标 (1)平面向量的概念;(2)平面向量的线性运算;(3)平面向量基本定理. 训练题型(1)平面向量的线性运算;(2)平面向量的坐标运算;(3)向量共线定理的应用. 解题策略(1)向量的加、减法运算要掌握两个法则:平行四边形法则和三角形法则,还要和式子:AB →+BC →=AC →,OM →-ON →=NM →联系起来;(2)平面几何问题若有明显的建系条件,要用坐标运算;(3)利用向量共线可以列方程(组)求点或向量坐标或求参数的值.1.下列各式计算正确的有________个. ①(-7)6a =-42a ;②7(a +b )-8b =7a +15b ; ③a -2b +a +2b =2a ;④4(2a +b )=8a +4b .2.(·贵州遵义一模)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.3.(·云南昆明质检)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m =________.4.若a 为任一非零向量,b 为模为1的向量,下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1,其中正确的是________.5.(·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________. 6.已知点G 是△ABC 的重心,则GA →+GB →+GC →=__________________________________. 7.(·青海西宁质检)已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足P A →+PB →+PC →=AB →,则点P 与△ABC 的关系为________.8.在△ABC 中,O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=xAM →,AC →=yAN →,则x +y =________.9.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,若用m ,n 表示p ,则p =________. 10.如图,平面内有三个向量OA →、OB →、OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________. 11.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2=________.12.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP →|=32|PB →|,则点P 坐标为________.13.已知a ,b 是两个不共线的向量,它们的起点相同,且a ,t b ,13(a +b ) (t ∈R )这三个向量的终点在一条直线上,则t 的值为________. 14.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°,如图所示,点C 在以O 为圆心的圆弧AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.答案解析1.3 2.23 3.19 4.③ 5.(-7,-4) 6.07.P 是AC 边的一个三等分点 解析 ∵P A →+PB →+PC →=AB →, ∴P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →=2AP →,∴P 是AC 边的一个三等分点. 8.2解析 因为M 、O 、N 三点共线, 所以存在常数λ(λ≠0,且λ≠-1), 使得MO →=λON →,即AO →-AM →=λ(AN →-AO →), 所以AO →=11+λAM →+λ1+λAN →,又O 是BC 的中点,所以AO →=12AB →+12AC →=x 2AM →+y 2AN →,又AM →、AN →不共线,所以⎩⎨⎧x2=11+λ,y 2=λ1+λ,得x 2+y 2=11+λ+λ1+λ=1, 即x +y =2.9.-74m +138n 10.611.12解析 易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →.所以λ1+λ2=-16+23=12.12.(8,-15) 解析 设P (x ,y ), 因为|AP →|=32|PB →|,又P 在线段AB 的延长线上,故AP →=-32PB →=32BP →,所以(x -2,y -3)=32(x -4,y +3),即⎩⎨⎧x -2=32(x -4),y -3=32(y +3),所以⎩⎪⎨⎪⎧x =8,y =-15.故P (8,-15).13.12 解析如图所示,OA →=t b , OB →=13(a +b ),OC →=a .∴AC →=OC →-OA →=a -t b , BC →=OC →-OB →=23a -13b ,∵A 、B 、C 三点共线,a ,b 不共线, ∴AC →与BC →共线, ∴231=-13-t ,∴t =12. 14.2 解析以O 为坐标原点,OA 所在的直线为x 轴, OA →的方向为x 轴的正方向,建立平面直角坐标系, 则可知A (1,0),B (-12,32),设C (cos α,sin α)(α∈[0,2π3]),则由OC →=xOA →+yOB →,得(cos α,sin α)=x (1,0)+y (-12,32),得x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin(α+π6),所以当α=π3时,x +y 取得最大值2.。

2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)

2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)
⃗ =0,|⃗|=|⃗|=|⃗ |=2,则△ABC 的面积等于(
A.√3
B.2√3
C.3√3
D.4√3
)
)
10.(多选)设 M 是△ABC 所在平面内一点,则下列说法正确的是(
A.若⃗
1 ⃗

2
1 ⃗
,则
2

M 是边 BC 的中点
B.若⃗=2⃗
⃗ ,则点 M 在边 BC 的延长线上
C.若⃗=-⃗
⃗,则 M 是△ABC 的重心
1
1
D.若⃗=x⃗+y⃗ ,且 x+y= ,则△MBC 的面积是△ABC 面积的
2
2
1
4
11.(历年山东德州高三模拟)设向量 a,b 不平行,向量 a+ λb 与-a+b 平行.则实数 λ=
.
12.(历年浙江杭州二中高二期中)在等腰梯形 ABCD 中,设⃗=a,⃗=b,⃗ =2⃗,M 为 BC 的中点,则
2
3
1
3
A. a+ b
2
3
1
3
C. a- b
2
3
)
(
)
1
3
B.- a+ b
2
3
1
3
D.- a- b
5.(历年四川宜宾叙州区第一中学月考)在▱ABCD 中,若|⃗
A.▱ABCD 为菱形
(
⃗|=|⃗
⃗|,则必有(
)
B.▱ABCD 为矩形
C.▱ABCD 为正方形 D.▱ABCD 为梯形
6.设 a,b 是非零向量,则“a=2b”是“|a+b|≥|a|+|b|”的
A.充分不必要条件

平面向量的概念及线性运算练习题

平面向量的概念及线性运算练习题

5.1平面向量的概念及线性运算练习题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--§平面向量的概念及线性运算一、选择题1. 已知两个非零向量a,b满足|a+b|=|a-b|,则下面结论正确的是()∥b B.a⊥bC.{0,1,3} +b=a-b答案 B2.对于非零向量a,b,“a+b=0”是“a∥b”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析若a+b=0,则a=-b.∴a∥b;若a∥b,则a=λb,a+b=0不一定成立.答案A3.设P是△ABC所在平面内的一点,BC→+BA→=2BP→,则().→=0 +PA→=0+PB→=0 +PB→+PC→=0+PC→+BA→=2BP→⇔P是AC的中点,解析如图,根据向量加法的几何意义,BC→+PC→=0.∴PA答案B4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),则实数x的值为() A.-3 B.2 C.4 D.-6解析因为(a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),∴4(x+3)-(x-6)=0,x=-6.答案 D5.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ). A .矩形 B .平行四边形 C .梯形D .以上都不对解析 由已知AD→=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →.∴AD→∥BC →,又AB →与CD →不平行, ∴四边形ABCD 是梯形. 答案 C6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=mAM →成立,则m =( ). A .2B .3C .4D .5解析 ∵MA→+MB →+MC →=0,∴点M 是△ABC 的重心,∴AB →+AC →=3AM →,∴m =3. 答案 B7.已知点O 为△ABC 外接圆的圆心,且OA +OB +CO =0,则△ABC 的内角A 等于( ) A .30° B .60° C .90°D .120°解析:由OA +OB +CO =0得OA +OB =OC ,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知四边形OACB 为菱形,且∠CAO =60°. 答案:A 二、填空题8.已知平面上不共线的四点O ,A ,B ,C ,若OA -3OB +2OC =0,则|AB ||BC |=________.解析:由OA -3OB +2OC =0,得OA -OB =2(OB -OC ),即BA =2CB ,于是|AB ||BC |=2. 答案:29.给出下列命题:①向量AB→的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,一定是共线向量;⑤向量AB→与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上.其中不正确的个数为________.解析 ①中,∵向量AB→与BA →为相反向量,∴它们的长度相等,此命题正确.②中若a 或b 为零向量,则满足a 与b 平行,但a 与b 的方向不一定相同或相反,∴此命题错误.③由相等向量的定义知,若两向量为相等向量,且起点相同,则其终点也必定相同,∴该命题正确.④由共线向量知,若两个向量仅有相同的终点,则不一定共线,∴该命题错误.⑤∵共线向量是方向相同或相反的向量,∴若AB →与CD →是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,∴该命题错误. 答案 310.已知向量,a b 夹角为45︒ ,且1,210a a b =-=;则_____b =. 解析答案 3211.若M 为△ABC 内一点,且满足AM →=34AB →+14AC →,则△ABM 与△ABC 的面积之比为________.解析 由题知B 、M 、C 三点共线,设BM →=λBC →,则:AM →-AB →=λ(AC →-AB →), ∴AM→=(1-λ)AB →+λAC →,∴λ=14, ∴S △ABM S △ABC =14. 答案 1412.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.解析 (等价转化法)OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →, ∴|AB→+AC →|=|AB →-AC →|. 故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形. 答案 直角三角形【点评】 本题采用的是等价转化法,将△ABC 的三个顶点转化到相应矩形中,从而判断三角形形状.本题也可用两边平方展开得出结论. 三、解答题13.如图所示,△ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,AM 是BC 边上的中线,交DE 于N .设AB→=a ,AC →=b ,用a ,b 分别表示向量AE →,BC →,DE →,DN →,AM→,AN →.解析 AE →=23b ,BC →=b -a ,DE →=23(b -a ),DN →=13(b -a ), AM →=12(a +b ),AN →=13(a +b ). 14.设a ,b 是两个不共线的非零向量,若a 与b 起点相同,t ∈R ,t 为何值时,a ,t b ,13(a +b )三向量的终点在一条直线上 解析 设a -t b =λ⎣⎢⎡⎦⎥⎤a -13a +b (λ∈R ), 化简整理得⎝ ⎛⎭⎪⎫23λ-1a +⎝ ⎛⎭⎪⎫t -13λb =0,∵a 与b 不共线,∴由平面向量基本定理有 ⎩⎪⎨⎪⎧ 23λ-1=0,t -λ3=0,∴⎩⎪⎨⎪⎧λ=32,t =12.故t =12时,a ,t b ,13(a +b )的终点在一条直线上.15.如图所示,在△ABC 中,D 、F 分别是BC 、AC 的中点,AE =23AD ,AB =a ,AC =b .(1)用a ,b 表示向量AD 、AE 、AF 、BE 、BF ; (2)求证:B 、E 、F 三点共线. 解析:(1)延长AD 到G , 使AD =12AG ,连结BG 、CG ,得到▱ABGC , 所以AG =a +b , AD =12AG =12(a +b ), AE =23AD =13(a +b ), AF =12AC =12b ,BE =AE -AB =13(a +b )-a =13(b -2a ), BF =AF -AB =12b -a =12(b -2a ). (2)证明:由(1)可知BE =23BF , 所以B 、E 、F 三点共线.16.已知O ,A ,B 三点不共线,且OP →=mOA →+nOB →,(m ,n ∈R ).(1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1.证明 (1)m ,n ∈R ,且m +n =1, ∴OP→=mOA →+nOB →=mOA →+(1-m )OB →, 即OP→-OB →=m (OA →-OB →). ∴BP→=mBA →,而BA →≠0,且m ∈R . 故BP→与BA →共线,又BP →,BA →有公共点B . ∴A ,P ,B 三点共线.(2)若A ,P ,B 三点共线,则BP →与BA →共线,故存在实数λ,使BP →=λBA →,∴OP →-OB→=λ(OA →-OB →). 即OP→=λOA →+(1-λ)OB →. 由OP→=mOA →+nOB →. 故mOA→+nOB →=λOA →+(1-λ)OB →. 又O ,A ,B 不共线,∴OA →,OB →不共线.由平面向量基本定理得⎩⎨⎧m =λ,n =1-λ.∴m +n =1.。

平面向量的线性运算及练习试题

平面向量的线性运算及练习试题

平面向量的线性运算学习过程知识点一:向量的加法(1)定义已知非零向量,a b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a b +,即a b +=AB +BC =AC . 求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则. 说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量. ②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定. ③位移的合成可以看作向量加法三角形法则的物理模型. (2)向量加法的平行四边形法则以点O 为起点作向量a OA = ,OB b =,以OA,OB 为邻边作OACB ,则以O 为起点的对角线所在向量OC 就是,a b 的和,记作a b +=OC 。

说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量00a a a a +=+=,(3)特殊位置关系的两向量的和①当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;②当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,③当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)向量加法的运算律①向量加法的交换律:a +b =b +a②向量加法的结合律:(a +b ) +c =a + (b +c )知识点二:向量的减法(1)相反向量:与a 长度相同、方向相反的向量.记作 -a 。

平面向量的练习题及答案

平面向量的练习题及答案

平面向量的练习题及答案平面向量的练习题及答案典例精析题型一向量的有关概念下列命题:①向量AB的长度与BA的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上.其中真命题的序号是.①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.下列各式:①|a|=a?a;② ?c=a? ;③OA-OB=BA;④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+=2;⑤a=,b=,且a与b不共线,则⊥.其中正确的个数为A.1B.C.D.4选D.| a|=a?a正确;?c≠a? ; OA-OB=BA正确;如下图所示,MN=++且MN=++,两式相加可得2MN=AB+DC,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b 为菱形的两条对角线,即得⊥.所以命题①③④⑤正确.题型二与向量线性运算有关的问题如图,ABCD是平行四边形,AC、BD交于点O,点M在线段DO上,且=,点N在线段OC上,且=,设=a, =b,试用a、b 表示,,1313.在?ABCD中,AC,BD交于点O, 111所以==a-b),22=2=2=2.11又=,=,31所以=AD+=b+1115=b=a,266111=+=+4412==a+b). 323所以=-1511=-+)=a.6626向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足OP=1OA+λ,若λ=2时,则PA?的值为 .由已知得-=λ,11即AP=λ,当λ=时,得AP=,2所以2AP=AB+AC,即AP -AB=AC-AP,所以BP=PC,所以PB+PC=PB +BP=0,所以? =?0=0,故填0.题型三向量共线问题设两个非零向量a与b不共线.若=a+b,=2a+8b,=3,求证:A,B,D三点共线;试确定实数k,使ka+b和a+kb共线. 1证明:因为=a+b,=2a+8b,=3,所以BD=BC +CD=2a+8b+3=5=5AB,所以AB, BD共线.又因为它们有公共点B,所以A,B,D三点共线.因为ka+b和a+kb共线,所以存在实数λ,使ka+b=λ,所以a=b.因为a与b是不共线的两个非零向量,所以k-λ=λk-1=0,所以k2-1=0,所以k=±1.向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.已知O是正三角形BAC内部一点,+2+3=0,则△OAC的面积与△OAB的面积之比是如图,在三角形ABC中, OA+2OB+3OC=0,整理可得OA+OC+2=0.1令三角形ABC中AC边的中点为E,BC边的中点为F,则点O 在点F与点E连线的处,即OE=2OF.1hh1设三角形ABC中AB边上的高为h,则S△OAC=S△OAE+S△OEC?OE? 的情形,而向量平行则包括共线的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a与b共线同向时,|a+b|=|a|+|b|;当向量a与b共线反向时,|a+b|=||a|-|b||;当向量a与b不共线时,|a+b|<|a|+|b|.典例精析题型一平面向量基本定理的应用如图?ABCD中,M,N分别是DC,BC中点.已知AM=a,=b,试用a,b表示,AD与AC易知AM=AD+DM 1=+,1AN=AB+BN=AB2AD, 1a,??2即? ??1?b.?2?22所以=b-a),=2a-b).32所以=+=a+b).运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.已知D为△ABC的边BC上的中点,△ABC所在平面内有一点P,满足++=0等于 1B.C.1 D.1A.由于D为BC边上的中点,因此由向量加法的平行四边形法则,易知PB+PC=2PD,因此结合PA+BP+CP=0即得PA=2PD,因此易得P,A,D三点共线且D是PA=1,即选C.题型二向量的坐标运算已知a=,b=,u=a+2b,v=2a-b.若u=3v,求x;若u∥v,求x.因为a=,b=,所以u=+2=+=,v=2-=.u=3v?=3=,所以2x+1=6-3x,解得x=1.u∥v ?=λ2x?1??,-3=0?x=1.对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.nπnπ已知向量an=sinn∈N*),|b|=1.则函数y=|a1+b|2+|a2+b|2+|a3+b|2+ (77)+|a141+b|2的最大值为.π设b=,所以y=|a1+b|2+|a2+b|2+|a3+b|2+…+|a141+b|2=2+b2+2+…+2+b2+2=282+2cos,所以y的最大7777 值为284.题型三平行向量的坐标运算已知△ABC的角A,B,C所对的边分别是a,b,c,设向量m=,n=,p=.若m∥n,求证:△ABC为等腰三角形;π若m⊥p,边长c=2,角CABC的面积.证明:因为m∥n,所以asin A=bsin B.由正弦定理,得a2=b2,即a=b.所以△ABC为等腰三角形.因为m⊥p,所以m·p=0,即a+b=0,所以a+b=ab.由余弦定理,得4=a2+b2-ab=2-3ab,所以2-3ab-4=0.所以ab=4或ab=-1.113所以S△ABC=absin C3.22设m=,n=,则①m∥n?x1y2=x2y1;②m⊥n?x1x2+y1y2=0.已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m =,n=.若m⊥n,且a+b=10,则△ABC周长的最小值为A.10-3C.10-23B.10+5D.10+231由m⊥n得2cos2C-3cos C-2=0,解得cos C=-cos C=2,所以c2=a2+b2-2abcos例题讲解1、下列命题中,正确的是A.若a?b,则a与b的方向相同或相反B.若a?b,b?c,则a?cC.若两个单位向量互相平行,则这两个单位向量相等D.若a=b,b=c,则a=c.122、已知平面内不共线的四点0,A,B,C满足OB?OA?OC,则33|AB|:|BC|?A.3:1B.1:C.2:1D.1:23、已知向量a= ,b= ,若2a–b与b共线,则实数n的值是 A.6B. C.3?23D3?234、向量AB?按向量a?平移后得向量A?B?,则A?B?的坐标为A. B.C. D.、如图,在△ABC中,D是BC的中点,E是DC的中点,F是EC的中点,若AB?a,AC?b,则AF? A.14a?34b B.14a?34b C.18a?78bD.18a?78b6、若函数f?cos2x?1的图象按向量a平移后,得到的图象关于原点对称,则向量a可以是A. B. C.424二、填空题:共3小题7、设a,b是两个不共线的非零向量,若向量ka?2b与8a?kb的方向相反,则k?8、若a?b?c,化简3?2?2?、已知正△ABC的边长为 1 ,则BC?2CA?3AB等于检测题1、已知非零向量a,b满足a=?b,b=?a,则?= A.?1B.?1C.0D.02、设a,b是非零向量,则下列不等式中不恒成立的是A.a?b??B.abC.a?b?a?bD.a?a?b、已知a=,b=,?,则实数k的值是A.53B.2511C.?12D.?174、已知平面向量a?,b?,则向量a?b. A.平行于第一、三象限的角平分线B.平行于y轴 C.平行于第二、四象限的角平分线D.平行于x轴5、将二次函数y?x2的图象按向量a平移后,得到的图象与一次函数y?2x?5的图象只有一个公共点,则向量a?A. B. C. D.6. 如图,在正六边形ABCDEF中,已知AC?c,AD?d,则AE? .巩固练习1. 若e1,e2是夹角为的单位向量,且a?2e1?e2,b??3e1?2e2,则a?b?377A.1B. ?4C. ?D.222. 设a?,b?,c?则?c? A. B.0C.?3D.?11 答案 C3. 在?ABC中,已知向量AB?,BC?,则?ABC的面积等于 A.22B.24C.32D.2答案A4. 在?ABC中,a?5,b?8,C?60?,则BC?CA的值为A.10 B.20C.-10D.205. 已知下列命题中:若k?R,且kb?0,则k?0或b?0,若a?b?0,则a?0或b?0若不平行的两个非零向量a,b,满足|a|?|b|,则??0 ??若a与b平行,则a?b?|a|?|b|p2?q2?2其中真命题的个数是A.0B.1C.2D.36. 已知点O为△ABC外接圆的圆心,且OA?OB?CO?0,则△ABC的内角A等于 A.30?B.60? C.90?D.120?. 在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE线与CD交于点F.若AC?a,BD?b,则AF?的延长bD.a?3123bA.14a?12b B.23a?13b C.12a?14答案 B8. 已知a?1,b?6,a??2,则向量a与向量b的夹角是 A.6B.4C.3D.2答案 C9. 在平行四边形ABCD中,若BC?BA?BC?AB,则必有A.ABCD是菱形B.ABCD是矩形C.ABCD是正方形D.以上皆错10.已知向量a?,向量b?则|2a?b|的最大值,最小值分别是A.42,0B.4,42C.16,0D.4,0 二.填空题11. 已知Rt△ABC的斜边BC=5,则AB?BC?BC?CA?CA?AB 的值等于 . 答案-2512. 设p = ,q = ,若p与q的夹角??[0,2),则x的取值范围是13. 若平面向量a,b满足??1,a?b平行于x轴,b?,则a?答案-=解析 a?b?或,则a 或a.14. 在?ABC中,O为中线AM上一个动点,若AM=2,则OA?的最小值是________。

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案平面向量练习题及答案在数学学科中,平面向量是一个非常重要的概念。

它不仅在几何学中有广泛的应用,还在物理学、工程学等领域中发挥着重要的作用。

掌握平面向量的基本概念和运算法则对于解决各种实际问题具有重要意义。

本文将为大家提供一些平面向量练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。

1. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a + b的结果。

解答:向量a + b的结果可以通过将向量a和向量b的对应分量相加得到。

所以,向量a + b = (3 + (-1), -2 + 4) = (2, 2)。

2. 题目:已知向量a = (2, -5)和向量b = (4, 3),求向量a - b的结果。

解答:向量a - b的结果可以通过将向量a和向量b的对应分量相减得到。

所以,向量a - b = (2 - 4, -5 - 3) = (-2, -8)。

3. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的数量积。

解答:向量a与向量b的数量积可以通过将向量a和向量b的对应分量相乘,并将结果相加得到。

所以,向量a与向量b的数量积为3*(-1) + (-2)*4 = -3 - 8 = -11。

4. 题目:已知向量a = (2, -5),求向量a的模长。

解答:向量a的模长可以通过计算向量a的坐标分量的平方和的平方根得到。

所以,向量a的模长为√(2^2 + (-5)^2) = √(4 + 25) = √29。

5. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的夹角的余弦值。

解答:向量a与向量b的夹角的余弦值可以通过计算向量a与向量b的数量积与向量a和向量b的模长的乘积的商得到。

所以,向量a与向量b的夹角的余弦值为(-11) / (√(3^2 + (-2)^2) * √((-1)^2 + 4^2)) = -11 / (√13 * √17)。

(完整版)平面向量的线性运算随堂练习(答案)

(完整版)平面向量的线性运算随堂练习(答案)

§2.2平面向量的线性运算重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量共线的充要条件.考纲要求:①掌握向量加法,减法的运算,并理解其几何意义. ②掌握向量数乘的运算及其意义。

理解两个向量共线的含义. ③了解向量线性运算的性质及其几何意义.经典例题:如图,已知点,,D E F 分别是ABC ∆三边,,AB BC CA 的中点,求证:0EA FB DC ++=u u u r u u u r u u u r r .当堂练习:1.a 、b 为非零向量,且+=+||||||a b a b ,则 ( ) A .a 与b 方向相同 B .a =bC .a =-bD .a 与b 方向相反2.设+++=()()u u u r u u u r u u u r u u u rAB CD BC DA a ,而b 是一非零向量,则下列各结论:①//a b ;②+=a b a ;③+=a b b ;④+<+a b a b ,其中正确的是 ( )A .①②B .③④C .②④D .①③3.3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( ) A .OB .MD 4C .MF 4D .ME 44.已知向量b a 与反向,下列等式中成立的是( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.若a b c =+化简3(2)2(3)2()a b b c a b +-+-+ ( ) A .aB .bC .cD . 以上都不对6.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则AP u u u r=( )A .().(0,1)AB AD λλ+∈u u u r u u u r B .2().(0,)AB BC λλ+∈u u u r u u u rC . ().(0,1)AB AD λλ-∈u u u r u u u rD . 2().(0,)AB BC λλ-∈u u u r u u u r7.已知==||||3u u u r OA a ,==||||3u u u rOB b ,∠AOB=60︒,则+=||a b __________。

平面向量中的线性问题专题(附答案)

平面向量中的线性问题专题(附答案)

平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.题型二 平面向量的坐标运算例2 (1)(2015·)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.(2)平面给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d .变式训练2 (1)(2014·)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________.高考题型精练1.(2015·)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.62.(2015·)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1D.(4a +b )⊥BC →3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB ,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.234.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( )A.BC →B.12AD →C.AD →D.12BC →6.如图,平面有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=437.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______.9.(2014·)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 10.(2014·)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.11.(2015·)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线; (3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.平面向量中的线性问题题型一 平面向量的线性运算及应用例1 (1)(2015·课标全国Ⅰ)设D 为△ABC 所在平面一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.(2)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 由D ,O ,C 三点共线,可设 DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎪⎫b -12a=-12k 1a +k 1b (k 1为实数),BO →=k 2BF →=k 2(AF →-AB →)=k 2(12b -a )=-k 2a +12k 2b (k 2为实数),①又BO →=BD →+DO →=-12a +(-12k 1a +k 1b )=-12(1+k 1)a +k 1b ,②由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0⇒⎩⎪⎨⎪⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ).点评 平面向量的线性运算应注意三点: (1)三角形法则和平行四边形法则的运用条件.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(3)OA →=λOB →+μOC →(λ,μ为实数),若A 、B 、C 三点共线,则λ+μ=1.变式训练1 (1)如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD →=λAB →+kAC →,则λ+k 等于( )A.1+ 2B.2- 2C.2D.2+2(2)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________. 答案 (1)A (2)45解析 根据向量的基本定理可得AD →=AC →+CD →=AC →+(ED →-EC →)=AC →+(2AC →-22BC →)=AC →+2AC →-22(AC →-AB →)=⎝ ⎛⎭⎪⎫1+22·AC →+22AB →. 所以λ=22,k =1+22. 所以λ+k =1+ 2.故选A. (2)依题意得AM →=AB →+BC →+CM →=AB →+BC →-14AB →=34AB →+BC →, AN →=AB →+BN →=AB →+12BC →;又AB →=λAM →+μAN →,于是有AB →=λ⎝ ⎛⎭⎪⎫34AB →+BC →+μ⎝ ⎛⎭⎪⎫AB →+12BC →=⎝ ⎛⎭⎪⎫34λ+μ·AB →+⎝⎛⎭⎫λ+μ2BC →;又AB →与BC →不共线,因此有⎩⎪⎨⎪⎧34λ+μ=1,λ+μ2=0,由此解得λ=-45,μ=-2λ,所以λ+μ=-λ=45.题型二 平面向量的坐标运算例2 (1)(2015·)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 答案 -3解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎨⎧2m +n =9,m -2n =-8,解得⎩⎨⎧m =2,n =5,故m -n =2-5=-3.(2)平面给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题: ①求满足a =m b +n c 的实数m ,n ; ②若(a +k c )∥(2b -a ),数k ;③若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 ①由题意得(3,2)=m (-1,2)+n (4,1),∴⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.②a +k c =(3+4k,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0,∴k =-1613.③设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 解得⎩⎨⎧ x =3,y =-1或⎩⎨⎧x =5,y =3.∴d =(3,-1)或d =(5,3).点评 (1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (a ≠0),则b =λa .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.(3)向量的坐标运算主要是利用加法、减法、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 变式训练2 (1)(2014·)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.(2)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是________. 答案 (1)7+1 (2)m ≠12解析 (1)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.(2)因为OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ), 所以AB →=(3,1),BC →=(-m -1,-m ).由于点A 、B 、C 能构成三角形,所以AB →与BC →不共线, 而当AB →与BC →共线时,有3-m -1=1-m ,解得m =12,故当点A 、B 、C 能构成三角形时实数m 满足的条件是m ≠12.高考题型精练1.(2015·)设向量a =(2,4)与向量b =(x,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 答案 B解析 a =(2,4),b =(x,6),∵a ∥b ,∴4x -2×6=0, ∴x =3.2.(2015·)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥BC →答案 D解析 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a ·b =|a||b |cos120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC →,故选D.3.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB ,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ的值为( ) A.1 B.13 C.12 D.23答案 D解析 过C 作CE ⊥x 轴于点E (图略). 由∠AOC =π4,知|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →,即OE →=λOA →, 所以(-2,0)=λ(-3,0),故λ=23.4.(2014·课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A.BC → B.12AD → C.AD →D.12BC →答案 C解析 如图,EB →+FC →=EC →+CB →+FB →+BC → =EC →+FB →=12(AC →+AB →)=12·2AD →=AD →. 5.设向量a ,b 满足|a |=25,b =(2,1),则“a =(4,2)”是“a ∥b ”成立的( ) A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件答案 C解析 若a =(4,2),则|a |=25,且a ∥b 都成立; ∵a ∥b ,设a =λb =(2λ,λ),由|a |=25,知 4λ2+λ2=20,∴λ2=4,∴λ=±2, ∴a =(4,2)或a =(-4,-2).因此“a =(4,2)”是“a ∥b ”成立的充分不必要条件.6.如图,平面有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=2,|OB →|=32,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则( )A.λ=4,μ=2B.λ=83,μ=32C.λ=2,μ=43D.λ=32,μ=43答案 C解析 设与OA →,OB →同方向的单位向量分别为a ,b , 依题意有OC →=4a +2b ,又OA →=2a ,OB →=32b ,则OC →=2OA →+43OB →,所以λ=2,μ=43.7.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系(图略),则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为______. 答案 1 解析 由题意知OA →=(-3,0),OB →=(0,3),则OC →=(-3λ,3),由∠AOC =30°知以x 轴的非负半轴为始边,OC 为终边的一个角为150°,∴tan 150°=3-3λ,即-33=-33λ,∴λ=1. 9.(2014·)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.答案 5解析 ∵λa +b =0,∴λa =-b ,∴|λa |=|-b |=|b |=22+12=5,∴|λ|·|a |= 5.又|a |=1,∴|λ|= 5.10.(2014·)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 答案 12 解析 因为a ∥b ,所以sin 2θ=cos 2θ,2sin θcos θ=cos 2θ.因为0<θ<π2,所以cos θ>0,得2sin θ=cos θ,tan θ=12. 11.(2015·)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →)=12AB →-16AC →, ∴x =12,y =-16. 12.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎨⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴不论t 2为何实数,A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0,∴t 2=-14a 2,故OM →=(-a 2,a 2). 又|AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|. ∵S △ABM =12,∴12|AB|·d=12×42×2|a2-1|=12,解得a=±2,故所求a的值为±2.。

平面向量的线性运算试题(含答案)

平面向量的线性运算试题(含答案)

一、选择题1.下列各式正确的是()A.若a、b同向,则B.与表示的意义是相同的C.若a、b不共线,则D.永远成立2.等于()A.B.0 C.D.3.若a、b、a+b均为非零向量,且a+b平分a与b的夹角,则()A.B.C.D.以上都不对4.下列命题①如果a与b的方向相同或相反,那么的方向必与a、b之一的方向相同。

②△ABC中,必有0。

③若0,则A、B、C为一个三角形的三个顶点。

④若a、b均为非零向量,则与一定相等。

其中真命题的个数为()A.0 B.1 C.2 D.35.已知一点O到平行四边形ABCD的三个顶点A、B、C的向量分别为a、b、c,则向量等于()A.B.C.D.6.如图,在四边形ABCD中,设,则等于()A.B.C.D.7.设b是a的相反向量,则下列说法错误的是()A.a与b的长度必相等B.C.a与b一定不相等D.a是b的相反向量8.可以写成:①;②;③;④,其中正确的是()A.①②B.②③C.③④D.①④9.在以下各命题中,不正确的命题个数为()①是的必要不充分条件;②任一非零向量的方向都是惟一的;③;④若,则0;⑤已知A、B、C是平面上的任意三点,则0。

A.1 B.2 C.3 D.410.某人先位移向量a:“向东走3km”,接着再位移向量b:“向北走3km”,则()A.向东南走 km B.向东北走 kmC.向东南走 km D.向东北走 km11.若,则的取值范围是()A.B.(3,8)C.D.(3,13)二、填空题12.若三个向量a、b、c恰能首尾相接构成一个三角形,则=。

13.设ABCDEF为一正六边形,,则14.化简:15.如图所示,用两根绳子把重10kg的物体W吊在水平杆子AB上,,则A和B处所受力的大小(绳子的重量忽略不计)分别是。

三、解答题16.如图所示,在ABCD中,已知,用a、b表示向量、。

17.如图所示,已知在矩形ABCD中,,设。

试求。

18.如图所示,在矩形ABCD中,O是对角线AC与BD的交点。

《平面向量的线性运算》考点讲解复习与同步训练

《平面向量的线性运算》考点讲解复习与同步训练

《6.2.1 平面向量的线性运算》考点讲解【思维导图】【常见考法】考法一 向量的加法运算【例1-1】如图,在下列各小题中,已知向量a 、b ,分别用两种方法求作向量a b +.【例1-2】如果a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”, d 表示“向南走5km ”,那么下列向量具有什么意义? (1)a a +;(2)a b +;(3)a c +;(4)b d +;(5)b c b ++;(6)d a d ++.【例1-3】向量()()AB MB BO BC OM ++++﹒化简后等于( )A.AMB.0C.0D.AC 【例1-4】已知点D ,E ,F 分别是△ABC 各边的中点,则下列等式中错误的( )A .FD DA FA +=B .0FD DE EF ++=C .DE DA EC +=D .DE DA FD +=【一隅三反】1.如图,已知向量a ,b ,c ,求作和向量a +b +c .2.在平行四边形ABCD 中,AB AD +等于( )A .ACB .BDC .BCD .CD3.(多选)如图,在平行四边形ABCD 中,下列计算正确的是( )A .AB AD AC +=B .AC CD DO OA ++= C .AB AD CD AD ++= D .0AC BA DA ++=4.化简(1)BC →+AB →; (2)AO →+BC →+OB →; (3)AB →+DF →+CD →+BC →+FA →.(4)DB →+CD →+BC →; (5)(AB →+MB →)+BO →+OM →.考法二 向量的减法运算【例2-1】如图,在各小题中,已知,a b ,分别求作a b -.【例22-2】.化简下列各式:①()AB CB CA --;②AB AC BD CD -+-;③OA OD AD -+;④NQ QP MN MP ++-.其中结果为0的个数是( )A .1B .2C .3D .4【一隅三反】1.如图,已知向量,,,a b c d ,求作向量a b -,c d -.2.如图,已知向量a ,b ,c ,求作向量a -b -c .3.在五边形ABCDE 中(如图),AB BC DC +-=( )A .ACB .ADC .BD D .BE 4.化简AB CD AC BD --+=______.5.化简(1)(AB →-CD →)-(AC →-BD →) (2)OA →-OD →+AD →;(3)AB →+DA →+BD →-BC →-CA →.考法三 向量的数乘的运算【例3-1】把下列各小题中的向量b 表示为实数与向量a 的积:(1)3a e =,6b e =;(2)8a e =,14b e =-;(3)23a e =-,13b e =; (4)34a e =-,23b e =-.【例3-2】如图,OADB 是以向量,OA a OB b ==为边的平行四边形,又11,33BM BC CN CD ==,试用,a b 表示,,OM ON MN .【一隅三反】1.计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+.2.化简:(1)()()522423a b b a -+-;(2)()()634a b c a b c -+--+-; (3)()()113256923a b a a b ⎡⎤-+--⎢⎥⎣⎦; (4)()()()()x y a b x y a b -+---.3.如图,解答下列各题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .考法四 向量的共线定理【例4-1】判断向量,a b 是否共线(其中1e ,2e 是两个非零不共线的向量):(1)113,9a e b e ==-; (2)121211,3223a e eb e e =-=-; (3)1212,33a e e b e e =-=+.【例4-2】 (1)已知向量12,e e 不共线,若12210AB e e =+,1228BC e e =-+,()123CD e e =-,试证:,,A B D 三点共线.(2)设12,e e 是两个不共线向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,若,,A B D 三点共线,求k 的值.【一隅三反】1.判断下列各小题中的向量a ,b 是否共线(其中12,e e 是两个非零不共线向量).(1)115,10a e b e ==-;(2)121211,3223a e eb e e =-=-; (3)1212,33a e e b e e =+=-.2.设,a b 是不共线的两个非零向量.(1)若233OA a b OB a b OC a b =-=+=-,,,求证:A B C ,,三点共线;(2)若8a kb +与2ka b +共线,求实数k 的值;(3)若232AB a b BC a b CD a kb =+=-=-,,,且A C D ,,三点共线,求实数k 的值.3.O 为ABC ∆内一点,且20OA OB OC ++=,AD t AC =,若B ,O ,D 三点共线,则t 的值为( )A .13 B .14 C .12 D .23《6.2.1 平面向量的线性运算(精讲)》考点讲解答案解析考法一 向量的加法运算【例1-1】如图,在下列各小题中,已知向量a 、b ,分别用两种方法求作向量a b +.【答案】见解析【解析】将b 的起点移到a 的终点,再首尾相接,可得a b +;将两个向量的起点移到点A ,利用平行四边形法则,以a 、b 为邻边,作出平行四边形,则过点A 的对角线为向量a b +.如图所示,AB a b =+.(1);(2);(3) ;(4).【例1-2】如果a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”, d 表示“向南走5km ”,那么下列向量具有什么意义? (1)a a +;(2)a b +;(3)a c +;(4)b d +;(5)b c b ++;(6)d a d ++.【答案】(1)向东走20km ;(2)向东走5km ;(3)向东北走;(4)向西南走;(5)向西北走;(6)向东南走.【解析】由题意知:a 表示“向东走10km ”, b 表示“向西走5km ”, c 表示“向北走10km ”, d 表示“向南走5km ”(1)a a +表示“向东走20km ”(2)a b +表示“向东走5km ”(3)a c +表示“向东北走”(4)b d +表示“向西南走”(5)b c b ++表示“向西北走”(6)d a d ++表示“向东南走”【例1-3】向量()()AB MB BO BC OM ++++﹒化简后等于( )A.AMB.0C.0D.AC 【答案】D【解析】()()AB MB BO BC OM AB BO OM MB BC AO OM MB BC ++++=++++=+++ AM MB BC AB BC AC =++=+=, 故选D.【例1-4】已知点D ,E ,F 分别是△ABC 各边的中点,则下列等式中错误的( )A .FD DA FA +=B .0FD DE EF ++=C .DE DA EC +=D .DE DA FD +=【答案】D 【解析】由题意,根据向量的加法运算法则,可得FD DA FA +=,故A 正确; 由0FD DE EF FE EF ++=+=,故B 正确;根据平行四边形法则,可得DE DA DF EC =+=,故C 正确,D 不正确.故选:D.【一隅三反】1.如图,已知向量a ,b ,c ,求作和向量a +b +c .【答案】见解析【解析】 方法一 可先作a +c ,再作(a +c )+b ,即a +b +c .如图①,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB →=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.① ②方法二 三个向量不共线,用平行四边形法则来作.如图②,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD →=c ; (4)作平行四边形CODE ,则OE →=OC →+c =a +b +c .即OE →即为所求.2.在平行四边形ABCD 中,AB AD +等于( )A .ACB .BDC .BCD .CD【答案】A【解析】根据向量加法的平行四边形法则可得AB AD AC +=,故选:A.3.(多选)如图,在平行四边形ABCD 中,下列计算正确的是( )A .AB AD AC +=B .AC CD DO OA ++= C .AB AD CD AD ++=D .0AC BA DA ++=【答案】ACD 【解析】由向量加法的平行四边形法则可知AB AD AC +=,故A 正确;AC CD DO AD DO AO OA ++=+=≠,故B 不正确;AB AD CD AC CD AD ++=+=,故C 正确;0AC BA DA BA AC DA BC DA ++=++=+=,故D 正确.故选:ACD. 4.化简(1)BC →+AB →; (2)AO →+BC →+OB →; (3)AB →+DF →+CD →+BC →+FA →.(4)DB →+CD →+BC →; (5)(AB →+MB →)+BO →+OM →.【答案】(1)AC →(2)AC →(3)0(4)0(5)AB →【解析】 (1)BC →+AB →=AB →+BC →=AC →.(2)AO →+BC →+OB →=AO →+OB →+BC →=AB →+BC →=AC →.(3)AB →+DF →+CD →+BC →+FA →=AB →+BC →+CD →+DF →+FA →=AC →+CD →+DF →+FA →=AD →+DF →+FA →=AF →+FA →=0.(4)DB →+CD →+BC →=BC →+CD →+DB →=BD →+DB →=0.(5)方法一 (AB →+MB →)+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.方法二 (AB →+MB →)+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →.方法三 (AB →+MB →)+BO →+OM →=(AB →+BO →+OM →)+MB →=AM →+MB →=AB →.考法二 向量的减法运算【例2-1】如图,在各小题中,已知,a b ,分别求作a b -.【答案】见解析【解析】将,a b 的起点移到同一点,再首尾相接,方向指向被减向量,如图,BA a b =-,(1) (2)(3) (4)【例22-2】.化简下列各式:①()AB CB CA --;②AB AC BD CD -+-;③OA OD AD -+;④NQ QP MN MP ++-.其中结果为0的个数是( )A .1B .2C .3D .4 【答案】D【解析】①()0AB CB CA AB BC CA AC CA --=++=+=;②()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=;③0OA OD AD DA AD -+=+=;④0NQ QP MN MP NP PN ++-=+=;以上各式化简后结果均为0,故选:D【一隅三反】1.如图,已知向量,,,a b c d ,求作向量a b -,c d -.【答案】见解析【解析】如下图所示,在平面内任取一点O ,作OA a =,OB b =,OC c =,OD d =,则BA a b =-,DC c d =-.2.如图,已知向量a ,b ,c ,求作向量a -b -c .【答案】见解析【解析】在平面内任取一点O ,作向量OA →=a ,OB →=b ,则向量a -b =BA →,再作向量BC →=c ,则向量CA →=a -b -c .3.在五边形ABCDE 中(如图),AB BC DC +-=( )A .ACB .ADC .BD D .BE【答案】B 【解析】AB BC DC AB BC CD AD +-=++=.故选:B4.化简AB CD AC BD --+=______.【答案】0【解析】0AB CD AC BD AB BD DC CA --+=+++=.故答案为:0.5.化简(1)(AB →-CD →)-(AC →-BD →) (2)OA →-OD →+AD →;(3)AB →+DA →+BD →-BC →-CA →.【答案】(1)0⃑ (2)0⃑ (3)AB →【解析】(1)方法一(统一成加法) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=AB →+DC →+CA →+BD →=AB →+BD →+DC →+CA →=AD →+DA →=0.方法二(利用OA →-OB →=BA →) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=(AB →-AC →)-CD →+BD →=CB →-CD →+BD →=DB →+BD →=0.方法三(利用AB →=OB →-OA →) 设O 是平面内任意一点,则(AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD →=(OB →-OA →)-(OD →-OC →)-(OC →-OA →)+(OD →-OB →)=OB →-OA →-OD →+OC →-OC →+OA →+OD →-OB →=0. (2)OA →-OD →+AD →=OA →+AD →-OD →=OD →-OD →=0.(3)AB →+DA →+BD →-BC →-CA →=AB →+DA →+BD →+CB →+AC →=(AB →+BD →)+(AC →+CB →)+D A →=AD →+AB →+DA →=AD →+DA →+AB →=0+AB →=AB →.考法三 向量的数乘的运算【例3-1】把下列各小题中的向量b 表示为实数与向量a 的积:(1)3a e =,6b e =;(2)8a e =,14b e =-;(3)23a e =-,13b e =; (4)34a e =-,23b e =-. 【答案】(1)2b a =;(2)74b a =-;(3)12b a =-;(4)89b a =. 【解析】(1)623b e e ==⨯,2b a =;(2)71484b e e =-=-⨯,74b a =-; (3)112()323b e e ==-⨯-,12b a =-; (4)283()394b e e =-=⨯-,89b a =. 【例3-2】如图,OADB 是以向量,OA a OB b ==为边的平行四边形,又11,33BM BC CN CD ==,试用,a b 表示,,OM ON MN .【答案】1566OM a b =+,2233ON a b =+,1126MN a b =- 【解析】14222,()33333CN CD ON OC OA OB a b =∴==+=+ 11,,36BM BC BM BA =∴= 1()6OM OB BM OB OA OB ∴=+=+-1566a b =+ 1126MN ON OM a b ∴=-=- 【一隅三反】1.计算:(1)(3)4a -⨯;(2)3()2()a b a b a +---;(3)(23)(32)a b c a b c +---+.【答案】(1)12a -;(2)5b ;(3)52a b c -+-.【解析】(1)原式(34)12a a =-⨯=-;(2)原式33225a b a b a b =+-+-=;(3)原式233252a b c a b c a b c =+--+-=-+-.2.化简:(1)()()522423a b b a -+-;(2)()()634a b c a b c -+--+-; (3)()()113256923a b a a b ⎡⎤-+--⎢⎥⎣⎦; (4)()()()()x y a b x y a b -+---.【答案】(1)22a b --;(2)102210a b c -+;(3)132a b +;(4)2()x y b - 【解析】(1)()()522423101081222a b b a a b b a a b -+-=-+-=--.(2)()()6346186444102210a b c a b c a b c a b c a b c -+--+-=-++-+=-+. (3)()()()()1115113256932693232262a b a a b a b a a b a b ⎡⎤-+--=-+--=+⎢⎥⎣⎦. (4)()()()()()()()2x y a b x y a b x y x y a x y x y b x y b -+---=--++-+-=-.3.如图,解答下列各题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .【答案】(1)DB d e a =++.(2)DB b c =--.(3)EC e a b =++.(4)EC c d =--.【解析】由题意知,AB a =,BC b =,CD c =,DE d =,EA e =,则(1)DB DE EA AB d e a =++=++.(2)DB CB CD BC CD b c =-=--=--.(3)EC EA AB BC e a b =++=++.(4)()EC CE CD DE c d =-=-+=--.考法四 向量的共线定理【例4-1】判断向量,a b 是否共线(其中1e ,2e 是两个非零不共线的向量):(1)113,9a e b e ==-; (2)121211,3223a e eb e e =-=-; (3)1212,33a e e b e e =-=+.【答案】(1)共线,(2)共线,(3)不共线.【解析】(1)∵113,9a e b e ==-,∴3b a =-,∴,a b 共线.(2)∵1211,23a e e =-12121132623b e e e e ⎛⎫=-=- ⎪⎝⎭,∴6b a =,∴,a b 共线. (3)假设()b a λλ=∈R ,则()121233e e e e λ+=-,∴12(3)(3)0e e λλ-++=. ∵12,e e 不共线,∴30,30.λλ-=⎧⎨+=⎩此方程组无解.∴不存在实数λ,使得b a λ=,∴,a b 不共线.【例4-2】 (1)已知向量12,e e 不共线,若12210AB e e =+,1228BC e e =-+,()123CD e e =-,试证:,,A B D 三点共线.(2)设12,e e 是两个不共线向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,若,,A B D 三点共线,求k 的值.【答案】(1)见解析(2)-8【解析】(1)()1212122835BD BC CD e e e e e e =+=-++-=+,12210AB e e =+, 2AB BD ∴=,BD ∴与AB 共线.又BD 与AB 有公共点B ,,,A B D ∴三点共线.(2)()()121212234BD CD CB e e e e e e =-=--+=-. ,,A B D 三点共线,,AB BD ∴共线.∴存在实数λ使AB BD λ=,即()121224e ke e e λ+=-. 12(2)(4)e k e λλ∴-=--.1e 与2e 不共线,24k λλ=⎧∴⎨=-⎩,,8k ∴=-. 【一隅三反】1.判断下列各小题中的向量a ,b 是否共线(其中12,e e 是两个非零不共线向量).(1)115,10a e b e ==-;(2)121211,3223a e eb e e =-=-;(3)1212,33a e e b e e =+=-.【答案】(1) a 与b 共线;(2) a 与b 共线;(3) a 与b 不共线.【解析】(1)∵2b a =-,∴a 与b 共线.(2)∵16a b =,∴a 与b 共线. (3)设a b =λ,则()121233e e e e λ+=-,∴12(13)(13)0e e λλ-++=.∵1e 与2e 是两个非零不共线向量,∴130λ-=,130λ+=.这样的λ不存在,∴a 与b 不共线. 2.设,a b 是不共线的两个非零向量.(1)若233OA a b OB a b OC a b =-=+=-,,,求证:A B C ,,三点共线;(2)若8a kb +与2ka b +共线,求实数k 的值;(3)若232AB a b BC a b CD a kb =+=-=-,,,且A C D ,,三点共线,求实数k 的值.【答案】(1)证明见解析;(2)4±.(3)43k =. 【解析】证明:(1)22AB OB OA a b AC OC OA a b =-=+=-=--,,所以AC AB =-. 又因为A 为公共点,所以A B C ,,三点共线.(2)设()82a kb ka b λλ+=+∈R ,,则82k k λλ=⎧⎨=⎩,,解得42k λ=⎧⎨=⎩,或42k λ=-⎧⎨=-⎩,, 所以实数k 的值为4±.(3)()()2332AC AB BC a b a b a b =+=++-=-,因为A C D ,,三点共线,所以AC 与CD 共线.从而存在实数μ使AC CD μ=,即()322a b a kb μ-=-,得322.k μμ=⎧⎨-=-⎩,解得324.3k μ⎧=⎪⎪⎨⎪=⎪⎩,所以43k =. 3. O 为ABC ∆内一点,且20OA OB OC ++=,AD t AC =,若B ,O ,D 三点共线,则t 的值为( )A .13B .14C .12D .23【答案】A【解析】由AD t AC =有()OD OA t OC OA -=-,所以(1)OD tOC t OA =+-,因为B ,O ,D 三点共线,所以BO OD λ=,则2(1)OA OC tOC t OA λλ+=+-,故有2(1){1t tλλ=-=,13t =,选A.《6.2 1 平面向量的线性运算》同步练习【题组一 向量的加法运算】1.化简.(1)AB CD BC DA +++.(2)()()AB MB BO BC OM ++++.2.下列四式不能化简为AD 的是( )A .MB AD BM +-B .()()AD MB BC CM +++ C .()AB CD BC ++ D .OC OA CD -+ 3.(1)如图(1),在ABC 中,计算AB BC CA ++;(2)如图(2),在四边形ABCD 中,计算AB BC CD DA +++;(3)如图(3),在n 边形123n A A A A 中,12233411?n n n A A A A A A A A A A -+++++=证明你的结论.4.(1)已知向量a ,b ,求作向量c ,使0a b c ++=.(2)(1)中表示a ,b ,c 的有向线段能构成三角形吗?5.一艘船垂直于对岸航行,航行速度的大小为16/km h ,同时河水流速的大小为4/km h 求船实际航行的速度的大小与方向(精确到l °).6.一架飞机向北飞行300km ,然后改变方向向西飞行400km ,求飞机飞行的路程及两次位移的合成.【题组二 向量的减法运算】1.已知向量a ,b ,c ,求作a b c -+和()a b c --.2.化简:AB CB CD ED AE -+--=( )A .0B .ABC .BAD .CA3.化简:(1)AB BC CA ++; (2) ()AB MB BO OM +++;(3)OA OC BO CO +++; (4)AB AC BD CD -+-;(5)OA OD AD -+; (6)AB AD DC --;(7)NQ QP MN MP ++-.4.(多选)下列各式中,结果为零向量的是( )A .AB MB BO OM +++B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-5.(多选)已知,a b 为非零向量,则下列命题中正确的是( )A .若a b a b +=+,则a 与b 方向相同B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同【题组三 向量的数乘运算】1.化简:(1)5(32)4(23)a b b a -+-;(2)111(2)(32)()342a b a b a b -----;(3)()()x y a x y a +--.2.化简下列各式:(1)2(32)3(5)5(4)a b a b b a -++--;(2)1[3(28)2(42)]6a b a b +--.3.作图验证: (1)11()()22a b a b a ++-= (2)11()()22a b a b b +--=4.已知点B 是平行四边形ACDE 内一点,且AB = a ,AC = b ,AE = c ,试用,,a b c表示向量CD 、BC 、BE 、CE 及BD .4.如图,四边形OADB 是以向量OA a =,OB b =为边的平行四边形,又13BM BC =,13CN CD =,试用a 、b 表示OM 、ON 、MN .5.向量,,,,a b c d e 如图所示,据图解答下列问题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .【题组四 向量的共线定理】1.设12,e e 是两个不共线的向量,若向量()12a e e R λλ=+∈与()212b e e =--共线,则( )A .λ=0B .λ=-1C .λ=-2D .λ=-122.设,a b 是不共线的两个非零向量,已知2AB a pb =+,,2BC a b CD a b =+=-,若,,A B D 三点共线,则p 的值为( )A .1B .2C .-2D .-13.判断下列各小题中的向量a 与b 是否共线:(1)2a e =-,2b e =;(2)12a e e =-,1222b e e =-+.4.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+(1)判断a ,b 是否共线;(2)若a c ,求x 的值5.已知非零向量12,e e 不共线,且122AP e e =-,1234PB e e =-+,122CQ e e =--,1245QD e e =-,能否判定A ,B ,D 三点共线?请说明理由.6.设12,e e 是两个不共线向量,已知1228AB e e =-,123CB e e =+,122CD e e =-.若123BF e ke =-,且B ,D ,F 三点共线,求k 的值.7.已知12,e e 是两个不共线的向量,若1228AB e e =-,123CB e e =+,122CD e e =-,求证:A ,B ,D 三点共线.8.如图所示,在平行四边形ABCD 中,AD a = ,AB b =,M 为AB 的中点,点N 在DB 上,且2DN NB =.证明:M ,N ,C 三点共线.9.如图,点C 是点B 关于点A 的对称点,点D 是线段OB 的一个靠近点B 的三等分点,设,AB a AO b ==.(1)用向量a 与b 表示向量,OC CD ;(2)若45OE OA =,求证:C ,D ,E 三点共线.10.如图所示,已知D ,E 分别为ABC ∆的边AB ,AC 的中点,延长CD 至点M 使DM CD =,延长BE 至点N 使BE EN =,求证:M ,A ,N 三点共线.《6.2 1 平面向量的线性运算(精练)》同步练习答案解析【题组一 向量的加法运算】1.化简.(1)AB CD BC DA +++.(2)()()AB MB BO BC OM ++++. 【答案】(1)0;(2)AC .【解析】(1)0AB CD BC DA AB BC CD DA +++=+++=;(2)()()AB MB BO BC OM AB BO OM MB BC AC ++++=++++=.2.下列四式不能化简为AD 的是( )A .MB AD BM +-B .()()AD MB BC CM +++ C .()AB CD BC ++D .OC OA CD -+ 【答案】A【解析】对B ,()()AD MB BC CM AD MB BC CM AD +++=+++=,故B 正确; 对C ,()AB CD BC AB BC CD AD ++=++=,故C 正确;对D ,OC OA CD AC CD AD -+=+=,故D 正确;故选:A.3.(1)如图(1),在ABC 中,计算AB BC CA ++;(2)如图(2),在四边形ABCD 中,计算AB BC CD DA +++;(3)如图(3),在n 边形123n A A A A 中,12233411?n n n A A A A A A A A A A -+++++=证明你的结论.【答案】(1)0(2)0(3)0,见解析【解析】(1)0AB BC CA AC CA AC AC ++=+=-=(2)0AB BC CD DA AC CD DA AD DA AD AD +++=++=+=-=.(3)122334n 110n n A A A A A A A A A A -+++++=.证明如下:12233411n n n A A A A A A A A A A -+++++ 133411n n n A A A A A A A A -=++++ 1411n n n A A A A A A -=+++11110n n n n A A A A A A A A =+=-=4.(1)已知向量a ,b ,求作向量c ,使0a b c ++=.(2)(1)中表示a ,b ,c 的有向线段能构成三角形吗?【答案】(1)见解析.【解析】(1)方法一:如图所示,当向量a ,b 两个不共线时,作平行四边形OADB ,使得OA a =,OB b =,则a b OD +=,又0a b c ++=,所以0OD c +=,即OD c OC =-=-,方法二:利用向量的三角形法则,如下图:作ABC ∆,使得AB a =,BC b =,CA c =,则0AB BC CA ++=,即0a b c ++=,当向量a ,b 两个共线时,如下图:使得AB a =,BC b =,DE c =则AB BC a b +=+,()DE a b =-+,所以,0AB BC DE ++=,即0a b c ++=.(2)向量a ,b 两个不共线时,表示a ,b ,c 的有向线段能构成三角形,向量a ,b 两个共线时,a ,b ,c 的有向线段不能构成三角形.5.一艘船垂直于对岸航行,航行速度的大小为16/km h ,同时河水流速的大小为4/km h 求船实际航行的速度的大小与方向(精确到l °).【答案】,方向与水流方向成76°角【解析】设船的航行速度为1v ,水流速度为2v ,船的实际航行速度为v ,v 与2v 的夹角为α,则||416//)v km km h === 由16tan 44α==,得76α︒≈.船实际航行的速度的大小为,方向与水流方向成76°角.6.一架飞机向北飞行300km ,然后改变方向向西飞行400km ,求飞机飞行的路程及两次位移的合成.【答案】飞机飞行的路程为700km ;两次位移的合成是向北偏西约53°方向飞行500km .【解析】由向量的加减运算可知:飞机飞行的路程是700km ;两次位移的合成是向北偏西约53°,方向飞行500km .【题组二 向量的减法运算】1.已知向量a ,b ,c ,求作a b c -+和()a b c --.【答案】详见解析【解析】由向量加法的三角形法则作图:a b c -+由向量三角形加减法则作图:()a b c --2.化简:AB CB CD ED AE -+--=( )A .0B .ABC .BAD .CA 【答案】A【解析】AB CB CD ED AE -+--AB BC CD DE AE =+++-0AE AE =-=.故选:A .3.化简:(1)AB BC CA ++; (2) ()AB MB BO OM +++;(3)OA OC BO CO +++; (4)AB AC BD CD -+-;(5)OA OD AD -+; (6)AB AD DC --;(7)NQ QP MN MP ++-.【答案】(1)0.(2)AB (3)BA .(4)0(5)0(6)CB .(7)0【解析】(1)原式0AC AC =-=.(2)原式AB BO OM MB AB =+++=(3)原式OA OC OB OC BA =+--=.(4)原式0AB BD DC CA =+++=(5)原式0OA AD DO =++=(6)原式()AB AD DC AB AC CB =-+=-=.(7)原式0MN NQ QP PM =+++=4.(多选)下列各式中,结果为零向量的是( )A .AB MB BO OM +++B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+- 【答案】BD【解析】对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD5.(多选)已知,a b 为非零向量,则下列命题中正确的是( )A .若a b a b +=+,则a 与b 方向相同B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同【答案】ABD【解析】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【题组三 向量的数乘运算】1.化简:(1)5(32)4(23)a b b a -+-;(2)111(2)(32)()342a b a b a b -----; (3)()()x y a x y a +--.【答案】(1)32a b -;(2)111123a b -+;(3)2ya . 【解析】(1)原式151081232a b b a a b =-+-=-;(2)原式123111111334222123a b a b a b a b =--+-+=-+; (3)原式2xa ya xa ya ya =+-+=.2.化简下列各式:(1)2(32)3(5)5(4)a b a b b a -++--;(2)1[3(28)2(42)]6a b a b +--.【答案】(1)149a b -; (2) 11433a b -+.【解析】(1)原式64315205149a b a b b a a b =-++-+=-.(2)原式11114(62484)(228)6633a b a b a b a b =+-+=-+=-+. 3.作图验证:(1)11()()22a b a b a ++-= (2)11()()22a b a b b +--= 【答案】(1)见解析(2)见解析【解析】如图,在平行四边形ABCD 中,设,AB a AD b ==,则11(),()22AO a b OB a b =+=-.(1)因为AO OB AB +=,所以11()()22a b a b a ++-= (2)因为AO OB AO BO AO OD AD -=+=+=,所以11()()22a b a b b +--= 4.已知点B 是平行四边形ACDE 内一点,且AB = a ,AC = b ,AE = c ,试用,,a b c 表示向量CD 、BC 、BE 、CE 及BD .【答案】CD c BC b a ==-;;BE =c a -;CE =c b - ;BD =b a c -+.【解析】∵四边形A CDE 为平行四边形.∴CD =AE =c ; BC =AC -AB =b a -; BE =AE -AB = -c a ; CE =AE -AC =-c b ; BD =BC +CD = b a c -+.4.如图,四边形OADB 是以向量OA a =,OB b =为边的平行四边形,又13BM BC =,13CN CD =,试用a 、b 表示OM 、ON 、MN .【答案】1566OM a b =+;()23ON a b =+;1126MN a b =- 【解析】13BM BC =,BC CA =,16BM BA ∴=, ∴111()()666BM BA OA OB a b ==-=-. ∴()115666OM OB BM b a b a b =+=+-=+. 13CN CD =,CD OC =, ∴2222()3333ON OC CN OD OA OB a b =+==+=+.∴221511336626MN ON OM a b a b a b =-=+--=-.5.向量,,,,a b c d e 如图所示,据图解答下列问题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .【答案】(1)DB d e a =++;(2)DB b c =--;(3)EC e a b =++;(4)EC c d =--.【解析】由图知,,,,AB a BC b CD c DE d EA e =====,(1)DB DE EA AB d e a =++=++;(2)DB CB CD BC CD b c =-=--=--;(3)EC EA AB BC e a b =++=++;(4)()EC CE CD DE c d =-=-+=--【题组四 向量的共线定理】1.设12,e e 是两个不共线的向量,若向量()12a e e R λλ=+∈与()212b e e =--共线,则( )A .λ=0B .λ=-1C .λ=-2D .λ=-12【答案】D【解析】由已知得存在实数k 使a kb =,即()12212e e k e e λ+=--,于是1=2k 且λ=-k ,解得λ=-12. 2.设,a b 是不共线的两个非零向量,已知2AB a pb =+,,2BC a b CD a b =+=-,若,,A B D 三点共线,则p 的值为( )A .1B .2C .-2D .-1【答案】D【解析】因为,,A B C ,故存在实数λ,使得AB BD λ=,又2BD a b =-,所以22a pb a b λλ+=-,故1,1p λ==-,故选D.3.判断下列各小题中的向量a 与b 是否共线:(1)2a e =-,2b e =;(2)12a e e =-,1222b e e =-+.【答案】(1)a 与b 共线;(2)a 与b 共线.【解析】(1)2b e a ==-,所以a 与b 共线;(2)1212222()2b e e e e a ==-=-+--,所以a 与b 共线.4.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+(1)判断a ,b 是否共线;(2)若a c ,求x 的值 【答案】(1)a 与b 不共线.(2)23x = 【解析】(1)若a 与b 共线,由题知a 为非零向量,则有b a λ=,即()6432m n m n λ-=+, ∴6342λλ=⎧⎨-=⎩得到2λ=且2λ=-,∴λ不存在,即a 与b 不平行.(2)∵a c ∥,则c ra =,即32m xn rm rn +=+,即132r x r=⎧⎨=⎩,解得23x =. 5.已知非零向量12,e e 不共线,且122AP e e =-,1234PB e e =-+,122CQ e e =--,1245QD e e =-,能否判定A ,B ,D 三点共线?请说明理由.【答案】无法判定A ,B ,D 三点共线,见解析【解析】无法判定A ,B ,D 三点共线,证明如下:()()1212122343AB AP PB e e e e e e =+=-+-+=-+, ()()12121224526CD CQ QD e e e e e e =+=--+-=-,所以2CD AB =-,所以向量AB 与CD 共线.由于向量共线包括对应的有向线段平行与共线两种情况,所以无法判定A ,B ,D 三点共线.6.设12,e e 是两个不共线向量,已知1228AB e e =-,123CB e e =+,122CD e e =-.若123BF e ke =-,且B ,D ,F 三点共线,求k 的值.【答案】12k =【解析】()()12121212234,3BD CD CB e e e e e e BF e ke =-=--+=-=-, ∵B ,D ,F 三点共线,∴BF BD λ=,即121234e ke e e λλ-=-. 由题意知12,e e 不共线,得34k λλ=⎧⎨-=-⎩,解得12k =. 7.已知12,e e 是两个不共线的向量,若1228AB e e =-,123CB e e =+,122CD e e =-,求证:A ,B ,D 三点共线.【答案】见解析【解析】∵123CB e e =+,122CD e e =-,∴214BD CD CB e e =-=-.又()12122824AB e e e e =-=-,∴,∴AB BD .∵AB 与BD 有公共点B ,∴A ,B ,D 三点共线.8.如图所示,在平行四边形ABCD 中,AD a = ,AB b =,M 为AB 的中点,点N 在DB 上,且2DN NB =.证明:M ,N ,C 三点共线.【答案】证明见解析【解析】∵2DN NB =, ∴111()()333NB DB AB AD b a ==-=-. 连接,MN NC ,则1111()2363MN MB BN MB NB b b a b a =+=-=--=+,2122()333NC DC DN AB NB b b a b a =-=-=--=+, ∴2NC MN =,∴NC 与MN 共线. 又NC 与MN 有公共点N ,∴M ,N ,C 三点共线.9.如图,点C 是点B 关于点A 的对称点,点D 是线段OB 的一个靠近点B 的三等分点,设,AB a AO b ==.(1)用向量a 与b 表示向量,OC CD ;(2)若45OE OA =,求证:C ,D ,E 三点共线.【答案】(1)OC b a =--,5133CD a b =+;(2)证明见解析. 【解析】(1)∵AB a =,AO b =,∴OC OA AC b a =+=--,11151()2()33333CD CB BD CB BO CB BA AO a a b a b =+=+=++=+-+=+. (2)证明: 45OE OA = ()413555CE OE OC b a b a b CD ∴=-=-++=+=, ∴CE 与CD 平行,又∵CE 与CD 有共同点C ,∴C ,D ,E 三点共线.10.如图所示,已知D ,E 分别为ABC ∆的边AB ,AC 的中点,延长CD 至点M 使DM CD =,延长BE 至点N 使BE EN =,求证:M ,A ,N 三点共线.【答案】见解析【解析】连接BM ,CN (图略).∵D 为MC 的中点,且D 为AB 的中点,∴四边形ACBM 为平行四边形,∴AB AM AC =+,∴AM AB AC CB =-=.同理可证,AN AC AB BC =-=.∴AM AN =-,∴AM ,AN 共线且有公共点A ,∴M ,A ,N 三点共线.。

(完整版)平面向量的线性运算

(完整版)平面向量的线性运算

ABabbaa a O =−→−OBA B O B a abb=−→−OB a +b ABAa +b向量的线性运算(一)1.向量的加法向量的加法:求两个向量和的运算叫做向量的加法。

表示:→--AB −→−+BC =→--AC .规定:零向量与任一向量a ,都有00a a a +=+=.【注意】:两个向量的和仍旧是向量(简称和向量)作法:在平面内任意取一点O ,作→--OA =a →--→--OB =→--OA +→--AB a +b2.向量的加法法则(1)共线向量的加法:同向向量反向向量(2)不共线向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)。

三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。

表示:→--AB −→−+BC=→--AC .平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线→--AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。

如图,已知向量a 、b 在平面内任取一点A ,作→--AB =a ,=−→−BC b ,则向量−→−AC 叫做a与b 的和,记作a +b ,即a +b +=−→−AB =−→−BC −→−AC【说明】:教材中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的 特殊情况:探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.(4)“向量平移”:使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.向量加法的运算律(1)向量加法的交换律:a +b =b +a(2)向量加法的结合律:(a +b ) +c =a +(b +c ) 证明:如图:使=−→−AB a , =−→−BC b , =−→−CD c 则(a +b )+c =−→−AC +=−→−CD −→−AD ,a + (b +c )=−→−AB −→−+BD −→−=AD ,∴(a +b )+c =a +(b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行例如:()()()()a b c d b d a c +++=+++;[()]()a b c d e d a c b e ++++=++++.例题:例1. O 为正六边形的中心,作出下列向量:(1)−→−OA +−→−OC (2)−→−BC +−→−FE (3)−→−OA +−→−FE例2.如图,一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时水aaab bba +ba +b ABC ABCD三角形法则平行四边形法则的流速为h km /2,求船实际航行的速度的大小与方向。

平面向量的线性运算练习题

平面向量的线性运算练习题

平面向量的线性运算练习题1. 已知平面向量a = 3i - 2j,b = 2i + 5j,求向量a + b的结果。

求解:a +b = (3i - 2j) + (2i + 5j)= 3i - 2j + 2i + 5j= 5i + 3j所以,向量a + b的结果为5i + 3j。

2. 已知平面向量u = 4i - 3j,v = 2i + 7j,w = -i + 2j,求向量2u - 3v + 4w的结果。

求解:2u - 3v + 4w = 2(4i - 3j) - 3(2i + 7j) + 4(-i + 2j)= 8i - 6j - 6i - 21j - 4i + 8j= -2i - 19j所以,向量2u - 3v + 4w的结果为-2i - 19j。

3. 已知平面向量p = -3i + 4j,q = 5i + 2j,r = 2i - j,s = -i - 5j,求向量(p + q) - (r - s)的结果。

求解:(p + q) - (r - s) = (-3i + 4j + 5i + 2j) - (2i - j + -i - 5j)= (-3i + 5i + 2i) + (4j + 2j - j - 5j)= 4i + 0j= 4i所以,向量(p + q) - (r - s)的结果为4i。

4. 已知平面向量a = 2i + 3j,b = 4i - 5j,求向量a与向量b的数量积。

求解:a ·b = (2i + 3j) · (4i - 5j)= 2i · 4i + 2i · -5j + 3j · 4i + 3j · -5j= 8i^2 - 10ij + 12ij - 15j^2= 8i^2 + 2ij - 15j^2 (注意i^2 = -1,j^2 = -1)= 8(-1) + 2ij - 15(-1)= -8 + 2ij + 15= 7 + 2ij所以,向量a与向量b的数量积为7 + 2ij。

(完整版)平面向量专项训练(含答案)

(完整版)平面向量专项训练(含答案)

平面向量专题训练知识点回顾1.向量的三种线性运算及运算的三种形式。

向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。

每一种运算都可以有三种表现形式:图形、符号、坐标语言。

主要内容列表如下:运 算图形语言符号语言坐标语言加法与减法→--OA +→--OB =→--OC→--OB -→--OA =→--AB记→--OA =(x 1,y 1),→--OB =(x 1,y 2) 则→--OA +→--OB =(x 1+x 2,y 1+y 2)AB OB --→=u u u r -→--OA =(x 2-x 1,y 2-y 1)→--OA +→--AB =→--OB实数与向量 的乘积→--AB =λ→aλ∈R记→a =(x,y) 则λ→a =(λx,λy)两个向量 的数量积→a ·→b =|→a ||→b | cos<→a ,→b >记→a =(x 1,y 1), →b =(x 2,y 2) 则→a ·→b =x 1x 2+y 1y 2(3)两个向量平行 :设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔a b λ=r r⇔x 1y 2-x 2y 1=0(4)两个向量垂直:设→a =(x 1,y 1), →b =(x 2,y 2),则→a ⊥→b⇔a 0b •=r r ⇔x 1x 2+y 1y 2=0 课堂精练一、选择题1. 已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线2. 已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93--ECBA 3.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d 那么 ( ) A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 4已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12),5.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r,则( )A.0PA PB +=u u u r u u u r rB.0PC PA +=u u u r u u u r rC.0PB PC +=u u u r u u u r rD.0PA PB PC ++=u u u r u u u r u u u r r6.已知向量a = (2,1),a ·b = 10,︱a + b ︱=b ︱=( ) 7.设a 、b 、c 是单位向量,且a ·b =0,则()()a c bc -•-的最小值为( )A.2-2C.1-D.18已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a( )A .1BC .2D .49平面向量a 与b 的夹角为060,(2,0)a =,1b= 则2ab +=( )B.10.若向量a=(1,1),b=(-1,1),c=(4,2),则c=( )A.3a+bB. 3a-bC.-a+3bD. a+3b11.如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 ( )A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r rD .0BD BE FC --=u u u r u u u r u u u r r12.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u rB.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u rD.2AO OD =u u u r u u u r13.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( )A .150° B.120° C.60° D.30°14.已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.1615.已知1,6,()2==-=g a b a b a ,则向量a 与向量b 的夹角是( )A .6πB .4π C .3π D .2π16.已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是 ( ) A .-2B .0C .1D .217.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ( )A .2133+b cB .5233-c bC .2133-b c D .1233+b c 18.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)19.设)2,1(-=,)4,3(-=,)2,3(=则=⋅+)2( ( )A.(15,12)-B.0C.3-D.11- 二、填空题1.若向量a r ,b r 满足12a b ==r r ,且a r 与b r 的夹角为3π,则a b +=r r .2.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ3.已知向量a 与b 的夹角为120o,且4==a b ,那么(2)+gb a b 的值为4.已知平面向量(2,4)a =r ,(1,2)b =-r .若()c a a b b =-⋅r r r r r ,则||c =r____________.5.a r ,b r 的夹角为120︒,1a =r,3b =r 则5a b -=r r .6.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是7.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+=8.已知向量(3,1)a =r ,(1,3)b =r , (,2)c k =r ,若()a c b -⊥r r r则k = .9.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .10.在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为__________.平面向量专题训练答案:一选择题1 C2 D3 D 4D 5 B 6 C 7 D 8 C 9 B 10 B11 A 12 A 13 B 14 A 15 C 16 D 17 A 18 B 19 C 二 填空题2 23 0 _4 285 76 -37 -18 09 5 10_(0,-2)。

向量的线性运算技巧及练习题含答案

向量的线性运算技巧及练习题含答案

向量的线性运算技巧及练习题含答案一、选择题1.如果向量a 与单位向量e 的方向相反,且长度为3,那么用向量e 表示向量a 为( )A .3a e =B .3a e =-C .3e a =D .3e a =-【答案】B【解析】【分析】根据平面向量的定义解答即可.【详解】解:∵向量e 为单位向量,向量a 与向量e 方向相反,∴3a e =-.故选:B .【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( )A .平行四边形B .矩形C .梯形D .菱形 【答案】C【解析】【分析】 利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项. 【详解】 解:∵, ∴,∴AD ∥BC ,AD=2BC.∴四边形ABCD 为梯形.【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.若非零向量、满足|-|=||,则( )A .|2|>|-2|B .|2|<|-2|C .|2|>|2-|D .|2|<|2-|【答案】A【解析】【分析】 对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题.【详解】 解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义,故可以构造三角形,使其满足OB=AB=BC ; 令, ,则, ∴且; 又BA+BC>AC ∴ ∴. 故选A.【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.4.在矩形ABCD 中,如果AB 3BC 模长为1,则向量(AB +BC +AC ) 的长度为( )A .2B .4C 31D 31【答案】B【解析】【分析】先求出AC AB BC =+,然后2AB BC AC AC ++=,利用勾股定理即可计算出向量(AB +BC +AC )的长度为【详解】 22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC ACAB BC AC AC ==∴=+==+∴++=++==⨯=∴故选:B.【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.若AB 是非零向量,则下列等式正确的是( )A .AB BA =;B .AB BA =;C .0AB BA +=;D .0AB BA +=.【答案】B【解析】【分析】 长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果【详解】∵AB 是非零向量, ∴AB BA =故选B【点睛】此题考查平面向量,难度不大6.下列判断正确的是( )A .0a a -=B .如果a b =,那么a b =C .若向量a 与b 均为单位向量,那么a b =D .对于非零向量b ,如果()0a k b k =⋅≠,那么//a b【答案】D【解析】【分析】根据向量的概念、性质以及向量的运算即可得出答案.【详解】 A. -a a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b ,如果()0a k b k =⋅≠,即可得到两个向量是共线向量,可得到//a b ,故D 正确.故答案为D.【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.7.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ,那么向量AO 用向量a b ⋅表示为( )A .12a bB .2133a bC .2233a bD .1124a b 【答案】B【解析】【分析】 利用三角形的重心性质得到: 23AO AD ;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BCb , ∴11BDBC b 22. ∴1b 2AD AB BD a又∵点O 是△ABC 的重心, ∴23AOAD , ∴221AO AD a b 333. 故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AOAD 是解题的关键.8.若向量a 与b 均为单位向量,则下列结论中正确的是( ).A .a b =B .1a =C .1b =D .a b =【答案】D【解析】【分析】由向量a 与b 均为单位向量,可得向量a 与b 的模相等,但方向不确定.【详解】解:∵向量a 与b 均为单位向量,∴向量a 与b 的模相等, ∴a b =. 故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.9.已知平行四边形ABCD ,O 为平面上任意一点.设=,=, =,=,则 ( ) A .+++= B .-+-= C .+--=D .--+= 【答案】B【解析】【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项.【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D 错误;;而; ∴B 正确. 故选B.【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.10.下列各式正确的是( ).A .()22a b c a b c ++=++B .()()330a b b a ++-=C .2AB BA AB +=D .3544a b a b a b ++-=- 【答案】D【解析】【分析】根据平面向量计算法则依次判断即可.【详解】A 、()222a b c a b c ++=++,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-,故B 选项错误;C 、0AB BA +=,故C 选项错误;D 、3544a b a b a b ++-=-,故D 选项正确;故选D.【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.11.已知a 、b 、c 都是非零向量,如果2a c =,2b c =-,那么下列说法中,错误的是( )A .//a bB .a b =C .72BD = D .a 与b 方向相反【答案】C【解析】【分析】利用相等向量与相反向量的定义逐项判断即可完成解答.【详解】 解:已知2a c =,2b c -=,故a b ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误,故选C.【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.下列说法正确的是( )A .()0a a +-=B .如果a 和b 都是单位向量,那么a b =C .如果||||a b =,那么a b =D .12a b =-(b 为非零向量),那么//a b【答案】D【解析】【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案.【详解】解:A 、()a a +-等于0向量,而不是0,故A 选项错误;B 、如果a 和b 都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-(b 为非零向量),可得到两个向量是共线向量,可得到//a b ,故D 选项正确.故选:D.【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.13.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE【答案】B【解析】【分析】根据三角形法则计算即可解决问题.【详解】解:原式()()AB BE CD DE =+-+AE CE =- AE EC =+AC =,故选:B .【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.14.下列有关向量的等式中,不一定成立的是( )A .AB BA =-B .AB BA =C .AB BCAC D .AB BC AB BC +=+ 【答案】D【解析】【分析】根据向量的性质,逐一判定即可得解.【详解】A 选项,AB BA =-,成立;B 选项,AB BA =,成立;C 选项,AB BC AC ,成立;D 选项,AB BC AB BC +=+不一定成立;故答案为D.【点睛】此题主要考查向量的运算,熟练掌握,即可解题.15.已知c 为非零向量, 3a c =, 2b c =-,那么下列结论中错误的是( )A .//a bB .3||||2a b =C .a 与b 方向相同D .a 与b 方向相反【答案】C【解析】【分析】根据平面向量的性质一一判断即可. 【详解】∵ 3a c =, 2b c =- ∴3a b 2=-, ∴a ∥b ,32a b =- a 与b 方向相反,∴A ,B ,D 正确,C 错误;故选:C .【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如果a b c +=,3a b c -=,且0c ≠,下列结论正确的是A .=a bB .20a b +=C .a 与b 方向相同D .a 与b 方向相反【答案】D【解析】【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=代入3a b c -=,计算得:-2a b =(方向相反).故选:D【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.17.已知非零向量a 、b 和c ,下列条件中,不能判定a b 的是( )A .2a b =-B .a c =,3b c =C .2a b c +=,a b c -=-D .2a b =【答案】D【解析】【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-,两个向量方向相反,互相平行,故本选项错误;B 、a c =,3b c =,则a ∥b ∥c ,故本选项错误;C 、由已知条件知2a b =-,3a c -=,则a ∥b ∥c ,故本选项错误;D 、2a b =只知道两向量模的数量关系,但是方向不一定相同或相反,a 与b 不一定平行,故本选项正确.故选:D .【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.18.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( )A .a //bB .a -2b =0C .b =12aD .2a b =【答案】B【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误.故选B.19.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB = B .12CB AB = C .0AC BC += D .0AC CB +=【答案】B【解析】 根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答. 解:A 、12CA BA =,故本选项错误;B 、12CB AB =,故本选项正确;C 、0AC BC +=,故本选项错误;D 、AC CB AB +=,故本选项错误.故选B .20.已知AM 是ABC △的边BC 上的中线,AB a =,AC b =,则AM 等于( ).A .()12a b - B .()12b a - C .()12a b + D .()12a b -+ 【答案】C【解析】【分析】 根据向量加法的三角形法则求出:CB a b =-,然后根据中线的定义可得:()12CM a b =-,再根据向量加法的三角形法则即可求出AM . 【详解】解:∵AB a =,AC b =∴CB AB AC a b =-=-∵AM 是ABC △的边BC 上的中线∴()1122CM CB a b ==- ∴()()1122AM AC CM b b b a a -=+=+=+故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.。

2023年高考数学一轮复习第五章平面向量与复数1平面向量的概念及线性运算练习含解析

2023年高考数学一轮复习第五章平面向量与复数1平面向量的概念及线性运算练习含解析

平面向量的概念及线性运算考试要求 1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,也叫做共线向量,规定:零向量与任意向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法a-b=a+(-b)数乘|λa|=|λ||a|,当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.向量共线定理向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使得b=λa. 常用结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—→+A 2A 3—→+A 3A 4—→+…+A n -1A n ———→=A 1A n —→,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12(OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB →+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1. 5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)|a |与|b |是否相等,与a ,b 的方向无关.( √ ) (2)若向量a 与b 同向,且|a |>|b |,则a >b .( × )(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (4)起点不同,但方向相同且模相等的向量是相等向量.( √ ) 教材改编题1.(多选)下列命题中,正确的是( ) A .若a 与b 都是单位向量,则a =b B .直角坐标平面上的x 轴、y 轴都是向量C .若用有向线段表示的向量AM →与AN →不相等,则点M 与N 不重合 D .海拔、温度、角度都不是向量 答案 CD解析 A 错误,由于单位向量长度相等,但是方向不确定;B 错误,由于只有方向,没有大小,故x 轴、y 轴不是向量;C 正确,由于向量起点相同,但长度不相等,所以终点不同;D 正确,海拔、温度、角度只有大小,没有方向,故不是向量.2.下列各式化简结果正确的是( ) A.AB →+AC →=BC → B.AM →+MB →+BO →+OM →=AM → C.AB →+BC →-AC →=0 D.AB →-AD →-DC →=BC →3.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由题意知存在k ∈R , 使得a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.题型一 向量的基本概念例1 (1)(多选)给出下列命题,不正确的有( ) A .若两个向量相等,则它们的起点相同,终点相同B .若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形 C .a =b 的充要条件是|a |=|b |且a ∥bD .已知λ,μ为实数,若λa =μb ,则a 与b 共线 答案 ACD解析 A 错误,两个向量起点相同,终点相同,则两个向量相等,但两个向量相等,不一定有相同的起点和终点;B 正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;C 错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;D 错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. (2)如图,在等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →教师备选(多选)下列命题为真命题的是( )A .若a 与b 为非零向量,且a ∥b ,则a +b 必与a 或b 平行B .若e 为单位向量,且a ∥e ,则a =|a |eC .两个非零向量a ,b ,若|a -b |=|a |+|b |,则a 与b 共线且反向D .“两个向量平行”是“这两个向量相等”的必要不充分条件 答案 ACD思维升华 平行向量有关概念的四个关注点 (1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量. (4)a|a |是与a 同方向的单位向量. 跟踪训练1 (1)(多选)下列命题正确的是( ) A .零向量是唯一没有方向的向量 B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a =b ,b =c ,则a =c 答案 BCD解析 A 项,零向量是有方向的,其方向是任意的,故A 错误; B 项,由零向量的定义知,零向量的长度为0,故B 正确;C 项,因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 是反向共线时才成立,故C 正确;D 项,由向量相等的定义知D 正确.(2)对于非零向量a ,b ,“a +b =0”是“a∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 若a +b =0,则a =-b ,则a ∥b ,即充分性成立;若a ∥b ,则a =-b 不一定成立,即必要性不成立,即“a +b =0”是“a ∥b ”的充分不必要条件. 题型二 平面向量的线性运算 命题点1 向量加、减法的几何意义例 2 (2022·济南模拟)已知单位向量e 1,e 2,…,e 2023,则|e 1+e 2+…+e 2023|的最大值是________,最小值是________. 答案 2023 0解析 当单位向量e 1,e 2,…,e 2023方向相同时, |e 1+e 2+…+e 2023|取得最大值,|e 1+e 2+…+e 2023|=|e 1|+|e 2|+…+|e 2023|=2023; 当单位向量e 1,e 2,…,e 2023首尾相连时,e 1+e 2+…+e 2023=0,所以|e 1+e 2+…+e 2023|的最小值为0. 命题点2 向量的线性运算例3 (多选)如图,在四边形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2AD =2CD ,E 是BC 边上一点,且BC →=3EC →,F 是AE 的中点,则下列关系式正确的是( )A.BC →=-12AB →+AD →B.AF →=13AB →+13AD →C.BF →=-13AB →+23AD →D.CF →=-16AB →-23AD →答案 ABD解析 因为BC →=BA →+AD →+DC →=-AB →+AD →+12AB →=-12AB →+AD →,所以选项A 正确; 因为AF →=12AE →=12(AB →+BE →)=12⎝⎛⎭⎪⎫AB →+23BC →,而BC →=-12AB →+AD →,代入可得AF →=13AB →+13AD →,所以选项B 正确; 因为BF →=AF →-AB →, 而AF →=13AB →+13AD →,代入得BF →=-23AB →+13AD →,所以选项C 不正确; 因为CF →=CD →+DA →+AF →=-12AB →-AD →+AF →,而AF →=13AB →+13AD →,代入得CF →=-16AB →-23AD →,所以选项D 正确.命题点3 根据向量线性运算求参数例4 (2022·青岛模拟)已知平面四边形ABCD 满足AD →=14BC →,平面内点E 满足BE →=3CE →,CD与AE 交于点M ,若BM →=xAB →+yAD →,则x +y 等于( ) A.52 B .-52C.43 D .-43答案 C解析 如图所示,易知BC =4AD ,CE =2AD ,BM →=AM →-AB → =13AE →-AB →=13(AB →+BE →)-AB → =13(AB →+6AD →)-AB → =-23AB →+2AD →,∴x +y =43.教师备选1.(2022·太原模拟)在△ABC 中,AD 为BC 边上的中线,若点O 满足AO →=2OD →,则OC →等于( ) A.-13AB →+23AC →B.23AB →-13AC →C.13AB →-23AC →D.-23AB →+13AC →答案 A解析 如图所示,∵D 为BC 的中点, ∴AD →=12(AB →+AC →),∵AO →=2OD →,∴AO →=23AD →=13AB →+13AC →,∴OC →=AC →-AO →=AC →-⎝ ⎛⎭⎪⎫13AB →+13AC →=-13AB →+23AC →.2.(2022·长春调研)在△ABC 中,延长BC 至点M 使得BC =2CM ,连接AM ,点N 为AM 上一点且AN →=13AM →,若AN →=λAB →+μAC →,则λ+μ等于( )A.13B.12 C .-12D .-13答案 A解析 由题意,知AN →=13AM →=13(AB →+BM →)=13AB →+13×32BC →=13AB →+12(AC →-AB →) =-16AB →+12AC →,又AN →=λAB →+μAC →,所以λ=-16,μ=12,则λ+μ=13.思维升华 平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义. (2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值. 跟踪训练2 (1)点G 为△ABC 的重心,设BG →=a ,GC →=b ,则AB →等于( ) A .b -2a B.32a -12b C.32a +12b D .2a +b答案 A解析 如图所示,由题意可知 12AB →+BG →=12GC →, 故AB →=GC →-2BG →=b -2a .(2)(2022·大连模拟)在△ABC 中,AD →=2DB →,AE →=2EC →,P 为线段DE 上的动点,若AP →=λAB →+μAC →,λ,μ∈R ,则λ+μ等于( )A .1B.23C.32D .2答案 B解析 如图所示,由题意知, AE →=23AC →,AD →=23AB →,设DP →=xDE →,所以AP →=AD →+DP →=AD →+xDE → =AD →+x (AE →-AD →) =xAE →+(1-x )AD → =23xAC →+23(1-x )AB →, 所以μ=23x ,λ=23(1-x ),所以λ+μ=23x +23(1-x )=23.题型三 共线定理及其应用 例5 设两向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b , CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线, 又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b . ∵a ,b 是不共线的两个向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1. 教师备选1.已知P 是△ABC 所在平面内一点,且满足PA →+PB →+PC →=2AB →,若S △ABC =6,则△PAB 的面积为( )A .2B .3C .4D .8答案 A解析 ∵PA →+PB →+PC →=2AB →=2(PB →-PA →), ∴3PA →=PB →-PC →=CB →,∴PA →∥CB →,且两向量方向相同,∴S △ABC S △PAB =BC AP =|CB →||PA →|=3, 又S △ABC =6,∴S △PAB =63=2.2.设两个非零向量a 与b 不共线,若a 与b 的起点相同,且a ,t b ,13(a +b )的终点在同一条直线上,则实数t 的值为________. 答案 12解析 ∵a ,t b ,13(a +b )的终点在同一条直线上,且a 与b 的起点相同,∴a -t b 与a -13(a +b )共线,即a -t b 与23a -13b 共线,∴存在实数λ,使a -t b =λ⎝ ⎛⎭⎪⎫23a -13b ,又a ,b 为两个不共线的非零向量, ∴⎩⎪⎨⎪⎧ 1=23λ,t =13λ,解得⎩⎪⎨⎪⎧λ=32,t =12.思维升华 利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据. (2)若a 与b 不共线且λa =μb ,则λ=μ=0.(3)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.跟踪训练3 (1)若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k 等于( ) A .-1B .1C.32D .2答案 B解析 由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,故存在实数λ, 使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.(2)如图,已知A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)答案 B解析 因为线段CO 与线段AB 交于点D , 所以O ,C ,D 三点共线, 所以OC →与OD →共线, 设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →, 可得OD →=λm OA →+μmOB →,因为A ,B ,D 三点共线, 所以λm +μm=1,可得λ+μ=m >1, 所以λ+μ的取值范围是(1,+∞).课时精练1.(多选)下列选项中的式子,结果为零向量的是( ) A.AB →+BC →+CA → B.AB →+MB →+BO →+OM → C.OA →+OB →+BO →+CO → D.AB →-AC →+BD →-CD → 答案 AD解析 利用向量运算,易知A ,D 中的式子结果为零向量. 2.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B 解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b |b |,则有a ,b 共线,而a ,b 共线,则a|a |,b|b |是相等向量或相反向量,所以“a|a |=b|b |”是“a ,b 共线”的充分不必要条件.3.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是( ) A .a ∥b B .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案 B解析 由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b 成立,所以A 正确;由a +b =b ,所以B 不正确,C 正确;由|a +b |=|b |,|a |+|b |=|b |, 所以|a +b |=|a |+|b |,所以D 正确.4.(2022·汕头模拟)下列命题中正确的是( ) A .若a ∥b ,则存在唯一的实数λ使得a =λbB .若a∥b ,b∥c ,则a∥cC .若a·b =0,则a =0或b =0D .|a |-|b |≤|a +b |≤|a |+|b | 答案 D解析 若a ∥b ,且b =0,则可有无数个实数λ使得a =λb ,故A 错误; 若a ∥b ,b ∥c (b ≠0),则a ∥c ,若b =0, 则a ,c 不一定平行,故B 错误; 若a·b =0,也可以为a ⊥b ,故C 错误;根据向量加法的三角形法则和向量减法的几何意义知, |a |-|b |≤|a +b |≤|a |+|b |成立,故D 正确.5.在平行四边形ABCD 中,AC →与BD →交于点O ,E 是线段OD 的中点.若AC →=a ,BD →=b ,则AE →等于( ) A.14a +12b B.23a +13b C.12a +14b D.13a +23b 答案 C解析 如图所示,∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12a +12b , ∴AE →=AD →-ED →=12a +12b -14b =12a +14b .6.下列说法正确的是( ) A .向量AB →与向量BA →的长度相等B .两个有共同起点,且长度相等的向量,它们的终点相同C .向量a 与b 平行,则a 与b 的方向相同或相反D .向量的模是一个正实数 答案 A解析 A 项,AB →与BA →的长度相等,方向相反,正确;B 项,两个有共同起点且长度相等的向量,若方向也相同,则它们的终点相同,故错误;C 项,向量a 与b 平行时,若a 或b 为零向量,不满足条件,故错误;D 项,向量的模是一个非负实数,故错误.7.如图,在平行四边形ABCD 中,E 为BC 的中点,F 为DE 的中点,若AF →=xAB →+34AD →,则x 等于( )A.34B.23C.12D.14答案 C解析 连接AE (图略),因为F 为DE 的中点, 所以AF →=12(AD →+AE →),而AE →=AB →+BE →=AB →+12BC →=AB →+12AD →,所以AF →=12(AD →+AE →)=12⎝⎛⎭⎪⎫AD →+AB →+12AD →=12AB →+34AD →, 又AF →=xAB →+34AD →,所以x =12.8.(多选)已知4AB →-3AD →=AC →,则下列结论正确的是( ) A .A ,B ,C ,D 四点共线 B .C ,B ,D 三点共线 C .|AC →|=|DB →| D .|BC →|=3|DB →| 答案 BD解析 因为4AB →-3AD →=AC →,所以3DB →=BC →,因为DB →,BC →有公共端点B ,所以C ,B ,D 三点共线,且|BC →|=3|DB →|, 所以B ,D 正确,A 错误; 由4AB →-3AD →=AC →,得AC →=3AB →-3AD →+AB →=3DB →+AB →, 所以|AC →|≠|DB →|,所以C 错误.9.(2022·太原模拟)已知不共线向量a ,b ,AB →=t a -b (t ∈R ),AC →=2a +3b ,若A ,B ,C 三点共线,则实数t =__________. 答案 -23解析 因为A ,B ,C 三点共线,所以存在实数k ,使得AB →=kAC →, 所以t a -b =k (2a +3b )=2k a +3k b , 即(t -2k )a =(3k +1)b .因为a ,b 不共线,所以⎩⎪⎨⎪⎧t -2k =0,3k +1=0,解得⎩⎪⎨⎪⎧k =-13,t =-23.10.已知△ABC 的重心为G ,经过点G 的直线交AB 于D ,交AC 于E ,若AD →=λAB →,AE →=μAC →,则1λ+1μ=________.答案 3解析 如图,设F 为BC 的中点,则AG →=23AF →=13(AB →+AC →),λμ∴AG →=13λAD →+13μAE →,又G ,D ,E 三点共线, ∴13λ+13μ=1,即1λ+1μ=3. 11.若正六边形ABCDEF 的边长为2,中心为O ,则|EB →+OD →+CA →|=________. 答案 2 3解析 正六边形ABCDEF 中,EB →+OD →+CA →=EO →+DC →+OD →+CA →=ED →+DA →=EA →, 在△AEF 中,∠AFE =120°,AF =EF =2, ∴|EA →|=22+22-2×2×2×cos120°=23, 即|EB →+OD →+CA →|=2 3.12.在平行四边形ABCD 中,点M 为BC 边的中点,AC →=λAM →+μBD →,则λ+μ=________. 答案 53解析 AC →=λ⎝ ⎛⎭⎪⎫AB →+12AD →+μ(AD →-AB →)=(λ-μ)AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又因为AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=43,μ=13,所以λ+μ=53.13.(多选)点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是( ) A .钝角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 AD解析 因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0, 所以|CB →|-|(PB →-PA →)+(PC →-PA →)|=0, 即|CB →|=|AB →+AC →|, 所以|AB →-AC →|=|AC →+AB →|, 等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.14.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD →=14AC →+λAB →(λ∈R ),则λ=________,AD 的长为________. 答案 343 3解析 ∵B ,D ,C 三点共线, ∴14+λ=1,解得λ=34. 如图,过D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N , 则AN →=14AC →,AM →=34AB →,∵在△ABC 中,∠A =60°,∠A 的平分线交BC 于D , ∴四边形AMDN 是菱形, ∵AB =4,∴AN =AM =3, ∴AD =3 3.15.(2022·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为( ) A. 3 B .2 3 C .3 3 D .4 3答案 B解析 设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →. 由AB →+PB →+PC →=0, 得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点, 所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点, 又D 为BC 的中点,所以四边形CPBM 为平行四边形. 又|AB →|=|PB →|=|PC →|=2, 所以|MC →|=|BP →|=2,则|AC →|=4, 且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°, 则S △ABC =12×2×4×32=2 3.16.若2OA →+OB →+3OC →=0,S △AOC ,S △ABC 分别表示△AOC ,△ABC 的面积,则S △AOC ∶S △ABC =________. 答案 1∶6解析 若2OA →+OB →+3OC →=0, 设OA ′——→=2OA →,OC ′——→=3OC →, 可得O 为△A ′BC ′的重心,如图,设S △AOB =x ,S △BOC =y ,S △AOC =z , 则S △A ′OB =2x ,S △BOC ′=3y ,S △A ′OC ′=6z , 由2x =3y =6z ,可得S△AOC∶S△ABC=z∶(x+y+z)=1∶6.。

高中数学必修二 6 1 平面向量的线性运算(精练)(含答案)

高中数学必修二   6  1 平面向量的线性运算(精练)(含答案)

6.2.1 平面向量的线性运算(精练)【题组一 向量的加法运算】1.(2021·全国·高一课时练习)向量()()PA MA AO AC OM ++++化简后等于( )A .ACB .PAC .PCD .PM【答案】C【解析】()()()()PA MA AO AC OM PA AO OM MA AC ++++=++++PO OA AC PC =++= 故选:C.2.(2021·江苏·邳州宿羊山高级中学高一月考)化简AB BC CD DE +++=( )A .0B .0C .AED .EA【答案】C【解析】AB BC CD DE AC CD DE AD DE AE +++=++=+=,故选:C3.(2021·广东·卓雅外国语学校高一月考)化简AB BC CD DA +++=( )A .ACB .BAC .CAD .0【答案】D【解析】0AB BC CD DA +++=,故选:D4.(2021·云南隆阳·高一期中)如图,在ABD △中,C 为BD 的中点,E 为AB 上一点,则2AB AD CE ++=()A .2AEB .2BDC .AED .BD【答案】A【解析】因为C 为BD 的中点,所以2222()2AB AD CE AC CE AC CE AE ++=+=+=.故选:A5.(2021·江西·奉新县第一中学高一月考)式子()()++++化简结果是( )AB MB BO BC OMA.AO B.AC C.BC D.AM【答案】B【解析】由()()()()++++=++++AB MB BO BC OM AB BO MB BC OM()=++=+=.AO OM MC AM MC AC故选:B.6.(2021·全国·高一课时练习)如图,在正六边形ABCDEF中,BA CD FB++等于( )A.0B.BE C.AD D.CF【答案】A【解析】CD AF++==++.BA CD FB BA AF FB=,∴0故选:A.7.(2021·安徽·定远县育才学校高一月考(文))如图,D、E、F分别是△ABC的边AB、BC、CA的中点,则下列等式中错误的是( )A.FD+DA+DE=0B.AD+BE+CF=0C.FD+DE+AD=AB D.AD+EC+FD=BD【答案】D【解析】FD+DA+DE=FA+DE=0,A正确;AD+BE+CF=AD+DF+FA=0,B正确;FD+DE+AD=FE+AD=AD+DB=AB,C正确;AD+EC+FD=AD+0=AD=DB≠BD,D错误,故选:D.8.(2021·全国·高一课时练习)已知向量,,a b c如图,求作a b c++.【答案】答案见解析【解析】在平面内任取一点O,作,,===,如图,则由向量加法的三角形法则,OA a AB b BC c得,=+=++.OB a b OC a b c9.(2021·全国·高一课时练习)如图,在平行四边形ABCD中,O是AC和BD的交点.(1)AB AD+=____________;(2)AC CD DO++=________;(3)AB AD CD++=_______;(4)AC BA DA++=_________.【答案】AC AO AD0【解析】(1)由平行四边形法则,AB AD AC +=;(2)由向量加法的三角形法则,AC CD DO AD DO AO ++=+=;(3)由向量加法法则得,AB AD CD AC CD AD ++=+=;(4)由向量加法法则得,0AC BA DA BA AC BC D A A D ++=++=+=.故答案为:AC ;AO ;AD ;0.10.(2021·河南·信阳市浉河区新时代学校高一月考)化简(1)BC AB +;(2)AO BC OB ++;(3)DF CD BC A FA B ++++;(4)DB CD BC ++;(5)()AB MB BO OM +++.【答案】(1)AC ;(2)AC ;(3)0;(4)0;(5)AB .【解析】(1)BC AB AB BC AC +=+=;(2)AO BC OB AO OB BC AB BC AC ++=++=+=;(3)0B A DF CD BC FA A BC CD DF FA B ++++=++++=;(4)0DB CD BC DB BC CD ++=++=;(5)()AB MB BO OM AB BO OM MB AB +++=+++=.11.(2021·江苏·高一课时练习)如图,平行四边形ABCD 中,对角线AC 与BD 交于O 点,P 为平面内任意一点.求证:PA +PB +PC +PD =4PO .【答案】证明见解析【解析】证明:△PA +PB +PC +PDPO OA PO OB PO OC PO OD =+++++++()=++++4PO OA OB OC OD()()4PO OA OC OB OD=++++=++PO400=,4PO∴PA+PB+PC+PD=4PO.12.(2021·上海·高一期末)作五边形ABCDE,求作下列各题中的和向量:(1)AB BC+;(2)AB ED DB BE+++.【答案】(1)AC;(2)AB.【解析】(1)AB BC AC;(2)AB ED DB BE AB EB BE AB+++=++=.【题组二向量的减法运算】1.(2021·全国·高一课时练习)如图,已知向量,,a b c,求作向量a b c--.【答案】答案见解析【解析】在平面内任取一点O,作向量OA a=,如图所示:=,OB b则向量OA OB a b BA -=-=,再作向量BC c =,则向量CA a b c =--.2.(2021·上海·高一课时练习)已知向量a ,b ,c ,求作a b c -+和()a b c --.【答案】详见解析【解析】由向量加法的三角形法则作图:a b c -+由向量三角形加减法则作图:()a b c --3.(2021·浙江·高一单元测试)化简下列各式:(1)(AB +MB )+(-OB -MO );(2)AB -AD -DC .【答案】(1)AB ;(2)CB【解析】(1)法一:原式()()AB MB BO OM AB BO OM MB AO OB AB =+++=+++=+= 法二:原式()AB MB BO OM AB MB BO OM AB MO OM =+++=+++=++0AB AB =+=;(2)法一:原式DB DC CB =-=.法二:原式()AB AB DC AB AC CB =-+=-=.4.(2021·全国·高一课时练习)化简(1)()()AB CD AC BD ---(2)OA OD AD -+;(3)AB DA ++BD BC CA --.【答案】(1)0;(2)0;(3)AB .【解析】(1)方法一(统一成加法): ()()AB CD AC BD AB AC CD BD ---=--+ 0AB BD DC CA AD DA =+++=+=方法二(利用OA OB BA -=):()()AB CD AC BD AB CD AC BD ---=--+ 0AB AC CD BD CB CD BD DB BD =--+=-+=+=(2)0OA OD AD DA AD -+=+=.(3)AB DA BD BC CA AB DA AC BD BC ++--=+++-AB DC CD AB =++=5.(2021·全国·高一课时练习)已知向量a ,b ,c 如图所示.(1)求作向量a b c +-;(2)求作向量a b c --.【答案】作图见解析【解析】如图所示.(1)(2)6.(2021·全国·高一课时练习)如图,已知正方形ABCD的边长等于1,AB a=,AC c=,BC b=,试作向量:(1)a b-;(2)a b c-+.【答案】(1)DB;(2)DF.【解析】(1)在正方形ABCD中,a b AB BC AB AD DB-=-=-=.连接BD,箭头指向B,则a b-即为DB.(2)过B作BF△AC,交DC的延长线于F,连接AF,则四边形ABFC为平行四边形,故AB AC AF+=+=.a c在△ADF中,DF AF AD a b c=-+=-,故DF即为所求.【题组三 向量的数乘】1.(2021·云南·巍山彝族回族自治县第二中学高一月考)已知在ABC 中,点E 在CB 的延长线上,且满足22BE AB AC =-,则AE =( )A .32AE AB AC =- B .32AE AB AC =+ C .23AE AB AC =+D .32AE AB AC =+【答案】A【解析】△22BE AB AC =-,AE AB BE =+,△2232AE AB AB AC AB AC =+-=-,故选A . 2.(2021·云南省南涧县第一中学高一月考)如图,在等腰梯形ABCD 中,AB BC =,3BAD π∠=,若AB a =,AD b =,则AC =( )A .23a b + B .23a b + C .12a b + D .12a b + 【答案】C 【解析】如图,作CE AB ∥,由题意得CD CE =,3BAD CDA π∠=∠=,所以 CDE 是等边三角形,则2AD BC =,所以1122AC AB BC AB AD a b =+=+=+. 故选:C3(2021·河北·博野县实验中学高一期中)如图所示,在平行四边形ABCD 中,E ,F 分别是BC ,DC 的中点,若AB a =,AD b =,试以a ,b 表示DE 和BF .【答案】12DE a b=-;12BF b a=-.【解析】因为四边形ABCD是平行四边形,E,F分别是BC,DC的中点,AB a=,AD b=,所以111222DE DC CE AB DA AB AD a b =+=+=--=;111222BF BC CF AD CD AD AB b a=+=+=--=.4.(2021·全国·高一课时练习)已知D为△ABC的边BC的中点,E为AD上一点,且EDAE3=,若AD a=,试用a表示EA EB EC++.【答案】14 EA EB EC a ++=-【解析】解:如图,△EDAE3=,且AD a=,△1133,4444ED AD a EA AD a ===-=-,又D为边BC的中点,△122EB EC ED a+==,△311424EA EB EC a a a ++=-+=-.5.(2021·全国·高一课时练习)化简:(1)5(32)4(23)a b b a-+-;(2)111(2)(32)()342a b a b a b -----; (3)()()x y a x y a +--.【答案】(1)32a b -;(2)111123a b -+;(3)2ya . 【解析】(1)原式151081232a b b a a b =-+-=-;(2)原式123111111334222123a b a b a b a b =--+-+=-+; (3)原式2xa ya xa ya ya =+-+=.6.(2021·全国·高一课时练习)已知点G 是ABC 的重心,点D 在边AC 上,2AD DC =(1)用AB 和AC 表示AG ; (2)用AB 和AC 表示DG .【答案】(1)()13AG AB AC =+;(2)()13DG AB AC =-. 【解析】(1)设BC 的中点为E ,则()12AE AB AC =+, G 为ABC 的重心,可知重心到顶点的距离与重心到对边中点的距离之比为2:1,∴()()21122333AB AC A AE AC A B G =⨯+=+=. (2)2AD DC =,23AD AC ∴=, 因此,()()121333DG AG AD AB AC AC AB AC =-=+-=-.7.(2021·福建·平潭县新世纪学校高一期中)计算:(1)111(2)(32)()342a b a b a b ++---; (2)127137(32)236276a b a b a b a ⎡⎤⎡⎤⎛⎫+---++ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦. 【答案】(1)72123a b +;(2)0.【解析】(1)11113111(2)(32)()3423324222a b a b a b a b a b a b ++---=++--+ =13121172342322123a b a b ⎛⎫⎛⎫+-+-+=+ ⎪ ⎪⎝⎭⎝⎭. (2)127137(32)236276a b a b a b a ⎡⎤⎡⎤⎛⎫+---++ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦ =17737171023676262a b a b a b a b ⎛⎫⎛⎫+-+=+--= ⎪ ⎪⎝⎭⎝⎭ 8.(2021·河北·深州长江中学高一月考)如图,已知四边形ABCD 为平行四边形,AC 与BD 相交于E ,12DM DE ,14EN EC =,设AB a =,AD b =,试用基底{},a b 表示向量AM ,AN ,MN .【答案】1344A a b M =+,5588A b N a =+,3188M a b N =- 【解析】ABCD 是平行四边形,12DM DE ,14EN EC =,AB a =,AD b = ∴()()11111132242444AM AD AE AD AC AD AB AD a b =+=+=++=+, 11115552428888AN AE EN AC EC AC AC AC a b =+=+=+==+, 551331884488MN AN AM AB AD AB a b AD =-=+--=-. 【题组四 向量线性运算的实际运用】1.(2021·全国·高一课时练习)作用在同一物体上的两个力1260N,60N F F ==,当它们的夹角为120︒时,则这两个力的合力大小为( )N .A .30B .60C .90D .120【答案】B【解析】如图,1AB F =,2AD F =,120BAD ∠=︒,作平行四边形ABCD ,则12AC F F =+, 因为AD AB =,所以四边形ABCD 是菱形,又120BAD ∠=︒,ABC 是等边三角形,60AC AB ==. 故选:B .2.(2021·全国·高一专题练习)点O 是平行四边形ABCD 的两条对角线的交点,AO OC CB ++等于( )A .ABB .BC C .CD D .0【答案】A 【解析】由题意,如上图示AO OC AC +=,又AC CB AB +=,△AO OC CB ++AB =.故选:A3.(2021·全国·高一课时练习)在静水中船的速度为20m /min ,水流的速度为10m /min ,若船沿垂直水流的方向航行,则船实际行进的方向与岸方向的夹角的正切值为________.【答案】2【解析】如图,作平行四边形ABDC ,则AD v =实际,设船实际航向与岸方向的夹角为α,则||20tan 210||BD AB α===.即船实际行进的方向与岸方向的夹角的正切值为2.故答案为:24.(2021·湖北武汉·高一期中)如图所示,O 是线段02021A A 外一点,若0122021,,,A A A A 中,相邻两点间的距离相等,0202101,,OA a OA b OA OA ==+++2021OA =_______(用,a b 表示)【答案】1011(a b +)【解析】解:设A 为线段02021A A 的中点,则A 也为线段12020220193201810101011,,,,A A A A A A A A ⋅⋅⋅的中点, 由向量加法的平行四边形法则可得020212OA OA OA a b +==+,120202OA OA OA a b +==+,……,101010112OA OA OA a b +==+,所以01202020211011()OA OA OA OA a b ++⋅⋅⋅++=+,故答案为:1011()a b +5.(2021·全国·高一课时练习)在静水中船的速度为20m /min ,水流的速度为10m /min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.【答案】船是沿与水流的方向成120︒的角的方向行进的.【解析】作出图形,如图所示.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形,在Rt ACD △中,|||||CD AB v ==水|10=,|||AD v =船|20=,所以||101cos 202||CD AD α===,所以60α=︒, 从而船与水流方向成120︒的角.所以船是沿与水流的方向成120︒的角的方向行进的.6.(2021·全国·高一课时练习)某人在静水中游泳,速度为/小时,他在水流速度为4千米/小时的河中游泳.他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度大小为多少?【答案】答案见解析【解析】如图,设此人的实际速度为OD ,水流速度为OA ,游速为OB ,则OA OB OD +=,在Rt AOD △中,43AD =4OA =,则224OD AD OA =-=3cos 3OAOAD AD ∠==故此人沿向量OB 的方向游(,实际前进的速度大小为米/小时.7(2021·全国·高一课时练习)如图,已知电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N.绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为____,方向为_____.【答案】 竖直向上【解析】以OAOB ,为邻边作平行四边形BOAC ,则12F F F +=,即OA OB OC +=,则60OAC ∠=︒,=24OA ,12AC OB ==,90ACO ∴∠=︒,=123OC1F ∴与2F 的合力大小为,方向为竖直向上.8.(2021·全国·高一课时练习)如图,用两根绳子把重10N 的物体W 吊在水平杆子AB 上,150,120ACW BCW ∠=∠=︒︒,则A 处所受力的大小为_________N ,B 处所受力的大小为__________N .(绳子的重量忽略不计)【答案】 5【解析】如图所示,设,CE CF 分别表示A ,B 所受的力,10N 的重力用CG 表示,则CE CF CG +=.易得18015030,18012060ECG FCG ∠=-=∠=-︒︒︒=︒︒︒.所以||||cos3010CE CG ︒===,1||||cos60105(N)2CF CG ︒==⨯=.所以A 处所受力的大小为,B 处所受力的大小为5N .故答案为: 5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 2.2 平面向量的线性运算
重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量
共线的充要条件.
考纲要求:①掌握向量加法,减法的运算,并理解其几何意义.
②掌握向量数乘的运算及其意义。

理解两个向量共线的含义.
③了解向量线性运算的性质及其几何意义.
经典例题:如图,已知点 D , E, F 分别是ABC 三边AB , BC ,CA的中点,
uuur uuur uuur r
求证: EA FB DC0 .
当堂练习:
1.a、b为非零向量,且|a b| |a| |b|,则()A.a与b方向相
同B. a b
C.a b D. a与b方向相反
uuur uuur uuur uuur
a ,而b是一非零向量,则下列各结论:① a //
b ;②2.设( AB CD )( BC DA )
a b a ;③ a b b ;④ a b a b ,其中正确的是()
A.①②B.③④C.②④D.①③
3. 3.在△ ABC中, D、 E、 F 分别 BC、 CA、 AB的中点,点 M是△ ABC的重心,

MA MB MC 等于()
A.O B.4MD C.4MF D.4ME
4.已知向量a与b反向,下列等式中成立的是()A.| a | | b | | a b |B.| a b | | a b |
C.| a | | b | | a b |D.| a | | b | | a b |
5.若a b c 化简3( a 2b) 2(3 b c)2( a b)()
A.a B. b C. c D.以上都不对
uuur
6.已知四边形 ABCD是菱形,点 P 在对角线 AC上(不包括端点A、C),则AP =()
A.
uuur uuur
(0,1)B.
uuur uuur2
) ( AB AD ).( AB BC ).(0,
2
C.
uuur uuur
(0,1)D
uuur uuur
(0,2 ) ( AB AD )..( AB BC ).
2
uuur uuur
3 ,∠AOB=60,则 | a b | __________。

7.已知| OA | |a| 3,| OB | | b |
8.当非零向量a和b满足条件时,使得 a b 平分 a 和 b 间的夹角。

9.如图, D、 E、 F 分别是ABC边 AB、 BC、 CA上的
C
中点,则等式:
uuur uuur uuur ①FD DA AF
uuur uuur uuur ③ DE DA BE 0
uuur uuur uuur
②FD DE EF
uuur uuur uuur
④ AD BE AF
F E
A D B
10.若向量x、y满足2x3y a, 3x 2 y b ,a、b为已知向量,则x=__________;y =___________.
11.一汽车向北行驶 3 km,然后向北偏东60方向行驶 3 km,求汽车的位移 .
12. 如图在正六边形ABCDEF中,已知:
AB = a ,AF =b,试用a、b表示向量 BC , CD , AD , BE .
§ 2.2 向量的线性运算
经典例题:
证明:连结DE , EF , FD .因为 D , E, F 分别是ABC 三边的中点,所以四边形ADEF 为
uuur uuur uuur
平行四边形.由向量加法的平行四边形法则,得ED EF EA (1),同理在平行四边形
uuur uuur uuur uuur uuur uuur
BEFD 中,FD FE FB (2),在平行四边形CFDE 在中,DF DE DC (3)
将( 1) (2) (3)相加,得
uuur uuur uuur uuur uuur uuur uuur uuur uuur
EA FB DC ED EF FD FE DE DF
uuur uuur uuur uuur uuur uuur
( EF FE )( ED DE ) ( FD DF )
r
当堂练习:
1.C;
2.D;
3.A;
4.C;
5.D;
6.A;
7. 3;
8.| a | | b | ;
9.③,④; 10.(1) a, d( 2)a, d( 3)不存在( 4)a, d,c ;
11.北偏东 30°方向,大小为3 3 km.
12. BC AO AB BO AB AF a b ;
CD AF b ;AD2BC 2 a b;BE 2 AF2b。

相关文档
最新文档